JP2010209887A - Casing for fan - Google Patents

Casing for fan Download PDF

Info

Publication number
JP2010209887A
JP2010209887A JP2009060022A JP2009060022A JP2010209887A JP 2010209887 A JP2010209887 A JP 2010209887A JP 2009060022 A JP2009060022 A JP 2009060022A JP 2009060022 A JP2009060022 A JP 2009060022A JP 2010209887 A JP2010209887 A JP 2010209887A
Authority
JP
Japan
Prior art keywords
wall
impeller
channel
suction port
front wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009060022A
Other languages
Japanese (ja)
Other versions
JP5249822B2 (en
Inventor
Mineyuki Yoneda
峰之 米田
Takao Egaitsu
孝生 荏開津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009060022A priority Critical patent/JP5249822B2/en
Publication of JP2010209887A publication Critical patent/JP2010209887A/en
Application granted granted Critical
Publication of JP5249822B2 publication Critical patent/JP5249822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce pressure loss at a blow out channel while increasing a suction quantity of gas from a suction port further and increasing force pressing gas into the suction port (dynamic pressure of a fan). <P>SOLUTION: A casing body 5 includes a revolution channel 10 making gas sucked through an suction air opening part 9 opening at a part in a rotation direction of an impeller 2 on an outer side of a front wall 8 revolve in the same direction as a rotation direction of the impeller 2 and flow toward the suction port 3, and an introduction part 11 disposed at a terminal part of the revolution channel 10 and introducing gas made to flow by the revolution channel 10 to a suction port 3. A blow out channel continues to a part between an outer circumference of the impeller 2 and a blow out channel wall and is formed between a blow out channel wall and a connection wall connected toward the blow out port from a tongue part. A channel part where the tongue part faces the blow out channel wall in the blow out channel is constructed in such a manner that the channel on a side separating from a front wall in a rotary axial direction of the impeller is wider than that on a side getting close to the front wall. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転駆動される羽根車を収容するケーシング本体が、羽根車の回転軸心方向に沿って気体を吸い込む吸込口を有する前壁と、その前壁に対向配置された後壁と、前記前壁と前記後壁とを結んで収容された前記羽根車の外周との間に前記羽根車の回転方向の一部に開口する吹出口に向けて気体を流動させる流動流路を形成させる周回内壁とを備え、前記周回内壁は、前記羽根車の外周との距離が最小となる舌部を周回始端とし且つ前記流動流路に連続して前記吹出口への吹出流路を形成する吹出流路壁に連続する連続部分を周回終端として、前記流動流路の流路幅を前記周回始端から前記周回終端に向かって順次拡大させているファン用ケーシングに関する。   The present invention provides a casing main body that houses a rotationally driven impeller, a front wall having a suction port for sucking gas along the direction of the rotational axis of the impeller, a rear wall disposed opposite to the front wall, A flow channel is formed between the front wall and the rear wall and the outer periphery of the impeller accommodated therein to flow gas toward a blowout opening that opens in a part of the impeller in the rotational direction. A circumferential inner wall, and the circumferential inner wall has a tongue portion having a minimum distance from the outer periphery of the impeller, and a blowout flow path to the blowout port that is continuous with the flow flow path. The present invention relates to a fan casing in which a continuous portion continuous with a flow path wall is a circulation end, and the flow path width of the flow channel is sequentially increased from the circulation start end to the circulation end.

上記のようなファン用ケーシングを備えたファンは、吸込口から羽根車の回転軸心方向に沿って気体(例えば空気)を吸い込み、その吸い込んだ気体を羽根車の内部から外周に向けて遠心方向に流出させ、その流出された空気を吹出口から吹き出す遠心式ファンとして構成されている。   The fan including the fan casing as described above sucks gas (for example, air) from the suction port along the rotational axis direction of the impeller, and the sucked gas is centrifugally directed from the inside of the impeller toward the outer periphery. It is configured as a centrifugal fan that causes the discharged air to flow out from the air outlet.

このようなファン用ケーシングでは、前壁に円形状の吸込口を形成して、その吸込口から気体を吸い込んでいる(例えば、特許文献1参照。)。特許文献1に記載のファン用ケーシングでは、単に円形状の吸込口から気体を吸い込んでいるだけであるので、吸込口から効率よく気体を吸い込むことができない虞があった。
そこで、従来のファン用ケーシングでは、前壁の外側(気体が吸込口に導入される前の部位)において、気体を羽根車の回転方向へ旋回させる複数の固定翼が配設されている(例えば、特許文献2参照。)。特許文献2に記載のファン用ケーシングでは、固定翼により吸込口の周囲の気体が、羽根車の回転方向に案内流動されながら、吸込口の正面に流動されることになる。これにより、吸込口の周囲の気体を吸い込み易くなり、吸込口から吸い込む気体の流量を増加させることができる。
In such a fan casing, a circular suction port is formed in the front wall, and gas is sucked from the suction port (see, for example, Patent Document 1). In the fan casing described in Patent Document 1, since the gas is simply sucked from the circular suction port, there is a possibility that the gas cannot be sucked efficiently from the suction port.
Therefore, in the conventional fan casing, a plurality of fixed wings for rotating the gas in the rotation direction of the impeller are disposed outside the front wall (portion before the gas is introduced into the suction port) (for example, , See Patent Document 2). In the fan casing described in Patent Document 2, the gas around the suction port is caused to flow to the front of the suction port while being guided and flowed in the rotation direction of the impeller by the fixed blades. Thereby, it becomes easy to suck in the gas around the suction port, and the flow rate of the gas sucked from the suction port can be increased.

特開2004−68644号公報JP 2004-68644 A 特開2002−371996号公報JP 2002-371996 A

上記特許文献2に記載のファン用ケーシングでは、特許文献1に記載のものに比べて、吸込口での気体の吸込量は増加することになる。しかしながら、上記特許文献2に記載のファン用ケーシングでは、固定翼が羽根車の回転方向に気体を案内流動させるだけであるので、吸込口の正面に流動された気体が吸込口を回転しながら徐々に内壁の内側に吸い込まれていく。よって、吸込口に気体を押し込む力(ファンの動圧)が高まり難く、ファンの高静圧化には限界があった。   In the fan casing described in Patent Document 2, the amount of gas suction at the suction port is increased as compared with that described in Patent Document 1. However, in the fan casing described in Patent Document 2, since the fixed blade only guides and flows the gas in the rotation direction of the impeller, the gas flowing in front of the suction port gradually rotates while rotating the suction port. It is sucked into the inner wall. Therefore, it is difficult to increase the force for pushing the gas into the suction port (dynamic pressure of the fan), and there is a limit to increasing the static pressure of the fan.

また、吸込口から羽根車の回転軸心方向に沿って気体を吸い込むので、吸い込まれる気体は、羽根車の回転軸心方向において前壁から離間する側に向く力を受けることになる。そして、気体は、羽根車の回転軸心方向において前壁から離間する側に向く慣性力を維持したまま、流動流路を流動して吹出流路を流動することになる。よって、吹出流路では、羽根車の回転軸心方向において前壁から離間する側の方が前壁に接近する側よりも気体の流量が多くなる傾向にある。そして、吸込口からより多くの気体を吸い込む場合には、吹出流路において、羽根車の回転軸心方向の前壁から離間する側と前壁に接近する側との気体の流量差が顕著になる。その為に、吹出流路での圧力損失が大きくなり、より多くの気体をスムーズに吹出口から吹き出し難いものとなっていた。   Further, since the gas is sucked from the suction port along the direction of the rotational axis of the impeller, the sucked gas receives a force directed toward the side away from the front wall in the direction of the rotational axis of the impeller. Then, the gas flows through the flow passage while flowing through the flow passage while maintaining the inertial force directed toward the side away from the front wall in the direction of the rotational axis of the impeller. Therefore, in the blowout flow path, the gas flow rate tends to be higher on the side away from the front wall in the direction of the rotational axis of the impeller than on the side approaching the front wall. When more gas is sucked from the suction port, the difference in the gas flow rate between the side away from the front wall in the direction of the rotational axis of the impeller and the side approaching the front wall is significant in the blowout flow path. Become. For this reason, the pressure loss in the blowout flow path becomes large, and it is difficult to smoothly blow out more gas from the blowout port.

本発明は、かかる点に着目してなされたものであり、その目的は、吸込口での気体の吸込量をより多くして、吸込口に気体を押し込む力(ファンの動圧)を高めながら、吹出流路での圧力損失を低減することができるファン用ケーシングを提供する点にある。   The present invention has been made paying attention to such a point, and its purpose is to increase the amount of gas sucked at the suction port and increase the force to push the gas into the suction port (dynamic pressure of the fan). In the point which provides the casing for fans which can reduce the pressure loss in a blow-off channel.

この目的を達成するために、本発明に係るファン用ケーシングの特徴構成は、回転駆動される羽根車を収容するケーシング本体が、羽根車の回転軸心方向に沿って気体を吸い込む吸込口を有する前壁と、その前壁に対向配置された後壁と、前記前壁と前記後壁とを結んで収容された前記羽根車の外周との間に前記羽根車の回転方向の一部に開口する吹出口に向けて気体を流動させる流動流路を形成させる周回内壁とを備え、前記周回内壁は、前記羽根車の外周との距離が最小となる舌部を周回始端とし且つ前記流動流路に連続して前記吹出口への吹出流路を形成する吹出流路壁に連続する連続部分を周回終端として、前記流動流路の流路幅を前記周回始端から前記周回終端に向かって順次拡大させているファン用ケーシングにおいて、
前記ケーシング本体には、前記前壁の外側において前記羽根車の回転方向の一部に開口する吸気開口部を通して吸気された気体を前記羽根車の回転方向と同方向に周回させて前記吸込口に向けて流動させる周回流路と、前記周回流路の終端部に配設されて前記周回流路にて流動された気体を前記吸込口へ導入させる導入部とが備えられ、前記吹出流路が、前記羽根車の外周と前記吹出流路壁との間に連続して、前記舌部から前記吹出口に向けて連接された連接壁と前記吹出流路壁との間に形成され、前記吹出流路において前記舌部と前記吹出流路壁とが対向する流路部分は、前記羽根車の回転軸心方向において前記前壁から離間する側の方が前記前壁に接近する側よりも流路幅が大きく構成されている点にある。
In order to achieve this object, the fan casing according to the present invention is characterized in that the casing body that houses the rotationally driven impeller has a suction port for sucking gas along the rotational axis direction of the impeller. An opening is provided in a part in the rotational direction of the impeller between a front wall, a rear wall disposed opposite to the front wall, and an outer periphery of the impeller accommodated by connecting the front wall and the rear wall. A circulating inner wall that forms a flow channel for allowing gas to flow toward the blowout port, and the circulating inner wall has a tongue portion having a minimum distance from the outer periphery of the impeller as a circumferential start end and the flow channel. The continuous portion that continues to the blowout flow path wall that forms the blowout flow path to the blowout outlet is the circulation end, and the flow passage width of the flow channel is sequentially increased from the turn start end to the turn end. In the fan casing,
In the casing body, the gas sucked through the intake opening that opens in a part of the rotation direction of the impeller on the outside of the front wall circulates in the same direction as the rotation direction of the impeller to the suction port. A circumferential flow path that flows toward the end, and an introduction section that is disposed at a terminal portion of the circumferential flow path and introduces the gas that has flowed in the circumferential flow path to the suction port. The blowout passage is formed between a connection wall continuously connected between the outer periphery of the impeller and the blowout flow passage wall and from the tongue portion toward the blowout outlet, and the blowout flow passage wall. In the flow passage, the flow passage portion where the tongue portion and the blowout flow passage wall face each other flows more on the side away from the front wall in the direction of the rotational axis of the impeller than on the side closer to the front wall. The road width is large.

本特徴構成によれば、吸込口の周囲の気体は吸気開口部から吸気され、その吸気された気体が、周回流路によって羽根車の回転方向と同方向に周回させる。これにより、吸気開口部から吸気された気体は、周回流路によって流速が高められて吸込口に到達する。そして、流速が高められた気体は、導入部により羽根車の回転軸心方向に沿う力が与えられて吸込口へ積極的に導入される。よって、流速が高められた気体が吸込口に吸い込まれることになり、吸込口に気体を押し込む力(ファンの動圧)を高めることができる。しかも、吸込口の周囲の気体は、周回流路にて案内流動しながら吸込口にて吸い込むので、吸込口での気体の吸込量をより多くすることができる。   According to this characteristic configuration, the gas around the suction port is sucked from the suction opening, and the sucked gas is circulated in the same direction as the rotation direction of the impeller by the circulation channel. As a result, the gas sucked from the intake opening is increased in flow velocity by the circulation channel and reaches the suction port. Then, the gas whose flow velocity is increased is positively introduced into the suction port by being given a force along the rotational axis direction of the impeller by the introduction portion. Therefore, the gas whose flow velocity is increased is sucked into the suction port, and the force for pushing the gas into the suction port (dynamic pressure of the fan) can be increased. In addition, since the gas around the suction port is sucked at the suction port while being guided and flowed in the circulation channel, the amount of gas sucked at the suction port can be further increased.

吸気開口部、周回流路及び導入部を備えることによって、吸込口からより多くの気体を吸い込むことができるので、吹出流路において舌部と吹出流路壁とが対向する流路部分を流動する気体の流量が羽根車の回転軸心方向の前壁から離間する側がより多くなり、羽根車の回転軸心方向の前壁から離間する側と前壁に接近する側との気体の流量差が大きくなる。そこで、本特徴構成によれば、吹出流路において舌部と吹出流路壁とが対向する流路部分の流路幅を、羽根車の回転軸心方向において前壁から離間する側の方が前壁に接近する側よりも大きくすることで、その流路部分を流動する気体の流量差に対応した流路幅にすることができる。したがって、吹出流路において舌部と吹出流路壁とが対向する流路部分を通過するときの圧力損失を低減することができる。   By providing the intake opening, the circulation channel, and the introduction unit, more gas can be sucked from the suction port, so that the tongue portion and the blowing channel wall flow in the channel portion facing the blowing channel. The side where the gas flow rate is farther from the front wall in the direction of the rotation axis of the impeller is more, and the difference in gas flow rate between the side away from the front wall in the direction of the rotation axis of the impeller and the side approaching the front wall growing. Therefore, according to the present characteristic configuration, the flow path width of the flow path portion where the tongue portion and the blow flow path wall face in the blow-off flow path is closer to the side away from the front wall in the rotational axis direction of the impeller. By making it larger than the side approaching the front wall, the flow path width corresponding to the flow rate difference of the flowing gas can be made in the flow path portion. Therefore, it is possible to reduce the pressure loss when the tongue portion and the blowout flow passage wall pass through the flow passage portions facing each other in the blowout flow passage.

以上のことから、羽根車の回転速度を低回転速度でより高い静圧を得ることができ、ファンの高静圧化を図りながら、羽根車を回転駆動させるモータの消費電力の低減を図ることができ、しかも、吹出流路での圧力損失を低減してより多くの気体をスムーズに吹出口から吹き出すことができる。   From the above, the rotational speed of the impeller can be obtained at a low rotational speed and a higher static pressure can be obtained, and the power consumption of the motor that rotates the impeller can be reduced while the static pressure of the fan is increased. In addition, it is possible to reduce the pressure loss in the blowout flow path and to blow out more gas smoothly from the blowout port.

本発明に係るファン用ケーシングの更なる特徴構成は、前記舌部において前記吹出流路壁と対向する対向部分が、前記羽根車の回転軸心方向において前記前壁から離間する側の方が前記前壁に接近する側よりも前記吹出流路壁に対して離れる傾斜状に形成されている点にある。   A further characteristic configuration of the fan casing according to the present invention is such that the facing portion of the tongue portion that faces the blowout flow path wall is spaced from the front wall in the rotational axis direction of the impeller. It exists in the point formed in the inclined shape which leaves | separates with respect to the said blowing flow path wall rather than the side which approaches a front wall.

本特徴構成によれば、例えば、吹出流路壁を直線状の起立壁とする単純な構成としながら、しかも、舌部において吹出流路壁と対向する対向部分についても傾斜状に形成するという簡易な構成により、吹出流路において舌部と吹出流路壁とが対向する流路部分の流路幅を、羽根車の回転軸心方向において前壁から離間する側の方が前壁に接近する側よりも大きくすることができる。更に、舌部において吹出流路壁と対向する対向部分を傾斜状としたことで、羽根車の外周に流出された気体が舌部に当たるまでの時間が前壁に接近する側から離れる側に順次長くなる。よって、気体が舌部に当たるときに発生する音に位相差が生じることになり、お互いの発生する音が干渉し合い騒音の発生を抑制できる。   According to this characteristic configuration, for example, a simple configuration in which the outlet channel wall is a straight upright wall, and the opposing portion of the tongue portion that faces the outlet channel wall is also formed in an inclined shape. With this configuration, the flow width of the flow path portion where the tongue portion and the blow flow path wall face each other in the blow flow path is closer to the front wall in the direction away from the front wall in the rotational axis direction of the impeller. Can be larger than the side. Furthermore, by making the facing part facing the blowout flow path wall in the tongue part into an inclined shape, the time until the gas that has flowed out to the outer periphery of the impeller hits the tongue part is sequentially increased from the side approaching the front wall. become longer. Therefore, a phase difference is generated in the sound generated when the gas hits the tongue, and the sounds generated by each other interfere with each other, thereby suppressing the generation of noise.

本発明に係るファン用ケーシングの更なる特徴構成は、前記連接壁は、前記吹出口に接近する側ほど前記吹出流路壁との間の距離が大きく構成されている点にある。   A further characteristic configuration of the fan casing according to the present invention is that the connecting wall is configured such that a distance between the connecting wall and the outlet passage wall increases as the side approaches the outlet.

本特徴構成によれば、吹出流路において連接壁と吹出流路壁との間の流路部分は、吹出口に接近するほど圧力が低くなるので、その圧力差を利用して連接壁と吹出流路壁との間の流路部分をスムーズに気体を流動させることができる。   According to this characteristic configuration, the flow path portion between the connection wall and the blow flow path wall in the blow flow path becomes lower in pressure as it approaches the blow outlet, so that the pressure difference is used to make the flow between the connection wall and the blow flow path. The gas can smoothly flow through the channel portion between the channel walls.

前方側から見たケーシング本体の斜視図Perspective view of the casing body as seen from the front side 後方側から見たケーシング本体の斜視図Perspective view of the casing body viewed from the rear side 羽根車の回転軸心方向に沿って縦断したケーシング本体の断面図Sectional view of the casing body taken longitudinally along the rotational axis direction of the impeller 前方側から見たケーシング本体を示す図The figure which shows the casing body seen from the front side 後壁を取り外した状態での後方側から見たケーシング本体を示す図The figure which shows the casing body seen from the back side in the state where the back wall was removed 後壁及び羽根車を取り外した状態での後方側から見たケーシング本体を示す図The figure which shows the casing main body seen from the back side in the state which removed the rear wall and the impeller 吹出口が開口する方向から見たケーシング本体の側面図Side view of the casing body viewed from the direction in which the air outlet opens 前方側から見たケーシング本体の斜視図Perspective view of the casing body as seen from the front side 後方側から見たケーシング本体の斜視図Perspective view of the casing body viewed from the rear side 後壁及び羽根車を取り外した状態での後方側から見たケーシング本体を示す図The figure which shows the casing main body seen from the back side in the state which removed the rear wall and the impeller 後壁及び羽根車を取り外した状態での後方側から見たケーシング本体を示す図The figure which shows the casing main body seen from the back side in the state which removed the rear wall and the impeller

本発明に係るファン用ケーシングを備えたファンの実施形態を図面に基づいて説明する。
このファン1は、図1〜図6に示すように、モータ(図示省略)にて回転駆動される羽根車2と、吸込口3及び吹出口4が形成されて羽根車2を収容するケーシング本体5とを備えて構成されている。吸込口3は、羽根車2の回転軸心方向X(以下、単に、回転軸心方向Xと略称する)に沿って開口しており、吹出口4は、羽根車2の回転方向Y(以下、単に、回転方向Yと略称する)の一部に開口している。羽根車2は、周部に複数の羽根2aを並べて備えるとともに、回転軸心方向Xの一方端が開口された吸込部とし且つ他方端が閉塞された底板としている。そして、羽根車2は、吸込部がケーシング本体5の前壁8に対向し、且つ、底板がケーシング本体5の後壁13に対向する配置にて収容空間に収容されている。これにより、吸込口3から吸い込んだ空気を羽根車2の吸込部を通して羽根車2の内部に取り込み、羽根車2の回転駆動及び底板により各羽根2aによって羽根車2の内部の空気が遠心方向に流出される構成となっている。
An embodiment of a fan provided with a fan casing according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 6, the fan 1 includes an impeller 2 that is rotationally driven by a motor (not shown), and a casing body that accommodates the impeller 2 by forming a suction port 3 and an outlet 4. 5. The suction port 3 opens along the rotational axis direction X of the impeller 2 (hereinafter simply referred to as “rotational axis direction X”), and the blowout port 4 rotates in the rotational direction Y of the impeller 2 (hereinafter referred to as “rotational axis direction X”). , Simply abbreviated as rotation direction Y). The impeller 2 is provided with a plurality of blades 2a arranged side by side on the periphery, and is a suction plate having one end opened in the rotational axis direction X and a bottom plate closed at the other end. The impeller 2 is housed in the housing space in such a manner that the suction portion faces the front wall 8 of the casing body 5 and the bottom plate faces the rear wall 13 of the casing body 5. Thereby, the air sucked from the suction port 3 is taken into the impeller 2 through the suction portion of the impeller 2, and the air inside the impeller 2 is centrifugally driven by the blades 2a by the rotational drive and the bottom plate of the impeller 2. It is configured to be leaked.

ファン1は、吸込口3から回転軸心方向Xに沿って空気(気体)を吸い込み、その吸い込んだ空気を羽根車2の内部から外周に向けて遠心方向に流出させ、その流出された空気を吹出口4から吹き出す遠心式ファンとして構成されている。例えば、このようなファン1は、換気扇用のファンとして用いられている。   The fan 1 sucks air (gas) from the suction port 3 along the rotational axis direction X, and causes the sucked air to flow out in the centrifugal direction from the inside of the impeller 2 to the outer periphery. The centrifugal fan is blown out from the outlet 4. For example, such a fan 1 is used as a fan for a ventilation fan.

本発明に係るファン用ケーシングは、直方体に形成されたケーシング本体5にて構成されており、ケーシング本体5は、吸込口3にて空気を吸い込むための吸気構造を形成する吸気側形成部6と吸込口3にて吸い込んだ空気を吹出口4から吹き出すための吹出構造を形成する吹出側形成部7とを備えている。ケーシング本体5は、回転軸心方向Xにおいて、吸気口4が形成された前壁8を基準として、前壁8よりも前方側(図1〜3中左側)に吸込側形成部6が形成されており、前壁8よりも後方側(図1〜3中右側)に吹出側形成部7が形成されている。   The fan casing according to the present invention is configured by a casing body 5 formed in a rectangular parallelepiped, and the casing body 5 includes an intake side forming portion 6 that forms an intake structure for sucking air at the suction port 3. A blow-out side forming portion 7 that forms a blow-out structure for blowing out air sucked in from the blow-out opening 3 from the blow-out opening 4 is provided. In the casing body 5, the suction side forming portion 6 is formed in front of the front wall 8 (left side in FIGS. 1 to 3) with respect to the front wall 8 in which the air inlet 4 is formed in the rotation axis direction X. The blowing side forming portion 7 is formed on the rear side (right side in FIGS. 1 to 3) of the front wall 8.

図1は、主に吸込側形成部6を表しており、吸込口3の前方側から見たケーシング本体5の分解斜視図を示しており、図2は、主に吹出側形成部7を表しており、吸込口3の後方側から見たケーシング本体5の分解斜視図を示している。図3は、回転軸心方向Xに沿ってケーシング本体5を縦断したときの側方から見たケーシング本体5の断面図を示している。図4は、吸込口3の前方側から見たケーシング本体5を示す図であり、図5は、後壁13を取り外した状態での吸込口3の後方側から見たケーシング本体5を示す図であり、図6は、後壁13及び羽根車2を取り外した状態での吸込口3の後方側から見たケーシング本体5を示す図である。   FIG. 1 mainly shows the suction side forming part 6, shows an exploded perspective view of the casing body 5 as seen from the front side of the suction port 3, and FIG. 2 mainly shows the outlet side forming part 7. The exploded perspective view of casing body 5 seen from the back side of inlet 3 is shown. FIG. 3 shows a cross-sectional view of the casing body 5 as viewed from the side when the casing body 5 is longitudinally cut along the rotational axis direction X. 4 is a view showing the casing body 5 as seen from the front side of the suction port 3, and FIG. 5 is a view showing the casing body 5 as seen from the rear side of the suction port 3 with the rear wall 13 removed. FIG. 6 is a view showing the casing body 5 as seen from the rear side of the suction port 3 with the rear wall 13 and the impeller 2 removed.

〔吸込側形成部〕
吸込側形成部6は、前壁8の外壁から外側(前方側)に一体的に形成されている。吸込側形成部6によって、空気を吸気する吸気開口部9と、吸気開口部9にて吸気された空気を吸込口3に向けて流動させる周回流路10と、周回流路10にて流動された空気を吸込口3へ導入させる導入部11とが形成されている。
(Suction side forming part)
The suction side forming part 6 is integrally formed on the outer side (front side) from the outer wall of the front wall 8. The suction side forming portion 6 is caused to flow in the suction passage 9 for sucking air, the circulation passage 10 for flowing the air sucked in the suction opening 9 toward the suction port 3, and the circulation passage 10. And an introduction portion 11 for introducing the air into the suction port 3.

吸気開口部9は、前壁8の外側において回転方向Yの一部(図4中左側)に開口しており、羽根車2の径方向において吸込口3よりも外側に配設されている。
周回流路10は、吸気開口部9を通して吸気された空気を回転方向Yと同方向に周回させて吸込口3に向けて流動させる渦巻き状に形成されている。そして、周回流路10は、基本的には、吸込口3に接近する形状となっており、吸込口3に接近する側ほど流路幅が狭く構成されている。周回流路10は、前壁8から外側(前方側)に立設された周回流路壁12の間に形成されており、回転軸心方向Xにおいて前壁8から離れる側が開放されている。これにより、周回流路10の途中でも回転軸心方向Xに沿って空気を吸気可能として、より多量の空気を吸込口3に流動させることができる。
The intake opening 9 opens to a part of the rotation direction Y (the left side in FIG. 4) outside the front wall 8, and is disposed outside the suction port 3 in the radial direction of the impeller 2.
The circulation channel 10 is formed in a spiral shape that circulates the air taken in through the intake opening 9 in the same direction as the rotation direction Y and flows toward the suction port 3. And the circulation channel | path 10 becomes a shape which approaches the suction inlet 3 fundamentally, and the flow path width is comprised narrowly, so that the side which approaches the suction inlet 3 is approached. The circumferential flow path 10 is formed between the circumferential flow path walls 12 erected on the outer side (front side) from the front wall 8, and the side away from the front wall 8 in the rotational axis direction X is open. Thereby, air can be sucked along the rotational axis direction X even in the middle of the circulation flow path 10, and a larger amount of air can be flowed to the suction port 3.

導入部11は、周回流路10の終端部に配設されており、周回流路10にて流動された空気を吸込口3へ導入させる。導入部11は、周回流路10を形成する一対の周回流路壁12のうち、吸込口3の径方向外側に位置する周回流路壁12に連続して吸込口3の開口端部から内方側に延設された壁状に形成されており、その先端部は吸込口3の中心付近まで延設されている。導入部11は、その先端部側から基端部側に向けて回転方向Yに沿う湾曲形状に形成されている。これにより、導入部11は、周回流路10にて流動された空気に対して回転軸心方向Xに沿う力を付与して吸込口3側に積極的に導入させて、周回流路10にて流動された空気を吸込口3へ導入させている。   The introduction part 11 is disposed at the terminal part of the circulation channel 10 and introduces the air that has flowed in the circulation channel 10 into the suction port 3. The introduction portion 11 is continuous from the opening end portion of the suction port 3 continuously to the circumferential flow channel wall 12 positioned on the radially outer side of the suction port 3 among the pair of circumferential flow channel walls 12 forming the circumferential flow channel 10. It is formed in the shape of a wall extending on the side, and its tip extends to the vicinity of the center of the suction port 3. The introduction part 11 is formed in a curved shape along the rotation direction Y from the distal end side toward the proximal end side. As a result, the introduction part 11 applies a force along the rotational axis direction X to the air that has flowed in the circulation channel 10 to positively introduce the air into the circulation channel 10. The air thus flowed is introduced into the suction port 3.

このように、本発明に係るファン用ケーシングのケーシング本体5が、吸気開口部9、周回流路10、及び、導入部11を備えることにより、吸気開口部9を通して吸気した空気を周回流路10に沿って流動させ、回転方向Yにおける空気の流速を高めて吸込口3に流動させることができる。そして、周回流路10にて流動された空気は、導入部11によって回転軸心方向Xに沿う力が付与されて吸込口3側へ積極的に流動されるので、吸込口3での空気の吸込量をより多くしながら、流速が高められた空気を吸込口3に押し込むことができる。これにより、同じ空気の流量を吹出口4から吹き出す場合に、羽根車2の回転速度を高回転速度にしなくても、より多くの空気を吸込口3に押し込む力を高めて吸い込むことができ、モータの消費電力の低減を図ることができる。その結果、例えば、高静圧(例えば200〜300Pa)で且つ高流量(例えば100m3/h)を実現できるファン1を構成することができる。   As described above, the casing body 5 of the fan casing according to the present invention includes the intake opening 9, the circulation channel 10, and the introduction unit 11, so that the air sucked through the intake opening 9 can be supplied to the circulation channel 10. And the flow velocity of the air in the rotational direction Y can be increased to flow into the suction port 3. And since the air which flowed in the circulation channel 10 is given the force along the rotation axis direction X by the introduction part 11 and is actively flowed to the suction port 3 side, the air in the suction port 3 While increasing the amount of suction, air with an increased flow rate can be pushed into the suction port 3. Thereby, when blowing out the flow volume of the same air from the blower outlet 4, even if it does not set the rotational speed of the impeller 2 to a high rotational speed, the force which pushes more air into the suction inlet 3 can be inhaled, The power consumption of the motor can be reduced. As a result, for example, the fan 1 that can achieve a high static pressure (for example, 200 to 300 Pa) and a high flow rate (for example, 100 m <3> / h) can be configured.

〔吹出側形成部〕
吹出側形成部7は、前壁8と対向配置される後壁13と、前壁8と後壁13とを結んでケーシング本体5に収容された羽根車2の外周との間に吹出口4に向けて空気を流動させる流動流路14を形成させる周回内壁15とを備えている。
後壁13は、前壁8とは別体で板状に形成されており、前壁8と後壁13とを対向配置させてその間に羽根車2を収容させる収容空間が形成されている。収容空間に収容される羽根車2は、羽根車2の回転軸心と吸込口3の中心とが一致されており、吸込口3のベルマウス部19と設定距離(例えば2mm)だけ離間させて配置されている。
[Blow-off side forming part]
The blow-out side forming portion 7 is connected between the rear wall 13 opposed to the front wall 8 and the outer periphery of the impeller 2 housed in the casing body 5 by connecting the front wall 8 and the rear wall 13. And a circulating inner wall 15 for forming a flow passage 14 for allowing air to flow toward the bottom.
The rear wall 13 is formed separately from the front wall 8 in a plate shape, and an accommodation space for accommodating the impeller 2 between the front wall 8 and the rear wall 13 is formed. The impeller 2 accommodated in the accommodating space has the rotation axis of the impeller 2 and the center of the suction port 3 aligned with each other, and is separated from the bell mouth portion 19 of the suction port 3 by a set distance (for example, 2 mm). Has been placed.

周回内壁15は、前壁8の内側(後方側)に一体的に形成された直線状の起立壁にて構成されており、収容空間に収容された羽根車2の外周を取り囲み羽根車2の外周との間に流動流路14を形成している。周回内壁15は、図5に示すように、流動流路14の流路幅を周回始端S1から周回終端S2に向かって順次拡大させる拡大曲線(例えばインボリュート曲線)を描く形状に形成されている。そして、周回内壁15は、羽根車2の外周との距離が最小となる舌部16を周回始端S1とし、且つ、流動流路14に連続して吹出口4への吹出流路17を形成する吹出流路壁18に連続する連続部分Rを周回終端S2としている。   The circling inner wall 15 is composed of a straight standing wall integrally formed on the inner side (rear side) of the front wall 8 and surrounds the outer periphery of the impeller 2 accommodated in the accommodating space. A flow channel 14 is formed between the outer periphery. As shown in FIG. 5, the inner circumferential wall 15 is formed in a shape that draws an enlarged curve (for example, an involute curve) that sequentially increases the flow path width of the flow channel 14 from the circulation start end S <b> 1 toward the circulation end S <b> 2. Then, the circulating inner wall 15 forms the blowing passage 17 to the outlet 4 continuously from the flow passage 14 with the tongue portion 16 having the smallest distance from the outer periphery of the impeller 2 as the starting end S1. A continuous portion R continuing to the blowout flow path wall 18 is defined as a circulation end S2.

〔凸部〕
このファン1では、前壁8の内壁が平坦状に形成されているが、図3及び図6に示すように、吸込口3と周回内壁15との間において前壁8の内壁から内側(図3中右側)に凸部20が突設されている。
凸部20は、突出始端T1から突出終端T2まで回転方向Yに延設されており、回転方向Yの全周に亘って配設されておらず、回転方向Yの一部が開放されている。そして、凸部20は、回転方向Yに向かって舌部16を通る円形状の吸込口3の接線L1よりも回転方向Yの下流側を突出始端T1とし、且つ、吸込口3と凸部20との間を流動する空気が吹出口4に向けて流動するのを許容する許容位置を突出終端T2としている。凸部20の突出始端T1は、接線L1よりも回転方向Yの下流側で、且つ、周回内壁15の周回終端S2と吸込口3の中心Pとを結ぶ直線L2と凸部20の突出始端T1と吸込口3の中心Pとを結ぶ直線L3とが成す角度αが0度以上90度以下となる位置に配設されている。凸部20の突出終端T2は、周回内壁15の周回終端S2を許容位置として配設されている。また、凸部20は、突出始端T1から突出終端T2に向けて羽根車2の径方向外側に位置する拡大曲線(例えばインボリュート曲線)を描く形状に形成されている。これにより、吸込口3と凸部20との間の距離(羽根車2の径方向での距離)は、凸部20の突出終端T2側の方が突出始端T1側よりも大きく構成されている。
(Convex)
In this fan 1, the inner wall of the front wall 8 is formed in a flat shape. However, as shown in FIGS. 3 and 6, the inner wall of the front wall 8 is interposed between the suction port 3 and the rotating inner wall 15 (see FIG. On the right side in FIG.
The convex portion 20 extends in the rotation direction Y from the protrusion start end T1 to the protrusion end T2, and is not disposed over the entire circumference of the rotation direction Y, and a part of the rotation direction Y is opened. . And the convex part 20 makes the downstream side of the rotation direction Y the protrusion start end T1 rather than the tangent L1 of the circular shaped suction inlet 3 which passes the tongue part 16 toward the rotation direction Y, and the suction inlet 3 and the convex part 20 A permissible position that allows the air flowing between the two to flow toward the air outlet 4 is defined as a projecting end T2. The protrusion start end T1 of the protrusion 20 is downstream of the tangent L1 in the rotation direction Y, and a straight line L2 connecting the rotation end S2 of the rotation inner wall 15 and the center P of the suction port 3 and the protrusion start end T1 of the protrusion 20. And an angle α formed by a straight line L3 connecting the center P of the suction port 3 is disposed at a position where the angle α is not less than 0 degrees and not more than 90 degrees. The protruding end T2 of the convex portion 20 is disposed with the circumferential end S2 of the circumferential inner wall 15 as an allowable position. Moreover, the convex part 20 is formed in the shape which draws the expansion curve (for example, involute curve) located in the radial direction outer side of the impeller 2 toward the protrusion termination | terminus T2 from the protrusion start end T1. Thereby, the distance (distance in the radial direction of the impeller 2) between the suction port 3 and the convex portion 20 is configured such that the protruding end T2 side of the convex portion 20 is larger than the protruding start end T1 side. .

このような凸部20を設けることにより、流動流路14の圧力が高くなっても、吸込口3への逆流を防止しながら、吸込口3と凸部20との間を流動する空気を吹出流路17に積極的に流動させることができ、その空気を吹出流路17を通して吹出口4に向けて流動させることができる。しかも、舌部16及びそれよりも回転方向Yの上流側に隣接する領域では、凸部20が存在しないので、凸部20が存在することにより更に流動流路14の圧力が高くなるのを防止して吸込口3への逆流が生じ易くなるのを防止できる。さらに、吸込口3と凸部20との間の距離(羽根車2の径方向での距離)は、凸部20の突出終端T2側の方が突出始端T1側よりも大きいので、吸込口3と凸部20との間を流動する空気だけでなく、突出始端T1に隣接する舌部16及びそれよりも回転方向Yの上流側に隣接する領域に流出された空気をも、圧力差を利用して吸込口3と凸部20との間を通して凸部20の突出終端T2側に積極的に流動させることができる。よって、舌部16及びそれよりも回転方向Yの上流側に隣接する領域での吸込口3への逆流を効果的に防止しながら、吸込口3と凸部20との間を流動する空気を吹出口4に向けて流動させることができる。   By providing such a convex portion 20, air flowing between the suction port 3 and the convex portion 20 is blown out while preventing a back flow to the suction port 3 even when the pressure of the flow passage 14 increases. The flow can be positively made to flow in the flow path 17, and the air can be made to flow toward the outlet 4 through the blow-out flow path 17. Moreover, since the convex portion 20 does not exist in the tongue portion 16 and the region adjacent to the upstream side in the rotational direction Y from the tongue portion 16, the presence of the convex portion 20 prevents further increase in the pressure of the flow passage 14. Thus, it is possible to prevent the backflow to the suction port 3 from being easily generated. Further, the distance between the suction port 3 and the convex portion 20 (the distance in the radial direction of the impeller 2) is larger on the protruding end T2 side of the convex portion 20 than on the protruding start end T1 side. The pressure difference is utilized not only for the air flowing between the protrusion 20 and the convex portion 20, but also for the tongue 16 adjacent to the protrusion start end T1 and the air that has flowed out to the region adjacent to the upstream side in the rotational direction Y. Thus, it is possible to positively flow through the space between the suction port 3 and the convex portion 20 toward the protruding end T2 of the convex portion 20. Therefore, the air flowing between the suction port 3 and the convex portion 20 is effectively prevented while preventing the backflow to the suction port 3 in the region adjacent to the tongue portion 16 and the upstream side in the rotational direction Y. It can be made to flow toward the blower outlet 4.

〔吹出流路〕
このファン1では、図5に示すように、吹出流路17が、流動流路14に連続して形成されており、流動流路14の終端部から吹出口4に向かう直線状に形成されている。そして、吹出流路17は、羽根車2の外周と吹出流路壁18との間に連続して、舌部16から吹出口4に向けて連接された連接壁21と吹出流路壁18との間に形成されている。
(Blowout channel)
In this fan 1, as shown in FIG. 5, the blowout flow path 17 is formed continuously with the flow flow path 14, and is formed in a straight line shape from the end portion of the flow flow path 14 toward the blowout outlet 4. Yes. The blowout flow path 17 is continuously connected between the outer periphery of the impeller 2 and the blowout flow path wall 18, and is connected to the connection wall 21 and the blowout flow path wall 18 connected from the tongue portion 16 toward the blowout port 4. Is formed between.

図7に示すように、吹出流路壁18は、周回内壁15に連続して形成されており、周回内壁15と同様に直線状の起立壁にて構成されている。それに対して、舌部16において吹出流路壁18と対向する対向部分16aが、回転軸心方向Xにおいて前壁8から離間する側(図6中下側)の方が前壁8に接近する側よりも吹出流路壁18に対して離れる傾斜状に形成されている。図7は、吹出口4が開口する方向からケーシング本体5の内方側を見たときのケーシング本体5の側面部を示している。これにより、吹出流路17において舌部16と吹出流路壁18とが対向する流路部分は、回転軸心方向Xにおいて前壁8から離間する側の方が前壁8に接近する側よりも流路幅が大きく構成されている。また、図5及び図6に示すように、連接壁21は、吹出口4に接近する側ほど吹出流路壁18との間の距離が大きくなる傾斜状に形成されている。   As shown in FIG. 7, the blowout flow path wall 18 is formed continuously with the circulating inner wall 15, and is configured by a straight standing wall like the rotating inner wall 15. On the other hand, the facing portion 16a facing the blowout flow path wall 18 in the tongue portion 16 is closer to the front wall 8 on the side away from the front wall 8 in the rotational axis direction X (lower side in FIG. 6). It is formed in an inclined shape that is farther from the outlet flow path wall 18 than the side. FIG. 7 shows a side surface portion of the casing body 5 when the inner side of the casing body 5 is viewed from the direction in which the air outlet 4 opens. As a result, the flow path portion where the tongue portion 16 and the blow flow path wall 18 face each other in the blow flow path 17 is closer to the front wall 8 on the side away from the front wall 8 in the rotational axis direction X. Also, the channel width is large. Further, as shown in FIGS. 5 and 6, the connecting wall 21 is formed in an inclined shape in which the distance from the blowing channel wall 18 increases toward the side closer to the blowing port 4.

本発明に係るファン用ケーシングのケーシング本体5が、このような吹出流路17を備えることにより、回転軸心方向Xにおいて前壁8に接近する側よりも離れる側に多量の空気が流動されても、その空気の流量差に応じた吹出流路17の流路幅とすることができ、圧力損失を低減しながら空気を流動させることができる。しかも、上述の如く、周回流路10及び導入部11により多量の空気を吸込口3から吸い込むことができるので、回転軸心方向Xにおいて前壁8に接近する側よりも離れる側により多量の空気が流動されることになるが、そのより多量の空気をもスムーズに吹出流路17を流動させて吹出口4に導くことができる。しかも、吹出口4に接近する側ほど連接壁21と吹出流路壁18との間の距離が大きくなっているので、吹出流路17を流動する空気を吹出口4に積極的に導くことができる。また、舌部16は、傾斜状に形成されているので、羽根車2の外周に流出された空気が舌部16に当たるまでの時間が前壁8に接近する側から離れる側に順次長くなる。よって、空気が舌部16に当たるときに発生する音に位相差が生じることになり、お互いの発生する音が干渉し合い、騒音の発生を抑制できる。   Since the casing body 5 of the fan casing according to the present invention is provided with such a blowout flow path 17, a large amount of air is flowed to the side away from the side approaching the front wall 8 in the rotational axis direction X. In addition, the flow path width of the blowout flow path 17 according to the flow rate difference of the air can be set, and the air can flow while reducing the pressure loss. Moreover, as described above, since a large amount of air can be sucked from the suction port 3 by the circulation channel 10 and the introduction portion 11, a larger amount of air is provided on the side away from the side approaching the front wall 8 in the rotational axis direction X. However, even a larger amount of air can smoothly flow through the blowout flow path 17 and be led to the blowout port 4. And since the distance between the connection wall 21 and the blowing flow path wall 18 is so large that it approaches the blower outlet 4, the air which flows through the blower flow path 17 can be actively guide | induced to the blower outlet 4. FIG. it can. Further, since the tongue portion 16 is formed in an inclined shape, the time until the air that has flowed out to the outer periphery of the impeller 2 hits the tongue portion 16 is gradually increased from the side approaching the front wall 8 to the side away from it. Therefore, a phase difference is generated in the sound generated when air hits the tongue portion 16, and the sounds generated by each other interfere with each other, thereby suppressing the generation of noise.

〔空気の流れ〕
図1、図8における矢印にて示すように、吸気開口部9にて吸気された空気は、周回流路10にて渦巻き状に流動されて導入部11に至り、導入部11によって吸込口3に導入される。図2、図9における矢印にて示すように、吸込口3に導入された空気は、流動流路14を回転方向Yに沿って流動して吹出流路17を通して吹出口4に向けて流動されて吹出口4から吹き出される。
ここで、空気は吹出流路17を通して吹出口4から吹き出されるので、吹出流路17の配設箇所に対して回転方向Yの上流側に隣接する領域付近において吸込口3からより多くの空気が吸い込まれることになる。そこで、導入部11は、吹出流路17の配設箇所に対して回転方向Yの上流側に隣接する領域付近に配設されており、吸込口3から多量の空気が吸い込まれる領域に配設されている。例えば、図10に示すように、導入部11は、舌部16と吸込口3の中心Pとを結ぶ直線L4と導入部11の配設位置(回転方向Yにおいて導入部11の中心位置)と吸込口3の中心Pとを結ぶ直線L5の成す角度βが0度以上90度以下となる位置に配設されている。
〔the flow of air〕
As shown by the arrows in FIG. 1 and FIG. 8, the air taken in through the intake opening 9 is swirled in the circulation channel 10 to reach the introduction part 11, and the introduction part 11 sucks the suction port 3. To be introduced. As shown by the arrows in FIGS. 2 and 9, the air introduced into the suction port 3 flows in the flow channel 14 along the rotation direction Y and flows toward the outlet 4 through the outlet channel 17. And blown out from the outlet 4.
Here, since air is blown out from the blower outlet 4 through the blowout flow path 17, more air is supplied from the suction port 3 in the vicinity of the region adjacent to the upstream side in the rotational direction Y with respect to the location of the blowout flow path 17. Will be sucked. Therefore, the introduction portion 11 is disposed in the vicinity of the region adjacent to the upstream side in the rotation direction Y with respect to the location where the blowout flow path 17 is disposed, and is disposed in a region where a large amount of air is sucked from the suction port 3. Has been. For example, as shown in FIG. 10, the introduction portion 11 includes a straight line L4 connecting the tongue portion 16 and the center P of the suction port 3 and the arrangement position of the introduction portion 11 (the center position of the introduction portion 11 in the rotation direction Y). An angle β formed by a straight line L5 connecting the center P of the suction port 3 is disposed at a position where the angle β is not less than 0 degrees and not more than 90 degrees.

〔仕切り部〕
上述の如く、前壁8の外側では周回流路10により空気が流動することになり、前壁8の内側では羽根車2の回転駆動により空気が流動することになる。そこで、図4及び図6に示すように、吸込口3において前壁8の内側での空気の流動と前壁8の外側での空気の流動とを仕切る仕切り部22が備えられている。仕切り部22は、吸込口3の開口端部から内方側に延出された板状に構成されている。そして、仕切り部22は、導入部11と回転方向Yの反対側に配設されている。これにより、前壁8の外側と内側とが吸込口3にて連通されているが、回転方向Yにおいて導入部11の配設箇所とは離れた箇所で仕切り部22によって吸込口3を前壁8の外側と前壁8の内側とに区切ることができる。よって、周回流路10にて流動された空気がその途中で短絡して吸込口3から吸い込まれるのを仕切り部22によって防止できる。逆に、前壁8の内側における空気が吸込口3を通して前壁8の外側に逆流するのも仕切り部22によって防止することができる。前壁8の外側における周回流路10による回転方向Yへの空気の流動と前壁8の内側における羽根車2の回転駆動による回転方向Yへの空気の流動とがお互いに干渉するのを仕切り部22により抑制することができる。したがって、より多量の空気を吸込口3にて吸い込むことができるとともに、吸込口3にて吸い込んだ空気を羽根車2の回転駆動により流動流路14に効率よく流動させることができ、より多量の空気を吹出口4に向けて流動させることができる。
(Partition section)
As described above, air flows through the circulation channel 10 outside the front wall 8, and air flows due to the rotational drive of the impeller 2 inside the front wall 8. Therefore, as shown in FIGS. 4 and 6, a partition 22 is provided in the suction port 3 to partition the air flow inside the front wall 8 and the air flow outside the front wall 8. The partition part 22 is configured in a plate shape extending inward from the opening end of the suction port 3. And the partition part 22 is arrange | positioned on the opposite side of the introducing | transducing part 11 and the rotation direction Y. FIG. As a result, the outside and the inside of the front wall 8 are communicated with each other through the suction port 3, but the suction port 3 is connected to the front wall by the partition portion 22 at a place away from the place where the introduction part 11 is disposed in the rotation direction Y. 8 and the inside of the front wall 8 can be divided. Therefore, the partition part 22 can prevent the air flowing in the circulation channel 10 from being short-circuited in the middle and being sucked from the suction port 3. On the contrary, it is possible to prevent the air inside the front wall 8 from flowing back to the outside of the front wall 8 through the suction port 3 by the partition portion 22. The flow of air in the rotational direction Y by the circumferential flow path 10 outside the front wall 8 and the flow of air in the rotational direction Y by the rotational drive of the impeller 2 inside the front wall 8 are separated from each other. It can be suppressed by the portion 22. Therefore, a larger amount of air can be sucked in at the suction port 3, and the air sucked in at the suction port 3 can be efficiently flowed to the flow channel 14 by the rotational drive of the impeller 2. Air can be flowed toward the outlet 4.

図11に示すように、仕切り部22の前壁8の内側に面する側には、吹出口4に向かう空気の流動方向の下流側(回転方向Yの下流側)に第1負圧領域23を形成させる第1負圧領域形成部24が備えられている。例えば、仕切り部22に空気が衝突することにより仕切り部22に対して吹出口4に向かう空気の流動方向の上流側(仕切り部22に対して回転方向Yの下流側に隣接する領域等)に渦流W1が生じる可能性がある。第1負圧領域形成部24にて第1負圧領域23が形成されているので、その負圧を利用して第1負圧領域23に空気を積極的に流動させることができる。これにより、渦流W1の発生を抑制することができ、渦流W1によって空気がスムーズに流れなくなるのを防止できる。
また、仕切り部22は、第1負圧領域形成部24の配設箇所よりも吹出口4に向かう空気の流動方向の下流側(回転方向Yの下流側)に延びる形状に形成されている。これにより、第1負圧領域23に流動された空気が仕切り部22にて案内されながら吹出口4に向けて流動されることになり、吹出口4に向けて空気をスムーズに流動させることができる。
As shown in FIG. 11, on the side facing the inner side of the front wall 8 of the partition portion 22, the first negative pressure region 23 is located on the downstream side in the air flow direction toward the air outlet 4 (on the downstream side in the rotational direction Y). The first negative pressure region forming part 24 is formed. For example, on the upstream side in the air flow direction toward the outlet 4 with respect to the partition portion 22 when air collides with the partition portion 22 (a region adjacent to the downstream side in the rotational direction Y with respect to the partition portion 22). A vortex flow W1 may occur. Since the first negative pressure region 23 is formed in the first negative pressure region forming part 24, air can be actively flowed into the first negative pressure region 23 using the negative pressure. Thereby, generation | occurrence | production of the vortex | eddy_current W1 can be suppressed and it can prevent that air stops flowing smoothly by the vortex | eddy_current W1.
Moreover, the partition part 22 is formed in the shape extended from the arrangement | positioning location of the 1st negative pressure area | region formation part 24 to the downstream of the flow direction of the air which goes to the blower outlet 4 (downstream side of the rotation direction Y). As a result, the air that has flowed to the first negative pressure region 23 flows toward the outlet 4 while being guided by the partition portion 22, and the air can smoothly flow toward the outlet 4. it can.

〔第2負圧領域形成部〕
図11に示すように、導入部11の前壁8の内側に面する側には、吹出口4に向かう空気の流動方向の下流側(回転方向Yの下流側)に第2負圧領域25を形成させる第2負圧領域形成部26が備えられている。この第2負圧領域形成部26も、上述の第1負圧領域形成部24と同様に、導入部11に対して吹出口4に向かう空気の流動方向の下流側(導入部11に対して回転方向Yの下流側に隣接する領域等)に渦流W2が発生する可能性があっても、負圧を利用して第2負圧領域25に空気を積極的に流動させることで、渦流W2の発生を抑制して、渦流W2によって空気がスムーズに流れなくなるのを防止している。
[Second negative pressure region forming section]
As shown in FIG. 11, on the side facing the inner side of the front wall 8 of the introduction portion 11, the second negative pressure region 25 is located downstream in the flow direction of air toward the blowout port 4 (downstream in the rotational direction Y). The second negative pressure region forming part 26 is formed. Similarly to the first negative pressure region forming unit 24 described above, the second negative pressure region forming unit 26 is also downstream of the air flow direction toward the outlet 4 with respect to the introduction unit 11 (relative to the introduction unit 11). Even if there is a possibility that a vortex W2 may be generated in a region adjacent to the downstream side in the rotation direction Y), the vortex W2 is generated by positively flowing air to the second negative pressure region 25 using negative pressure. Is suppressed, and the vortex W2 prevents the air from flowing smoothly.

〔別実施形態〕
(1)上記実施形態では、導入部11を直線状の起立壁にて構成しているが、例えば、導入部11を、羽根車2の回転軸心方向Xにおいて吸込口3に接近する側ほど幅狭とする傾斜状の壁にて構成することもできる。この場合には、周回流路10にて流動された空気に対して羽根車2の回転軸心方向Xにおいて吸込口3に接近する側により大きな力を付与することができ、吸込口3に対する押し込み力をより一層向上させることができる。
[Another embodiment]
(1) In the above embodiment, the introduction part 11 is configured by a straight standing wall. For example, the introduction part 11 is closer to the inlet 3 in the rotational axis direction X of the impeller 2. It can also be constituted by an inclined wall having a narrow width. In this case, a larger force can be applied to the air flowing in the circulation channel 10 on the side approaching the suction port 3 in the rotational axis direction X of the impeller 2, and the air is pushed into the suction port 3. The power can be further improved.

(2)上記実施形態では、吹出流路壁18について、舌部16と対向する部分及びそれに連続して連接壁21と対向する部分を直線状の起立壁にて構成しているが、例えば、羽根車2の回転軸心方向Xにおいて前壁8から離間する側の方が前壁8に接近する側よりも舌部16および連接壁21に対して離れる傾斜状に形成することもできる。 (2) In the above-described embodiment, the blowing channel wall 18 is configured with a straight upstanding wall and a portion facing the tongue 16 and a portion facing the connecting wall 21 continuously, for example, The side away from the front wall 8 in the rotational axis direction X of the impeller 2 can be formed so as to be inclined away from the tongue 16 and the connecting wall 21 than the side approaching the front wall 8.

本発明は、ケーシング本体が、羽根車の回転軸心方向に沿って気体を吸い込む吸込口を有する前壁と、その前壁に対向配置された後壁と、前記前壁と前記後壁とを結んで収容された前記羽根車の外周との間に前記羽根車の回転方向の一部に開口する吹出口に向けて気体を流動させる流動流路を形成させる周回内壁とを備え、吸込口での気体の吸込量をより多くして、吸込口に気体を押し込む力(ファンの動圧)を高めながら、吹出流路での圧力損失を低減することができる各種のファン用ケーシングに適応可能である。   In the present invention, the casing body includes a front wall having a suction port for sucking gas along the direction of the rotation axis of the impeller, a rear wall disposed opposite to the front wall, the front wall, and the rear wall. A circumferential inner wall that forms a flow passage for allowing gas to flow toward a blowout opening that opens in a part of the rotation direction of the impeller between the outer periphery of the impeller that is connected and accommodated; It can be applied to various fan casings that can reduce the pressure loss in the blowout flow path while increasing the force to push the gas into the suction port (dynamic pressure of the fan) by increasing the amount of gas suction is there.

1 ファン
2 羽根車
3 吸込口
4 吹出口
5 ケーシング本体
8 前壁
9 吸気開口部
10 周回流路
11 導入部
13 後壁
14 流動流路
15 周回内壁
16 舌部
16a 対向部分
17 吹出流路
18 吹出流路壁
21 連接壁
DESCRIPTION OF SYMBOLS 1 Fan 2 Impeller 3 Intake port 4 Outlet 5 Casing main body 8 Front wall 9 Intake opening part 10 Circulation flow path 11 Introduction part 13 Rear wall 14 Flow path 15 Circulation inner wall 16 Tongue part 16a Opposing part 17 Blowout flow path 18 Blowout Channel wall 21 Connecting wall

Claims (3)

回転駆動される羽根車を収容するケーシング本体が、羽根車の回転軸心方向に沿って気体を吸い込む吸込口を有する前壁と、その前壁に対向配置された後壁と、前記前壁と前記後壁とを結んで収容された前記羽根車の外周との間に前記羽根車の回転方向の一部に開口する吹出口に向けて気体を流動させる流動流路を形成させる周回内壁とを備え、
前記周回内壁は、前記羽根車の外周との距離が最小となる舌部を周回始端とし且つ前記流動流路に連続して前記吹出口への吹出流路を形成する吹出流路壁に連続する連続部分を周回終端として、前記流動流路の流路幅を前記周回始端から前記周回終端に向かって順次拡大させているファン用ケーシングであって、
前記ケーシング本体には、前記前壁の外側において前記羽根車の回転方向の一部に開口する吸気開口部を通して吸気された気体を前記羽根車の回転方向と同方向に周回させて前記吸込口に向けて流動させる周回流路と、前記周回流路の終端部に配設されて前記周回流路にて流動された気体を前記吸込口へ導入させる導入部とが備えられ、
前記吹出流路が、前記羽根車の外周と前記吹出流路壁との間に連続して、前記舌部から前記吹出口に向けて連接された連接壁と前記吹出流路壁との間に形成され、
前記吹出流路において前記舌部と前記吹出流路壁とが対向する流路部分は、前記羽根車の回転軸心方向において前記前壁から離間する側の方が前記前壁に接近する側よりも流路幅が大きく構成されているファン用ケーシング。
A casing body that accommodates a rotationally driven impeller includes a front wall having a suction port for sucking gas along the direction of the rotational axis of the impeller, a rear wall disposed opposite to the front wall, and the front wall, A circulating inner wall that forms a flow channel that allows gas to flow toward a blowout opening that opens in a part of the rotation direction of the impeller between the rear wall and the outer periphery of the impeller accommodated. Prepared,
The inner circumferential wall is continuous with a blowout channel wall that forms a blowout channel to the blower outlet, with a tongue portion having a minimum distance from the outer periphery of the impeller as a circumferential start end. A fan casing in which a continuous portion is a circulation end, and the flow passage width of the flow channel is sequentially increased from the circulation start end toward the circulation end,
In the casing body, the gas sucked through the intake opening that opens in a part of the rotation direction of the impeller on the outside of the front wall circulates in the same direction as the rotation direction of the impeller to the suction port. A circulation channel that flows toward the end, and an introduction unit that is disposed at a terminal portion of the circulation channel and introduces the gas that has flowed in the circulation channel to the suction port,
The blowing channel is continuously between the outer periphery of the impeller and the blowing channel wall, and is connected between the connecting wall connected from the tongue portion toward the outlet and the blowing channel wall. Formed,
In the blowout flow path, the flow path portion where the tongue portion and the blowout flow path wall face each other is closer to the front wall on the side away from the front wall in the rotational axis direction of the impeller. The fan casing has a large flow path width.
前記舌部において前記吹出流路壁と対向する対向部分が、前記羽根車の回転軸心方向において前記前壁から離間する側の方が前記前壁に接近する側よりも前記吹出流路壁に対して離れる傾斜状に形成されている請求項1に記載のファン用ケーシング。   The facing portion of the tongue that faces the blowing channel wall is closer to the blowing channel wall on the side away from the front wall in the rotational axis direction of the impeller than on the side approaching the front wall. The fan casing according to claim 1, wherein the fan casing is formed in an inclined shape that is separated from the fan casing. 前記連接壁は、前記吹出口に接近する側ほど前記吹出流路壁との間の距離が大きく構成されている請求項1又は2に記載のファン用ケーシング。   3. The fan casing according to claim 1, wherein the connecting wall is configured such that a distance between the connecting wall and the outlet channel wall increases as the side approaches the outlet.
JP2009060022A 2009-03-12 2009-03-12 Fan casing Expired - Fee Related JP5249822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060022A JP5249822B2 (en) 2009-03-12 2009-03-12 Fan casing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060022A JP5249822B2 (en) 2009-03-12 2009-03-12 Fan casing

Publications (2)

Publication Number Publication Date
JP2010209887A true JP2010209887A (en) 2010-09-24
JP5249822B2 JP5249822B2 (en) 2013-07-31

Family

ID=42970297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060022A Expired - Fee Related JP5249822B2 (en) 2009-03-12 2009-03-12 Fan casing

Country Status (1)

Country Link
JP (1) JP5249822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630964A (en) * 2019-10-21 2022-06-14 株式会社电装 Air blower

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142298U (en) * 1980-03-26 1981-10-27
JP2006307651A (en) * 2005-04-26 2006-11-09 Kunihiro Miyake Multiblade fan

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142298U (en) * 1980-03-26 1981-10-27
JP2006307651A (en) * 2005-04-26 2006-11-09 Kunihiro Miyake Multiblade fan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630964A (en) * 2019-10-21 2022-06-14 株式会社电装 Air blower
CN114630964B (en) * 2019-10-21 2024-02-23 株式会社电装 Blower fan

Also Published As

Publication number Publication date
JP5249822B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP3698150B2 (en) Centrifugal blower
WO2016068280A1 (en) Blower device and cleaner
CN104421197B (en) Centrifugal pump
US20180258959A1 (en) Vaned Diffuser and Blower, Fluid Machine, or Electric Blower Provided with Same
CN101297119A (en) Multi-vane centrifugal blower
JP6332546B2 (en) Centrifugal blower
TWI468597B (en) Electric blower and vacuum cleaner equipped with electric blower
KR20070101642A (en) Turbo fan
JP4769118B2 (en) Centrifugal multiblade blower
TW202217151A (en) Multiblade centrifugal fan
JP5249822B2 (en) Fan casing
JP5249823B2 (en) Fan casing
JP5255491B2 (en) Fan casing
JP5255490B2 (en) Fan casing
JP2005282578A (en) Vortex flow fan
JP3843781B2 (en) Whirlpool fan
JP7047554B2 (en) Centrifugal blower
JP2001182692A (en) Centrifugal air blower
JP4625722B2 (en) Electric blower and vacuum cleaner equipped with the same
JP2011226408A (en) Multi-blade fan
KR100437035B1 (en) Centrifugal fan of vacuum cleaner
KR20110026064A (en) Blower of air conditioner for vehicle
JP2014077380A (en) Sirocco fan
KR100471429B1 (en) The centrifugal blower for a cleaner
JP2008104794A (en) Vacuum cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Ref document number: 5249822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees