JP2010209338A - Method of manufacturing copolymer for semiconductor lithography - Google Patents

Method of manufacturing copolymer for semiconductor lithography Download PDF

Info

Publication number
JP2010209338A
JP2010209338A JP2010095217A JP2010095217A JP2010209338A JP 2010209338 A JP2010209338 A JP 2010209338A JP 2010095217 A JP2010095217 A JP 2010095217A JP 2010095217 A JP2010095217 A JP 2010095217A JP 2010209338 A JP2010209338 A JP 2010209338A
Authority
JP
Japan
Prior art keywords
copolymer
group
repeating unit
monomer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010095217A
Other languages
Japanese (ja)
Other versions
JP5384421B2 (en
Inventor
Satoru Oikawa
知 及川
Takenori Okada
剛宜 岡田
Masaaki Kudo
昌章 工藤
Takanori Yamagishi
孝則 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
Original Assignee
Maruzen Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd filed Critical Maruzen Petrochemical Co Ltd
Priority to JP2010095217A priority Critical patent/JP5384421B2/en
Publication of JP2010209338A publication Critical patent/JP2010209338A/en
Application granted granted Critical
Publication of JP5384421B2 publication Critical patent/JP5384421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a copolymer for chemical amplification positive type semiconductor lithography, which has high developing contrast and excellent resolution in a fine pattern. <P>SOLUTION: The method of manufacturing the copolymer, having at least a repeating unit (A) with a structure for protecting the group with alkali solubility with an acid-dissociable dissolution-inhibiting group, a repeating unit (B) with a lactone structure, and a repeating unit (C) having an alcoholic hydroxy group, includes the steps of: bringing at least one of monomers selected from those which give the repeating units (A), (B), and (C) into contact with water in a condition of being dissolved in an organic solvent to separate the liquid, or bringing the above monomer into contact with an ion exchange resin in a condition of being dissolved in the solvent; carrying out copolymerization to dissolve the copolymer obtained into a solvent; and carrying out neutralization titration with alkali metal hydroxide-containing solution using bromothymol blue as an indicator to obtain an acid value of 0.01 mmol/g or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体の製造に使用されるリソグラフィー用共重合体の製造方法に関するものであり、更に詳しくは、遠紫外線、X線、電子線等の各種放射線を用いるレジスト膜等の微細パターンの形成に用いられる半導体リソグラフィー用共重合体の製造方法に関するものである。   The present invention relates to a method for producing a lithographic copolymer used in the production of a semiconductor, and more specifically, formation of a fine pattern such as a resist film using various radiations such as deep ultraviolet rays, X-rays and electron beams. The present invention relates to a method for producing a copolymer for semiconductor lithography used in the above.

近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては、一般に露光光源の短波長化が進められていて、具体的には、従来はi線に代表される紫外線が用いられていたが、現在では、フッ化クリプトン(KrF)エキシマレーザー(波長248nm)が量産の中心となり、更にフッ化アルゴン(ArF)エキシマレーザー(波長193nm)が量産工程で導入され始めている。又、フッ素ダイマー(F)エキシマレーザー(157nm)や極紫外線(EUV)、電子線(EB)等を光源(放射線源)として用いるリソグラフィー技術についても研究が行われている。 In recent years, in the manufacture of semiconductor elements and liquid crystal display elements, miniaturization has rapidly progressed due to advances in lithography technology. As a technique for miniaturization, the exposure light source is generally shortened in wavelength. Specifically, conventionally, ultraviolet rays typified by i-line have been used, but nowadays, krypton fluoride (KrF) is used. An excimer laser (wavelength 248 nm) has become the center of mass production, and an argon fluoride (ArF) excimer laser (wavelength 193 nm) has begun to be introduced in the mass production process. Research is also being conducted on lithography techniques using a fluorine dimer (F 2 ) excimer laser (157 nm), extreme ultraviolet (EUV), electron beam (EB), or the like as a light source (radiation source).

これらのリソグラフィー技術においては、化学増幅ポジ型リソグラフィー用共重合体が好適に用いられている。この共重合体は、アルカリ現像液に可溶な極性基(以下、「アルカリ可溶性基」ということがある。)を、酸に対して不安定であると共にアルカリ現像液に対する溶解性を抑制する置換基(以下、「酸解離性溶解抑制基」ということがある。)で保護した構造(以下、「酸解離性構造」ということがある。)を有する繰り返し単位と、半導体基板等に対する密着性を高めたり、リソグラフィー溶剤やアルカリ現像液への溶解性を調整したりするための極性基を有する繰り返し単位を含んで構成される。   In these lithography techniques, a chemically amplified positive lithography copolymer is suitably used. In this copolymer, a polar group soluble in an alkali developer (hereinafter sometimes referred to as “alkali-soluble group”) is substituted with an acid that is unstable and suppresses solubility in an alkali developer. A repeating unit having a structure protected by a group (hereinafter sometimes referred to as “acid-dissociable dissolution inhibiting group”) (hereinafter also referred to as “acid-dissociable structure”) and adhesion to a semiconductor substrate or the like It is configured to include a repeating unit having a polar group for enhancing or adjusting the solubility in a lithography solvent or an alkali developer.

例えば、露光源としてKrFエキシマレーザーを用いるリソグラフィーにおいては、ヒドロキシスチレン由来の繰り返し単位と、ヒドロキシスチレン由来のフェノール性水酸基をアセタール構造や4級炭化水素基等の酸解離性溶解抑制基で保護した繰り返し単位、若しくは、(α−アルキル)アクリル酸由来のカルボキシル基をアセタール構造や4級炭化水素基等の酸解離性溶解抑制基で保護した繰り返し単位等を有する共重合体(特許文献1〜4等参照)等が知られている。又、ドライエッチング耐性や、露光前後のアルカリ現像液に対する溶解速度の差を向上させるため、脂環式炭化水素基を酸解離性溶解抑制基とした繰り返し単位を有する共重合体(特許文献5〜6等参照)も知られている。   For example, in lithography using a KrF excimer laser as an exposure source, a repeating unit obtained by protecting a repeating unit derived from hydroxystyrene and a phenolic hydroxyl group derived from hydroxystyrene with an acid dissociable, dissolution inhibiting group such as an acetal structure or a quaternary hydrocarbon group. A copolymer having a unit or a repeating unit in which a carboxyl group derived from (α-alkyl) acrylic acid is protected with an acid dissociable, dissolution inhibiting group such as an acetal structure or a quaternary hydrocarbon group (Patent Documents 1 to 4, etc.) For example). In addition, in order to improve dry etching resistance and the difference in dissolution rate with respect to an alkaline developer before and after exposure, a copolymer having a repeating unit having an alicyclic hydrocarbon group as an acid dissociable, dissolution inhibiting group (Patent Documents 5 to 5) 6) is also known.

露光源として、より短波長のArFエキシマレーザー等を用いるリソグラフィーにおいては、193nmの波長に対する吸光係数が高いヒドロキシスチレン由来の繰り返し単位を有さない共重合体が検討され、半導体基板等に対する密着性を高めたり、リソグラフィー溶剤やアルカリ現像液への溶解性を調整したりするための極性基として、ラクトン構造を繰り返し単位に有する共重合体(特許文献7〜10等参照)が知られている。   In lithography using a shorter wavelength ArF excimer laser or the like as an exposure source, a copolymer having no repeating unit derived from hydroxystyrene having a high extinction coefficient with respect to a wavelength of 193 nm has been studied, and adhesion to a semiconductor substrate or the like has been investigated. A copolymer having a lactone structure as a repeating unit (see, for example, Patent Documents 7 to 10) is known as a polar group for increasing or adjusting the solubility in a lithography solvent or an alkali developer.

一方、近年になって、液浸リソグラフィーという手法が提案されている。これは、対物レンズとリソグラフィー薄膜との間に、空気より屈折率が高い水などの液体を浸して露光する技術であり、従来の、対物レンズと薄膜の間に空気層が存在するリソグラフィー(以下、「ドライリソグラフィー」ということがある。)と比較して、光源の波長が同一でもレンズの開口数を大きくすることができ、又、開口数が同じでも焦点深度を深くできるため、同一波長の光源でもより微細なパターンを形成することが可能になる。このため、次世代のリソグラフィーとして、ArFエキシマレーザー光源を中心とした液浸リソグラフ
ィーが、実用化に向けて盛んに研究されており、ArF液浸リソグラフィーに用いる共重合体としては、従来のArFドライリソグラフィーで知られているものと同じ共重合体が提案されている(特許文献11〜13等参照)。
On the other hand, in recent years, a technique called immersion lithography has been proposed. This is a technique in which exposure is performed by immersing a liquid such as water having a refractive index higher than that of air between the objective lens and the lithography thin film. Conventional lithography in which an air layer exists between the objective lens and the thin film (hereinafter referred to as “lithography thin film”). Compared to the case of “dry lithography”), the numerical aperture of the lens can be increased even if the wavelength of the light source is the same, and the depth of focus can be increased even if the numerical aperture is the same. A finer pattern can be formed even with a light source. For this reason, immersion lithography centering on ArF excimer laser light sources has been actively studied as a next-generation lithography, and as a copolymer used for ArF immersion lithography, a conventional ArF dry crystal is used. The same copolymer as that known in lithography has been proposed (see Patent Documents 11 to 13, etc.).

このような化学増幅ポジ型リソグラフィー用の共重合体において、重合原料である単量体及び該単量体を重合して得られる共重合体の酸価を200mg−KOH/g(約3.6mmol/g)以下とすることにより、保存中の経時変化が無く、又、所定のパターンを精度良く形成できることが知られている(特許文献14参照)。しかし、該特許文献では10mg−KOH/g(約0.2mmol/g)まで低減した例しか開示されておらず、又、共重合体の酸価を更に一桁以上低いレベルにまで低減することにより、露光量に対する現像速度のコントラスト(以下、現像コントラストということがある。解像パターンのシャープさを表す指標である。)に優れた半導体リソグラフィー用組成物が得られることは全く知られていなかった。   In such a chemically amplified positive lithography copolymer, the acid value of the monomer as a polymerization raw material and the copolymer obtained by polymerizing the monomer is 200 mg-KOH / g (about 3.6 mmol). / G) It is known that when the amount is less than or equal to, there is no change with time during storage, and a predetermined pattern can be formed with high accuracy (see Patent Document 14). However, in this patent document, only an example in which the amount is reduced to 10 mg-KOH / g (about 0.2 mmol / g) is disclosed, and the acid value of the copolymer is further reduced to a level lower by one digit or more. It has not been known at all that a composition for semiconductor lithography excellent in contrast of the developing speed with respect to the exposure amount (hereinafter sometimes referred to as developing contrast, which is an index representing the sharpness of the resolution pattern) can be obtained. It was.

特開昭59−045439号公報JP 59-045439 A 特開平05−113667号公報Japanese Patent Laid-Open No. 05-113667 特開平10−026828号公報JP-A-10-026828 特開昭62−115440号公報JP 62-115440 A 特開平09−073173号公報JP 09-073173 A 特開平10−161313号公報JP-A-10-161313 特開平09−090637号公報Japanese Patent Laid-Open No. 09-090637 特開平10−207069号公報JP-A-10-207069 特開2000−026446号公報Japanese Patent Laid-Open No. 2000-026446 特開2001−242627号公報JP 2001-242627 A 特開2005−227332号公報JP 2005-227332 A 特開2005−234015号公報JP 2005-234015 A 特開2005−316259号公報JP 2005-316259 A 特開2001−166481号公報Japanese Patent Laid-Open No. 2001-166481

本発明は上述した背景技術に鑑みてなされたものであり、その目的は、現像コントラストが高く、微細パターンの解像性能に優れた、化学増幅ポジ型の半導体リソグラフィー用共重合体の製造方法を提供することにある。   The present invention has been made in view of the above-described background art, and an object of the present invention is to provide a method for producing a chemically amplified positive-type copolymer for semiconductor lithography, which has a high development contrast and excellent resolution performance for fine patterns. It is to provide.

本発明者らは上記課題を解決するため、鋭意検討した結果、少なくとも、酸解離性溶解抑制基でアルカリ可溶性基を保護した構造を有する繰り返し単位(A)、ラクトン構造を有する繰り返し単位(B)、及び、アルコール性水酸基を有する繰り返し単位(C)を含む共重合体について、該共重合体の酸価を正確に定量する方法で分析し、該共重合体の酸価を従来よりも低レベルに制御することにより、前記の課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have at least a repeating unit (A) having a structure in which an alkali-soluble group is protected with an acid dissociable, dissolution inhibiting group, and a repeating unit (B) having a lactone structure. And a copolymer containing a repeating unit (C) having an alcoholic hydroxyl group is analyzed by a method for accurately quantifying the acid value of the copolymer, and the acid value of the copolymer is at a lower level than before. As a result of the control, it was found that the above-mentioned problems can be solved, and the present invention has been completed.

即ち、前記従来技術の課題は、以下の構成によって解決することができる。   That is, the problem of the prior art can be solved by the following configuration.

〔1〕少なくとも、酸解離性溶解抑制基でアルカリ可溶性基を保護した構造を有する繰り返し単位(A)、ラクトン構造を有する繰り返し単位(B)、及び、アルコール性水酸基を有する繰り返し単位(C)を含む共重合体の製造方法であって、繰り返し単位(A)を与える単量体、繰り返し単位(B)を与える単量体、及び、繰り返し単位(C)を与える単量体から選ばれる少なくとも一種類以上を、有機溶媒に溶解した状態で水と接触させ、分液する工程を経た後、共重合に供することにより、得られた共重合体を溶媒に溶解した後、ブロモチモールブルーを指示薬として、水酸化アルカリ金属含有溶液で中和滴定する方法で求めた酸価を、0.01mmol/g以下とすることを特徴とする半導体リソグラフィー用共重合体の製造方法。 [1] At least a repeating unit (A) having a structure in which an alkali-soluble group is protected with an acid dissociable, dissolution inhibiting group, a repeating unit (B) having a lactone structure, and a repeating unit (C) having an alcoholic hydroxyl group A method for producing a copolymer comprising at least one selected from a monomer that provides a repeating unit (A), a monomer that provides a repeating unit (B), and a monomer that provides a repeating unit (C). More than one type is dissolved in an organic solvent and brought into contact with water, followed by liquid separation, and then subjected to copolymerization. After the obtained copolymer is dissolved in a solvent, bromothymol blue is used as an indicator. A method for producing a copolymer for semiconductor lithography, characterized in that an acid value determined by neutralization titration with an alkali metal hydroxide-containing solution is 0.01 mmol / g or less

〔2〕少なくとも、酸解離性溶解抑制基でアルカリ可溶性基を保護した構造を有する繰り返し単位(A)、ラクトン構造を有する繰り返し単位(B)、及び、アルコール性水酸基を有する繰り返し単位(C)を含む共重合体の製造方法であって、繰り返し単位(A)を与える単量体、繰り返し単位(B)を与える単量体、及び、繰り返し単位(C)を与える単量体から選ばれる少なくとも一種類以上を、有機溶媒に溶解した状態でイオン交換樹脂と接触させる工程を経た後、共重合に供することにより、得られた共重合体を溶媒に溶解した後、ブロモチモールブルーを指示薬として、水酸化アルカリ金属含有溶液で中和滴定する方法で求めた酸価を、0.01mmol/g以下とすることを特徴とする半導体リソグラフィー用共重合体の製造方法。 [2] At least a repeating unit (A) having a structure in which an alkali-soluble group is protected with an acid dissociable, dissolution inhibiting group, a repeating unit (B) having a lactone structure, and a repeating unit (C) having an alcoholic hydroxyl group A method for producing a copolymer comprising at least one selected from a monomer that provides a repeating unit (A), a monomer that provides a repeating unit (B), and a monomer that provides a repeating unit (C). After the step of contacting at least one type with an ion exchange resin in a state dissolved in an organic solvent, the resulting copolymer is dissolved in a solvent by subjecting it to copolymerization, and then using bromothymol blue as an indicator, Production of a copolymer for semiconductor lithography, characterized in that the acid value determined by neutralization titration with an alkali metal oxide-containing solution is 0.01 mmol / g or less Law.

〔3〕繰り返し単位(A)の酸解離性溶解抑制基が、式(L1)

Figure 2010209338

{式(L1)中、oは酸解離性溶解抑制基としての結合部位を、R13及びR14はそれぞれ独立して炭素数1〜4の炭化水素基を、R15は炭素数1〜12の炭化水素基を表し、R15はR13又はR14と結合して環を形成しても良い。}
若しくは式(L2)
Figure 2010209338

{式(L2)中、oは酸解離性溶解抑制基としての結合部位を、R16及びR17はそれぞれ独立して水素原子又は炭素数1〜4の炭化水素基を、R18は炭素数1〜12の炭化水素基を表し、R16はR17又はR18と結合して環を形成しても良い。}
で表される構造から選ばれる〔1〕又は〔2〕に記載の半導体リソグラフィー用共重合体の製造方法。 [3] The acid dissociable, dissolution inhibiting group of the repeating unit (A) is represented by the formula (L1)
Figure 2010209338

{In Formula (L1), o is a binding site as an acid dissociable, dissolution inhibiting group, R 13 and R 14 are each independently a hydrocarbon group having 1 to 4 carbon atoms, and R 15 is a carbon number 1 to 12 R 15 may be bonded to R 13 or R 14 to form a ring. }
Or formula (L2)
Figure 2010209338

{In Formula (L2), o is a bonding site as an acid dissociable, dissolution inhibiting group, R 16 and R 17 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and R 18 is a carbon number. Represents a hydrocarbon group of 1 to 12, and R 16 may combine with R 17 or R 18 to form a ring. }
The manufacturing method of the copolymer for semiconductor lithography as described in [1] or [2] chosen from the structure represented by these.

〔4〕繰り返し単位(A)が、式(A)

Figure 2010209338
{式(A)中、R10は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を、R11は酸素原子若しくは硫黄原子を含んでも良い炭素数6〜12の脂環式炭化水素基を、nは0又は1の整数を、R12は式(L1)若しくは(L2)で表される酸解離性溶解抑制基を表す。}
で表される構造である〔1〕又は〔2〕に記載の半導体リソグラフィー用共重合体の製造方法。 [4] The repeating unit (A) is represented by the formula (A)
Figure 2010209338
{In Formula (A), R 10 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms that may be substituted by a fluorine atom, and R 11 represents 6 to 6 carbon atoms that may include an oxygen atom or a sulfur atom. 12 represents an alicyclic hydrocarbon group, n represents an integer of 0 or 1, and R 12 represents an acid dissociable, dissolution inhibiting group represented by the formula (L1) or (L2). }
The manufacturing method of the copolymer for semiconductor lithography as described in [1] or [2] which is a structure represented by these.

〔5〕繰り返し単位(B)が、式(B)

Figure 2010209338
[式(B)中、R20は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を、R21は単結合、又は、酸素原子若しくは硫黄原子を含んでも良い炭素数5〜12の脂環式炭化水素基を、Lは式(L3)
Figure 2010209338
{式(L3)中、R22〜R29は、いずれか1つ又は2つがR21と結合する単結合であり、残りは水素原子又は炭素数1〜4の炭化水素基若しくはアルコキシ基を表し、mは0又は1の整数を表す。}で表されるラクトン構造を表し、LはR21と1又は2の単結合で結合している。]
で表される構造である〔1〕又は〔2〕に記載の半導体リソグラフィー用共重合体の製造方法。 [5] The repeating unit (B) is represented by the formula (B)
Figure 2010209338
[In the formula (B), R 20 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms which may be substituted by a fluorine atom, and R 21 may contain a single bond, an oxygen atom or a sulfur atom. A good alicyclic hydrocarbon group having 5 to 12 carbon atoms, L 3 is represented by the formula (L3)
Figure 2010209338
{In Formula (L3), R 22 to R 29 are single bonds in which one or two of them are bonded to R 21 , and the rest represent a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, or an alkoxy group. , M represents an integer of 0 or 1. }, L 3 is bonded to R 21 with 1 or 2 single bonds. ]
The manufacturing method of the copolymer for semiconductor lithography as described in [1] or [2] which is a structure represented by these.

〔6〕繰り返し単位(C)が、式(C)

Figure 2010209338
{式(C)中、R33は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を、R34〜R36はそれぞれ独立して水素原子若しくは水酸基を表し、R34〜R36の内、少なくとも一つ以上が水酸基である。}
で表される構造である〔1〕又は〔2〕に記載の半導体リソグラフィー用共重合体の製造方法。 [6] The repeating unit (C) is represented by the formula (C)
Figure 2010209338
{In Formula (C), R 33 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms which may be substituted by a fluorine atom, and R 34 to R 36 each independently represents a hydrogen atom or a hydroxyl group. , At least one of R 34 to R 36 is a hydroxyl group. }
The manufacturing method of the copolymer for semiconductor lithography as described in [1] or [2] which is a structure represented by these.

本発明によって、現像コントラストが高く、微細パターンの解像性能に優れた化学増幅ポジ型の半導体リソグラフィー用共重合体の製造方法を提供することができ、より高集積な半導体素子の製造が可能になる。   According to the present invention, it is possible to provide a method for producing a chemically amplified positive-type copolymer for semiconductor lithography, which has a high development contrast and an excellent resolution performance of a fine pattern, thereby enabling the production of a highly integrated semiconductor device. Become.

以下、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail.

1.共重合体の構造
本発明により製造される半導体リソグラフィー用共重合体は、少なくとも、繰り返し単位(A)、繰り返し単位(B)、及び、繰り返し単位(C)とを含む。
1. Copolymer Structure The copolymer for semiconductor lithography produced according to the present invention includes at least a repeating unit (A), a repeating unit (B), and a repeating unit (C).

(1)繰り返し単位(A)
繰り返し単位(A)は、酸解離性溶解抑制基でアルカリ可溶性基を保護した構造を有する繰り返し単位であり、アルカリ現像液に対する共重合体の溶解性を変化させる働きをする。アルカリ可溶性基としては、水中25℃でのpKaが12以下の極性基が好ましく、特に好ましくは水中25℃でのpKaが10以下の極性基である。このような例として、フェノール性水酸基、フルオロアルコール性水酸基、カルボキシル基、スルホ基等を挙げることができ、193nmの光線透過率や保存安定性等から、特に好ましくはカルボキシル基である。酸解離性溶解抑制基が、このようなアルカリ可溶性基の水素と置換して、酸素原子に結合し、アルカリ現像液に対する溶解性を抑制する。
(1) Repeating unit (A)
The repeating unit (A) is a repeating unit having a structure in which an alkali-soluble group is protected with an acid dissociable, dissolution inhibiting group, and functions to change the solubility of the copolymer in an alkali developer. The alkali-soluble group is preferably a polar group having a pKa of 12 or less at 25 ° C. in water, and particularly preferably a polar group having a pKa of 10 or less at 25 ° C. in water. Examples thereof include a phenolic hydroxyl group, a fluoroalcoholic hydroxyl group, a carboxyl group, a sulfo group, and the like, and a carboxyl group is particularly preferred from the viewpoint of light transmittance at 193 nm, storage stability, and the like. The acid dissociable, dissolution inhibiting group substitutes for hydrogen of such an alkali-soluble group and binds to an oxygen atom to suppress solubility in an alkali developer.

酸解離性溶解抑制基は、式(L1)若しくは式(L2)から選ばれる構造であることが好ましい。

Figure 2010209338
The acid dissociable, dissolution inhibiting group preferably has a structure selected from formula (L1) or formula (L2).
Figure 2010209338

式(L1)中、oは酸解離性溶解抑制基としての結合部位を表す。R13及びR14はそれぞれ独立して炭素数1〜4の炭化水素基を表し、具体的には、メチル基、エチル基、
n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基等を挙げることができる。R15は炭素数1〜12の炭化水素基を表し、具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、トリシクロ[5.2.1.02,6]デカニル基、アダマンチル基、テトラシクロ[4.4.0.12,5.17,10]ドデカニル基等を挙げることができる。尚
、R15はR13又はR14と結合して環、具体的にはシクロペンタン環、シクロヘキサン環、ノルボルナン環、トリシクロ[5.2.1.02,6]デカン環、アダマンタン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環等を形成しても良い。
In the formula (L1), o represents a binding site as an acid dissociable, dissolution inhibiting group. R 13 and R 14 each independently represent a hydrocarbon group having 1 to 4 carbon atoms, specifically, a methyl group, an ethyl group,
Examples include n-propyl group, i-propyl group, n-butyl group, i-butyl group and the like. R 15 represents a hydrocarbon group having 1 to 12 carbon atoms, specifically, methyl group, ethyl group, n- propyl group, i- propyl, n- butyl group, i- butyl group, cyclopentyl group, cyclohexyl it can be exemplified group, a norbornyl group, a tricyclo [5.2.1.0 2, 6] decanyl group, an adamantyl group, a tetracyclo [4.4.0.1 2,5 .1 7,10] dodecanyl group . R 15 is bonded to R 13 or R 14 to form a ring, specifically a cyclopentane ring, a cyclohexane ring, a norbornane ring, a tricyclo [5.2.1.0 2,6 ] decane ring, an adamantane ring, a tetracyclo ring. [4.4.0.1 2,5 .1 7,10] may form a dodecane ring.

特に、R15に、若しくは、R15がR13又はR14と結合して、環、具体的にはシクロペンタン環、シクロヘキサン環、ノルボルナン環、トリシクロ[5.2.1.02,6]デカン環、アダマンタン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環等が含ま
れると、リソグラフィー前後でのアルカリ現像液に対する溶解性の差が大きく、微細パターンを描くのに好ましい。
In particular, R 15 or R 15 is bonded to R 13 or R 14 to form a ring, specifically a cyclopentane ring, a cyclohexane ring, a norbornane ring, or tricyclo [5.2.1.0 2,6 ]. decane ring, adamantane ring and include tetracyclo [4.4.0.1 2,5 .1 7,10] dodecane ring and a large difference in solubility in an alkali developing solution before and after lithography, a fine pattern Preferred for drawing.

Figure 2010209338

式(L2)中、oは酸解離性溶解抑制基としての結合部位を表す。R16及びR17はそれぞれ独立して水素原子又は炭素数1〜4の炭化水素基を表し、具体的には、水素原子、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基等を挙げることができる。R18は炭素数1〜12の炭化水素基を表し、具体的にはメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、2−エチルヘキシル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、トリシクロ[5.2.1.02,6]デカニル基、アダマンチル基、テトラシクロ[4.4.0.12,5.17,10]ドデカニル基等を挙げることができる。尚、R16は、R17又はR18と結合して環を形成しても良く、R16がR17と結合した環の具体例として、シクロペンタン環、シクロヘキサン環、ノルボルナン環、トリシクロ[5.2.1.02,6]デカン環、アダマンタン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環等を、又、
16がR18と結合した環の具体例として、ヒドロフラン環、ヒドロピラン環等をそれぞれ挙げることができる。
Figure 2010209338

In formula (L2), o represents a binding site as an acid dissociable, dissolution inhibiting group. R 16 and R 17 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, specifically, hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n -A butyl group, i-butyl group, etc. can be mentioned. R 18 represents a hydrocarbon group having 1 to 12 carbon atoms, specifically a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, 2-ethylhexyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, a tricyclo [5.2.1.0 2, 6] decanyl group, an adamantyl group, a tetracyclo [4.4.0.1 2,5 .1 7,10 ] A dodecanyl group etc. can be mentioned. R 16 may be bonded to R 17 or R 18 to form a ring. Specific examples of the ring in which R 16 is bonded to R 17 include a cyclopentane ring, cyclohexane ring, norbornane ring, tricyclo [5 .2.1.0 2,6] decane ring, adamantane ring, tetracyclo [4.4.0.1 2,5 .1 7,10] dodecane ring and, also,
Specific examples of the ring in which R 16 is bonded to R 18 include a hydrofuran ring and a hydropyran ring.

繰り返し単位(A)は、式(A)で表される構造であることが好ましい。

Figure 2010209338
The repeating unit (A) preferably has a structure represented by the formula (A).
Figure 2010209338

式(A)中、R10は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を表し、具体的には、水素原子、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、トリフルオロメチル基等を挙げることができ、好ましくは、水素原子、メチル基、トリフルオロメチル基である。 In the formula (A), R 10 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms which may be substituted by a fluorine atom. Specifically, a hydrogen atom, a methyl group, an ethyl group, n- A propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a trifluoromethyl group and the like can be mentioned, and a hydrogen atom, a methyl group and a trifluoromethyl group are preferable.

11は、酸素原子若しくは硫黄原子を含んでも良い炭素数6〜12の脂環式炭化水素基を表し、具体的には、ノルボルナン環、テトラシクロ[4.4.0.12,5.17,10]ドデ
カン環、7−oxa−ノルボルナン環、7−thia−ノルボルナン環等を有する脂環式炭化水素基を挙げることができ、好ましくはノルボルナン環、テトラシクロ[4.4.0.
2,5.17,10]ドデカン環である。尚、nは0又は1の整数である。
R 11 is, contain an oxygen atom or a sulfur atom represents an alicyclic hydrocarbon group having 6 to 12 carbon atoms, specifically, norbornane ring, tetracyclo [4.4.0.1 2, 5 .1 7,10 ] can include an alicyclic hydrocarbon group having a dodecane ring, a 7-oxa-norbornane ring, a 7-thia-norbornane ring, and the like, preferably a norbornane ring, tetracyclo [4.4.0.
1 2,5 .1 7,10] dodecane ring. Note that n is an integer of 0 or 1.

以下に、繰り返し単位(A)の具体的な例を示すが、本発明はこれらの具体例に限定されるものではない。尚、これらの繰り返し単位を与える単量体は、単独若しくは2種類以上を組み合わせて用いることができる。   Specific examples of the repeating unit (A) are shown below, but the present invention is not limited to these specific examples. In addition, the monomer which gives these repeating units can be used individually or in combination of 2 or more types.

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

(2)繰り返し単位(B)
繰り返し単位(B)は、ラクトン構造を有する繰り返し単位であり、半導体基板への密着性を高めたり、リソグラフィー溶媒やアルカリ現像液への溶解性を制御したりする働きをする。繰り返し単位(B)は、式(B)で表される構造であることが好ましい。

Figure 2010209338
(2) Repeating unit (B)
The repeating unit (B) is a repeating unit having a lactone structure and functions to enhance adhesion to a semiconductor substrate or to control solubility in a lithography solvent or an alkali developer. The repeating unit (B) preferably has a structure represented by the formula (B).
Figure 2010209338

式(B)中、R20は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を表し、具体的には、水素原子、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、トリフルオロメチル基等を挙げることができ、好ましくは、水素原子、メチル基、トリフルオロメチル基である。R21は単結合、又は、酸素原子若しくは硫黄原子を含んでも良い炭素数5〜12の脂環式炭化水素基を表し、具体的には単結合、若しくは、シクロヘキサン環、ノルボルナン環、テトラシクロ[4.4.0.12,5.17,10]ドデカン環、7−oxa−ノルボルナン環、7−thia−ノ
ルボルナン環等を有する脂環式炭化水素基を挙げることができ、好ましくは単結合、ノルボルナン環、7−oxa−ノルボルナン環である。
In the formula (B), R 20 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms which may be substituted by a fluorine atom. Specifically, a hydrogen atom, a methyl group, an ethyl group, n- A propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a trifluoromethyl group and the like can be mentioned, and a hydrogen atom, a methyl group and a trifluoromethyl group are preferable. R 21 represents a single bond or an alicyclic hydrocarbon group having 5 to 12 carbon atoms which may contain an oxygen atom or a sulfur atom, specifically a single bond, a cyclohexane ring, a norbornane ring, tetracyclo [4 .4.0.1 2,5 .1 7,10] dodecane ring, 7-oxa norbornane ring, 7-thia norbornane ring, can be exemplified an alicyclic hydrocarbon group having, preferably a single bond , Norbornane ring, 7-oxa-norbornane ring.

式(B)中、Lは式(L3)で表されるラクトン構造を表し、R21と1又は2の単
結合で結合している。

Figure 2010209338
In the formula (B), L 3 represents a lactone structure represented by the formula (L3), and is bonded to R 21 with a single bond of 1 or 2.
Figure 2010209338

式(L3)中、R22〜R29は、いずれか1つ又は2つが式(B)におけるR21と結合する単結合であり、残りは水素原子又は上記と同様の炭素数1〜4の炭化水素基若しくはアルコキシ基である。又、mは0又は1の整数を表す。 In the formula (L3), R 22 to R 29 are single bonds in which any one or two of them are bonded to R 21 in the formula (B), and the rest are hydrogen atoms or the same C 1-4 as described above. It is a hydrocarbon group or an alkoxy group. M represents an integer of 0 or 1.

以下に、繰り返し単位(B)の具体的な例を示すが、本発明はこれらの具体例に限定されるものではない。尚、これらの繰り返し単位を与える単量体は、単独若しくは2種類以上を組み合わせて用いることができる。   Specific examples of the repeating unit (B) are shown below, but the present invention is not limited to these specific examples. In addition, the monomer which gives these repeating units can be used individually or in combination of 2 or more types.

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

Figure 2010209338
Figure 2010209338

(3)繰り返し単位(C)
繰り返し単位(C)は、アルコール性水酸基を有する繰り返し単位であり、半導体基板への密着性を高めたり、リソグラフィー溶媒やアルカリ現像液への溶解性を制御したりする働きをする。繰り返し単位(C)の構造としては、光線透過率やエッチング耐性に優れることから、式(C)で表される構造であることが特に好ましい。

Figure 2010209338
(3) Repeating unit (C)
The repeating unit (C) is a repeating unit having an alcoholic hydroxyl group, and functions to increase adhesion to a semiconductor substrate or to control solubility in a lithography solvent or an alkali developer. The structure of the repeating unit (C) is particularly preferably a structure represented by the formula (C) because of excellent light transmittance and etching resistance.
Figure 2010209338

式(C)中、R33は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を表し、具体的には、水素原子、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、トリフルオロメチル基等を挙げることができ、好ましくは、水素原子、メチル基、トリフルオロメチル基である。R34〜R36はそれぞれ独立して水素原子若しくは水酸基を表し、R34〜R36の内、少なくとも一つ以上が水酸基である。 In the formula (C), R 33 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms which may be substituted by a fluorine atom, specifically, a hydrogen atom, a methyl group, an ethyl group, n- A propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a trifluoromethyl group and the like can be mentioned, and a hydrogen atom, a methyl group and a trifluoromethyl group are preferable. R 34 to R 36 each independently represents a hydrogen atom or a hydroxyl group, and at least one of R 34 to R 36 is a hydroxyl group.

以下、繰り返し単位(C)の具体的な例を示すが、本発明はこれらの具体例に限定されるものではない。尚、これらの繰り返し単位を与える単量体は、単独若しくは2種類以上を組み合わせることができる。   Specific examples of the repeating unit (C) are shown below, but the present invention is not limited to these specific examples. In addition, the monomer which gives these repeating units can be individual or can combine 2 or more types.

Figure 2010209338
Figure 2010209338

(4)その他の繰り返し単位
本発明により製造される半導体リソグラフィー用共重合体は、上記の繰り返し単位以外に、必要に応じて、アルカリ現像液やリソグラフィー溶媒への溶解性を制御する目的で、酸安定溶解抑制基を有する繰り返し単位(D)等も含むことができる。
(4) Other repeating units In addition to the above repeating units, the copolymer for semiconductor lithography produced according to the present invention is an acid for the purpose of controlling the solubility in an alkali developer or a lithography solvent, if necessary. A repeating unit (D) having a stable dissolution inhibiting group can also be included.

繰り返し単位(D)の例としては、式(D)で表される構造を挙げることができる。

Figure 2010209338
Examples of the repeating unit (D) include a structure represented by the formula (D).
Figure 2010209338

式(D)中、R40は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を表し、具体的には、水素原子、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、トリフルオロメチル基等を挙げることができ、好ましくは、水素原子、メチル基、トリフルオロメチル基である。R41はエステル結合している炭素が1〜3級炭素である炭素数1〜12の脂環式炭化水素基、若しくは、1−アダマンチル基を表し、具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、シクロペンチル基、シクロヘキシル基、2−ノルボルニル基、2−イソボルニル基、8−トリシクロ[5.2.1.02,6]デカニル基、1−アダマンチル基、2−アダマンチル基、4−テトラシクロ[4.4.0.12,5.17,10
ドデカニル基等を挙げることができる。
In the formula (D), R 40 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms which may be substituted by a fluorine atom, specifically, a hydrogen atom, a methyl group, an ethyl group, n- A propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a trifluoromethyl group and the like can be mentioned, and a hydrogen atom, a methyl group and a trifluoromethyl group are preferable. R 41 represents an alicyclic hydrocarbon group having 1 to 12 carbon atoms in which the ester-bonded carbon is a primary to tertiary carbon, or a 1-adamantyl group, specifically, a methyl group, an ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, cyclopentyl group, cyclohexyl group, 2-norbornyl group, 2-isobornyl group, 8-tricyclo [5.2.1.0 2,6 ] decanyl group, 1-adamantyl, 2-adamantyl, 4-tetracyclo [4.4.0.1 2,5 .1 7,10]
A dodecanyl group etc. can be mentioned.

以下に、繰り返し単位(D)の具体的な例を示すが、本発明はこれらの具体例に限定されるものではない。尚、これらの繰り返し単位を与える単量体は、単独若しくは2種類以上を組み合わせて用いることができる。   Specific examples of the repeating unit (D) are shown below, but the present invention is not limited to these specific examples. In addition, the monomer which gives these repeating units can be used individually or in combination of 2 or more types.

Figure 2010209338
Figure 2010209338

(5)繰り返し単位組成
各繰り返し単位の組成は、半導体リソグラフィーにおける基本性能を損なわない範囲で選択することができる。例えば、繰り返し単位(A)は、通常10〜80モル%、好ましくは15〜70モル%、より好ましくは20〜60モル%の範囲を選択する。繰り返し単位(B)は、通常10〜80モル%、好ましくは15〜70モル%、より好ましくは20〜60モル%の範囲を選択する。繰り返し単位(C)は、通常1〜50モル%、好ましくは5〜40モル%、より好ましくは10〜30モル%の範囲を選択する。繰り返し単位(D)は、通常0〜30モル%、好ましくは0〜20モル%、より好ましくは0〜10モル%の範囲を選択する。
(5) Repeating unit composition The composition of each repeating unit can be selected as long as the basic performance in semiconductor lithography is not impaired. For example, the repeating unit (A) is usually selected in the range of 10 to 80 mol%, preferably 15 to 70 mol%, more preferably 20 to 60 mol%. The repeating unit (B) is usually selected in the range of 10 to 80 mol%, preferably 15 to 70 mol%, more preferably 20 to 60 mol%. The repeating unit (C) is usually selected in the range of 1 to 50 mol%, preferably 5 to 40 mol%, more preferably 10 to 30 mol%. A repeating unit (D) selects 0-30 mol% normally, Preferably it is 0-20 mol%, More preferably, the range of 0-10 mol% is selected.

(6)末端構造
本発明により製造される半導体リソグラフィー用共重合体は、既に公知の末端構造を含む。通常、ラジカル重合開始剤から発生するラジカル構造を重合開始末端として含み、連鎖移動剤を用いる場合は、連鎖移動剤から発生するラジカル構造を重合開始末端として含む。溶媒や単量体等に連鎖移動する場合は、溶媒や単量体から発生するラジカル構造を重合開始末端として含む。停止反応が再結合停止の場合は、両末端に重合開始末端を含むことができ、不均化停止の場合は片方に重合開始末端を、もう片方に単量体由来の末端構造を含むことができる。重合停止剤を用いる場合は、一方の末端に重合開始末端を、もう片方の末端に重合停止剤由来の末端構造を含むことができる。これらの開始反応及び停止反応は、一つの重合反応の中で複数発生する場合があり、その場合、複数の末端構造を有する共重合体の混合物となる。本発明で用いることができる重合開始剤、連鎖移動剤、溶媒については後述する。
(6) Terminal structure The copolymer for semiconductor lithography produced by the present invention already contains a known terminal structure. Usually, a radical structure generated from a radical polymerization initiator is included as a polymerization initiation terminal, and when a chain transfer agent is used, a radical structure generated from a chain transfer agent is included as a polymerization initiation terminal. In the case of chain transfer to a solvent or monomer, a radical structure generated from the solvent or monomer is included as a polymerization initiation terminal. When the termination reaction is recombination termination, both ends can contain polymerization initiation ends, and when disproportionation termination, the polymerization initiation end can be included on one side and the monomer-derived terminal structure can be included on the other side. it can. When a polymerization terminator is used, a polymerization initiation terminal can be included at one end and a terminal structure derived from the polymerization terminator can be included at the other end. A plurality of these initiation reactions and termination reactions may occur in one polymerization reaction, and in that case, a mixture of copolymers having a plurality of terminal structures is formed. The polymerization initiator, chain transfer agent, and solvent that can be used in the present invention will be described later.

(7)分子量、分散度
共重合体の重量平均分子量(Mw)は、高すぎるとレジスト溶剤やアルカリ現像液への溶解性が低くなり、一方、低すぎるとレジストの塗膜性能が悪くなることから、1,00
0〜40,000の範囲内であることが好ましく、1,500〜30,000の範囲内であ
ることがより好ましく、2,000〜20,000の範囲内であることが特に好ましい。又、分子量分布(Mw/Mn)は1.0〜5.0の範囲内であることが好ましく、1.0〜3.0の範囲内であることがより好ましく、1.2〜2.5の範囲内であることが特に好ましい。
(7) If the molecular weight and the weight average molecular weight (Mw) of the copolymer are too high, the solubility in a resist solvent or an alkali developer will be low, while if too low, the coating performance of the resist will be poor. To 1.00
It is preferably in the range of 0 to 40,000, more preferably in the range of 1,500 to 30,000, and particularly preferably in the range of 2,000 to 20,000. The molecular weight distribution (Mw / Mn) is preferably in the range of 1.0 to 5.0, more preferably in the range of 1.0 to 3.0, and 1.2 to 2.5. It is particularly preferable that the value falls within the range.

本発明により製造される半導体リソグラフィー用共重合体は、所定の方法で求めた酸価が0.01mmol/g以下であることを特徴とする。   The copolymer for semiconductor lithography produced by the present invention is characterized in that the acid value determined by a predetermined method is 0.01 mmol / g or less.

2.酸価の定量方法
本発明により製造される共重合体の酸価は、測定対象の共重合体を溶媒に溶解し、ブロモチモールブルーを指示薬として、水酸化アルカリ金属含有溶液で中和滴定することにより求める。この方法は、次の理由により、特にラクトン構造を有する共重合体の酸価を定量する場合に好ましい。
2. Method for Quantifying Acid Value The acid value of the copolymer produced according to the present invention is determined by dissolving the copolymer to be measured in a solvent and performing neutralization titration with an alkali metal hydroxide-containing solution using bromothymol blue as an indicator. Ask for. This method is preferable for quantifying the acid value of a copolymer having a lactone structure, for the following reason.

即ち、ラクトン構造はpHが8以上で加水分解しやすい。又、カルボキシル基のような弱酸を水酸化アルカリ金属のような強塩基で中和する場合、滴定量に対するpHの変化は、pHが7未満では緩やかであり、pHが7〜10の間で極大となる。このため、pHが7以上8未満で変色する指示薬を用いる必要があり、最適な指示薬はブロモチモールブルーである。該指示薬はpH=7.6で中間色の緑から塩基性色の青に変化する。   That is, the lactone structure is easily hydrolyzed at a pH of 8 or more. In addition, when a weak acid such as a carboxyl group is neutralized with a strong base such as an alkali metal hydroxide, the change in pH with respect to the titration is gradual when the pH is less than 7, and is maximum between 7 and 10 in pH. It becomes. For this reason, it is necessary to use an indicator that changes color when the pH is 7 or more and less than 8, and the optimal indicator is bromothymol blue. The indicator changes from neutral green to basic blue at pH = 7.6.

上記以外の方法として、例えば電位差滴定や13C−NMR、H−NMRによる方法を挙げることができる。しかし、電位差滴定による方法では、終点の見極めが難しく、過剰量滴下した塩基によってラクトンが加水分解してしまうため、実質的に定量が困難である。又、13C−NMRによる方法では、S/N比が低いために微小ピークの定量が困難であること、又、カルボキシル基を定量する場合、(メタ)アクリル酸エステル系共重合体の主鎖カルボニルやラクトン構造のカルボニルとピークが分離しない場合が多いこと等、実質的に定量が困難である。更に、H−NMRによる方法では、酸性水素のピークはブロードになるため、微小ピーク面積の積算が難しく、実質的に定量は困難である。 Examples of methods other than the above include potentiometric titration, 13 C-NMR, and 1 H-NMR methods. However, in the method by potentiometric titration, it is difficult to determine the end point, and the lactone is hydrolyzed by an excessively dropped base, so that the determination is substantially difficult. Further, in the method by 13 C-NMR, since the S / N ratio is low, it is difficult to determine the minute peak. When the carboxyl group is determined, the main chain of the (meth) acrylic acid ester copolymer The quantification is substantially difficult because the carbonyl and the carbonyl of the lactone structure often do not separate from the peak. Furthermore, in the method by 1 H-NMR, since the peak of acidic hydrogen is broad, it is difficult to integrate minute peak areas, and it is substantially difficult to quantify.

以下、ブロモチモールブルーを指示薬とし、水酸化アルカリ金属含有溶液で中和滴定する方法について説明する。   Hereinafter, a method for performing neutralization titration with an alkali metal hydroxide-containing solution using bromothymol blue as an indicator will be described.

滴定に用いる水酸化アルカリ金属として、好ましくは、通常の中和滴定に用いる水酸化ナトリウム、水酸化カリウムを挙げることができる。この水酸化アルカリ金属を、水若しくは有機溶媒と水の混合液に溶解し、好ましくは0.0001〜1mol/Lの範囲の濃度、特に好ましくは0.001〜0.1mol/Lの範囲の濃度とする。調製した滴定液は、使用前に、標準溶液を使って滴定するなどの方法で、正確な濃度を求めることが好ましい。又、滴定液に使用する水は、あらかじめフィルターろ過や、イオン交換処理、蒸留、脱気等の方法で、二酸化炭素等の不純物を低減したものを使用するのが好ましい。   The alkali metal hydroxide used for titration is preferably sodium hydroxide or potassium hydroxide used for normal neutralization titration. The alkali metal hydroxide is dissolved in water or a mixed solution of water and an organic solvent, and preferably has a concentration in the range of 0.0001 to 1 mol / L, particularly preferably in the range of 0.001 to 0.1 mol / L. And It is preferable to obtain an accurate concentration of the prepared titrant by a method such as titration using a standard solution before use. Moreover, it is preferable to use the water used for the titrant in which impurities such as carbon dioxide have been reduced in advance by a method such as filter filtration, ion exchange treatment, distillation, or deaeration.

滴定時に共重合体を溶解する溶媒は、共重合体と指示薬を溶解する溶媒であって、滴定液を滴下しても共重合体が析出しない溶媒を選択する。共重合体が水溶性の場合は水、水溶性の有機溶媒及びこれらの混合物を選ぶことができ、特に好ましくは水である。共重合体が非水溶性の場合は、共重合体を溶解し、且つ、水を好ましくは1%以上、特に好まし
くは10%以上溶解する有機溶媒が好ましく、単独若しくは2種以上を混合して用いることができる。
The solvent that dissolves the copolymer during titration is a solvent that dissolves the copolymer and the indicator, and a solvent that does not precipitate the copolymer even when the titrant is dropped is selected. When the copolymer is water-soluble, water, a water-soluble organic solvent and a mixture thereof can be selected, and water is particularly preferable. When the copolymer is water-insoluble, an organic solvent that dissolves the copolymer and preferably dissolves water preferably 1% or more, particularly preferably 10% or more, is used alone or in combination of two or more. Can be used.

有機溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソアミルケトン、メチルアミルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、イソプロパノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、3−メトキシ−3−メチル−1−ブタノール等のエーテルアルコール類;前記エーテルアルコール類と酢酸等とのエステル化合物であるエーテルエステル類;酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン等のエステル類;テトラヒドロフラン、1,4−ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;トルエン、キシレン等の芳香族炭化水素類;N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド類;ジメチルスルホキシド、アセトニトリル等が挙げられる。   Specific examples of organic solvents include acetone, methyl ethyl ketone, methyl isoamyl ketone, methyl amyl ketone, cyclohexanone and other ketones; methanol, ethanol, isopropanol and other alcohols; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono Ether alcohols such as butyl ether, propylene glycol monomethyl ether and 3-methoxy-3-methyl-1-butanol; ether esters which are ester compounds of the ether alcohols and acetic acid; methyl acetate, ethyl acetate, butyl acetate, Esters such as methyl propionate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl lactate, ethyl lactate, γ-butyrolactone; Ethers such as hydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; aromatic hydrocarbons such as toluene and xylene; amides such as N, N-dimethylformamide and N-methylpyrrolidone; dimethyl sulfoxide and acetonitrile Etc.

3.共重合体の製造方法
以下、本発明の半導体リソグラフィー用共重合体の製造方法について説明する。本発明の製造方法は、少なくとも、単量体から酸を除去する工程(Q)、単量体を加熱した有機溶媒中でラジカル重合させる工程(P)よりなることができ、又、必要に応じ、共重合体から単量体、重合開始剤等の未反応物やオリゴマー等の低分子量成分等の不要物を除去する工程(R)や、低沸点不純物を除去したり、溶媒を次工程若しくはリソグラフィーに適した溶媒と置換したりする工程(S)、半導体の形成に好ましくない金属不純物を低減する工程(T)、マイクロゲル等のパターン欠陥の原因となる物質を低減する工程(U)を組み合わせることもできる。
3. Method for producing a copolymer following, a method for manufacturing the copolymer for semiconductor lithography of the present invention. The production method of the present invention can comprise at least a step (Q) for removing an acid from a monomer and a step (P) for radical polymerization of the monomer in a heated organic solvent. The step (R) of removing unreacted substances such as monomers, polymerization initiators, and other low molecular weight components such as oligomers from the copolymer (R), removing low boiling point impurities, A step (S) of substituting a solvent suitable for lithography, a step (T) of reducing metal impurities that are undesirable for the formation of semiconductors, and a step (U) of reducing substances that cause pattern defects such as microgels. It can also be combined.

(1)工程(Q)
工程(Q)は、単量体から、その合成過程で使用した酸原料や酸触媒、副生した酸等の酸性物質を除去する工程である。酸性物質が残留すると、工程(P)において、繰り返し単位(A)を与える単量体の酸解離性溶解抑制基の一部が脱離したり、酸性物質が重合性物質の場合は酸性物質が共重合したりして、共重合体中にカルボキシル基等の酸性官能基が生成してしまう。共重合体の酸価を0.01mmol/gとするためには、単量体に含まれる酸性物質を除去し、単量体の酸価を好ましくは0.01mg/g以下、特に好ましくは0.005mg/g以下に低減することが好ましい。
(1) Process (Q)
Step (Q) is a step of removing acidic substances such as acid raw materials, acid catalysts, and by-produced acids used in the synthesis process from the monomer. When the acidic substance remains, in the step (P), a part of the acid dissociable, dissolution inhibiting group of the monomer giving the repeating unit (A) is eliminated, or when the acidic substance is a polymerizable substance, the acidic substance is shared. Polymerization may result in the formation of acidic functional groups such as carboxyl groups in the copolymer. In order to set the acid value of the copolymer to 0.01 mmol / g, the acidic substance contained in the monomer is removed, and the acid value of the monomer is preferably 0.01 mg / g or less, particularly preferably 0. It is preferable to reduce to 0.005 mg / g or less.

酸性物質を除去する方法としては、(Q1)水と二相に分離する有機溶媒に単量体を溶解し、水と混合して酸性分を水相に抽出し、水相を分液除去する方法、或いは、(Q2)有機溶媒に溶解した単量体をイオン交換樹脂に接触させ、酸性分をイオン交換樹脂に吸着又はイオン交換して除去する方法を挙げることができる。   As a method of removing the acidic substance, (Q1) the monomer is dissolved in an organic solvent that separates into two phases with water, mixed with water to extract the acidic component into the aqueous phase, and the aqueous phase is separated and removed. Examples thereof include (Q2) a method in which a monomer dissolved in an organic solvent is brought into contact with an ion exchange resin and an acidic component is adsorbed on the ion exchange resin or ion exchanged to be removed.

(Q1)で用いる有機溶媒は、前記した溶媒の中から、単量体を溶解し、水と分離する溶媒を選択するが、単独又は2種以上を混合しても良い。単量体の濃度は、高すぎると酸性分の抽出効率が低下し、低すぎると生産効率が低下するため、通常5〜80質量%、好ましくは10〜70質量%、特に好ましくは15〜50質量%の範囲を選択する。抽出溶媒である水の量は、少なすぎると酸性分の抽出が不十分になり、多すぎると生産効率が低下するため好ましくなく、通常、単量体溶液の0.1〜10質量倍、好ましくは0.2〜5質量倍、特に好ましくは0.3〜3質量の範囲を選択する。抽出する際の温度は、高すぎると分液性が低下したり、単量体や溶媒が変質したりして好ましくなく、又、低すぎると水が凝固したりして好ましくない。通常0〜60℃、好ましくは5〜50℃、特に好ま
しくは10〜40℃の範囲を選択する。
As the organic solvent used in (Q1), a solvent that dissolves the monomer and separates it from water is selected from the solvents described above, but it may be used alone or in combination of two or more. If the concentration of the monomer is too high, the extraction efficiency of the acidic component is lowered, and if it is too low, the production efficiency is lowered. Therefore, it is usually 5 to 80% by mass, preferably 10 to 70% by mass, particularly preferably 15 to 50%. Select the mass% range. If the amount of water as the extraction solvent is too small, extraction of acidic components becomes insufficient, and if it is too large, production efficiency is lowered, which is not preferable, and usually 0.1 to 10 times by mass of the monomer solution, preferably Is selected in the range of 0.2-5 mass times, particularly preferably 0.3-3 mass. If the temperature at the time of extraction is too high, it is not preferable because the liquid separation property is reduced or the monomer or solvent is altered, and if it is too low, water is solidified. Usually, the range of 0-60 ° C, preferably 5-50 ° C, particularly preferably 10-40 ° C is selected.

(Q2)で用いる有機溶媒は、前記した溶媒の中から単量体を溶解する溶媒を選択する。イオン交換樹脂は、通常アニオン交換樹脂と呼ばれる、アニオン吸着能やアニオン交換能を有する樹脂を、単独若しくは組み合わせて使用することができる。又、アニオン交換樹脂を、通常カチオン交換樹脂と呼ばれるカチオン交換能を有する樹脂と組み合わせて用いても良い。尚、アニオン交換樹脂からは塩基成分が溶出することがあるため、カチオン交換樹脂と組み合わせて使用することが特に好ましい。   As the organic solvent used in (Q2), a solvent that dissolves the monomer is selected from the solvents described above. As the ion exchange resin, resins having anion adsorption ability and anion exchange ability, which are usually called anion exchange resins, can be used alone or in combination. In addition, an anion exchange resin may be used in combination with a resin having a cation exchange ability, usually called a cation exchange resin. In addition, since a base component may elute from an anion exchange resin, it is particularly preferable to use it in combination with a cation exchange resin.

アニオン交換樹脂の例としては、アニオン吸着能若しくはアニオン交換能を有する置換基を有するポリスチレン、(メタ)アクリル酸エステル−ジビニルベンゼン共重合体、スチレン−ジビニルベンゼン共重合体や、アルキレン基で架橋したポリスチレン、(メタ)アクリル酸エステル−ジビニルベンゼン共重合体、スチレン−ジビニルベンゼン共重合体等の樹脂が挙げられる。又、アニオン吸着能を有する置換基の例としては、1〜3級のアミノ基を有する置換基が挙げられ、具体的にはN,N−ジメチルアミノメチル基、N−メチルアミノメチル基、アミノメチル基、N,N−ジエチルアミノメチル基等を挙げることができ、特に好ましくはN,N−ジメチルアミノメチル基である。アニオン吸着能を有する置換基の例として、4級アンモニウムイオンを有する置換基が挙げられ、対カチオンは水酸アニオンであることが好ましく、具体的には以下に示す(E1)〜(E4)を挙げることができ、特に好ましくは(E1)若しくは(E2)である。

Figure 2010209338
Examples of anion exchange resins include polystyrene having a substituent having anion adsorption ability or anion exchange ability, (meth) acrylate-divinylbenzene copolymer, styrene-divinylbenzene copolymer, and an alkylene group. Examples thereof include resins such as polystyrene, (meth) acrylic acid ester-divinylbenzene copolymer, and styrene-divinylbenzene copolymer. Examples of the substituent having an anion-adsorbing ability include a substituent having a primary to tertiary amino group, specifically, an N, N-dimethylaminomethyl group, an N-methylaminomethyl group, an amino group. A methyl group, a N, N-diethylaminomethyl group, etc. can be mentioned, Especially preferably, it is a N, N-dimethylaminomethyl group. Examples of the substituent having an anion adsorption ability include a substituent having a quaternary ammonium ion, and the counter cation is preferably a hydroxide anion. Specifically, the following (E1) to (E4) are shown. Particularly preferred is (E1) or (E2).
Figure 2010209338

カチオン交換樹脂としては、前記したアニオン交換樹脂における、アニオン吸着能若しくはアニオン交換能を有する官能基の替わりに、カルボン酸、スルホン酸などのカチオン交換能を有する官能基を有する樹脂を挙げることができ、特に好ましくはスルホン酸基が置換した樹脂である。   Examples of the cation exchange resin include resins having a functional group having a cation exchange ability such as carboxylic acid and sulfonic acid in place of the functional group having anion adsorption ability or anion exchange ability in the anion exchange resin described above. Particularly preferred is a resin substituted with a sulfonic acid group.

単量体が溶解した溶液をイオン交換樹脂と接触させるには、イオン交換樹脂を単量体溶液に投入して撹拌しても良いし、イオン交換樹脂を充填したイオン交換層に単量体溶液を通液しても良い。イオン交換樹脂の使用量は、少なすぎると酸性物質を除去しきれず、多すぎると生産効率が低下するため好ましくない。イオン交換容量が酸性物質に対して、通常、1.2〜100等量倍、好ましくは1.5〜50当量倍、特に好ましくは1.5〜20当量倍になる範囲を選択する。   In order to bring the solution in which the monomer is dissolved into contact with the ion exchange resin, the ion exchange resin may be charged into the monomer solution and stirred, or the monomer solution may be added to the ion exchange layer filled with the ion exchange resin. It may be passed through. If the amount of the ion exchange resin used is too small, the acidic substances cannot be removed, and if too large, the production efficiency is lowered, which is not preferable. The range in which the ion exchange capacity is usually 1.2 to 100 equivalent times, preferably 1.5 to 50 equivalent times, particularly preferably 1.5 to 20 equivalent times with respect to the acidic substance is selected.

単量体溶液をイオン交換層に通液する場合は、LHSV(Liquid Hourly
Space Velocityの略で、流体の空間速度を表す。ここでは、単量体溶液の通液速度をイオン交換層の体積で割った値で表す。)が速すぎると酸性物質の除去効率が低下し、遅すぎると生産効率が低下するため好ましくないく、LHSVが通常、0.1〜100/hr、好ましくは0.5〜50/hr、特に好ましくは1〜20/hrの範囲を選択する。
When the monomer solution is passed through the ion exchange layer, LHSV (Liquid Hourly
It is an abbreviation for Space Velocity and represents the space velocity of fluid. Here, it is represented by a value obtained by dividing the flow rate of the monomer solution by the volume of the ion exchange layer. ) Is too fast, the removal efficiency of the acidic substance is lowered, and if it is too slow, the production efficiency is lowered, which is not preferable. LHSV is usually 0.1 to 100 / hr, preferably 0.5 to 50 / hr, particularly Preferably, the range of 1-20 / hr is selected.

イオン交換層の層高は、低すぎるとショートパスによって酸性物質の除去効率が低下し
、高すぎると差圧によって通液しにくくなるため好ましくなく、通常、5〜500cm、好ましくは10〜300cm、特に好ましくは20〜200cmの範囲を選択する。温度は、高すぎるとイオン交換樹脂や単量体、溶媒が変質するため好ましくなく、低すぎるとイオン交換若しくは吸着が不十分となるため好ましくなく、通常、0〜60℃、好ましくは5〜50℃、特に好ましくは10〜40℃の範囲を選択する。
If the layer height of the ion exchange layer is too low, the removal efficiency of the acidic substance is reduced by a short pass, and if it is too high, it is difficult to pass the liquid due to the differential pressure, and it is not preferable, and usually 5 to 500 cm, preferably 10 to 300 cm, Particularly preferably, a range of 20 to 200 cm is selected. If the temperature is too high, it is not preferable because the ion exchange resin, monomer, and solvent change, and if it is too low, it is not preferable because ion exchange or adsorption becomes insufficient, and is usually 0-60 ° C., preferably 5-50. A range of 10 ° C, particularly preferably 10-40 ° C is selected.

このようにして酸性分を除去した後、そのまま工程(P)に用いても良いが、好ましくは、減圧下で加熱して、有機溶媒を留去させる等の方法で溶媒と分離した後工程(P)に供する。   After removing the acidic component in this way, it may be used as it is in the step (P), but preferably after the separation of the organic solvent by a method such as heating under reduced pressure to distill off the organic solvent (step ( P).

(2)工程(P)
工程(P)は、単量体を、ラジカル重合開始剤の存在下、有機溶媒中でラジカル重合させる工程であり、公知の方法にて実施できる。例えば、(P1)単量体を重合開始剤と共に溶媒に溶解し、そのまま加熱して重合させる一括昇温法、(P2)単量体を重合開始剤と共に必要に応じて溶媒に溶解し、加熱した溶媒中に滴下して重合させる混合滴下法、(P3)単量体と重合開始剤を別々に、必要に応じて溶媒に溶解し、加熱した溶媒中に別々に滴下して重合させるいわゆる独立滴下法、(P4)単量体を溶媒に溶解して加熱し、別途溶媒に溶解した重合開始剤を滴下して重合させる開始剤滴下法等が挙げられる。
(2) Process (P)
Step (P) is a step of radical polymerization of a monomer in an organic solvent in the presence of a radical polymerization initiator, and can be performed by a known method. For example, the (P1) monomer is dissolved in a solvent together with a polymerization initiator and heated to polymerize as it is, and the (P2) monomer is dissolved together with the polymerization initiator in a solvent as needed and heated. (P3) A so-called independent polymerization in which a monomer and a polymerization initiator are separately dissolved in a solvent as required and dropped into a heated solvent for polymerization. Examples thereof include a dropping method, an initiator dropping method in which the monomer (P4) is dissolved in a solvent and heated, and a polymerization initiator separately dissolved in the solvent is dropped and polymerized.

ここで、(P1)一括昇温法と(P4)開始剤滴下法は重合系内において、(P2)混合滴下法は重合系内に滴下する前の滴下液貯槽内において、未反応単量体の濃度が高い状態で低濃度のラジカルと接触する機会があるため、パターン欠陥発生原因のひとつである分子量10万以上の高分子量体(ハイポリマー)が生成しやすい傾向にある。これに比べて、(P3)独立滴下法は、滴下液貯槽で重合開始剤と共存しないこと、重合系内に滴下した際も未反応単量体濃度が低い状態を保つことから、ハイポリマーが生成しないので、本発明における重合方法としては(P3)独立滴下法が特に好ましい。尚、(P2)混合滴下法及び(P3)独立滴下法において、滴下時間と共に滴下する単量体の組成、単量体、重合開始剤及び連鎖移動剤の組成比等を変化させても良い。   Here, (P1) batch temperature raising method and (P4) initiator dropping method are in the polymerization system, and (P2) mixed dropping method is in the dropping liquid storage tank before dropping into the polymerization system, unreacted monomer. Since there is an opportunity to come into contact with a low concentration of radicals in a high concentration state, a high molecular weight polymer (high polymer) having a molecular weight of 100,000 or more, which is one of the causes of pattern defects, tends to be generated. Compared to this, the (P3) independent dropping method does not coexist with the polymerization initiator in the dropping liquid storage tank, and maintains a low unreacted monomer concentration even when dropped into the polymerization system. Since it does not generate | occur | produce, (P3) independent dropping method is especially preferable as a polymerization method in this invention. In the (P2) mixed dropping method and the (P3) independent dropping method, the composition of the monomer to be dropped, the composition ratio of the monomer, the polymerization initiator, and the chain transfer agent may be changed with the dropping time.

重合開始剤としては、ラジカル重合開始剤として公知のものを用いることができる。好ましくは、アゾ化合物、過酸化物等のラジカル重合開始剤である。アゾ化合物の具体例としては、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(2−メチルブチロニトリル)、ジメチル−2,2’−アゾビスイソブチレート、1,1'−アゾビス(シクロヘ
キサン−1−カルボニトリル)、4,4'−アゾビス(4−シアノ吉草酸)等を挙げることができる。過酸化物の具体例としては、デカノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、ビス(3,5,5−トリメチルヘキサノイル)パーオキサイド、コハク酸パーオキサイド、tert−ブチルパーオキシ−2−エチルへキサノエート、tert−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート等を挙げることができる。これらは単独で若しくは混合して用いることができる。重合開始剤の使用量は、目的とするMw、原料である単量体、重合開始剤、連鎖移動剤及び溶媒の種類や組成比、重合温度や滴下速度等の製造条件に応じて選択することができる。
As the polymerization initiator, those known as radical polymerization initiators can be used. Preferred are radical polymerization initiators such as azo compounds and peroxides. Specific examples of the azo compound include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), dimethyl-2,2′-azobisisobutyrate, 1, Examples include 1'-azobis (cyclohexane-1-carbonitrile), 4,4'-azobis (4-cyanovaleric acid), and the like. Specific examples of the peroxide include decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, bis (3,5,5-trimethylhexanoyl) peroxide, succinic acid peroxide, tert-butylperoxy-2- Examples thereof include ethyl hexanoate, tert-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate and the like. These can be used alone or in combination. The amount of the polymerization initiator used should be selected according to the production conditions such as the target Mw, the raw material monomer, the polymerization initiator, the chain transfer agent and the type and composition ratio of the solvent, the polymerization temperature and the dropping rate. Can do.

連鎖移動剤は、連鎖移動剤として公知のものを、必要に応じて用いることができる。中でもチオール化合物が好ましく、公知のチオール化合物の中から幅広く選択することがでる。具体的には、t−ドデシルメルカプタン、メルカプトエタノール、メルカプト酢酸、メルカプトプロピオン酸等を挙げることができる。又、2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピリデン基が飽和炭化に結合した構造を有するチオール化合物は、リソグラフィーパターンのラフネスや欠陥を抑える効果があるため特に好ましい。   As the chain transfer agent, a known chain transfer agent can be used as necessary. Of these, thiol compounds are preferred, and a wide range of known thiol compounds can be selected. Specific examples include t-dodecyl mercaptan, mercaptoethanol, mercaptoacetic acid, mercaptopropionic acid, and the like. In addition, a thiol compound having a structure in which a 2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propylidene group is bonded to saturated carbonization has an effect of suppressing the roughness and defects of the lithography pattern. Particularly preferred.

連鎖移動剤の使用量は、目的とするMw、原料である単量体、重合開始剤、連鎖移動剤及び溶媒の種類や組成比、重合温度や滴下速度等の製造条件に応じて選択することができる。又、連鎖移動剤は、(P1)一括昇温法においては、単量体、重合開始剤と共に溶媒に溶解して加熱することができ、(P2)混合滴下法、(P3)独立滴下法、(P4)開始剤滴下法においては、単量体と混合して滴下しても良く、重合開始剤と混合して滴下しても良く、予め加熱する溶媒中に溶解して使用しても良い。   The amount of the chain transfer agent used should be selected according to the production conditions such as the target Mw, the raw material monomer, the polymerization initiator, the type and composition ratio of the chain transfer agent and the solvent, the polymerization temperature and the dropping rate. Can do. In the (P1) batch temperature raising method, the chain transfer agent can be heated by dissolving in a solvent together with the monomer and the polymerization initiator, (P2) mixed dropping method, (P3) independent dropping method, (P4) In the initiator dropping method, it may be dropped by mixing with a monomer, may be dropped by mixing with a polymerization initiator, or may be used by dissolving in a solvent to be heated in advance. .

重合溶媒は、単量体、重合開始剤、連鎖移動剤、更には重合して得られた共重合体を溶解させる化合物であれば特に制限されない。溶媒の具体例としては、前記酸価の定量に用いることができる溶媒として例示した有機溶媒を挙げることができ、単独又は2種以上を混合して用いることができる。   The polymerization solvent is not particularly limited as long as it is a compound that dissolves a monomer, a polymerization initiator, a chain transfer agent, and a copolymer obtained by polymerization. Specific examples of the solvent include the organic solvents exemplified as the solvent that can be used for the determination of the acid value, and they can be used alone or in combination of two or more.

工程(P)の重合温度は、溶媒、単量体、連鎖移動剤等の沸点、重合開始剤の半減期温度等に応じて適宜選択することができる。低温では重合が進みにくいため生産性に問題があり、又、必要以上に高温にすると、単量体及び共重合体の安定性の点で問題がある。従って、好ましくは40〜120℃、特に好ましくは60〜100℃の範囲で選択する。   The polymerization temperature in the step (P) can be appropriately selected according to the boiling point of the solvent, monomer, chain transfer agent, etc., the half-life temperature of the polymerization initiator, and the like. Since polymerization is difficult to proceed at low temperatures, there is a problem in productivity, and when the temperature is higher than necessary, there is a problem in terms of stability of monomers and copolymers. Therefore, it is preferably selected in the range of 40 to 120 ° C, particularly preferably in the range of 60 to 100 ° C.

(P2)混合滴下法及び(P3)独立滴下法における滴下時間は、短時間であると分子量分布が広くなりやすいことや、一度に大量の溶液が滴下されるため重合液の温度低下が起こることから好ましくない。逆に、長時間であると共重合体に必要以上の熱履歴がかかることと、生産性が低下することから好ましくない。従って、通常0.5〜24時間、好ましくは1〜12時間、特に好ましくは2〜8時間の範囲から選択する。   The dropping time in the (P2) mixed dropping method and the (P3) independent dropping method is that the molecular weight distribution tends to be wide when it is short, or the temperature of the polymerization solution is lowered because a large amount of solution is dropped at once. Is not preferable. On the other hand, if the time is long, it is not preferable because an excessive heat history is applied to the copolymer and productivity is lowered. Therefore, it is selected from the range of usually 0.5 to 24 hours, preferably 1 to 12 hours, particularly preferably 2 to 8 hours.

(P2)混合滴下法及び(P3)独立滴下法における滴下終了後、及び、(P1)一括昇温法及び(P4)開始剤滴下法における重合温度への昇温後は、一定時間温度を維持するか、若しくは更に昇温する等して熟成を行い、残存する未反応単量体を反応させることが好ましい。熟成時間は長すぎると時間当たりの生産効率が低下すること、共重合体に必要以上の熱履歴がかかることから好ましくない。従って、通常12時間以内、好ましくは6時間以内、特に好ましくは1〜4時間の範囲から選択する。   The temperature is maintained for a certain time after completion of the dropping in the (P2) mixed dropping method and (P3) the independent dropping method, and after the temperature rising to the polymerization temperature in the (P1) batch temperature raising method and (P4) initiator dropping method. It is preferable that the remaining unreacted monomer is reacted by aging by further increasing the temperature or by aging. If the aging time is too long, the production efficiency per hour is lowered, and an unnecessarily high heat history is applied to the copolymer. Therefore, it is selected within the range of usually 12 hours or less, preferably 6 hours or less, particularly preferably 1 to 4 hours.

(3)工程(R)
工程(R)は、工程(P)を経て得られた共重合体に含まれる、単量体や重合開始剤等の未反応物やオリゴマー等の低分子量成分を、溶媒に抽出して除去する工程である。その方法として、例えば、(R1):貧溶媒を加えて共重合体を沈殿させた後、溶媒相を分離する方法、(R1a):(R1)に続いて貧溶媒を加え、共重合体を洗浄した後、溶媒相を分離する方法、(R1b):(R1)に続いて良溶媒を加え、共重合体を再溶解させ、更に貧溶媒を加えて共重合体を再沈殿させた後、溶媒相を分離する方法、(R2):貧溶媒を加えて貧溶媒相と良溶媒相の二相を形成し、貧溶媒相を分離する方法、(R2a):(R2)に続いて貧溶媒を加え、良溶媒相を洗浄した後、貧溶媒相を分離する方法等が挙げられる。尚、(R1a)、(R1b)、(R2a)は繰り返しても良いし、それぞれ組み合わせても良い。
(3) Process (R)
In step (R), unreacted substances such as monomers and polymerization initiators and oligomers and other low molecular weight components contained in the copolymer obtained through step (P) are extracted by solvent and removed. It is a process. As the method, for example, (R1): a method of adding a poor solvent to precipitate a copolymer and then separating the solvent phase, (R1a): (R1) followed by adding a poor solvent, After washing, a method of separating the solvent phase, (R1b): (R1) followed by adding a good solvent, re-dissolving the copolymer, further adding a poor solvent to reprecipitate the copolymer, (R2): a method for separating a poor solvent phase by adding a poor solvent to form a two phase of a poor solvent phase and a good solvent phase, (R2a): a poor solvent following (R2) And the good solvent phase is washed, and then the poor solvent phase is separated. Note that (R1a), (R1b), and (R2a) may be repeated or combined.

貧溶媒は、共重合体が溶解しにくい溶媒であれば特に制限されないが、例えば、水やメタノール、イソプロパノール等のアルコール類、ヘキサン、ヘプタン等の飽和炭化水素類等を用いることができる。又、良溶媒は、共重合体が溶解しやすい溶媒であれば特に制限されず、1種又は2種以上の混合溶媒として用いることができる。製造工程の管理上、重合溶媒と同じものが好ましい。良溶媒の例としては、工程(P)の重合溶媒として例示された溶媒と同じものを挙げることができる。   The poor solvent is not particularly limited as long as it is a solvent in which the copolymer is difficult to dissolve. For example, water, alcohols such as methanol and isopropanol, saturated hydrocarbons such as hexane and heptane, and the like can be used. Moreover, a good solvent will not be restrict | limited especially if a copolymer is easy to melt | dissolve, It can use as 1 type, or 2 or more types of mixed solvents. In terms of management of the production process, the same solvent as the polymerization solvent is preferable. Examples of the good solvent include the same solvents as those exemplified as the polymerization solvent in the step (P).

(4)工程(S)
工程(S)は、共重合体溶液に含まれる低沸点不純物を除去したり、溶媒を次工程若しくはリソグラフィー組成物に適した溶媒に置換したりする工程である。重合体溶液を減圧下で加熱しながら濃縮し、必要に応じて溶媒を追加して更に濃縮する工程(S1)、重合体溶液を、減圧下で加熱しながら、必要に応じて濃縮した後、溶媒を次工程若しくはリソグラフィー組成物として好ましい溶媒を供給しながら、初期の溶媒と供給した溶媒を留去させ、必要に応じて更に濃縮して、溶媒を次工程若しくはリソグラフィー組成物として好ましい溶媒に置換する工程(S2)等によって行うことができる。
(4) Step (S)
Step (S) is a step of removing low-boiling impurities contained in the copolymer solution or replacing the solvent with a solvent suitable for the next step or the lithography composition. The step of concentrating the polymer solution while heating under reduced pressure, and further concentrating by adding a solvent as necessary (S1), after concentrating the polymer solution as necessary while heating under reduced pressure, While supplying the solvent preferred as the next step or lithography composition, the initial solvent and the supplied solvent are distilled off, and further concentrated as necessary to replace the solvent with a preferred solvent as the next step or lithography composition. It can carry out by the process (S2) to perform.

この工程(S)は、例えばリソグラフィー組成物が工程(P)や工程(R)を経て得られた溶媒と異なったり、リソグラフィー組成物に好ましくない不純物が存在したりする場合に実施するもので、リソグラフィー組成物を調合する工程(U)に先立ち、実施することが好ましい。   This step (S) is performed, for example, when the lithography composition is different from the solvent obtained through the step (P) or the step (R), or when there are undesired impurities in the lithography composition. It is preferable to carry out prior to the step (U) of preparing the lithographic composition.

工程(S)を経ず、減圧乾燥によって一旦固体にした後、別の溶媒に溶解することもできるが、この操作では、固体中に不純物や溶媒が残留しやすいこと、又、共重合体に対して必要以上の熱履歴を与えるため、好ましくない。   Although it is not necessary to go through step (S), it can be once solidified by drying under reduced pressure and then dissolved in another solvent. However, in this operation, impurities and solvent are likely to remain in the solid, On the other hand, it is not preferable because it gives more heat history than necessary.

工程(S)の温度は、共重合体が変質しない温度であれば特に制限されないが、通常100℃以下が好ましく、80℃以下がより好ましく、更に好ましくは70℃以下、特に好ましくは60℃以下である。溶媒を置換する際に、後から供給する溶媒の量は、少なすぎると低沸点化合物が十分に除去できず、多すぎると置換に時間がかかり、共重合体に必要以上に熱履歴を与えるため好ましくない。通常、仕上がり溶液の溶媒として必要な量の1.05倍〜10倍、好ましくは1.1倍〜5倍、特に好ましくは1.2倍〜3倍の範囲から選択できる。   The temperature of the step (S) is not particularly limited as long as the copolymer does not deteriorate, but is usually preferably 100 ° C or lower, more preferably 80 ° C or lower, further preferably 70 ° C or lower, particularly preferably 60 ° C or lower. It is. When replacing the solvent, if the amount of the solvent to be supplied later is too small, the low boiling point compound cannot be sufficiently removed, and if it is too large, the replacement takes time, and the copolymer gives more heat history than necessary. It is not preferable. Usually, it can be selected from the range of 1.05 to 10 times, preferably 1.1 to 5 times, particularly preferably 1.2 to 3 times the amount required as a solvent for the finished solution.

(5)工程(T)
工程(T)は、半導体リソグラフィーとして好ましくない金属分を低減する工程である。金属は、原料や副資材、機器、その他環境からの混入することがあり、この量が半導体形成における許容値を超えることがあるので、必要に応じて実施する。この工程(T)は、工程(R)において、極性溶媒を貧溶媒とする場合、金属分を低減できる場合があり、この場合は、工程(R)と兼ねることができる。それ以外の方法として、カチオン交換樹脂と接触させる工程(T1)、カチオン交換樹脂と、アニオン交換樹脂若しくは酸吸着樹脂の混合樹脂と接触させる工程(T2)、ポリアミドポリアミンエピクロロヒドリンカチオン樹脂などの正のゼータ電位を有する物質を含むフィルターに通液させる工程(T3)等を選択することができる。これらの工程は組み合わせて実施することができ、工程(T3)で用いるフィルターとしては、キュノ社製ゼータプラス40QSH、ゼータプラス020GN、エレクトロポアEFII等を例示できる(これらは商標で、以下同様である。)。
(5) Process (T)
Step (T) is a step of reducing a metal component that is not preferable for semiconductor lithography. The metal may be mixed from raw materials, sub-materials, equipment, and other environments, and this amount may exceed the allowable value in semiconductor formation, so it is carried out as necessary. In the step (T), when the polar solvent is a poor solvent in the step (R), the metal content may be reduced. In this case, the step (T) can also be combined with the step (R). Other methods include a step of contacting with a cation exchange resin (T1), a step of contacting with a mixed resin of a cation exchange resin and an anion exchange resin or an acid adsorption resin (T2), a polyamide polyamine epichlorohydrin cation resin, etc. A step (T3) of passing through a filter containing a substance having a positive zeta potential can be selected. These steps can be carried out in combination, and examples of the filter used in step (T3) include CUENO Zeta Plus 40QSH, Zeta Plus 020GN, and Electropore EFII (these are trademarks, and the same applies hereinafter). .)

(6)工程(U)
工程(U)は、パターン欠陥の原因となるため好ましくないハイポリマー等のマイクロゲルを、有機溶媒に溶解した共重合体をフィルターに通液させて低減する工程である。フィルターの濾過精度は、0.2μm以下、好ましくは0.1μm以下、特に好ましくは0.05μm以下である。フィルターの材質は、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリエステル、ポリアクリロニトリルなどの極性基含有樹脂、フッ化ポリエチレンなどのフッソ含有樹脂を挙げることができ、特に好ましくはポリアミドである。
(6) Process (U)
The step (U) is a step of reducing a microgel such as a high polymer, which is undesirable because it causes pattern defects, by passing a copolymer dissolved in an organic solvent through a filter. The filtration accuracy of the filter is 0.2 μm or less, preferably 0.1 μm or less, particularly preferably 0.05 μm or less. Examples of the material of the filter include polyolefins such as polyethylene and polypropylene, polar group-containing resins such as polyamide, polyester and polyacrylonitrile, and fluorine-containing resins such as fluorinated polyethylene, and polyamide is particularly preferable.

ポリアミド系フィルターの例としては、日本ポール製のウルチプリーツP−ナイロン6
6、ウルチポアN66、キュノ製のフォトシールド、エレクトロポアIIEFなどを挙げることができる。ポリエチレン系フィルターとしては、日本インテグリス製のマイクロガードプラスHC10、オプチマイザーD等を挙げることができる。これらのフィルターはそれぞれ単独で用いても2種類以上を組み合わせて用いても良い。
An example of a polyamide filter is Ultipleat P-Nylon 6 made by Nippon Pole.
6, Ulchipore N66, Cuno photoshield, Electropore IIEF, and the like. Examples of the polyethylene filter include Microguard Plus HC10 and Optimizer D manufactured by Nihon Entegris. These filters may be used alone or in combination of two or more.

(7)工程(V)
上記により得られた共重合体は、乾燥固体を1種又は2種以上のリソグラフィー溶媒に溶解するか、又は、リソグラフィー溶媒に溶解した共重合体溶液を必要に応じて同種又は異種のリソグラフィー溶媒で希釈すると共に、感放射線性酸発生剤(X){以下、成分(X)という}、放射線に暴露されない部分への酸の拡散を防止するための含窒素有機化合物等の酸拡散抑制剤(Y){以下、成分(Y)という}、必要に応じてその他添加剤(Z){以下、成分(Z)という}を添加することにより、化学増幅型レジスト組成物に仕上げることができる。
(7) Process (V)
The copolymer obtained as described above can be obtained by dissolving a dry solid in one or more lithography solvents, or using a copolymer solution dissolved in a lithography solvent with the same or different lithography solvent as necessary. A dilution-sensitive acid generator (X) {hereinafter referred to as component (X)}, an acid diffusion inhibitor such as a nitrogen-containing organic compound (Y) for preventing acid diffusion to a portion not exposed to radiation. ) {Hereinafter referred to as component (Y)} and, if necessary, other additives (Z) {hereinafter referred to as component (Z)} can be added to finish the chemically amplified resist composition.

リソグラフィー溶媒は、リソグラフィー組成物を構成する各成分を溶解し、均一な溶液とすることができるものであればよく、従来化学増幅型レジストの溶剤として公知のものの中から任意のものを1種又は2種以上の混合溶媒として用いることができる。通常、工程(P)の重合溶媒、工程(R)の良溶媒として例示された溶媒の中から、共重合体以外の組成物の溶解性、粘度、沸点、リソグラフィーに用いられる放射線の吸収等を考慮して選択することができる。特に好ましいレジスト溶媒は、メチルアミルケトン、シクロヘキサノン、乳酸エチル(EL)、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート(PGMEA)であり、中でも、PGMEAと他の極性溶剤との混合溶剤は特に好ましい。更に混合する極性溶媒としてはELが特に好ましい。   The lithography solvent is not particularly limited as long as it can dissolve each component constituting the lithography composition to form a uniform solution, and any one of conventionally known solvents for chemically amplified resists may be used. It can be used as a mixed solvent of two or more. Usually, the solubility, viscosity, boiling point, absorption of radiation used in lithography, etc. of the composition other than the copolymer are selected from the polymerization solvent in step (P) and the solvent exemplified as the good solvent in step (R). It can be selected in consideration. Particularly preferred resist solvents are methyl amyl ketone, cyclohexanone, ethyl lactate (EL), γ-butyrolactone, propylene glycol monomethyl ether acetate (PGMEA), and among them, a mixed solvent of PGMEA and other polar solvents is particularly preferred. Further, EL is particularly preferable as the polar solvent to be mixed.

リソグラフィー組成物中に含まれるリソグラフィー溶媒の量は特に制限されないが、通常、基板等に塗布可能な濃度であり、塗布膜厚に応じて適当な粘度となるように適宜設定される。一般的にはリソグラフィー組成物の固形分濃度が2〜20質量%、好ましくは5〜15質量%の範囲内となるように用いられる。   The amount of the lithographic solvent contained in the lithographic composition is not particularly limited, but is usually a concentration that can be applied to a substrate or the like, and is appropriately set so as to have an appropriate viscosity according to the coating film thickness. Generally, it is used so that the solid content concentration of the lithography composition is in the range of 2 to 20% by mass, preferably 5 to 15% by mass.

成分(X)は、これまで化学増幅型レジスト用の感放射線性酸発生剤として提案されているものから適宜選択して用いることができる。このような例として、ヨードニウム塩やスルホニウム塩等のオニウム塩、オキシムスルホネート類、ビスアルキル又はビスアリールスルホニルジアゾメタン類等のジアゾメタン類、ニトロベンジルスルホネート類、イミノスルホネート類、ジスルホン類等を挙げることができ、中でも、フッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩が特に好ましい。これらは単独で用いても良いし、2種以上を組み合わせて用いても良い。成分(X)は、共重合体100質量部に対して通常0.5〜30質量部、好ましくは1〜10質量部の範囲で用いられる。   Component (X) can be appropriately selected from those conventionally proposed as a radiation-sensitive acid generator for chemically amplified resists. Examples include onium salts such as iodonium salts and sulfonium salts, oxime sulfonates, diazomethanes such as bisalkyl or bisarylsulfonyldiazomethanes, nitrobenzyl sulfonates, iminosulfonates, disulfones, and the like. Of these, onium salts having a fluorinated alkyl sulfonate ion as an anion are particularly preferable. These may be used alone or in combination of two or more. Component (X) is usually used in the range of 0.5 to 30 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the copolymer.

成分(Y)は、これまで化学増幅型レジスト用の酸拡散抑制剤として提案されているものから適宜選択することができる。このような例として、含窒素有機化合物を挙げることができ、第一級〜第三級のアルキルアミン若しくはヒドロキシアルキルアミンが好ましい。特に第三級アルキルアミン、第三級ヒドロキシアルキルアミンが好ましく、中でもトリエタノールアミン、トリイソプロパノールアミンが特に好ましい。これらは単独で用いても良いし、2種以上を組み合わせて用いても良い。成分(Y)は、共重合体100重量部に対して通常0.01〜5.0質量部の範囲で用いられる。   The component (Y) can be appropriately selected from those conventionally proposed as acid diffusion inhibitors for chemically amplified resists. Examples thereof include nitrogen-containing organic compounds, and primary to tertiary alkylamines or hydroxyalkylamines are preferred. Tertiary alkylamines and tertiary hydroxyalkylamines are particularly preferred, with triethanolamine and triisopropanolamine being particularly preferred. These may be used alone or in combination of two or more. The component (Y) is usually used in the range of 0.01 to 5.0 parts by weight with respect to 100 parts by weight of the copolymer.

その他の添加剤{成分(Z)}としては、酸発生剤の感度劣化防止やリソグラフィーパターンの形状、引き置き安定性等の向上を目的とした有機カルボン酸類やリンのオキソ酸類、レジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、溶解抑止剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料等、リソグラフィ
ー用添加剤として慣用されている化合物を必要に応じて適宜添加することができる。有機カルボン酸の例としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等を挙げることができ、これらは単独若しくは2種以上を混合して用いることができる。有機カルボン酸は、共重合体100質量部に対して0.01〜5.0質量部の範囲で用いられる。
Other additives {component (Z)} include organic carboxylic acids, phosphorus oxo acids, and resist film performance for the purpose of preventing deterioration of sensitivity of acid generators, lithography pattern shape, and stability of retention. Compounds commonly used as lithography additives such as additional resins for improving coating properties, surfactants for improving coatability, dissolution inhibitors, plasticizers, stabilizers, colorants, antihalation agents, dyes, etc. Can be added as needed. Examples of organic carboxylic acids include malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid, and the like, and these can be used alone or in admixture of two or more. The organic carboxylic acid is used in the range of 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the copolymer.

次に、実施例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されるものではない。尚、下記の例においては使用される略号は以下の意味を有する。
単量体
単量体G: γ−ブチロラクトン−2−イルメタクリレート
単量体Ma:2−メチル−2アダマンチルアクリレート
単量体Oa:3−ヒドロキシ−1−アダマンチルアクリレート
繰り返し単位
G: 単量体Gから誘導される繰り返し単位
Ma:単量体Maから誘導される繰り返し単位
Oa:単量体Oaから誘導される繰り返し単位

Figure 2010209338
EXAMPLES Next, although an Example is given and this invention is further demonstrated, this invention is not limited to these Examples. In the following examples, abbreviations used have the following meanings.
Monomer Monomer G: .gamma.-butyrolactone-2-yl methacrylate monomer Ma: 2-methyl-2-adamantyl acrylate monomer Oa: 3- hydroxy-1-adamantyl acrylate
Repeat unit G: Repeat unit derived from monomer G Ma: Repeat unit derived from monomer Ma Oa: Repeat unit derived from monomer Oa
Figure 2010209338

重合開始剤
MAIB:ジメチル−2,2’−アゾビスイソブチレート
溶媒
MEK:メチルエチルケトン
THF:テトラヒドロフラン
PGMEA:プロピレングリコールモノメチルエーテルアセテート
EL:乳酸エチル
Polymerization initiator MAIB: dimethyl-2,2′-azobisisobutyrate
Solvent MEK: Methyl ethyl ketone THF: Tetrahydrofuran PGMEA: Propylene glycol monomethyl ether acetate EL: Ethyl lactate

(1)共重合体のMw、Mw/Mnの測定(GPC)
GPCにより測定した。分析条件は以下の通りである。
装 置: 東ソー製GPC8220
検出器: 示差屈折率(RI)検出器
カラム: 昭和電工製KF−804L(×3本)
試 料: 共重合体約0.02gを、テトラヒドロフラン約1mlに溶解した。GPCへの注入量は60μlとした。
(1) Measurement of Mw and Mw / Mn of copolymer (GPC)
Measured by GPC. The analysis conditions are as follows.
Equipment: Tosoh GPC8220
Detector: Differential refractive index (RI) detector Column: Showa Denko KF-804L (x3)
Sample: About 0.02 g of the copolymer was dissolved in about 1 ml of tetrahydrofuran. The injection amount into GPC was 60 μl.

(2)共重合体の繰り返し単位組成及び末端組成の測定(13C−NMR)
装 置: Bruker製AV400
試 料: 共重合体の粉体約1gとCr(acac) 0.1gを、MEK0.5
g、重アセトン1.5gに溶解した。
測 定: 試料を内径10mmガラス製チューブに入れ、温度40℃、スキャン回数10000回の条件で測定した。
(2) Measurement of repeating unit composition and terminal composition of copolymer ( 13 C-NMR)
Equipment: AV400 manufactured by Bruker
Sample: About 1 g of copolymer powder and 0.1 g of Cr (acac) 2 were added to MEK 0.5.
g, dissolved in 1.5 g of heavy acetone.
Measurement: The sample was placed in a glass tube having an inner diameter of 10 mm and measured under the conditions of a temperature of 40 ° C. and a scan count of 10,000 times.

(3)Eth、γ値の測定
(3−1)リソグラフィー用組成物の調製
以下の組成となるように調製した。
共重合体 :100質量部
成分(X):4−メチルフェニルジフェニルスルホニウムノナフルオロブタンスルホネート3.5質量部
成分(Y):トリエタノールアミン0.2質量部
成分(Z):サーフロンS−381(セイミケミカル製)0.1質量部
溶媒: PGMEA 450質量部、及びEL 300質量部
(3) Measurement of Eth and γ values (3-1) Preparation of composition for lithography The composition was prepared to have the following composition.
Copolymer: 100 parts by mass Component (X): 4-methylphenyldiphenylsulfonium nonafluorobutanesulfonate 3.5 parts by mass Component (Y): 0.2 parts by mass of triethanolamine Component (Z): Surflon S-381 ( Seimi Chemical) 0.1 parts by weight Solvent: PGMEA 450 parts by weight and EL 300 parts by weight

(3−2)ドライリソグラフィー
リソグラフィー用組成物を、4インチシリコンウエハー上に回転塗布し、ホットプレート上で100℃、90秒間プリベーク(PAB)して、厚さ350nmの薄膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン製VUVES−4500)を用い、露光量を変えて10mm×10mm□の18ショットを露光した。次いで120℃、90秒間ポストベーク(PEB)した後、レジスト現像アナライザー(リソテックジャパン製RDA−800)を用い、23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で180秒間現像し、各露光量における現像中のレジスト膜厚の経時変化を測定した。
(3-2) Dry Lithography A lithographic composition was spin-coated on a 4-inch silicon wafer and prebaked (PAB) at 100 ° C. for 90 seconds on a hot plate to form a thin film having a thickness of 350 nm. Using an ArF excimer laser exposure apparatus (VUVES-4500 manufactured by RISOTEC Japan), 18 shots of 10 mm × 10 mm □ were exposed by changing the exposure amount. Next, after post-baking (PEB) at 120 ° C. for 90 seconds, using a resist development analyzer (RDA-800 manufactured by RISOTEC Japan), development is performed with an aqueous 2.38 mass% tetramethylammonium hydroxide solution at 23 ° C. for 180 seconds. The change with time of the resist film thickness during development at each exposure amount was measured.

(3−3)模擬液浸リソグラフィー
ドライリソグラフィーと同様にして、リソグラフィー用組成物を、4インチシリコンウエハー上に回転塗布し、プリベーク(PAB)して、厚さ350nmの薄膜を形成した。このウエハーを、超純水を張ったバットに30秒間漬けた後、取り出して乾燥空気を吹き付け、水滴を振り切った。次いで、ArFエキシマレーザー露光装置(リソテックジャパン製VUVES−4500)を用い、露光量を変えて10mm×10mm□の18ショットを露光した。露光後のウエハーを、超純水を張ったバットに30秒間漬け、取り出して乾燥空気を吹き付け、水滴を振り切った。以下、ドライリソグラフィーと同様にして、ポストベーク(PEB)を行い、レジスト現像アナライザー(リソテックジャパン製RDA−800)を用いて現像し、各露光量における現像中のレジスト膜厚の経時変化を測定した。
(3-3) Simulated immersion lithography In the same manner as dry lithography, a lithography composition was spin-coated on a 4-inch silicon wafer and prebaked (PAB) to form a thin film having a thickness of 350 nm. The wafer was dipped in a vat filled with ultrapure water for 30 seconds, then taken out, blown with dry air, and the water droplets were shaken off. Next, using an ArF excimer laser exposure device (VUVES-4500, manufactured by RISOTEC Japan), 18 shots of 10 mm × 10 mm □ were exposed by changing the exposure amount. The exposed wafer was dipped in a vat filled with ultrapure water for 30 seconds, taken out, blown with dry air, and the water droplets were shaken off. Thereafter, in the same manner as dry lithography, post-baking (PEB) is performed, and development is performed using a resist development analyzer (RDA-800 manufactured by RISOTEC Japan), and changes in resist film thickness during development at each exposure amount are measured. did.

(3−4)解析
得られたデータを基に、露光量(mJ/cm)の対数と、初期膜厚に対する60秒間現像した時点での残存膜厚率(以下、残膜率という)(%)をプロットした曲線(以下、露光量−残膜率曲線という)を作成し、Eth(残膜率0%とするための必要露光量であり、感度を表す。)とγ値(露光量−残膜率曲線の接線の傾きであり、現像コントラストを表す。)を以下の通り求めた。
Eth:露光量−残膜率曲線が残膜率0%と交わる露光量(mJ/cm
γ 値:露光量−残膜率曲線の残膜率50%における露光量をE50(mJ/cm)、露光量−残膜率曲線のE50における接線が、残膜率100%の線及び残膜率0%の線と交わる露光量をそれぞれE100及びEとして、以下の計算式で求めた。
γ=1/{log(E/E100)}
(3-4) Analysis Based on the obtained data, the logarithm of the exposure amount (mJ / cm 2 ) and the remaining film thickness ratio when developed for 60 seconds with respect to the initial film thickness (hereinafter referred to as the remaining film ratio) ( %) Is plotted (hereinafter referred to as exposure amount-residual film rate curve), Eth (required exposure amount for setting the residual film rate to 0% and represents sensitivity) and γ value (exposure amount). -It is the slope of the tangent line of the remaining film ratio curve and represents the development contrast.
Eth: exposure amount (mJ / cm 2 ) at which the exposure amount-residual film rate curve intersects with a residual film rate of 0%
γ value: E 50 (mJ / cm 2 ) of exposure amount at 50% of the remaining film rate of the exposure amount-residual film rate curve, and a tangent line at E 50 of the exposure amount-residual film rate curve is a line at which the residual film rate is 100% The exposure amount intersecting with the line having a remaining film rate of 0% was determined as E 100 and E 0 , respectively.
γ = 1 / {log (E 0 / E 100 )}

(4)酸価の測定
単量体25質量%を含む酢酸エチル溶液4g、若しくは、共重合体25質量%を含むPGMEA溶液4gを秤量し、20gのテトラヒドロフランを加えて溶解させた。指示薬
として、ブロモチモールブルーを1質量%含むメタノール溶液を0.05g加え、更に水0.5gを加え黄色溶液とした。この溶液を撹拌しながら、あらかじめ調製した0.025mol/L濃度のNaOH水溶液で滴定し、緑からわずかに青みが出た色調をもって終点とした。酸価の計算は次の通り行った。
{酸価(mmol/g)}=(CNaOH×VNaOH)/(Wszmp×Cpoly
ここで各記号の意味は以下の通りとする。
NaOH:NaOH水溶液中のNaOH濃度(mol/L)
NaOH:NaOH水溶液の滴定量(mL)
szmp:測定試料の秤量(g)
poly:試料に含まれる共重合体の濃度(質量%)
尚、滴定は5回実施し、平均と3σを求めた。
(4) Measurement of Acid Value 4 g of ethyl acetate solution containing 25% by mass of monomer or 4 g of PGMEA solution containing 25% by mass of copolymer were weighed and dissolved by adding 20 g of tetrahydrofuran. As an indicator, 0.05 g of a methanol solution containing 1% by mass of bromothymol blue was added, and 0.5 g of water was further added to obtain a yellow solution. While stirring this solution, the solution was titrated with a 0.025 mol / L aqueous NaOH solution prepared in advance, and the end point was determined to be a slight blue hue from green. The acid value was calculated as follows.
{Acid value (mmol / g)} = (C NaOH × V NaOH ) / (W szmp × C poly )
Here, the meaning of each symbol is as follows.
C NaOH : NaOH concentration (mol / L) in NaOH aqueous solution
V NaOH : titration volume of NaOH aqueous solution (mL)
W szmp : Weighing of measurement sample (g)
C poly : concentration of copolymer contained in sample (mass%)
In addition, titration was implemented 5 times and the average and 3 (sigma) were calculated | required.

合成例1−1
市販の単量体G{大阪有機化学製ロット1(以下、市販単量体Gという。)}1.2kgを酢酸エチル3.6kgに溶解して得た溶液を、撹拌しながら20〜25℃に保った水4.8kgに投入し、更に15分間撹拌した後、30分間静置した。水相を除去した後、Nガスを吹き込みながら、減圧下で加熱して軽質分を留去し、精製単量体Gを得た。精製単量体の酸価は定量下限(0.002mmol/g)以下であった。
Synthesis Example 1-1
Commercially available monomers G {Osaka Organic Chemical Co. Lot 1 (hereinafter, commercially available monomers G 1 that.)} Solution obtained by dissolving in ethyl acetate 3.6kg to 1.2 kg, while stirring 20-25 The mixture was poured into 4.8 kg of water kept at 0 ° C., stirred for 15 minutes, and allowed to stand for 30 minutes. After removal of the aqueous phase, while blowing N 2 gas, by heating under reduced pressure was distilled off light components to obtain a purified monomer G 1. The acid value of the purified monomer was below the lower limit of quantification (0.002 mmol / g).

合成例1−2
市販単量体Gの替わりに、市販単量体G(大阪有機化学製ロット2)を用いた以外は合成例1−1と同様にして、精製単量体Gを得た。精製単量体の酸価は定量下限(0.002mmol/g)以下であった。
Synthesis Example 1-2
Instead of commercial monomeric G 1, except for using commercially available monomers G 2 (Osaka Organic Chemical Co., lot 2) in the same manner as in Synthesis Example 1-1, to obtain a purified monomer G 2. The acid value of the purified monomer was below the lower limit of quantification (0.002 mmol / g).

合成例2−1
市販単量体Gの替わりに、市販の単量体Ma{ENF製ロット1(以下、市販単量体Maという。)}を用いた以外は合成例1−1と同様にして、精製単量体Maを得た。精製単量体の酸価は定量下限(0.002mmol/g)以下であった。
Synthesis Example 2-1
Instead of commercial monomeric G 1, commercially available monomers Ma {ENF Ltd. Lot 1 (hereinafter, commercially available monomers Ma 1 called.)} Except for using in the same manner as in Synthesis Example 1-1, purified Monomer Ma 1 was obtained. The acid value of the purified monomer was below the lower limit of quantification (0.002 mmol / g).

合成例2−2
市販単量体Maの替わりに、市販単量体Ma(ENF製ロット2)を用いた以外は合成例2−1と同様にして、精製単量体Maを得た。精製単量体の酸価は定量下限(0.002mmol/g)以下であった。
Synthesis Example 2-2
A purified monomer Ma 2 was obtained in the same manner as in Synthesis Example 2-1, except that the commercially available monomer Ma 2 (ENF lot 2) was used instead of the commercially available monomer Ma 1 . The acid value of the purified monomer was below the lower limit of quantification (0.002 mmol / g).

合成例3−1
市販の単量体Oa{出光興産製ロット1(以下、市販単量体Oaという。)}1.0kgを酢酸エチル3.0kgに溶解して得た溶液を、撹拌しながら20〜25℃に保った水4.0kgに投入し、更に15分間撹拌した後、30分間静置した。水相を除去した後、減圧下で加熱して軽質分を留去し、溶液を濃縮した。次いでヘキサン5.0kgを加えて固形分を析出させた後、固形分をろ別して回収し、減圧下で乾燥させて、精製単量体Oaを得た。精製単量体の酸価は定量下限(0.002mmol/g)以下であった。
Synthesis Example 3-1
A solution obtained by dissolving 1.0 kg of commercially available monomer Oa {Idemitsu Kosan Lot 1 (hereinafter referred to as commercially available monomer Oa 1 )} in 3.0 kg of ethyl acetate is stirred at 20 to 25 ° C. Then, it was poured into 4.0 kg of water kept at 25 ° C., stirred for 15 minutes, and allowed to stand for 30 minutes. After removing the aqueous phase, the mixture was heated under reduced pressure to distill off the light components, and the solution was concentrated. Next, 5.0 kg of hexane was added to precipitate the solid content, and then the solid content was collected by filtration and dried under reduced pressure to obtain purified monomer Oa 1 . The acid value of the purified monomer was below the lower limit of quantification (0.002 mmol / g).

合成例3−2
市販単量体Oaの替わりに、市販単量体Oa(出光興産製ロット2)を用いた以外は合成例3−1と同様にして、精製単量体Oaを得た。精製単量体の酸価は定量下限(0.002mmol/g)以下であった。
Synthesis Example 3-2
Purified monomer Oa 2 was obtained in the same manner as in Synthesis Example 3-1, except that commercially available monomer Oa 2 (Idemitsu Kosan Lot 2) was used instead of commercially available monomer Oa 1 . The acid value of the purified monomer was below the lower limit of quantification (0.002 mmol / g).

合成例3−3
市販単量体Oa1.0kgを酢酸エチル3.0kgに溶解した。このOa溶液を、
オルガノ製イオン交換樹脂アンバーリストEG−290{本文中(E1)の置換基含有アニオン交換樹脂と、スルホン酸基含有カチオン交換樹脂の1:1混合品}470gを充填し、メタノール2.4kgを通液し、次いで酢酸エチル2.4kgを通液して洗浄した、直径5cm、層高30cmのイオン交換層に、20〜25℃に保ちながら、LHSV=5/hrで通液した。通液後の溶液を減圧下で加熱し、軽質分を留去して溶液を濃縮した。次いでヘキサン5.0kgを加えて、固形分を析出させた後、固形分をろ別して回収し、減圧下で乾燥して、精製単量体Oaを得た。精製単量体の酸価は定量下限(0.002mmol/g)以下であった。
Synthesis Example 3-3
1.0 kg of commercially available monomer Oa 1 was dissolved in 3.0 kg of ethyl acetate. The Oa 1 solution,
Organo ion exchange resin Amberlyst EG-290 {1: 1 mixture of (E1) substituent-containing anion exchange resin and sulfonic acid group-containing cation exchange resin in the text} 470 g is charged, and 2.4 kg of methanol is passed. Then, 2.4 kg of ethyl acetate was passed through and washed, and the solution was passed through an ion exchange layer having a diameter of 5 cm and a layer height of 30 cm at LHSV = 5 / hr while maintaining the temperature at 20 to 25 ° C. The solution after passing through was heated under reduced pressure to distill off light components and concentrate the solution. Then hexane was added to 5.0 kg, after precipitated solids were collected solids were filtered and dried under reduced pressure to obtain a purified monomer Oa 3. The acid value of the purified monomer was below the lower limit of quantification (0.002 mmol / g).

実施例1
容器にMEK3.1kg、合成例1で得られた精製単量体G0.7kg、合成例2で得られた精製単量体Ma1.0kg、合成例3で得られた精製単量体Oa0.5kgを溶解させ、均一な「単量体溶液」を調製した。別の容器に、MEK0.2kg、MAIB0.07kgを溶解させ、均一な「開始剤溶液」を調製した。又、攪拌機と冷却器を備え付けた重合槽にMEK1.8kgを仕込んで窒素雰囲気とした。重合槽内のMEKを79℃に加熱した後、25〜30℃に保った単量体溶液と開始剤溶液を、それぞれ別々に、定量ポンプを用い、一定速度で4時間かけて79〜81℃に保った重合槽内に滴下して重合させた。滴下終了後、更に80〜81℃に保ったまま2時間熟成させた後、室温まで冷却した。
Example 1
MEK 3.1 kg in a container, 0.7 kg of purified monomer G 1 obtained in Synthesis Example 1, 1.0 kg of purified monomer Ma 1 obtained in Synthesis Example 2, and purified single amount obtained in Synthesis Example 3 0.5 kg of the body Oa 1 was dissolved to prepare a uniform “monomer solution”. In a separate container, 0.2 kg of MEK and 0.07 kg of MAIB were dissolved to prepare a uniform “initiator solution”. Further, 1.8 kg of MEK was charged into a polymerization tank equipped with a stirrer and a cooler to form a nitrogen atmosphere. After the MEK in the polymerization tank was heated to 79 ° C., the monomer solution and the initiator solution maintained at 25 to 30 ° C. were separately separated at 79 to 81 ° C. over 4 hours at a constant rate using a metering pump. The polymerization was carried out by dropping into a polymerization vessel maintained at a temperature of 2 ° C. After completion of the dropwise addition, the mixture was further aged for 2 hours while maintaining at 80 to 81 ° C., and then cooled to room temperature.

攪拌機を備え付けた精製槽にヘキサン22kg投入し、撹拌しながら15℃まで冷却し、その状態を維持した。ここに、重合液を滴下して共重合体を析出させ、更に30分間撹拌した後、ウエットケーキをろ過した。このウエットケーキを容器に戻して、ヘキサン12kg、MEK3kgを投入し、30分間撹拌して洗浄し、ろ過した。このウエットケーキの洗浄をもう一度繰り返した。得られたウエットケーキから数g抜き取り、60℃以下で1時間減圧乾燥して乾燥粉体とし、13C−NMRとGPCを用いて、共重合体のG、Ma、Oaの各繰り返し単位組成比、Mw、Mw/Mnを求めた。結果を表1に記した。 Into a purification tank equipped with a stirrer, 22 kg of hexane was charged, cooled to 15 ° C. with stirring, and maintained in that state. A polymerization solution was dropped here to precipitate a copolymer, and the mixture was further stirred for 30 minutes, and then the wet cake was filtered. This wet cake was returned to the container, 12 kg of hexane and 3 kg of MEK were added, and the mixture was stirred for 30 minutes, washed, and filtered. This washing of the wet cake was repeated once more. Several grams were extracted from the obtained wet cake, dried under reduced pressure at 60 ° C. or lower for 1 hour to obtain a dry powder, and each of the repeating unit composition ratios of G, Ma, and Oa of the copolymer using 13 C-NMR and GPC. , Mw and Mw / Mn were determined. The results are shown in Table 1.

残りのウエットケーキは、MEKに溶解させ、撹拌しながら減圧下で加熱して、MEK等の軽質分を一部留去させた後、PGMEAを投入しながら、更に軽質分とPGMEAの一部を留去させ、共重合体を25質量%含むPGMEA溶液を得た。得られたPGMEA溶液中の共重合体の酸価を測定した。次いで、前記した方法でリソグラフィー用組成物を調製し、Eth、γ値を測定した。結果を表1にまとめた。   The remaining wet cake was dissolved in MEK and heated under reduced pressure while stirring to partially distill off light components such as MEK. Then, while adding PGMEA, further add light components and a part of PGMEA. Distillation was performed to obtain a PGMEA solution containing 25% by mass of the copolymer. The acid value of the copolymer in the obtained PGMEA solution was measured. Next, a lithographic composition was prepared by the method described above, and Eth and γ values were measured. The results are summarized in Table 1.

実施例2
精製単量体G、精製単量体Ma、精製単量体Oaの替わりに、それぞれ精製単量体G、精製単量体Ma、精製単量体Oaを用いた以外は、実施例1と同様にして共重合体及びリソグラフィー用組成物を得た。共重合体のG、Ma、Oaの各繰り返し単位組成比、Mw、Mw/Mn、酸価と、リソグラフィー用組成物のEth、γ値を表1にまとめた。
Example 2
A purified monomer G 2 , a purified monomer Ma 2 , and a purified monomer Oa 2 were used instead of the purified monomer G 1 , the purified monomer Ma 1 , and the purified monomer Oa 1 , respectively. In the same manner as in Example 1, a copolymer and a composition for lithography were obtained. Table 1 shows the composition ratios of repeating units G, Ma, and Oa of the copolymer, Mw, Mw / Mn, acid value, and Eth and γ values of the lithography composition.

実施例3
精製単量体Oaの替わりに、精製単量体Oaを用いた以外は、実施例1と同様にして共重合体及びリソグラフィー用組成物を得た。共重合体のG、Ma、Oaの各繰り返し単位組成比、Mw、Mw/Mn、酸価と、リソグラフィー用組成物のEth、γ値を表1にまとめた。
Example 3
A copolymer and a composition for lithography were obtained in the same manner as in Example 1 except that purified monomer Oa 3 was used instead of purified monomer Oa 1 . Table 1 shows the composition ratios of repeating units G, Ma, and Oa of the copolymer, Mw, Mw / Mn, acid value, and Eth and γ values of the lithography composition.

比較例1
精製単量体G、精製単量体M、精製単量体Oaの替わりに、それぞれ市販の単量体G、市販の単量体M、市販の単量体Oaを用いた以外は、実施例1と同様にして
共重合体及びリソグラフィー用組成物を得た。共重合体のG、Ma、Oaの各繰り返し単位組成比、Mw、Mw/Mn、酸価と、リソグラフィー用組成物のEth、γ値を表1にまとめた。
Comparative Example 1
Use purified monomeric G 1, purified monomer M 1, instead of the purified monomer Oa 1, each commercial monomeric G 1, commercially available monomer M 1, a commercially available monomer Oa 1 A copolymer and a lithographic composition were obtained in the same manner as in Example 1 except that. Table 1 shows the composition ratios of repeating units G, Ma, and Oa of the copolymer, Mw, Mw / Mn, acid value, and Eth and γ values of the lithography composition.

比較例2
精製単量体G、精製単量体M、精製単量体Oaの替わりに、それぞれ市販の単量体G、市販の単量体M、市販の単量体Oaを用いた以外は、実施例1と同様にして共重合体及びリソグラフィー用組成物を得た。共重合体のG、Ma、Oaの各繰り返し単位組成比、Mw、Mw/Mn、酸価と、リソグラフィー用組成物のEth、γ値を表1にまとめた。
Comparative Example 2
Use purified monomeric G 1, purified monomer M 1, instead of the purified monomer Oa 1, each commercially available monomers G 2, commercially available monomers M 2, commercially available monomers Oa 2 A copolymer and a lithographic composition were obtained in the same manner as in Example 1 except that. Table 1 shows the composition ratios of repeating units G, Ma, and Oa of the copolymer, Mw, Mw / Mn, acid value, and Eth and γ values of the lithography composition.

Figure 2010209338
Figure 2010209338

本発明により製造された共重合体を含むリソグラフィー組成物を用い、ArF露光によるドライ及び液浸条件でのリソグラフィー特性を評価したところ、いずれのリソグラフィー条件でも、ブロモチモールブルーを指示薬とし、NaOH水溶液で滴定して求めた酸価が0.01mmol/g以下である共重合体を用いることにより、解像コントラストを表すパラメータであるγ値が高い結果が得られた。この結果から、本発明により製造された共重合体を含むリソグラフィー用組成物は、微細パターンの解像性能に優れることが分かる。   Using the lithography composition containing the copolymer produced according to the present invention, and evaluating the lithography properties under dry and immersion conditions by ArF exposure, bromothymol blue was used as an indicator and NaOH aqueous solution in any lithography conditions. By using a copolymer having an acid value of 0.01 mmol / g or less obtained by titration, a high γ value, which is a parameter representing the resolution contrast, was obtained. From this result, it can be seen that the lithography composition containing the copolymer produced according to the present invention is excellent in the resolution performance of the fine pattern.

Claims (6)

少なくとも、酸解離性溶解抑制基でアルカリ可溶性基を保護した構造を有する繰り返し
単位(A)、ラクトン構造を有する繰り返し単位(B)、及び、アルコール性水酸基を有する繰り返し単位(C)を含む共重合体の製造方法であって、繰り返し単位(A)を与える単量体、繰り返し単位(B)を与える単量体、及び、繰り返し単位(C)を与える単量体から選ばれる少なくとも一種類以上を、有機溶媒に溶解した状態で水と接触させ、分液する工程を経た後、共重合に供することにより、得られた共重合体を溶媒に溶解した後、ブロモチモールブルーを指示薬として、水酸化アルカリ金属含有溶液で中和滴定する方法で求めた酸価を、0.01mmol/g以下とすることを特徴とする半導体リソグラフィー用共重合体の製造方法。
Copolymer including at least a repeating unit (A) having a structure in which an alkali-soluble group is protected with an acid dissociable, dissolution inhibiting group, a repeating unit (B) having a lactone structure, and a repeating unit (C) having an alcoholic hydroxyl group A method for producing a coalescence, comprising at least one kind selected from a monomer that gives a repeating unit (A), a monomer that gives a repeating unit (B), and a monomer that gives a repeating unit (C) After the step of bringing into contact with water in a state dissolved in an organic solvent and separating the solution, the resultant copolymer is dissolved in a solvent, and then hydroxylated using bromothymol blue as an indicator. A method for producing a copolymer for semiconductor lithography, wherein an acid value obtained by neutralization titration with an alkali metal-containing solution is 0.01 mmol / g or less.
少なくとも、酸解離性溶解抑制基でアルカリ可溶性基を保護した構造を有する繰り返し単位(A)、ラクトン構造を有する繰り返し単位(B)、及び、アルコール性水酸基を有する繰り返し単位(C)を含む共重合体の製造方法であって、繰り返し単位(A)を与える単量体、繰り返し単位(B)を与える単量体、及び、繰り返し単位(C)を与える単量体から選ばれる少なくとも一種類以上を、有機溶媒に溶解した状態でイオン交換樹脂と接触させる工程を経た後、共重合に供することにより、得られた共重合体を溶媒に溶解した後、ブロモチモールブルーを指示薬として、水酸化アルカリ金属含有溶液で中和滴定する方法で求めた酸価を、0.01mmol/g以下とすることを特徴とする半導体リソグラフィー用共重合体の製造方法。   Copolymer including at least a repeating unit (A) having a structure in which an alkali-soluble group is protected with an acid dissociable, dissolution inhibiting group, a repeating unit (B) having a lactone structure, and a repeating unit (C) having an alcoholic hydroxyl group A method for producing a coalescence, comprising at least one kind selected from a monomer that gives a repeating unit (A), a monomer that gives a repeating unit (B), and a monomer that gives a repeating unit (C) After the step of contacting with an ion exchange resin in a state dissolved in an organic solvent, the resulting copolymer is dissolved in a solvent by being subjected to copolymerization, and then an alkali metal hydroxide using bromothymol blue as an indicator. A method for producing a copolymer for semiconductor lithography, wherein the acid value determined by neutralization titration with a containing solution is 0.01 mmol / g or less. 繰り返し単位(A)の酸解離性溶解抑制基が、式(L1)
Figure 2010209338
{式(L1)中、oは酸解離性溶解抑制基としての結合部位を、R13及びR14はそれぞれ独立して炭素数1〜4の炭化水素基を、R15は炭素数1〜12の炭化水素基を表し、R15はR13又はR14と結合して環を形成しても良い。}
若しくは式(L2)
Figure 2010209338

{式(L2)中、oは酸解離性溶解抑制基としての結合部位を、R16及びR17はそれぞれ独立して水素原子又は炭素数1〜4の炭化水素基を、R18は炭素数1〜12の炭化水素基を表し、R16はR17又はR18と結合して環を形成しても良い。}
で表される構造から選ばれる請求項1又は2に記載の半導体リソグラフィー用共重合体の製造方法。
The acid dissociable, dissolution inhibiting group of the repeating unit (A) has the formula (L1)
Figure 2010209338
{In Formula (L1), o is a binding site as an acid dissociable, dissolution inhibiting group, R 13 and R 14 are each independently a hydrocarbon group having 1 to 4 carbon atoms, and R 15 is a carbon number 1 to 12 R 15 may be bonded to R 13 or R 14 to form a ring. }
Or formula (L2)
Figure 2010209338

{In Formula (L2), o is a bonding site as an acid dissociable, dissolution inhibiting group, R 16 and R 17 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and R 18 is a carbon number. Represents a hydrocarbon group of 1 to 12, and R 16 may combine with R 17 or R 18 to form a ring. }
The manufacturing method of the copolymer for semiconductor lithography of Claim 1 or 2 chosen from the structure represented by these.
繰り返し単位(A)が、式(A)
Figure 2010209338
{式(A)中、R10は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を、R11は酸素原子若しくは硫黄原子を含んでも良い炭素数6〜12の脂環式炭化水素基を、nは0又は1の整数を、R12は式(L1)若しくは(L2)で表される酸解離性溶解抑制基を表す。}
で表される構造である請求項1又は2に記載の半導体リソグラフィー用共重合体の製造方法。
The repeating unit (A) is represented by the formula (A)
Figure 2010209338
{In Formula (A), R 10 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms that may be substituted by a fluorine atom, and R 11 represents 6 to 6 carbon atoms that may include an oxygen atom or a sulfur atom. 12 represents an alicyclic hydrocarbon group, n represents an integer of 0 or 1, and R 12 represents an acid dissociable, dissolution inhibiting group represented by the formula (L1) or (L2). }
The method for producing a copolymer for semiconductor lithography according to claim 1, wherein the copolymer has a structure represented by:
繰り返し単位(B)が、式(B)
Figure 2010209338
[式(B)中、R20は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を、R21は単結合、又は、酸素原子若しくは硫黄原子含んでも良い炭素数5〜12の脂環式炭化水素基を、Lは式(L3)
Figure 2010209338
{式(L3)中、R22〜R29は、いずれか1つ又は2つがR21と結合する単結合であり、残りは水素原子又は炭素数1〜4の炭化水素基若しくはアルコキシ基を表し、mは0又は1の整数を表す。}で表されるラクトン構造を表し、LはR21と1又は2の単結合で結合している。]
で表される構造である請求項1又は2に記載の半導体リソグラフィー用共重合体の製造方法。
The repeating unit (B) is represented by the formula (B)
Figure 2010209338
[In the formula (B), R 20 may be a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms which may be substituted by a fluorine atom, and R 21 may contain a single bond, an oxygen atom or a sulfur atom. An alicyclic hydrocarbon group having 5 to 12 carbon atoms, L 3 is a formula (L3)
Figure 2010209338
{In Formula (L3), R 22 to R 29 are single bonds in which one or two of them are bonded to R 21 , and the rest represent a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, or an alkoxy group. , M represents an integer of 0 or 1. }, L 3 is bonded to R 21 with 1 or 2 single bonds. ]
The method for producing a copolymer for semiconductor lithography according to claim 1, wherein the copolymer has a structure represented by:
繰り返し単位(C)が、式(C)
Figure 2010209338

{式(C)中、R33は水素原子、若しくは、フッ素原子が置換しても良い炭素数1〜4の炭化水素基を、R34〜R36はそれぞれ独立して水素原子若しくは水酸基を表し、R34〜R36の内、少なくとも一つ以上が水酸基である。}
で表される構造である請求項1又は2に記載の半導体リソグラフィー用共重合体の製造方法。
The repeating unit (C) is represented by the formula (C)
Figure 2010209338

{In Formula (C), R 33 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms which may be substituted by a fluorine atom, and R 34 to R 36 each independently represents a hydrogen atom or a hydroxyl group. , At least one of R 34 to R 36 is a hydroxyl group. }
The method for producing a copolymer for semiconductor lithography according to claim 1, wherein the copolymer has a structure represented by:
JP2010095217A 2010-04-16 2010-04-16 Method for producing copolymer for semiconductor lithography Expired - Fee Related JP5384421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095217A JP5384421B2 (en) 2010-04-16 2010-04-16 Method for producing copolymer for semiconductor lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095217A JP5384421B2 (en) 2010-04-16 2010-04-16 Method for producing copolymer for semiconductor lithography

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006287353A Division JP2008106084A (en) 2006-10-23 2006-10-23 Copolymer and composition for semiconductor lithography and method for producing the same copolymer

Publications (2)

Publication Number Publication Date
JP2010209338A true JP2010209338A (en) 2010-09-24
JP5384421B2 JP5384421B2 (en) 2014-01-08

Family

ID=42969822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095217A Expired - Fee Related JP5384421B2 (en) 2010-04-16 2010-04-16 Method for producing copolymer for semiconductor lithography

Country Status (1)

Country Link
JP (1) JP5384421B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224793A (en) * 2011-04-21 2012-11-15 Maruzen Petrochem Co Ltd Method for producing copolymer for semiconductor lithography containing reduced amount of metal impurities, and method for purifying polymerization initiator for production of the copolymer
US10307752B2 (en) 2012-06-26 2019-06-04 Mitsubishi Chemical Corporation Method for producing polymer, and polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275845A (en) * 1999-01-18 2000-10-06 Sumitomo Chem Co Ltd Chemically amplifying positive resist composition
JP2004323704A (en) * 2003-04-25 2004-11-18 Daicel Chem Ind Ltd (meth)acrylate for synthesizing polymer for photoresist, and its manufacturing method
JP2006099097A (en) * 2004-09-02 2006-04-13 Fuji Photo Film Co Ltd Positive resist composition and pattern forming method using same
JP2006169319A (en) * 2004-12-14 2006-06-29 Tokyo Ohka Kogyo Co Ltd Polymer compound, positive resist composition and resist pattern formation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275845A (en) * 1999-01-18 2000-10-06 Sumitomo Chem Co Ltd Chemically amplifying positive resist composition
JP2004323704A (en) * 2003-04-25 2004-11-18 Daicel Chem Ind Ltd (meth)acrylate for synthesizing polymer for photoresist, and its manufacturing method
JP2006099097A (en) * 2004-09-02 2006-04-13 Fuji Photo Film Co Ltd Positive resist composition and pattern forming method using same
JP2006169319A (en) * 2004-12-14 2006-06-29 Tokyo Ohka Kogyo Co Ltd Polymer compound, positive resist composition and resist pattern formation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224793A (en) * 2011-04-21 2012-11-15 Maruzen Petrochem Co Ltd Method for producing copolymer for semiconductor lithography containing reduced amount of metal impurities, and method for purifying polymerization initiator for production of the copolymer
US9216948B2 (en) 2011-04-21 2015-12-22 Maruzen Petrochemical Co., Ltd. Method for producing copolymer for semiconductor lithography containing reduced amount of metal impurities, and method for purifying polymerization initiator for production of copolymer
US9546133B2 (en) 2011-04-21 2017-01-17 Maruzen Petrochemical Co., Ltd. Method for producing copolymer for semiconductor lithography containing reduced amount of metal impurities, and method for purifying polymerization initiator for production of copolymer
US10307752B2 (en) 2012-06-26 2019-06-04 Mitsubishi Chemical Corporation Method for producing polymer, and polymer

Also Published As

Publication number Publication date
JP5384421B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP4355011B2 (en) Copolymer and composition for immersion lithography
KR101432395B1 (en) Polymer production method, polymer for use in lithography, resist composition and substrate production method
JP5030474B2 (en) Resin composition for semiconductor lithography
US8455596B2 (en) Method for producing a copolymer for photoresist
KR100948531B1 (en) Process for producing positive-working resist composition, positive-working resist composition, and method for resist pattern formation
JP2008106084A (en) Copolymer and composition for semiconductor lithography and method for producing the same copolymer
TWI534533B (en) Copolymer for lithography and method for manufacturing the same, resist composition, and method for manufacturing substrate
JP5384421B2 (en) Method for producing copolymer for semiconductor lithography
JP5308660B2 (en) Method for producing polymer for semiconductor lithography
JP5771942B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
US8753793B2 (en) Method for producing resin solution for photoresist, photoresist composition, and pattern-forming method
JP2019059957A (en) Production method of copolymer for lithography, production method of resist composition, and method for manufacturing patterned substrate
JP6299076B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP2013127023A (en) Method for producing polymer used for lithography, polymer for lithography, resist composition and method for producing substrate
JP5716943B2 (en) Polymer, resist composition, and method of manufacturing substrate on which pattern is formed
JP5793825B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP6705286B2 (en) Method for producing polymerizable monomer, method for producing polymer for lithography and method for producing resist composition
JP2023135842A (en) Production method of copolymer, production method of resist composition, and production method of substrate having pattern formed
JP2021147472A (en) Copolymer, resist composition, and method for producing substrate with pattern formed thereon
JP5659570B2 (en) Method for producing polymer, polymer for semiconductor lithography, resist composition, and method for producing substrate on which pattern is formed

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5384421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees