JP2010209730A - Method of manufacturing housing of compressor - Google Patents

Method of manufacturing housing of compressor Download PDF

Info

Publication number
JP2010209730A
JP2010209730A JP2009054788A JP2009054788A JP2010209730A JP 2010209730 A JP2010209730 A JP 2010209730A JP 2009054788 A JP2009054788 A JP 2009054788A JP 2009054788 A JP2009054788 A JP 2009054788A JP 2010209730 A JP2010209730 A JP 2010209730A
Authority
JP
Japan
Prior art keywords
housing
compressor
manufacturing
semi
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009054788A
Other languages
Japanese (ja)
Inventor
Minoru Asada
穣 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryobi Ltd
Original Assignee
Ryobi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd filed Critical Ryobi Ltd
Priority to JP2009054788A priority Critical patent/JP2010209730A/en
Publication of JP2010209730A publication Critical patent/JP2010209730A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing the housing of a compressor for manufacturing the housing having sufficient pressure capacity even when molded with casting. <P>SOLUTION: The method of manufacturing the housing 1 of the compressor which compresses refrigerant in the housing 1 and discharges it to the outside, includes first a casting step of using semi-solidified metal slurry formed of Al-Si-Cu-Mg base aluminum alloy and having a solid phase rate of 20-40% for casting the housing 1 in a semi-solidifying method, and then a heat treatment step of carrying out solution treatment to hold it at a treatment temperature of 490 °C or higher for a three hours or longer, water quenching, and then aging treatment to hold it at a treatment temperature of 140-160 °C for 24 hours or longer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧縮機のハウジングの製造方法に関する。   The present invention relates to a method of manufacturing a compressor housing.

車両用空調機には、冷媒を圧縮して高圧状態で吐出するための圧縮機が使用される。この圧縮機のハウジングは軽量化を目的としてアルミニウム合金製とされることが多いが、冷媒としてCOガスが用いられる場合、ハウジング内部が使用中に高圧状態になってハウジングに亀裂が生じてしまう可能性があることから、ハウジングには耐圧強度が要求される。 A compressor for compressing a refrigerant and discharging it in a high-pressure state is used for the vehicle air conditioner. The housing of this compressor is often made of an aluminum alloy for the purpose of weight reduction. However, when CO 2 gas is used as a refrigerant, the inside of the housing becomes a high pressure state during use, and the housing is cracked. Since there is a possibility, the housing is required to have a compressive strength.

耐圧強度を有するハウジングをアルミニウム合金を用いて鋳造により製造する方法として、下記特許文献1所載のように、ハウジングを半凝固法により鋳造することが知られている。   As a method for producing a housing having a pressure resistance strength by casting using an aluminum alloy, it is known that the housing is cast by a semi-solidification method as described in Patent Document 1 below.

特開2005−171779号公報Japanese Patent Laid-Open No. 2005-171779

しかしながら、アルミニウム合金を用いて単に半凝固法により鋳造しただけでは所望の耐圧強度を得ることができないことから、冷媒としてCOガスを用いる圧縮機のハウジングは依然としてアルミニウム合金鍛造材を機械加工することによって製造されている。アルミニウム合金鍛造材を機械加工することによる製造法は、ハウジング形状に制約が生じ易く、生産効率も悪いという問題を有している。 However, a compressor housing that uses CO 2 gas as a refrigerant still machines the aluminum alloy forging because the desired pressure strength cannot be obtained by simply casting the aluminum alloy by the semi-solidification method. Is manufactured by. The manufacturing method by machining an aluminum alloy forged material has a problem that the housing shape is easily restricted and the production efficiency is poor.

そこで、本発明は上記従来の問題点に鑑みてなされ、鋳造により成形した場合でも十分な耐圧強度を有するハウジングを製造することができる圧縮機のハウジングの製造方法を提供することを課題とする。   Therefore, the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method of manufacturing a compressor housing capable of manufacturing a housing having sufficient pressure resistance even when molded by casting.

本発明は、ハウジング内において冷媒の圧縮を行って外部に吐出する圧縮機のハウジングの製造方法であって、Al−Si−Cu−Mg系合金からなり、固相率が20〜40%の半凝固金属スラリーを用いて該ハウジング1を半凝固法により鋳造する鋳造工程と、490℃以上の処理温度に3時間以上保持する溶体化処理を行った後、水焼入れを行い、その後に140〜160℃の処理温度に24時間以上保持する時効処理を行う熱処理工程とを有する圧縮機のハウジングの製造方法を提供している。   The present invention relates to a method of manufacturing a compressor housing that compresses a refrigerant in a housing and discharges the refrigerant to the outside. The compressor housing is made of an Al-Si-Cu-Mg alloy and has a solid phase ratio of 20 to 40%. After performing a casting process in which the housing 1 is cast by a semi-solid method using a solidified metal slurry and a solution treatment for holding at a processing temperature of 490 ° C. or higher for 3 hours or more, water quenching is performed, and then 140 to 160 There is provided a method of manufacturing a compressor housing having a heat treatment step of performing an aging treatment at a treatment temperature of ° C for 24 hours or more.

ここで、該アルミニウム合金は、Siを5.0〜7.0質量%、Cuを2.0〜5.0質量%、Mgを0.2〜0.5質量%含有することが好ましい。   Here, the aluminum alloy preferably contains 5.0 to 7.0% by mass of Si, 2.0 to 5.0% by mass of Cu, and 0.2 to 0.5% by mass of Mg.

本発明の圧縮機のハウジングの製造方法によれば、冷媒としてCOガスを用いることが可能な耐圧強度を有する圧縮機のハウジングを鋳造により成形することで製造することができる。鋳造で成形することができることから、ハウジングの設計自由度を高くすることができると共に、生産性を向上させることができる。 According to the manufacturing method of the compressor housing of the present invention can be produced by molding by casting a housing of a compressor having a pressure resistance which can be used CO 2 gas as a refrigerant. Since it can shape | mold by casting, while being able to make the design freedom of a housing high, productivity can be improved.

本発明の実施の形態による圧縮機のハウジングの斜視図であり、(a)は前方斜視図、(b)は後方斜視図である。It is a perspective view of the housing of the compressor by embodiment of this invention, (a) is a front perspective view, (b) is a back perspective view.

本発明の実施の形態による圧縮機のハウジングの製造方法について図を参照して説明する。図1は本発明の実施の形態による圧縮機のハウジングの製造方法により製造された圧縮ハウジング1である。圧縮ハウジング1は、圧縮ユニットを収容するものであり、駆動ユニットを収容する図示せぬ駆動ハウジング等と共に圧縮機のハウジングを構成する。尚、圧縮機は自動車等の車両の車両用空調機に搭載されるものであり、ハウジング内でCOガス等の冷媒の圧縮を行って外部に吐出する従来から公知の内部構成を有するものであるので、圧縮機の内部構成については説明を省略する。 A method of manufacturing a compressor housing according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a compression housing 1 manufactured by a method for manufacturing a compressor housing according to an embodiment of the present invention. The compression housing 1 accommodates the compression unit, and constitutes the housing of the compressor together with a drive housing (not shown) that accommodates the drive unit. The compressor is mounted on a vehicle air conditioner of a vehicle such as an automobile, and has a conventionally known internal configuration in which a refrigerant such as CO 2 gas is compressed in a housing and discharged to the outside. Therefore, the description of the internal configuration of the compressor is omitted.

圧縮機のハウジングの製造方法では、先ず半凝固金属スラリーを作製するスラリー作製工程を行う。スラリー作製工程では、先ず、JIS−AC2B合金等のAl−Si−Cu−Mg系のアルミニウム合金を溶解し、金属溶湯とする。ここで、Al−Si−Cu−Mg系のアルミニウム合金は、Siを5.0〜7.0質量%、Cuを2.0〜5.0質量%、Mgを0.2〜0.5質量%、含有していることが好ましい。Siが5.0〜7.0質量%の範囲外であると、固相率20〜40%の半凝固スラリーを作製することが困難になるので、Siは5.0〜7.0質量%とした。また、Cuは2.0質量%未満では強度が低くなり、5.0質量%を超えると後述の熱処理工程の溶体化処理によって欠陥が発生するので、Cuは2.0〜5.0質量%とした。また、Mgは0.2質量%未満では強度が低くなり、0.5質量%を超えると鋳造性が低下するので、Mgは0.2〜0.5質量%とした。   In the method of manufacturing a compressor housing, first, a slurry preparation step of preparing a semi-solid metal slurry is performed. In the slurry preparation step, first, an Al—Si—Cu—Mg based aluminum alloy such as a JIS-AC2B alloy is melted to obtain a molten metal. Here, the Al-Si-Cu-Mg based aluminum alloy is Si 5.0-7.0 mass%, Cu 2.0-5.0 mass%, Mg 0.2-0.5 mass%. % Is preferably contained. If Si is out of the range of 5.0 to 7.0% by mass, it becomes difficult to produce a semi-solid slurry having a solid phase ratio of 20 to 40%. Therefore, Si is 5.0 to 7.0% by mass. It was. Further, if Cu is less than 2.0% by mass, the strength becomes low, and if it exceeds 5.0% by mass, defects are generated by solution treatment in the heat treatment step described later, so It was. Moreover, since strength will become low when Mg is less than 0.2 mass%, and castability will fall when it exceeds 0.5 mass%, Mg was 0.2-0.5 mass%.

次に、先端に金属溶湯と同一組成のアルミニウム合金を保持した撹拌棒を金属溶湯内に挿入する。そして、撹拌棒を回転装置により回転させ、撹拌棒の先端に保持されたアルミニウム合金を溶解させながら金属溶融を撹拌棒で撹拌することにより、金属溶融を固相率が20〜40%の半凝固金属スラリーとする。以上がスラリー作製工程である。作製された半凝固金属スラリーの固相率が20%未満であると、後述の鋳造工程において成形されるハウジングに引け巣が発生することが避けられなくなり、固相率が40%を超えると、後述の熱処理工程を行っても十分な強度が得られないので、半凝固金属スラリーの固相率は20〜40%の範囲とする。   Next, a stirring bar holding an aluminum alloy having the same composition as that of the molten metal at the tip is inserted into the molten metal. Then, the stirring rod is rotated by a rotating device, and the metal melting is stirred with the stirring rod while dissolving the aluminum alloy held at the tip of the stirring rod, so that the metal melting is semi-solidified with a solid fraction of 20 to 40%. Use metal slurry. The above is the slurry preparation process. When the solid phase ratio of the produced semi-solid metal slurry is less than 20%, it is inevitable that shrinkage cavities are generated in the housing molded in the casting process described later. When the solid phase ratio exceeds 40%, Since sufficient strength cannot be obtained even if a heat treatment step described later is performed, the solid phase ratio of the semi-solid metal slurry is set to a range of 20 to 40%.

次に、スラリー作製工程で作製された半凝固金属スラリーを用いてハウジングを半凝固法により鋳造する鋳造工程を行う。鋳造工程においては、作製した半凝固金属スラリーを射出スリーブに供給し、プランジャーチップで加圧することにより、固定型と可動型により画成されたキャビティに半凝固金属スラリーを充填する。そして、キャビティ内で半凝固金属スラリーが凝固した後、可動型を固定型から離間させて、成形された製品を取り出す。以上が鋳造工程である。   Next, a casting process is performed in which the housing is cast by a semi-solid method using the semi-solid metal slurry produced in the slurry production process. In the casting process, the prepared semi-solid metal slurry is supplied to the injection sleeve and pressurized with a plunger tip, thereby filling the cavity defined by the fixed mold and the movable mold with the semi-solid metal slurry. Then, after the semi-solid metal slurry is solidified in the cavity, the movable mold is separated from the fixed mold, and the molded product is taken out. The above is the casting process.

鋳造工程により成形された鋳造品からランナー部等をトリミングした後に、鋳造品に熱処理工程を行う。熱処理工程では、先ず490℃以上の処理温度に3時間以上保持する溶体化処理を行う。処理温度が490℃以下の場合には十分な強度が得られないので、処理温度は490℃以上とする。又、処理時間が3時間未満の場合においても十分な強度が得られないなので、処理時間は3時間以上とする。   After trimming the runner part and the like from the cast product formed by the casting process, a heat treatment process is performed on the cast product. In the heat treatment step, first, a solution treatment is performed by holding at a treatment temperature of 490 ° C. or more for 3 hours or more. Since sufficient strength cannot be obtained when the processing temperature is 490 ° C. or lower, the processing temperature is set to 490 ° C. or higher. Further, even when the treatment time is less than 3 hours, sufficient strength cannot be obtained, so the treatment time is set to 3 hours or more.

次に、溶体化処理が終わった鋳造品を焼入れ水に漬けて水焼入れを行う。焼入れ水は通常の水でもよいし、何らかの添加剤を加えたものでもよい。   Next, the cast product after the solution treatment is immersed in quenching water and water quenching is performed. The quenching water may be normal water or may be added with some additive.

水焼入れが終わった後、鋳造品には140〜160℃の処理温度で24時間以上保持する時効処理を行う。処理温度が140〜160℃の範囲外では十分な強度が得られないので、処理温度は140〜160℃とする。又、保持時間が24時間未満の場合にはおいても十分な強度が得られないので、保持時間は24時間以上とする。以上が熱処理工程である。   After the water quenching is finished, the cast product is subjected to an aging treatment at a treatment temperature of 140 to 160 ° C. for 24 hours or more. Since sufficient strength cannot be obtained when the processing temperature is outside the range of 140 to 160 ° C, the processing temperature is set to 140 to 160 ° C. Further, even when the holding time is less than 24 hours, sufficient strength cannot be obtained, so the holding time is set to 24 hours or more. The above is the heat treatment step.

熱処理工程が終わった鋳造品に機械加工を施すことにより図1に示される圧縮ハウジング1が完成される。   The cast housing after the heat treatment process is machined to complete the compression housing 1 shown in FIG.

本発明の実施の形態の圧縮ハウジング1の引張試験を行った。引張試験を行った圧縮ハウジング1は、Siを6.2質量%、Cuを3.9質量%、Mgを0.29質量%含有し、残部がAlと不可避的不純物からなるアルミニウム合金を用いてスラリー作製工程を行い、充填速度(ゲート通過速度)3.0m/s、充填圧力90Mpaの鋳造条件で鋳造工程を行い、490℃の処理温度に3時間保持する溶体化処理、水焼入れ、150℃の処理温度に24時間保持する時効処理という条件の熱処理工程を行ったものである。引張試験を行った結果、引張強度は412MPa、0.2%耐力は389Mpa、破断伸びは2.6%であり、冷媒としてCOガスを用いる場合にハウジングが必要とする耐圧強度を十分に備えるものであった。 A tensile test of the compression housing 1 according to the embodiment of the present invention was performed. The compression housing 1 subjected to the tensile test contains an aluminum alloy containing 6.2% by mass of Si, 3.9% by mass of Cu and 0.29% by mass of Mg, with the balance being Al and inevitable impurities. A slurry preparation process is performed, a casting process is performed under a casting condition of a filling speed (gate passage speed) of 3.0 m / s, and a filling pressure of 90 Mpa, a solution treatment that is maintained at a processing temperature of 490 ° C. for 3 hours, water quenching, 150 ° C. The heat treatment process was performed under the condition of aging treatment for 24 hours. As a result of the tensile test, the tensile strength is 412 MPa, the 0.2% proof stress is 389 Mpa, the elongation at break is 2.6%, and it has sufficient pressure strength required by the housing when CO 2 gas is used as the refrigerant. It was a thing.

本発明の圧縮機のハウジングの製造方法は、上述した実施の形態に限定されず、特許請求の範囲に記載した範囲で種々の変形や改良が可能である。例えば、上述の実施の形態においては、圧縮ハウジング1が本発明の製造方法によって製造されたが、駆動ハウジング等の圧縮機のハウジングを構成する他のハウジングが本発明の製造方法によって製造されてもよい。   The method for manufacturing the compressor housing of the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made within the scope described in the claims. For example, in the above-described embodiment, the compression housing 1 is manufactured by the manufacturing method of the present invention, but other housings constituting the housing of the compressor such as a drive housing are manufactured by the manufacturing method of the present invention. Good.

また、圧縮機で圧縮される冷媒はCOガスに限定されない、R152a等の新代替ガスやプロパン等のHC(ハイドロカーボン)ガスであってもよい。 The refrigerant compressed by the compressor is not limited to CO 2 gas, and may be a new alternative gas such as R152a or HC (hydrocarbon) gas such as propane.

本発明の圧縮機のハウジングの製造方法は、車両用空調システムに搭載される圧縮機のハウジングを製造する場合に有用である。   The compressor housing manufacturing method of the present invention is useful when manufacturing a compressor housing mounted on a vehicle air conditioning system.

1…圧縮ハウジング(圧縮機のハウジング)   1 ... Compression housing (compressor housing)

Claims (2)

ハウジング内において冷媒の圧縮を行って外部に吐出する圧縮機のハウジングの製造方法であって、Al−Si−Cu−Mg系のアルミニウム合金からなり、固相率が20〜40%の半凝固金属スラリーを用いて該ハウジングを半凝固法により鋳造する鋳造工程と、490℃以上の処理温度に3時間以上保持する溶体化処理を行った後、水焼入れを行い、その後に140〜160℃の処理温度に24時間以上保持する時効処理を行う熱処理工程とを有することを特徴とする圧縮機のハウジングの製造方法。   A method of manufacturing a housing of a compressor that compresses a refrigerant in a housing and discharges the refrigerant outside. A semi-solid metal comprising an Al-Si-Cu-Mg aluminum alloy and having a solid phase ratio of 20 to 40% After performing a casting process in which the housing is cast by a semi-solid method using slurry and a solution treatment for holding at a processing temperature of 490 ° C. or more for 3 hours or more, water quenching is performed, and then a treatment at 140 to 160 ° C. is performed. And a heat treatment step of performing an aging treatment for holding at a temperature for 24 hours or more. 該アルミニウム合金は、Siを5.0〜7.0質量%、Cuを2.0〜5.0質量%、Mgを0.2〜0.5質量%含有することを特徴とする請求項1に記載の圧縮機のハウジングの製造方法。   The aluminum alloy contains 5.0 to 7.0% by mass of Si, 2.0 to 5.0% by mass of Cu, and 0.2 to 0.5% by mass of Mg. The manufacturing method of the housing of the compressor as described in 2.
JP2009054788A 2009-03-09 2009-03-09 Method of manufacturing housing of compressor Pending JP2010209730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054788A JP2010209730A (en) 2009-03-09 2009-03-09 Method of manufacturing housing of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054788A JP2010209730A (en) 2009-03-09 2009-03-09 Method of manufacturing housing of compressor

Publications (1)

Publication Number Publication Date
JP2010209730A true JP2010209730A (en) 2010-09-24

Family

ID=42970156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054788A Pending JP2010209730A (en) 2009-03-09 2009-03-09 Method of manufacturing housing of compressor

Country Status (1)

Country Link
JP (1) JP2010209730A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748271A (en) * 2012-07-25 2012-10-24 黄石东贝电器股份有限公司 Efficient heat dissipation type compressor shell
CN105422421A (en) * 2015-12-21 2016-03-23 常熟市制冷压缩机铸件厂 Lightweight housing of compressor of refrigerator
CN106756301A (en) * 2016-12-06 2017-05-31 江苏凯特汽车部件有限公司 A kind of semi-solid-state shaping full-sized car manufacture method of tough aluminium alloy wheel hub high
EP3199901A1 (en) * 2016-01-29 2017-08-02 Mahle International GmbH Method for manufacturing a heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748271A (en) * 2012-07-25 2012-10-24 黄石东贝电器股份有限公司 Efficient heat dissipation type compressor shell
CN105422421A (en) * 2015-12-21 2016-03-23 常熟市制冷压缩机铸件厂 Lightweight housing of compressor of refrigerator
EP3199901A1 (en) * 2016-01-29 2017-08-02 Mahle International GmbH Method for manufacturing a heat exchanger
CN106756301A (en) * 2016-12-06 2017-05-31 江苏凯特汽车部件有限公司 A kind of semi-solid-state shaping full-sized car manufacture method of tough aluminium alloy wheel hub high

Similar Documents

Publication Publication Date Title
US8293031B2 (en) Magnesium alloy and the respective manufacturing method
EP1885898B1 (en) AN Al-Zn-Mg-Cu-Sc HIGH STRENGTH CASTING FOR AEROSPACE AND AUTOMOTIVE CASTINGS
KR101757013B1 (en) Copper aluminum alloy molded part having high mechanical strength and hot creep resistance
JP4845201B2 (en) Aluminum die-cast alloy and compressor impeller using the same
JP2017503086A (en) Aluminum casting alloy with improved high temperature performance
JP2010209730A (en) Method of manufacturing housing of compressor
JP3764200B2 (en) Manufacturing method of high-strength die-cast products
JP2010053743A (en) Die-cast compressor impeller
JPH11104800A (en) Material for plastic working light metal alloy and manufacture of plastic working member
JP4958292B2 (en) Aluminum die-cast alloy, cast compressor impeller made of this alloy, and method for manufacturing the same
JP2010163644A (en) Aluminum die casting alloy, cast compressor impeller made from the alloy and manufacturing method therefor
JP2009041066A (en) Die-cast component of magnesium superior in heat resistance, cast compressor impeller and manufacturing method therefor
EP3640356B1 (en) High thermal conductivity magnesium alloy, inverter housing, inverter and automobile
JP2018065160A (en) Method for producing casting
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP2008195978A (en) Magnesium-based composite material
JP2005089862A (en) Zn ALLOY FOR DIE-CASTING AND Zn ALLOY DIE-CAST PRODUCT
KR20130098939A (en) Aluminium -zinc diecasting alloy composition and method for producing the same
JP3603658B2 (en) Manufacturing method of forged member
JP2005133112A (en) Aluminum alloy member and its manufacturing method
JP2005120449A (en) Heat resistant magnesium alloy for casting, casting made of magnesium alloy, and its production method
JP2007186794A (en) Zn ALLOY FOR DIE-CASTING AND Zn ALLOY DIE-CAST PRODUCT
JP2008196367A (en) Cast impeller for compressor and its manufacturing method
Xu et al. Rheo-diecasting of AZ91D magnesium alloy
JP2011115830A (en) Method and apparatus of manufacturing piston for internal combustion engine