JP2010208009A - Wire for electric discharge machining - Google Patents

Wire for electric discharge machining Download PDF

Info

Publication number
JP2010208009A
JP2010208009A JP2009173331A JP2009173331A JP2010208009A JP 2010208009 A JP2010208009 A JP 2010208009A JP 2009173331 A JP2009173331 A JP 2009173331A JP 2009173331 A JP2009173331 A JP 2009173331A JP 2010208009 A JP2010208009 A JP 2010208009A
Authority
JP
Japan
Prior art keywords
wire
machining
electric discharge
discharge
discharge region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009173331A
Other languages
Japanese (ja)
Other versions
JP5575430B2 (en
Inventor
Toshiyuki Yamauchi
俊之 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009173331A priority Critical patent/JP5575430B2/en
Publication of JP2010208009A publication Critical patent/JP2010208009A/en
Application granted granted Critical
Publication of JP5575430B2 publication Critical patent/JP5575430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire for electric discharge machining for realizing a smooth surface by high speed machining without generating electric discharge non-contributing to slit machining and performing unidirectional machining with a small machining width and good yield of a workpiece. <P>SOLUTION: This wire has a wire surface formed by a straight electric discharge region continuous in the longitudinal direction and a non-electric discharge region having higher electric resistance than that in the electric discharge region. By making the non-electric discharge region into an insulating layer, reforming the electric discharge region into a layer with excellent dispersibility or forming a cross-sectional shape of the wire itself into an irregular shape, preferably, a truck shape, improvement of machining speed, reduction of machining surface roughness and reduction of a machining groove width, etc. can be attained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

ワイヤ放電加工において、特に特定の一方向に対する高速度・高精度な加工が行える放電加工用ワイヤに関する。 In wire electric discharge machining, the present invention relates to an electric discharge machining wire that can perform high-speed and high-precision machining particularly in a specific direction.

ワイヤ放電加工は細いワイヤを電極線として、放電エネルギーにより被加工物を切断する加工である。電極線に張力をかけた状態で連続走行させながら、加工液雰囲気において電極線と被加工物(金型やダイス等)との間に電圧をかける。すると被加工物と電極線との間でパルス状の放電が繰り返し発生する。加工液は純度の高い水または油であり、放電部位に供給されたり、放電加工が液中で行われたりする。放電加工は、溶融・爆発・飛散・冷却・スラッジ除去の工程で構成されている。電極線と被加工物が連続して接近することにより放電加工が繰り返し行われ、被加工物を所定の形状に加工する。 Wire electric discharge machining is a process of cutting a workpiece by electric discharge energy using a thin wire as an electrode wire. A voltage is applied between the electrode wire and the workpiece (mold, die, etc.) in the working fluid atmosphere while continuously running the electrode wire under tension. Then, a pulsed discharge is repeatedly generated between the workpiece and the electrode wire. The machining liquid is high-purity water or oil, and is supplied to the discharge site or the electric discharge machining is performed in the liquid. Electric discharge machining consists of melting, explosion, scattering, cooling, and sludge removal processes. When the electrode wire and the workpiece are continuously approached, the electric discharge machining is repeatedly performed to process the workpiece into a predetermined shape.

ワイヤ放電加工は元来、様々な曲面を有する物を製作することに好まれて使用されてきた。しかし、近年、その加工性能の向上から複雑な形状のみならず、単純スリット加工にも使用が検討されている。特にSiやSiC等の化合物半導体といった硬脆性材料のスライス加工への適用が期待される。 Wire electric discharge machining has been originally used in favor of manufacturing objects having various curved surfaces. However, in recent years, the use of not only complicated shapes but also simple slit processing has been studied due to the improvement of the processing performance. In particular, application to slice processing of hard and brittle materials such as compound semiconductors such as Si and SiC is expected.

従来のワイヤ放電加工は複雑な加工面を形成するために使用されてきた。このような加工面を得るために、ワイヤが切り進む方向(以下、加工方向と称す)は刻々と変わる。その際、加工方向に対面するワイヤ表面も刻々と変わる。従ってワイヤ表面の全面において均一な加工性能を有することが求められていた。 Conventional wire electric discharge machining has been used to form complex machining surfaces. In order to obtain such a processed surface, the direction in which the wire advances (hereinafter referred to as the processing direction) changes every moment. At that time, the wire surface facing the processing direction also changes every moment. Accordingly, there has been a demand for uniform processing performance over the entire wire surface.

従来の具体的な放電加工用ワイヤを図5に示す。図5は従来のワイヤの長手方向に対する垂直断面(以下、単に断面と称す)図を示す。(p)は母材12のみからなるもので、例えば黄銅線やタングステン線等がある。(q)は母材12の表面に層を形成、あるいは表面を改質したもので、例えば特許文献1のように母材12として鋼線、金属層14としてブラスメッキ層を有したものがある。また(r)のように表面を更に覆う層を形成したものがある。例えば特許文献2にあるように最表面の略全面に母材よりも電気抵抗の大きい非絶縁性抵抗膜(高抵抗層16)を有するワイヤが記載されている。 A conventional concrete electric discharge machining wire is shown in FIG. FIG. 5 shows a vertical cross section (hereinafter simply referred to as a cross section) of the conventional wire in the longitudinal direction. (P) consists only of the base material 12, for example, a brass wire or a tungsten wire. (Q) is a layer formed on the surface of the base material 12 or a modified surface. For example, as in Patent Document 1, there is one having a steel wire as the base material 12 and a brass plating layer as the metal layer 14. . In addition, there is one in which a layer further covering the surface is formed as shown in (r). For example, as disclosed in Patent Document 2, a wire having a non-insulating resistance film (high resistance layer 16) having an electric resistance larger than that of a base material on substantially the entire outermost surface is described.

図5(r)のような構成のワイヤは小さな放電ギャップで安定して放電を発生させることができる。また、ワイヤ放電加工機に使用して極間サーブ制御(サーボ電圧値の制御)を最適化することで、放電ギャップを小さくして加工面を平滑にすることができる。更に加工溝幅を小さくすることができ、且つ、放電回数を増やして加工速度を速くすることができる。総じて微細加工の加工能率を高めることが可能となる。 The wire having the structure as shown in FIG. 5 (r) can stably generate a discharge with a small discharge gap. Further, by using the wire electric discharge machine and optimizing the inter-electrode serve control (control of the servo voltage value), the discharge gap can be reduced and the machined surface can be smoothed. Furthermore, the machining groove width can be reduced, and the number of discharges can be increased to increase the machining speed. In general, it becomes possible to increase the processing efficiency of the fine processing.

特開2006−136952号公報JP 2006-136852 A 特開2008−296350号公報JP 2008-296350 A

特許文献1や特許文献2に代表されるように、これまでの放電加工用ワイヤは加工方向が不特定であるため、全面において同一の性能が求められていた。ワイヤの特定箇所において放電加工性能に斑があっては、安定した加工を達成することができない。 As represented by Patent Literature 1 and Patent Literature 2, since the machining direction of conventional electric discharge machining wires is unspecified, the same performance has been required over the entire surface. If the electrical discharge machining performance is uneven at a specific portion of the wire, stable machining cannot be achieved.

しかし、加工方向が特定する(以下、一方向加工と称す)ことができる場合、ワイヤの全面において均一な加工性能を有していることが弊害となることが明らかとなった。図6に断面方向における従来の放電加工状態の概略図を示す。一方向加工においては加工方向(図中片矢印方向)にのみ放電20が行われれば良い。しかし、実際には加工方向のみならず、ワイヤの加工方向に対して横面、あるいは後方に対して放電20aが発生していることが明らかとなった。このような加工方向以外の放電20aは、加工に直接寄与しないのみならず、害悪となる。つまり無用な放電により加工面を荒らしてしまう。 However, when the processing direction can be specified (hereinafter referred to as unidirectional processing), it has become clear that having a uniform processing performance on the entire surface of the wire is an adverse effect. FIG. 6 shows a schematic diagram of a conventional electric discharge machining state in the cross-sectional direction. In unidirectional machining, the discharge 20 only needs to be performed in the machining direction (the direction of the single arrow in the figure). However, it has become apparent that the discharge 20a is actually generated not only in the processing direction but also on the lateral surface or the rear side of the wire processing direction. Such a discharge 20a other than the machining direction does not directly contribute to the machining but also causes harm. In other words, the processing surface is roughened by useless discharge.

更に図6からも明らかなようにワイヤ後方における放電20aにより加工幅24(図中両矢印)が大きくなる。マルチで行う場合、できるだけ加工幅24を小さくすることが求められている。なぜなら、放電加工により被加工物22は溶融・爆発・飛散される。つまり被加工物22の歩留まりに大きく影響する。例えば前述したSiウエハを数十枚、数百枚を一度にスライスするマルチ放電加工を行う場合にあっては僅かな歩留まり低下も大きく影響することになる。 Further, as apparent from FIG. 6, the machining width 24 (double arrow in the figure) is increased by the electric discharge 20a behind the wire. In the case of multi-processing, it is required to make the machining width 24 as small as possible. This is because the workpiece 22 is melted / exploded / scattered by electric discharge machining. That is, the yield of the workpiece 22 is greatly affected. For example, in the case of performing multi-EDM which slices several tens or hundreds of Si wafers at a time, a slight decrease in yield greatly affects.

以上より、一方向加工においては従来の放電加工用ワイヤは適していない。そこで加工に寄与しない放電を発生させず、効果的に放電を発生させて高速加工を達成し、且つ平滑な面を実現すると共に、加工幅が小さく被加工物の歩留まりの良い一方向加工に特化した放電加工用ワイヤを提供することを課題とする。 From the above, conventional electric discharge machining wires are not suitable for unidirectional machining. Therefore, it does not generate electric discharge that does not contribute to machining, effectively generates electric discharge to achieve high-speed machining, realizes a smooth surface, and specializes in unidirectional machining with a small machining width and good workpiece yield. An object of the present invention is to provide an electric discharge machining wire.

前記課題を解決する放電加工用ワイヤとして、
ワイヤ表面が、ワイヤ断面の周縁同一部位においてワイヤ長手方向に連続する放電域と、その他の部位が該放電域より電気抵抗の高い非放電域とで構成される、
ことを特徴とする。
As an electric discharge machining wire that solves the above problems,
The wire surface is composed of a discharge region that is continuous in the wire longitudinal direction at the same peripheral edge of the wire cross-section, and the other region is composed of a non-discharge region having a higher electrical resistance than the discharge region.
It is characterized by that.

更に、前記非放電域が絶縁層であるのが良い。 Furthermore, the non-discharge area may be an insulating layer.

更に、前記放電域が金属層、または高抵抗層であるのが良い。 Furthermore, the discharge area may be a metal layer or a high resistance layer.

また、前記放電加工用ワイヤの断面形状は一方向加工に優位な形状であると尚良い。具体的には、
ワイヤ断面の周縁が、対向する一対の直線部を有し、それら一対の直線部両端の互いに対向する端部同士を接続する部分のうちの少なくとも一方に外側へ膨らんだ曲線部を有する形状のワイヤであって、前記一方の曲線部がワイヤ長手方向に連続してなる曲面部に、前記放電域を有し、且つワイヤ断面が該直線部の直線方向に長い形状であるのが良い。
The cross-sectional shape of the electric discharge machining wire is preferably a shape superior to unidirectional machining. In particular,
A wire having a shape in which the peripheral edge of the wire cross section has a pair of opposing straight portions, and has a curved portion that bulges outward in at least one of the ends connecting the opposing ends of the pair of straight portions. And it is good for the said one curve part to have the said discharge area in the curved-surface part which continues in a wire longitudinal direction, and for the wire cross section to be a shape long in the linear direction of this linear part.

更に、前記ワイヤ断面の形状が、前記一対の直線部が同寸且つ互いに平行で、それら一対の直線部両端の互いに対向する端部同士を接続する部分の両方に前記曲線部を有するトラック形状であるのがより好ましい。 Furthermore, the shape of the cross section of the wire is a track shape in which the pair of linear portions are the same size and parallel to each other, and the curved portions are provided on both ends of the pair of linear portions connected to each other. More preferably.

ワイヤの周縁において放電する部分が特定されているため、加工方向にのみ効率的に放電を発生させることができる。そのため、被加工物の加工面を荒らすことなく、平滑な面が得られる。更に無駄な放電エネルギーを消費しないため、省エネ加工が行える。 Since the portion to be discharged at the peripheral edge of the wire is specified, the discharge can be efficiently generated only in the machining direction. Therefore, a smooth surface can be obtained without roughening the processed surface of the workpiece. Furthermore, since wasteful discharge energy is not consumed, energy saving processing can be performed.

また放電が加工方向のみとなることで、被加工物が溶融・除去される部分が最小限に抑えられるため、歩留まりが良くなる。 In addition, since the discharge is only in the machining direction, the portion where the workpiece is melted and removed can be minimized, so that the yield is improved.

本発明の代表的なワイヤの概略図(a)ワイヤ長手方向と直交する断面図(b)側面外観図Schematic diagram of a representative wire of the present invention (a) Cross-sectional view orthogonal to the wire longitudinal direction (b) Side view 放電域の例を示す断面図Sectional view showing an example of the discharge area 断面形状の例を示す断面図Sectional view showing examples of cross-sectional shapes 非放電域の例を示す断面図Sectional view showing an example of a non-discharge area 従来の代表的なワイヤの断面図Cross-sectional view of a typical conventional wire 従来の放電加工状態の断面概略図Cross-sectional schematic diagram of conventional EDM state 本発明の放電加工状態の断面概略図Schematic cross-sectional view of the electrical discharge machining state of the present invention 実施例1に基づく放電域角度における放電性能の相関図Correlation diagram of discharge performance at discharge area angle based on Example 1

ワイヤ表面に連続する特定の放電域と、放電が起こらない非放電域を設けたことが最大の特徴である。図1は本発明の代表的なワイヤの概略図を示す。図1中の(a)はワイヤ長手方向と直交する断面図であり、(b)は側面外観図である。放電加工用ワイヤ2はワイヤ芯材4の周縁同一部位においてワイヤ長手方向に連続する放電域8を有している。且つその他の部位は放電域8より電気抵抗の高い、例えば絶縁層6で形成される非放電域10を有している。 The greatest feature is that a specific discharge area continuous on the wire surface and a non-discharge area where no discharge occurs are provided. FIG. 1 shows a schematic diagram of a representative wire of the present invention. 1A is a cross-sectional view orthogonal to the wire longitudinal direction, and FIG. 1B is a side external view. The electric discharge machining wire 2 has a discharge region 8 continuous in the wire longitudinal direction at the same peripheral edge of the wire core member 4. In addition, the other part has a non-discharge region 10 having a higher electrical resistance than the discharge region 8, for example, formed of the insulating layer 6.

放電域8と非放電域10を設ける方法としてはワイヤ芯材4の表面状態を変化させることで容易に形成できる。具体的には電気抵抗に差を有する状態を形成すればよい。電気抵抗に差があれば、必然的に抵抗の小さいほうへ電気は流れる。これを利用して放電する方向を特定することができる。つまり加工したい方向にのみ放電を発生させることができるワイヤが実現できる。 As a method of providing the discharge region 8 and the non-discharge region 10, it can be easily formed by changing the surface state of the wire core material 4. Specifically, a state having a difference in electrical resistance may be formed. If there is a difference in electrical resistance, electricity inevitably flows to the side with the lower resistance. The discharge direction can be specified using this. That is, it is possible to realize a wire that can generate an electric discharge only in the direction in which it is desired to be processed.

尚、本発明における「電気抵抗」とはワイヤ芯材4の表面からワイヤの最外表面までの電気的な抵抗のことを意味する。 The “electric resistance” in the present invention means an electric resistance from the surface of the wire core material 4 to the outermost surface of the wire.

また、「絶縁」とは通常使用における電圧、具体的には50Vから300Vにおける電圧において電気を通さないことを意味する。 “Insulation” means that electricity is not conducted at a voltage in normal use, specifically at a voltage of 50V to 300V.

更に、「高抵抗」とは前述の電圧において、集中放電を回避し、分散放電性を高められるものであれば良い。具体的には酸化層(例えば酸化亜鉛層等)や樹脂層(例えばアルキド樹脂、ポリエチレン樹脂、ポリエステル樹脂等からなり、厚み0.1〜5μmに形成した層)である。これらに類する効果のあるものであればよく、特に指定されない。 Further, the “high resistance” may be anything as long as it can avoid the concentrated discharge and improve the dispersive discharge property at the voltage described above. Specifically, it is an oxide layer (for example, zinc oxide layer) or a resin layer (for example, a layer made of alkyd resin, polyethylene resin, polyester resin, etc., and having a thickness of 0.1 to 5 μm). Anything having an effect similar to these may be used, and is not particularly specified.

従って通常使用における電圧にあって、「放電する」あるいは「放電しない」ように形成することが肝要である。よって放電域と非放電域が同じ物質であっても良い。例えばポリエステルやポリエチレン等の樹脂をワイヤ表面に薄く形成(例えば1μm)すれば高抵抗層となる。しかし、厚く形成(例えば10μm以上)すれば絶縁層になることもできる。 Accordingly, it is important that the voltage is set to “discharge” or “do not discharge” at a voltage in normal use. Therefore, the discharge area and the non-discharge area may be the same substance. For example, if a resin such as polyester or polyethylene is thinly formed on the wire surface (for example, 1 μm), a high resistance layer is obtained. However, if it is formed thick (for example, 10 μm or more), it can be an insulating layer.

放電域の具体的な例として図2に示す。図2は放電域の例を示す断面図である。図2中の(c)は母材12が露出している。例えば一般的に使用されているタングステン線であれば電気伝導度が高く且つ強靭であるため、放電加工において問題ない。 A specific example of the discharge region is shown in FIG. FIG. 2 is a cross-sectional view showing an example of a discharge region. In FIG. 2C, the base material 12 is exposed. For example, a commonly used tungsten wire has no problem in electric discharge machining because of its high electric conductivity and toughness.

図2中の(d)は母材12に金属層14が形成された例である。母材12が例えば鋼線であれば、伸線加工性の向上のために亜鉛メッキやブラスメッキがなされることがある。更に電気伝導度の面では銅メッキ、銀メッキや金メッキを施しても良い。こうした金属メッキによる金属層14は放電域とすることができる。 FIG. 2D shows an example in which a metal layer 14 is formed on the base material 12. If the base material 12 is, for example, a steel wire, galvanization or brass plating may be performed to improve wire drawing workability. Further, in terms of electrical conductivity, copper plating, silver plating or gold plating may be applied. The metal layer 14 formed by such metal plating can be used as a discharge region.

図2中の(e)及び(f)は放電域8において前記金属層14の外周に高抵抗層16を形成された例である。高抵抗層16としては前記の通りで、樹脂等を所定の厚みで形成すると良い。この時、高抵抗層16が(e)のように絶縁層6の内周側に形成されていても良いし、あるいは(f)のように放電域8にのみ形成されていても良い。 FIGS. 2E and 2F are examples in which a high resistance layer 16 is formed on the outer periphery of the metal layer 14 in the discharge region 8. As described above, the high resistance layer 16 may be formed of a resin or the like with a predetermined thickness. At this time, the high resistance layer 16 may be formed on the inner peripheral side of the insulating layer 6 as shown in (e), or may be formed only in the discharge region 8 as shown in (f).

尚、絶縁層6により形成される非放電域10は、前記のような樹脂によるものの他に、例えばゴム系のもの等、電気抵抗が極めて高いものが有効であり、絶縁を実現するものであればよく、特に指定されない。 The non-discharge region 10 formed by the insulating layer 6 is effective not only with the resin as described above but also with a very high electrical resistance, such as a rubber-based material, for realizing insulation. What is necessary is not particularly specified.

またワイヤの断面形状を種々変更することで、より加工性能を向上させることができる。図3は断面形状の例を示す断面図である。図3中の(g)は断面円形状であり、(h)は断面四角形、(i)はトラック形状、(j)は楕円形、(k)は六角形、(l)は略前方後円形のものである。いずれも絶縁層6が形成されている部分が非放電域であり、その他の部位が放電域である。図3は一例でありこれらに限定されるものではない。 Further, the machining performance can be further improved by variously changing the cross-sectional shape of the wire. FIG. 3 is a sectional view showing an example of a sectional shape. In FIG. 3, (g) is a circular cross section, (h) is a quadrilateral cross section, (i) is a track shape, (j) is an ellipse, (k) is a hexagon, and (l) is a substantially front-rear circle. belongs to. In any case, the portion where the insulating layer 6 is formed is a non-discharge region, and the other portion is a discharge region. FIG. 3 is an example and is not limited thereto.

前記の形状の中でも好ましい断面形状は加工方向に対して長径であるものである。例えば図3中の(i)や(j)や(l)である。これらは加工幅をより小さく、且つ強靭な引張強度を備えたワイヤである。 Among the above shapes, a preferable cross-sectional shape is a major axis with respect to the processing direction. For example, (i), (j), and (l) in FIG. These are wires having a smaller working width and a strong tensile strength.

また、放電域としては凸状の曲線部18を有していることが望ましい。例えば図3中の(g)、(i)、(j)や(l)等のように円弧状の場合、加工方向に対して均一な放電が行われ易い。 Moreover, it is desirable to have the convex curve part 18 as a discharge area. For example, in the case of an arc shape such as (g), (i), (j), or (l) in FIG. 3, uniform discharge is easily performed in the machining direction.

前記のとおり、断面形状としては(i)や(l)が好ましく、特に角部がなくワイヤ芯材4の断面が点対称な形状である(i)のトラック形状がワイヤの成形面からも最良の形態と言える。 As described above, (i) and (l) are preferable as the cross-sectional shape, and the track shape of (i) in which the cross-section of the wire core material 4 is point-symmetric with no corners is also the best from the wire forming surface. It can be said that.

尚、非放電域を形成する領域も種々変更が可能である。図4は非放電域の例を示す断面図である。代表例として断面が円形のもので説明している。円周における放電域の占める割合を円周角で示すと、凡そ120°〜250°において効果があり、更には120°〜170°がより好ましい。詳細には以下のように加工に求める品質に従って種々変更が可能である。 It should be noted that various changes can also be made in the region forming the non-discharge region. FIG. 4 is a cross-sectional view showing an example of a non-discharge region. As a representative example, the cross section is circular. When the ratio of the discharge area in the circumference is expressed by the circumference angle, it is effective at about 120 ° to 250 °, and more preferably 120 ° to 170 °. In detail, various changes can be made according to the quality required for processing as follows.

詳細について図7を用いて示す。図7は本発明の放電加工状態の断面概略図である。(s)は放電ギャップを小さくした条件で放電加工を行った場合である。対して(t)は放電ギャップを大きくした条件で放電加工を行った場合である。 Details are shown in FIG. FIG. 7 is a schematic sectional view of the electric discharge machining state of the present invention. (S) is a case where electric discharge machining is performed under the condition that the electric discharge gap is reduced. On the other hand, (t) shows a case where electric discharge machining is performed under the condition that the electric discharge gap is increased.

もし被加工物の加工面をより平滑に精度良く行いたいのであれば、(s)のように行えば良い。つまり放電加工機の電圧設定を低めにし、放電域は160°〜170°に設定するのが良い。この場合、より平滑な面に仕上げることができる。 If it is desired to make the processed surface of the workpiece smoother and more accurately, the process can be performed as shown in (s). That is, it is preferable that the voltage setting of the electric discharge machine is lowered and the discharge region is set to 160 ° to 170 °. In this case, a smoother surface can be finished.

もし、加工を早く行いたいのであれば、放電加工機の電圧設定を高めると良い。この時より大きな放電20bが生じ、被加工物とワイヤ間の距離(ギャップ)も大きくなる。この条件のとき放電域は狭くしておくと良い。放電域が狭くなっても大きな放電により加工が行われることで、ワイヤが進むのに十分な加工幅24を確保できる。尚、その他の断面形状において放電域の範囲を検討する場合にも同様に考えれば良い。 If you want to process quickly, you can increase the voltage setting of the electrical discharge machine. At this time, a larger discharge 20b is generated, and the distance (gap) between the workpiece and the wire also increases. The discharge area should be narrowed under these conditions. Even if the discharge area is narrowed, the machining is performed by a large discharge, so that a machining width 24 sufficient for the wire to travel can be secured. The same applies to the examination of the range of the discharge region in other cross-sectional shapes.

放電域−非放電域を設けたワイヤの製造方法は難しくない。例えば非放電域として絶縁樹脂層を形成するには次のような方法がある。 The manufacturing method of the wire which provided the discharge area-non-discharge area is not difficult. For example, there are the following methods for forming an insulating resin layer as a non-discharge region.

細く仕上げたワイヤ芯材を用意する。この時、金属メッキ等により放電域となる表層部を形成しておくと良い。用意されるワイヤ芯材は異形ダイス引き伸線やローラー圧延等により断面が円でない異形線にしても良い。また異形加工は非放電域を形成した後でも良い。ワイヤ芯材の準備はこれらの方法に限定するものでなく、類するものであれば良い。 Prepare a finely finished wire core. At this time, it is preferable to form a surface layer portion serving as a discharge region by metal plating or the like. The prepared wire core material may be a deformed wire having a non-circular cross section by deformed die drawing or roller rolling. The profile processing may be performed after the non-discharge region is formed. The preparation of the wire core material is not limited to these methods, but may be anything similar.

このワイヤを走行させながら溶融した絶縁樹脂層に浸漬する。更に走行させながらワイヤの放電域としたい領域に付着する溶融樹脂を剥ぎ落とす。樹脂を剥ぎ落とす方法は特に指定されるものではない。例えばダイスやローラー等、物理的に接触を与えることで容易に剥ぎ落とすことができる。この剥ぎ落とされる領域により、放電域が決定される。その後直ちに乾燥させて非放電域を確定し形成する。 The wire is immersed in the molten insulating resin layer while running. Further, the molten resin adhering to the region desired to be the discharge region of the wire is peeled off while running. The method for peeling off the resin is not particularly specified. For example, it can be easily peeled off by physically contacting with a die or a roller. The discharge area is determined by the area to be peeled off. Immediately after that, a non-discharge area is determined and formed by drying.

なお、現状の技術においては一方向にのみの加工にしか適用できない。しかし、本発明のワイヤの放電域を加工方向に向ける制御が放電加工機に備わっていれば、不特定方向への放電加工においても適用できる。 Note that the current technology can be applied only to processing in one direction. However, if the electric discharge machine has control for directing the discharge region of the wire of the present invention in the machining direction, it can also be applied to electric discharge machining in an unspecified direction.

本発明に基づき数種のワイヤを製作し実験を行った。いずれの実施例においてもφ0.20mmからなる硬鋼線の周縁にブラスメッキを有するワイヤ芯材を用いた。放電域として100°〜250°まで、10°刻みで用意し、各ワイヤの非放電域としてナイロン樹脂を10μ塗布して各種ワイヤを製作した。被加工物としては材質がSKD11材、厚みが10mmの板を用意し、放電加工を行った。使用した設備は三菱電機社製(型番PX−05)放電加工機であり、設定電圧を150V、ワイヤ走行速度を10m/minにて行った。 Based on the present invention, several types of wires were manufactured and tested. In any of the examples, a wire core material having brass plating on the periphery of a hard steel wire having a diameter of 0.20 mm was used. A discharge region was prepared in increments of 10 ° from 100 ° to 250 °, and 10 μl of nylon resin was applied as a non-discharge region of each wire to produce various wires. As a workpiece, a plate having a material of SKD11 and a thickness of 10 mm was prepared and subjected to electric discharge machining. The equipment used was an electric discharge machine manufactured by Mitsubishi Electric Corporation (model number PX-05), and the setting voltage was 150 V and the wire traveling speed was 10 m / min.

評価項目としては(1)50mm切断加工した時の時間(速度)、(2)加工面粗さ、及び(3)加工幅を測定した。その結果を従来の非放電域を設けていないワイヤでの各計測値を1としたときの相対評価で各々行った。その結果が図8である。 As evaluation items, (1) time (speed) when cutting 50 mm, (2) surface roughness, and (3) processing width were measured. The results were obtained by relative evaluation when each measured value with a conventional wire without a non-discharge region was set to 1. The result is shown in FIG.

放電域を100°、及び110°とした場合は、加工幅が小さく、ワイヤが進まず断線した。しかし、設定電圧を高くし、放電ギャップが大きくなれば110°より小さくとも加工は行えたと推察される。 When the discharge area was set to 100 ° and 110 °, the processing width was small, and the wire was disconnected without progressing. However, if the set voltage is increased and the discharge gap is increased, it is presumed that the machining can be performed even if it is smaller than 110 °.

放電域を250°とした場合、加工速度(右軸)は非放電域を設けない場合とほぼ変わらない。しかしその後、放電域を小さくすると比例して加工速度比は大きくなる、つまり加工時間が短くなった。120°の場合には最大2.5倍の速さとなった。加工面粗さ(左軸)については放電域を250°という広角とした場合であっても、非放電域がない場合と比べて効果があった。放電域を狭くしていくと加工面粗さはより平滑となり、180°までは比例して改善された。160°〜180°あたりで最も良い加工面が得られ、その後はほぼ同程度の面粗さで、従来の8割程度の粗さに抑えられた。加工溝幅(左軸)についても同様に、放電域の角度を小さくする程加工溝幅は狭くなり、120°〜140°において従来比で最小85%の幅となった。 When the discharge area is 250 °, the processing speed (right axis) is almost the same as when no non-discharge area is provided. However, after that, when the discharge area was reduced, the machining speed ratio was proportionally increased, that is, the machining time was shortened. In the case of 120 °, the maximum speed was 2.5 times. With respect to the processed surface roughness (left axis), even when the discharge area was a wide angle of 250 °, there was an effect as compared with the case where there was no non-discharge area. As the discharge area was narrowed, the surface roughness became smoother and improved up to 180 ° in proportion. The best processed surface was obtained around 160 ° to 180 °, and after that, the surface roughness was almost the same, and the conventional roughness was reduced to about 80%. Similarly, with respect to the machining groove width (left axis), the machining groove width becomes narrower as the angle of the discharge region is reduced, and the width is a minimum of 85% compared to the conventional case at 120 ° to 140 °.

次に基本条件を実施例1と同様の条件で行い、断面形状による影響の確認実験を行った。準備したワイヤとして、実施例1の断面が円形状の他、断面がトラック形のワイヤをそれぞれ2本用意した。トラック形状は圧延により成形し、長径aと短径bの比がa:b=2:1とした。いずれも引張強さが同程度となるよう断面積を調整した。各々2本のうち、一方は全周にブラスメッキ層(放電域)を有している。もう一方のうち断面が円形状のものは放電域として180°の範囲に形成した。断面がトラック形状のものは一方の曲線部の面のみ放電域とし、その他の面を非放電域とした。その結果が表1である。 Next, the basic conditions were the same as in Example 1, and an experiment for confirming the influence of the cross-sectional shape was performed. As prepared wires, two wires each having a track-shaped cross section were prepared in addition to the circular cross section of Example 1. The track shape was formed by rolling, and the ratio of the major axis a to the minor axis b was a: b = 2: 1. In all cases, the cross-sectional area was adjusted so that the tensile strength was approximately the same. One of each two has a brass plating layer (discharge region) on the entire circumference. The other one having a circular cross section was formed in a range of 180 ° as a discharge region. In the case of a track-shaped cross section, only the surface of one curved portion was a discharge region, and the other surface was a non-discharge region. The results are shown in Table 1.

従来のものと比較して、断面円形の効果は実施例1の結果からも明らかに改善されている。対してトラック形状とすることでワイヤ幅がより狭くなっている。そのため加工幅を更に狭くすることが可能になる他、非放電域を有しないトラック形と比較しても、非放電域を設けることで加工速度や加工面粗さが格段に向上した。 Compared with the conventional one, the effect of the circular cross section is also clearly improved from the result of Example 1. On the other hand, the wire width is narrower by adopting a track shape. As a result, the machining width can be further narrowed, and the machining speed and the machined surface roughness have been remarkably improved by providing the non-discharge region as compared with the track type having no non-discharge region.

2・・・・・放電加工用ワイヤ
4・・・・・ワイヤ芯材
6・・・・・絶縁層
8・・・・・放電域
10・・・・非放電域
12・・・・母材
14・・・・金属層
16・・・・高抵抗層
18・・・・曲線部
20、20a、20b・・・・放電
22・・・・被加工物
24・・・・加工幅
2... Wire for electric discharge machining 4... Wire core material 6... Insulating layer 8. 14... Metal layer 16... High resistance layer 18... Curved portion 20, 20 a, 20 b ... Discharge 22 ... Workpiece 24.

Claims (5)

ワイヤ表面が、ワイヤ断面の周縁同一部位においてワイヤ長手方向に連続する放電域と、その他の部位が該放電域より電気抵抗の高い非放電域とで構成される放電加工用ワイヤ。 A wire for electric discharge machining in which a wire surface is composed of a discharge region that is continuous in the longitudinal direction of the wire at the same peripheral portion of the cross section of the wire and a non-discharge region in which the other portion has a higher electrical resistance than the discharge region. 前記非放電域が絶縁層である請求項1に記載の放電加工用ワイヤ。 The wire for electric discharge machining according to claim 1, wherein the non-discharge area is an insulating layer. 前記放電域が金属層、または高抵抗層である請求項1又は2に記載の放電加工用ワイヤ。 The wire for electric discharge machining according to claim 1, wherein the electric discharge area is a metal layer or a high resistance layer. ワイヤ断面の周縁が、対向する一対の直線部を有し、それら一対の直線部両端の互いに対向する端部同士を接続する部分のうちの少なくとも一方に外側へ膨らんだ曲線部を有する形状のワイヤであって、前記一方の曲線部がワイヤ長手方向に連続してなる曲面部に、前記放電域を有し、且つワイヤ断面が該直線部の直線方向に長い形状である請求項1から3のいずれか1項に記載の放電加工用ワイヤ。 A wire having a shape in which the peripheral edge of the wire cross section has a pair of opposing straight portions, and has a curved portion that bulges outward in at least one of the ends connecting the opposing ends of the pair of straight portions. The one curved portion has the discharge area in a curved surface portion formed continuously in the longitudinal direction of the wire, and the wire section has a shape that is long in the linear direction of the straight portion. The wire for electric discharge machining of any one of Claims 1. 前記ワイヤ断面の形状が、前記一対の直線部が同寸且つ互いに平行で、それら一対の直線部両端の互いに対向する端部同士を接続する部分の両方に前記曲線部を有するトラック形状である請求項4に記載の放電加工用ワイヤ。
The shape of the cross section of the wire is a track shape in which the pair of linear portions are the same size and parallel to each other, and the curved portions are provided on both ends of the ends of the pair of linear portions connected to each other. Item 5. The wire for electric discharge machining according to Item 4.
JP2009173331A 2009-02-10 2009-07-24 Wire for electric discharge machining Expired - Fee Related JP5575430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173331A JP5575430B2 (en) 2009-02-10 2009-07-24 Wire for electric discharge machining

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009028452 2009-02-10
JP2009028452 2009-02-10
JP2009173331A JP5575430B2 (en) 2009-02-10 2009-07-24 Wire for electric discharge machining

Publications (2)

Publication Number Publication Date
JP2010208009A true JP2010208009A (en) 2010-09-24
JP5575430B2 JP5575430B2 (en) 2014-08-20

Family

ID=42968756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173331A Expired - Fee Related JP5575430B2 (en) 2009-02-10 2009-07-24 Wire for electric discharge machining

Country Status (1)

Country Link
JP (1) JP5575430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131319A (en) * 2009-12-24 2011-07-07 Okayama Univ Wire for discharge machining and multi-discharge machining method
JP2012245567A (en) * 2011-05-25 2012-12-13 Okayama Univ Wire for electric discharge machining

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584317A (en) * 1981-06-29 1983-01-11 Inoue Japax Res Inc Electrode wire for wire cut electrospark machining
JPH01183324A (en) * 1988-01-19 1989-07-21 Mitsubishi Electric Corp Wire electrode for wire cut discharge machining
JPH01205925A (en) * 1988-02-08 1989-08-18 Amada Co Ltd Electric discharge machining and device therefor
JPH01228728A (en) * 1988-03-03 1989-09-12 Mitsubishi Electric Corp Wire electrode for wire cut electric discharge machining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584317A (en) * 1981-06-29 1983-01-11 Inoue Japax Res Inc Electrode wire for wire cut electrospark machining
JPH01183324A (en) * 1988-01-19 1989-07-21 Mitsubishi Electric Corp Wire electrode for wire cut discharge machining
JPH01205925A (en) * 1988-02-08 1989-08-18 Amada Co Ltd Electric discharge machining and device therefor
JPH01228728A (en) * 1988-03-03 1989-09-12 Mitsubishi Electric Corp Wire electrode for wire cut electric discharge machining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131319A (en) * 2009-12-24 2011-07-07 Okayama Univ Wire for discharge machining and multi-discharge machining method
JP2012245567A (en) * 2011-05-25 2012-12-13 Okayama Univ Wire for electric discharge machining

Also Published As

Publication number Publication date
JP5575430B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
Qu et al. Wire electrochemical machining with axial electrolyte flushing for titanium alloy
CN105834533B (en) Wire electrode for slow wire feeding spark cutting
CN109570666B (en) Bipolar tool electrode for electrolytic wire cutting machining and manufacturing and machining method
KR101711040B1 (en) Electrode wire for wire electric discharge machining, and method for producting same
KR101292343B1 (en) Wire electrode for electro discharge machining and thesame methode
JP5231486B2 (en) Electrode wire for electric discharge machining
CN106270848B (en) A kind of unidirectional wire electric discharge machining polar filament and preparation method thereof
Wang et al. High efficiency slicing of low resistance silicon ingot by wire electrolytic-spark hybrid machining
Tyagi et al. Investigations into side gap in wire electrochemical micromachining (wire-ECMM)
TWI571339B (en) The methodology of cutting semi/non-conductive material using wedm
Gowthaman et al. A study of machining characteristics of AISI 4340 alloy steel by wire electrical discharge machining process
JP5575430B2 (en) Wire for electric discharge machining
Kruth et al. Composite wires with high tensile core for wire EDM
JP2014136285A (en) Wire for electric-discharge machining and method of producing the same
CN114700568B (en) Method and device for processing groove structure by combining electric spark and electrolysis of belt electrode
RU2681239C1 (en) Device for electrolyte-plasma treatment of metal products
JP5491161B2 (en) Wire for electric discharge machining and multi-electric discharge machining method
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
Wu Study of removing the recast layer by electrochemical dissolution with wire low feedrate in WEDM
CN205519972U (en) Novel a wire electrode for wire cut spark -erosion wire cutting machine
Saedon et al. A study on kerf and material removal rate in wire electricaldischarge machining of Ti-6Al-4V: Multi-objectives optimization
JP5209255B2 (en) Electrode wire for wire electrical discharge machining
JP2012245567A (en) Wire for electric discharge machining
CN112091339B (en) Integrated spiral tool electrode and multi-potential electrolytic milling and grinding method thereof
JP2009291856A (en) Electrode wire for electrical discharge machining

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees