JP2009291856A - Electrode wire for electrical discharge machining - Google Patents

Electrode wire for electrical discharge machining Download PDF

Info

Publication number
JP2009291856A
JP2009291856A JP2008145618A JP2008145618A JP2009291856A JP 2009291856 A JP2009291856 A JP 2009291856A JP 2008145618 A JP2008145618 A JP 2008145618A JP 2008145618 A JP2008145618 A JP 2008145618A JP 2009291856 A JP2009291856 A JP 2009291856A
Authority
JP
Japan
Prior art keywords
convex curved
flat surface
curved surface
straight line
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008145618A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamauchi
俊之 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008145618A priority Critical patent/JP2009291856A/en
Publication of JP2009291856A publication Critical patent/JP2009291856A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode wire for electrical discharge machining can perform micro-discharge machining and manufacturable at low cost. <P>SOLUTION: This electrode wire includes a cross section surrounded by a first flat surface 3 and a second flat surface which are opposed to each other, a first projecting curved surface 5 connected to one of the first flat surface 3 and the second flat surface 4 and projecting outward, and a second projecting curved surface 6 connected to the other of the first flat surface 3 and the second flat surface 4 and projecting outward. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ワイヤ放電加工の工具電極として用いられる電極線に関し、特に低コストでありながら、性能に優れた放電加工用電極線に関する。   The present invention relates to an electrode wire used as a tool electrode for wire electric discharge machining, and particularly to an electrode wire for electric discharge machining excellent in performance at a low cost.

ワイヤ放電加工は、細いワイヤを電極線として、加工液(純度の高い水や軽油)を放電部位に供給し、電極線と被加工物に電圧を負荷し、電極線に張力を付加した状態で連続走行させながら、加工液中において被加工物と電極線との間でパルス状の放電を繰り返し発生させ、この放電エネルギーにより被加工物を加工するものである。   Wire electrical discharge machining uses a thin wire as an electrode wire, supplies machining fluid (high-purity water or light oil) to the discharge site, applies voltage to the electrode wire and workpiece, and applies tension to the electrode wire. While continuously running, a pulsed discharge is repeatedly generated between the workpiece and the electrode wire in the machining liquid, and the workpiece is machined by this discharge energy.

上記放電は、溶融、爆発、飛散、冷却およびスラッジ除去の工程で構成されており、電極線と被加工物とが連続して接近することにより、放電加工が繰り返し実行され、被加工物を所定の形状に加工するものである。   The electric discharge is composed of melting, explosion, scattering, cooling, and sludge removal processes. When the electrode wire and the workpiece are continuously approached, the electric discharge machining is repeatedly executed, and the workpiece is predetermined. It is processed into the shape.

近年、精密機器はコンパクト化の傾向にあり、被加工物の寸法および形状の更なる微小化と精密化の必要性が高まっている。これに伴って、放電加工精度(表面粗度および寸法精度)をより一層向上することが要求されている。   In recent years, precision equipment has been in the trend of downsizing, and the need for further miniaturization and refinement of the size and shape of workpieces has increased. Along with this, it is required to further improve the electrical discharge machining accuracy (surface roughness and dimensional accuracy).

寸法と形状が微小な被加工物の加工やスリット加工等を行うには、電極線の線径をできるだけ小さくする必要がある。また、放電加工精度には放電加工時の爆発によって発生する振動が大きく影響するから、電極線には高い張力を付加する必要がある。よって、微小な被加工物を高い加工精度で放電加工する場合、より細くて(例えば、直径50μm程度)、高い引張り強さを有する電極線が要求される。   In order to perform processing of a workpiece having a minute size and shape, slit processing, or the like, it is necessary to make the wire diameter of the electrode wire as small as possible. Moreover, since the vibration generated by the explosion during electric discharge machining has a great influence on the electric discharge machining accuracy, it is necessary to apply a high tension to the electrode wire. Therefore, when electric discharge machining is performed on a minute workpiece with high machining accuracy, an electrode wire that is thinner (for example, about 50 μm in diameter) and has a high tensile strength is required.

このような要求に対処する放電加工用電極線として、例えば、特許文献1に記載されている、タングステンを素材とした放電加工用電極線が知られている。この特許文献1に記載された放電加工用電極線は、引張り強さが高いので、高張力下で放電加工を行うことができるものの、放電加工時におけるワイヤ表面での爆発の大きさを制御することが困難であるため、爆発の大きさが極めて不均一となるという特性を有するので、比較的大きな爆発と微小な爆発とが混在してしまい、高い加工精度を得ることができない。また、タングステンを素材としているので、素材コストおよび製造コストが高いため、製品が高価になるという問題がある。   As an electrode wire for electric discharge machining that meets such a demand, for example, an electrode wire for electric discharge machining using tungsten as a material described in Patent Document 1 is known. The electrode wire for electric discharge machining described in Patent Document 1 has high tensile strength, so that electric discharge machining can be performed under high tension, but the magnitude of explosion on the wire surface during electric discharge machining is controlled. Therefore, since the explosion has a characteristic that the size of the explosion is extremely uneven, a relatively large explosion and a small explosion are mixed, and high processing accuracy cannot be obtained. In addition, since tungsten is used as the material, there is a problem that the cost of the product is high because the material cost and the manufacturing cost are high.

また、特許文献2には、ピアノ線を芯材とし、この芯材の表面に銅の下層と亜鉛の上層とを順次被覆し、最終断面直径を0.10mm以下にした黄銅被覆放電加工用電極線が記載されている。この黄銅被覆放電加工用電極線の製造コストは特許文献1記載のタングステン製放電加工用電極線の約1/5ないし1/8であって極めて安価であり、且つ、放電加工時におけるワイヤ表面での爆発の大きさを制御することがタングステン製放電加工用電極線より容易であるため、比較的大きな爆発と微小な爆発とが混在しないようにすることは可能であるが、引張り強さが低いため、放電加工を低い張力のもとで行わざるを得ず、その結果、加工速度が低く、且つ加工面粗さのばらつきが大きいという欠点がある。従って、この黄銅被覆放電加工用電極線は微細加工に使用することはできない。   Patent Document 2 discloses a brass-coated electrode for electric discharge machining in which a piano wire is used as a core material, a copper lower layer and a zinc upper layer are sequentially coated on the surface of the core material, and the final cross-sectional diameter is 0.10 mm or less. Lines are listed. The manufacturing cost of this brass-coated electrode wire for electric discharge machining is about 1/5 to 1/8 of the electrode wire for electric discharge machining made of tungsten described in Patent Document 1, and is extremely inexpensive, and on the wire surface during electric discharge machining. Because it is easier to control the magnitude of the explosion than the electrode wire for electrical discharge machining made of tungsten, it is possible to prevent the mixing of relatively large explosions and minute explosions, but the tensile strength is low Therefore, electric discharge machining must be performed under a low tension, and as a result, there are disadvantages that the machining speed is low and the variation of the machined surface roughness is large. Therefore, this brass-coated electrode wire for electric discharge machining cannot be used for fine machining.

さらに、特許文献3には、図4に示すような矩形断面を有する放電加工機用ワイヤー11が記載されている。同文献には、図4に示すワイヤー11は、カッテイング深さを比較的大きくしたり、ワークとの近接面積を広くとれるので一度に広い幅を同時に放電加工することができると記載されている。しかし、図4に示すような矩形断面のワイヤーの場合、図5に示すように、ワイヤー12の鋭利な角部に放電13が集中するため、均一な分散放電ができず、被加工物14を微細に加工することは困難である。  Further, Patent Document 3 describes an electric discharge machine wire 11 having a rectangular cross section as shown in FIG. This document describes that the wire 11 shown in FIG. 4 can have a relatively large cutting depth and a large area close to the workpiece, so that a wide width can be discharged simultaneously at the same time. However, in the case of a wire having a rectangular cross section as shown in FIG. 4, as shown in FIG. 5, since the discharge 13 concentrates on the sharp corners of the wire 12, uniform distributed discharge cannot be performed, and the workpiece 14 is It is difficult to process finely.

また、図6に示すように、楕円形断面のワイヤー15においては、長径側の頂点のみならず、短径側の頂点でも放電16が生じるので、加工代(放電で除去される部分)が大きくなり、この場合も被加工物17を微細に加工することは困難である。
特許第2669436号明細書 特開2000−107943号公報 実用新案登録第3002783号公報
Moreover, as shown in FIG. 6, in the wire 15 having an elliptical cross section, the discharge 16 is generated not only at the apex on the long diameter side but also at the apex on the short diameter side, so that the machining allowance (portion removed by the electric discharge) is large. In this case, it is difficult to finely process the workpiece 17.
Japanese Patent No. 2669436 JP 2000-107943 A Utility Model Registration No. 3002783

本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、微細な放電加工が可能な低コストの放電加工用電極線を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object thereof is to provide a low-cost electric discharge machining electrode wire capable of fine electric discharge machining.

微細な放電加工を実行するためには、その放電加工用電極線は以下に説明するような条件を満たす必要がある。   In order to execute fine electric discharge machining, the electrode wire for electric discharge machining needs to satisfy the conditions described below.

放電加工時の爆発によって発生する振動の影響を極力受けないようにするため緊張させた状態で電極線を走行させるので、高い引張り強さを備えていることが必要である。当然のことながら、微細加工をするためには、電極線の直径はできるだけ小さいことが好ましい。これらの高い引張り強さと細径化の条件については、図4に示す矩形断面のワイヤー11は、断面積が一般的な球形断面線より大きいので引張り強さが高く、短径側の幅Wを小さくすることにより細径化を達成することができる。ところが、上記したように、矩形断面のワイヤーでは鋭利な角部に放電が集中するという欠点があるので、均一な分散放電ができない。   Since the electrode wire is run in a tensioned state so as not to be affected as much as possible by the vibration generated by the explosion during the electric discharge machining, it is necessary to have a high tensile strength. As a matter of course, it is preferable that the diameter of the electrode wire is as small as possible for fine processing. With respect to these high tensile strength and thinning conditions, the wire 11 having a rectangular cross section shown in FIG. 4 has a higher tensile strength because the cross-sectional area is larger than a general spherical cross section line, and the width W on the short diameter side is increased. The diameter can be reduced by reducing the diameter. However, as described above, the wire having a rectangular cross section has a drawback that the discharge is concentrated at sharp corners, so that uniform distributed discharge cannot be performed.

そこで、本発明者は、高い引張り強さと細径化と均一な分散放電という3つの条件を満たした放電加工用電極線として、次のような特徴を備えたものを想到したのある。   Accordingly, the present inventor has conceived an electric discharge machining electrode wire having the following characteristics as an electrode wire for electric discharge machining that satisfies the three conditions of high tensile strength, thinning, and uniform dispersed discharge.

すなわち、本発明の放電加工用電極線は、対峙する第一平坦面(後記する図1の番号3)および第二平坦面(後記する図1の番号4)と、第一平坦面および第二平坦面の一方を接続して外方に突出している第一凸状曲面(後記する図1の番号5)と、第一平坦面および第二平坦面の他方を接続して外方に突出している第二凸状曲面(後記する図1の番号6)とで囲まれてなる断面を有することを特徴としている。   That is, the electrode wire for electric discharge machining according to the present invention includes a first flat surface (number 3 in FIG. 1 to be described later) and a second flat surface (number 4 in FIG. 1 to be described later), a first flat surface and a second flat surface. A first convex curved surface (number 5 in FIG. 1 to be described later) connecting one of the flat surfaces and projecting outward is connected to the other of the first flat surface and the second flat surface and projecting outward. It is characterized by having a cross section surrounded by a second convex curved surface (number 6 in FIG. 1 to be described later).

加工方向の先端面を第一凸状曲面とし、加工方向の後端面を第二凸状曲面とし、第一平坦面および第一凸状曲面の接続点と第二平坦面および第一凸状曲面の接続点とを結ぶ直線をAとし、第一平坦面および第一凸状曲面の接続点と第一凸状曲面の最大凸状点とを結ぶ直線をEとし、上記直線Aと直線Eとがなす角度をαとし、第二平坦面および第一凸状曲面の接続点と第一凸状曲面の最大凸状点とを結ぶ直線をFとし、上記直線Aと直線Fとがなす角度をβとした場合、3°≦α、β≦51°であることが好ましい。   The front end surface in the processing direction is the first convex curved surface, the rear end surface in the processing direction is the second convex curved surface, the connection point between the first flat surface and the first convex curved surface, the second flat surface and the first convex curved surface A straight line connecting the connection points of the first flat surface and the first convex curved surface and a straight line connecting the maximum convex point of the first convex curved surface as E, and the straight lines A and E Is defined as α, and a straight line connecting the connection point between the second flat surface and the first convex curved surface and the maximum convex point of the first convex curved surface is defined as F, and the angle formed between the straight line A and the straight line F is defined as F. In the case of β, it is preferable that 3 ° ≦ α and β ≦ 51 °.

第一平坦面と第二平坦面との間隔は、加工方向の先端面側から後端面側に向かって、等しいか又は狭くなっていることが好ましい。   The distance between the first flat surface and the second flat surface is preferably equal or narrower from the front end surface side to the rear end surface side in the processing direction.

本発明の放電加工用電極線は第一凸状曲面および第二凸状曲面を有するので、第一凸状曲面または第二凸状曲面を加工先端として放電加工を行えば、その凸状曲面により加工方向への放電が分散され、鋭利な角部を有しないので、加工箇所以外の部分に放電が生じることはない。その結果、加工方向へ放電が集中するので、加工代(放電によって除去される部分)が少なく、微細な加工が可能になる。   Since the electrode wire for electric discharge machining of the present invention has a first convex curved surface and a second convex curved surface, if electric discharge machining is performed using the first convex curved surface or the second convex curved surface as a machining tip, the convex curved surface Since the discharge in the machining direction is dispersed and does not have sharp corners, no discharge occurs in any part other than the machining part. As a result, since the electric discharge concentrates in the machining direction, the machining allowance (portion removed by the electric discharge) is small, and fine machining becomes possible.

このような効果を最大限に発揮するためには、凸状曲面が所定の曲面形状を備えることが必要である。加工方向の先端面を第一凸状曲面とし、加工方向の後端面を第二凸状曲面とし、上記のように定義される直線Aと直線Eとがなす角度をαとし、上記のように定義される直線Aと直線Fとがなす角度をβとした場合、αおよびβは3°以上とすることにより曲面の効果を得ることができ、αおよびβは51°以下にすることにより、第一凸状曲面の最大凸状部に放電が集中することはない。   In order to maximize such effects, it is necessary that the convex curved surface has a predetermined curved surface shape. The front end surface in the processing direction is the first convex curved surface, the rear end surface in the processing direction is the second convex curved surface, the angle formed by the straight line A and the straight line E defined as above is α, and When the angle formed by the straight line A and the straight line F defined as β is β, α and β can be 3 ° or more to obtain a curved surface effect, and α and β can be 51 ° or less. The discharge does not concentrate on the maximum convex portion of the first convex curved surface.

以上のように、本発明の放電加工用電極線は、微細な加工が可能であり、断面積が一般的な球形断面線より大きいので引張り強さが高く、第一平坦面と第二平坦面との間隔は、加工方向の先端面側から後端面側に向かって、等しいか又は狭くすることにより細径化を達成することができる。   As described above, the electrode wire for electric discharge machining according to the present invention can be finely processed and has a higher tensile strength because the cross-sectional area is larger than a general spherical cross-sectional line, and the first flat surface and the second flat surface. The diameter can be reduced by making them equal or narrower from the front end surface side to the rear end surface side in the processing direction.

図1は、本発明の放電加工用電極線の断面の一実施例を模式的に示す図である。図1において、1はピアノ線からなる芯材で、2は黄銅メッキ層である。この異形線は、ピアノ線からなる芯材の表面に黄銅メッキ層を設けた球形断面の線材を上下一対または上下左右二対のローラで圧延することにより得た。この放電加工用電極線は、対峙する第一平坦面3および第二平坦面4と、第一平坦面3および第二平坦面4の一方を接続して外方に突出している第一凸状曲面5と、第一平坦面3および第二平坦面4の他方を接続して外方に突出している第二凸状曲面6とで囲まれてなる断面を有している。   FIG. 1 is a diagram schematically showing an example of a cross section of an electrode wire for electric discharge machining according to the present invention. In FIG. 1, 1 is a core material made of piano wire, and 2 is a brass plating layer. The deformed wire was obtained by rolling a spherical wire having a brass plating layer on the surface of a core made of piano wire with a pair of upper and lower or two pairs of upper and lower and left and right rollers. The electrode wire for electric discharge machining has a first convex shape projecting outward by connecting one of the first flat surface 3 and the second flat surface 4 facing each other and the first flat surface 3 and the second flat surface 4. It has a cross section surrounded by a curved surface 5 and a second convex curved surface 6 that connects the other of the first flat surface 3 and the second flat surface 4 and protrudes outward.

図2に示すように、第一平坦面3および第一凸状曲面5の接続点と第二平坦面4および第一凸状曲面5の接続点とを結ぶ直線をAとし、第一平坦面3および第一凸状曲面5の接続点と第一凸状曲面5の最大凸状点5aとを結ぶ直線をEとし、上記直線Aと直線Eとがなす角度がαで、第二平坦面4および第一凸状曲面5の接続点と第一凸状曲面5の最大凸状点5aとを結ぶ直線をFとし、上記直線Aと直線Fとがなす角度がβで、第一平坦面3および第二凸状曲面6の接続点と第二平坦面4および第二凸状曲面6の接続点とを結ぶ直線をCとし、第一平坦面3および第二凸状曲面6の接続点と第二凸状曲面6の最大凸状点6aとを結ぶ直線をGとし、上記直線Cと直線Gとがなす角度がγで、第二平坦面4および第二凸状曲面6の接続点と第二凸状曲面6の最大凸状点6aとを結ぶ直線をHし、上記直線Cと直線Hとがなす角度がδである。   As shown in FIG. 2, a straight line connecting the connection point between the first flat surface 3 and the first convex curved surface 5 and the connection point between the second flat surface 4 and the first convex curved surface 5 is A, and the first flat surface 3 and the straight line connecting the connecting point of the first convex curved surface 5 and the maximum convex point 5a of the first convex curved surface 5 is E, and the angle between the straight line A and the straight line E is α, and the second flat surface 4 and the first convex curved surface 5 and the maximum convex point 5a of the first convex curved surface 5 are F, and the angle formed by the straight line A and the straight line F is β, and the first flat surface A straight line connecting the connection point between the third and second convex curved surfaces 6 and the connection point between the second flat surface 4 and the second convex curved surface 6 is C, and the connection point between the first flat surface 3 and the second convex curved surface 6 And G is the straight line connecting the maximum convex point 6a of the second convex curved surface 6 and the angle between the straight line C and the straight line G is γ, and the connection point between the second flat surface 4 and the second convex curved surface 6 And second The straight line connecting the maximum convex point 6a of Jo curved 6 H, angle between the straight line C and the straight line H is [delta].

この圧延時に、圧下率を種々変更することにより、上記α、β、γおよびδの角度が異なる電極線を得た。なお、同じ電極線の場合、α、β、γおよびδの角度はすべて等しく、この角度が異なる点を除いて、凸状曲面部を有するすべての電極線の直線部AとCの長さはともに0.030mmであり、第一平坦面3および第一凸状曲面5の接続点と第一平坦面3および第二凸状曲面6の接続点とを結ぶ直線Bと、第二平坦面4および第一凸状曲面5の接続点と第二平坦面4および第二凸状曲面6の接続点とを結ぶ直線Dの長さはともに0.100mmである。   During the rolling, electrode wires having different angles of α, β, γ, and δ were obtained by variously changing the rolling reduction. In the case of the same electrode line, the angles of α, β, γ, and δ are all equal, and the lengths of the straight portions A and C of all the electrode lines having the convex curved surface portions are different except that the angles are different. Both are 0.030 mm, a straight line B connecting the connection point of the first flat surface 3 and the first convex curved surface 5 and the connection point of the first flat surface 3 and the second convex curved surface 6, and the second flat surface 4. The length of the straight line D connecting the connection point of the first convex curved surface 5 and the connection point of the second flat surface 4 and the second convex curved surface 6 is 0.100 mm.

また、比較のために、ピアノ線からなる芯材の表面に黄銅メッキ層を設けた球形断面の電極線(直径0.030mm)も用意した。   For comparison, a spherical cross-section electrode wire (0.030 mm in diameter) in which a brass plating layer was provided on the surface of a core made of piano wire was also prepared.

そして、これらの電極線7を三菱電機社製の放電加工機(図示せず)にセットして、図3において、電極線7の加工方向の先端面を第一凸状曲面5とし、加工方向の後端面を第二凸状曲面6として、電極線7により厚みtが10mmであるSKD11鋼製の鋼材8をL方向に切削した。この切削時の電極線7のワイヤ送り速度は10mm/分で、L方向に5mm切削するまでに要した切削時間と、切削加工後の切削面9の最大高さ粗さを測定した。切削時間は切削速度に直接関わるものであり、切削速度で比較するために、球形断面の電極線の切削時間を凸状曲面部を有する電極線の切削時間で除することによって得た相対的切削速度の数値と、凸状曲面部を有する電極線による切削加工後の切削面9の最大高さ粗さを球形断面の電極線による切削加工後の切削面9の最大高さ粗さで除することによって得た相対的面精度の数値とを以下の表1に示す。   Then, these electrode wires 7 are set in an electric discharge machine (not shown) manufactured by Mitsubishi Electric Corporation. In FIG. 3, the tip surface in the machining direction of the electrode wire 7 is the first convex curved surface 5, and the machining direction The rear end face was made into the 2nd convex curved surface 6, and the steel material 8 made from SKD11 steel whose thickness t is 10 mm with the electrode wire 7 was cut to the L direction. The wire feed speed of the electrode wire 7 at the time of cutting was 10 mm / min, and the cutting time required to cut 5 mm in the L direction and the maximum height roughness of the cut surface 9 after cutting were measured. The cutting time is directly related to the cutting speed. In order to compare the cutting speed, the relative cutting obtained by dividing the cutting time of the electrode wire having a spherical cross section by the cutting time of the electrode wire having a convex curved surface portion. Divide the numerical value of the velocity and the maximum height roughness of the cutting surface 9 after cutting by the electrode wire having the convex curved portion by the maximum height roughness of the cutting surface 9 after cutting by the electrode wire having a spherical cross section. The numerical values of the relative surface accuracy obtained by this are shown in Table 1 below.

Figure 2009291856
Figure 2009291856

相対的切削速度の数値が大きい方が切削速度が速いということであり、相対的面精度の数値が小さいということは、切削面の平滑性が優れていることを示している。表1に明らかなように、αとして3°ないし51°を採用することにより、切削速度は速くなり、切削面の平滑性が向上することが分かる。   A larger value of the relative cutting speed means that the cutting speed is faster, and a smaller value of the relative surface accuracy means that the smoothness of the cutting surface is excellent. As is apparent from Table 1, it is understood that by adopting 3 ° to 51 ° as α, the cutting speed is increased and the smoothness of the cutting surface is improved.

図2において、直線Aと、直線Bと、直線Cと、直線Dとで形成される面が矩形であって、直線Aと直線Cは長さが等しく、直線Bと直線Dは長さが等しく、直線Bおよび直線Dは直線Aおよび直線Cの2倍以上の長さであることが好ましい。より微細な加工が可能になるからである。   In FIG. 2, the surface formed by the straight line A, the straight line B, the straight line C, and the straight line D is rectangular, the straight lines A and C are equal in length, and the straight lines B and D are equal in length. It is preferable that the straight line B and the straight line D are at least twice as long as the straight line A and the straight line C. This is because finer processing becomes possible.

図1および図2に示す実施例においては、加工方向の先端面側である第一凸状曲面5のみならず、加工方向の後端面側である第二凸状曲面6も所定の曲面形状を備えるように、角度α、β、γおよびδを規定したが、加工方向の後端面側である第二凸状曲面6のγおよびδは必ずしも3°ないし51°の間にある必要はなく、第二凸状曲面6は曲面であればよい。また、細径化を達成するために、第一平坦面3と第二平坦面4との間隔は、加工方向の先端面側(第一凸状曲面5)から後端面側(第二凸状曲面6)に向かって、図1に示すように等しいか、又は狭くなっていることが好ましい。   In the embodiment shown in FIGS. 1 and 2, not only the first convex curved surface 5 on the front end surface side in the processing direction but also the second convex curved surface 6 on the rear end surface side in the processing direction has a predetermined curved surface shape. The angles α, β, γ and δ are defined so as to be provided, but γ and δ of the second convex curved surface 6 which is the rear end surface side in the processing direction are not necessarily between 3 ° and 51 °, The second convex curved surface 6 may be a curved surface. In order to reduce the diameter, the distance between the first flat surface 3 and the second flat surface 4 is changed from the front end surface side (first convex curved surface 5) to the rear end surface side (second convex shape). Towards the curved surface 6), it is preferably equal or narrower as shown in FIG.

本発明の放電加工用電極線の断面の一実施例を模式的に示す図である。It is a figure which shows typically one Example of the cross section of the electrode wire for electrical discharge machining of this invention. 本発明の放電加工用電極線の凸状曲面の曲がり程度を表すα、β、γおよびδの角度を説明する図である。It is a figure explaining the angle of (alpha), (beta), (gamma), and (delta) showing the bending degree of the convex curved surface of the electrode wire for electrical discharge machining of this invention. 放電加工による切削加工方法を説明する図である。It is a figure explaining the cutting method by electrical discharge machining. 従来の放電加工機用ワイヤーの断面を示す図である。It is a figure which shows the cross section of the conventional wire for electric discharge machines. 従来の放電加工用電極線による加工状況を説明する図である。It is a figure explaining the processing condition by the conventional electrode wire for electrical discharge machining. 従来の放電加工用電極線による加工状況を説明する別の図である。It is another figure explaining the processing condition by the conventional electrode wire for electrical discharge machining.

符号の説明Explanation of symbols

1 芯材
2 黄銅メッキ層
3 第一平坦面
4 第二平坦面
5 第一凸状曲面
5a 最大凸状点
6 第二凸状曲面
6a 最大凸状点
7 電極線
8 鋼材
9 切削面
DESCRIPTION OF SYMBOLS 1 Core material 2 Brass plating layer 3 1st flat surface 4 2nd flat surface 5 1st convex curved surface 5a Maximum convex-shaped point 6 2nd convex curved surface 6a Maximum convex-shaped point 7 Electrode wire 8 Steel material 9 Cutting surface

Claims (3)

対峙する第一平坦面および第二平坦面と、第一平坦面および第二平坦面の一方を接続して外方に突出している第一凸状曲面と、第一平坦面および第二平坦面の他方を接続して外方に突出している第二凸状曲面とで囲まれてなる断面を有することを特徴とする放電加工用電極線。   The first flat surface and the second flat surface facing each other, the first convex curved surface projecting outward by connecting one of the first flat surface and the second flat surface, and the first flat surface and the second flat surface An electrode wire for electric discharge machining having a cross section surrounded by a second convex curved surface connecting the other of the two and projecting outward. 加工方向の先端面を第一凸状曲面とし、加工方向の後端面を第二凸状曲面とし、
第一平坦面および第一凸状曲面の接続点と第二平坦面および第一凸状曲面の接続点とを結ぶ直線をAとし、第一平坦面および第一凸状曲面の接続点と第一凸状曲面の最大凸状点とを結ぶ直線をEとし、上記直線Aと直線Eとがなす角度をαとし、
第二平坦面および第一凸状曲面の接続点と第一凸状曲面の最大凸状点とを結ぶ直線をFとし、上記直線Aと直線Fとがなす角度をβとした場合、
3°≦α、β≦51°であることを特徴とする請求項1記載の放電加工用電極線。
The front end surface in the processing direction is a first convex curved surface, the rear end surface in the processing direction is a second convex curved surface,
A straight line connecting the connection point of the first flat surface and the first convex curved surface and the connection point of the second flat surface and the first convex curved surface is A, and the connection point of the first flat surface and the first convex curved surface and the first Let E be the straight line connecting the maximum convex points of the single convex curved surface, and let α be the angle between the straight line A and the straight line E,
When the straight line connecting the connection point of the second flat surface and the first convex curved surface and the maximum convex point of the first convex curved surface is F, and the angle formed by the straight line A and the straight line F is β,
The electrode wire for electric discharge machining according to claim 1, wherein 3 ° ≦ α and β ≦ 51 °.
第一平坦面と第二平坦面との間隔は、加工方向の先端面側から後端面側に向かって、等しいか又は狭くなっていることを特徴とする請求項2記載の放電加工用電極線。   3. The electrode line for electric discharge machining according to claim 2, wherein the distance between the first flat surface and the second flat surface is equal or narrower from the front end surface side to the rear end surface side in the processing direction. .
JP2008145618A 2008-06-03 2008-06-03 Electrode wire for electrical discharge machining Pending JP2009291856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145618A JP2009291856A (en) 2008-06-03 2008-06-03 Electrode wire for electrical discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145618A JP2009291856A (en) 2008-06-03 2008-06-03 Electrode wire for electrical discharge machining

Publications (1)

Publication Number Publication Date
JP2009291856A true JP2009291856A (en) 2009-12-17

Family

ID=41540522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145618A Pending JP2009291856A (en) 2008-06-03 2008-06-03 Electrode wire for electrical discharge machining

Country Status (1)

Country Link
JP (1) JP2009291856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202856A (en) * 2009-02-06 2010-09-16 Kao Corp Suspension of cellulose fiber and method for producing the same
KR102025770B1 (en) * 2019-03-15 2019-09-26 변영일 Menufacturing device for cutting tools using wire electric discharge machining

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152532A (en) * 1980-04-22 1981-11-26 Mitsubishi Electric Corp Wire-cut electrification machining metod and its device
JPH06190637A (en) * 1992-08-26 1994-07-12 Ind Elektronik Agie Losone Locarno:Ag Electric discharge device, electrode and method
JP2000107943A (en) * 1998-09-30 2000-04-18 Sodick Co Ltd Wire electronic discharge machining electrode line
JP2004351588A (en) * 2003-05-30 2004-12-16 Kanai Hiroaki Electrode wire for wire electric discharge machining
JP2006136952A (en) * 2004-11-10 2006-06-01 Tokusen Kogyo Co Ltd Electrode wire for electric discharge machining

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152532A (en) * 1980-04-22 1981-11-26 Mitsubishi Electric Corp Wire-cut electrification machining metod and its device
JPH06190637A (en) * 1992-08-26 1994-07-12 Ind Elektronik Agie Losone Locarno:Ag Electric discharge device, electrode and method
JP2000107943A (en) * 1998-09-30 2000-04-18 Sodick Co Ltd Wire electronic discharge machining electrode line
JP2004351588A (en) * 2003-05-30 2004-12-16 Kanai Hiroaki Electrode wire for wire electric discharge machining
JP2006136952A (en) * 2004-11-10 2006-06-01 Tokusen Kogyo Co Ltd Electrode wire for electric discharge machining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202856A (en) * 2009-02-06 2010-09-16 Kao Corp Suspension of cellulose fiber and method for producing the same
KR102025770B1 (en) * 2019-03-15 2019-09-26 변영일 Menufacturing device for cutting tools using wire electric discharge machining

Similar Documents

Publication Publication Date Title
Satishkumar et al. Investigation of wire electrical discharge machining characteristics of Al6063/SiC p composites
US6781081B2 (en) Wire electrode for spark erosion cutting
CN109570666B (en) Bipolar tool electrode for electrolytic wire cutting machining and manufacturing and machining method
KR20100007951A (en) Small-diameter deep hole drill and fine deep hole processing method
KR20150103234A (en) Electrode wire for wire electric discharge machining, and method for producting same
KR20040068601A (en) Wire for high-speed electrical discharge machining
CN106270848B (en) A kind of unidirectional wire electric discharge machining polar filament and preparation method thereof
Patil et al. Some investigations into wire electro-discharge machining performance of Al/SiCp composites
JP2005224913A (en) Electrode wire for wire electric discharge machining
Weijing et al. Helical wire electrochemical discharge machining on large-thickness Inconel 718 alloy in low-conductivity salt-glycol solution
JP2009291856A (en) Electrode wire for electrical discharge machining
JPWO2012070640A1 (en) Small diameter drill
CN104741711B (en) Asymmetrical-depth micro-groove electrode and method for electrical discharge machining micro-bending holes by application of the same
JP2005238377A (en) Saw wire
Rahman et al. Investigation of the critical cutting edge radius based on material hardness
CN109909568B (en) Electrode wire for electrospark wire-electrode cutting processing
US20010004068A1 (en) Method of manufacturing die
Song et al. V-grooving using a strip EDM
Vignesh et al. Machining of Ti–6Al–4V using diffusion annealed zinc-coated brass wire in WEDHT
JP4325844B2 (en) Electrode wire for wire electrical discharge machining
Fang et al. Wire electrochemical trimming of wire-EDMed surface for the manufacture of turbine slots
JP7155868B2 (en) Electrode wire for wire electric discharge machining
Park et al. Fabrication of micro-lenticular patterns using WEDM-grooving and electrolytic polishing
JP4917747B2 (en) Electrode wire for electric discharge machining
JP2010208009A (en) Wire for electric discharge machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A131 Notification of reasons for refusal

Effective date: 20121009

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A521 Written amendment

Effective date: 20121203

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604