JP2010207824A - Method of manufacturing hot-rolled steel strip - Google Patents

Method of manufacturing hot-rolled steel strip Download PDF

Info

Publication number
JP2010207824A
JP2010207824A JP2009053631A JP2009053631A JP2010207824A JP 2010207824 A JP2010207824 A JP 2010207824A JP 2009053631 A JP2009053631 A JP 2009053631A JP 2009053631 A JP2009053631 A JP 2009053631A JP 2010207824 A JP2010207824 A JP 2010207824A
Authority
JP
Japan
Prior art keywords
slab
width
amount
thickness direction
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009053631A
Other languages
Japanese (ja)
Inventor
Jun Takahashi
純 高橋
Shuji Yokota
修二 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009053631A priority Critical patent/JP2010207824A/en
Publication of JP2010207824A publication Critical patent/JP2010207824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of surely manufacturing hot-rolled steel strips having width ( refer to the target width) in which edge seam marks are included in the part of surplus width in hot-rolling equipment on which a sizing press for performing width press of a steel slab with a pair of press dies having a projected part is installed. <P>SOLUTION: The correlative relationship between the amount of deviation in the thickness direction of a slab hammering position and the amount of the maximum turn-around of the edge seam marks is previously determined for every slab standard including the kind of steel and dimensions of the slab. About that slab, the increment of the amount of the maximum turn-around of the edge seam marks is determined in the case where the amount of the deviation in the thickness direction at the slab hammering position is zero on the basis of the correlative relationship between the amount of the deviation in the thickness direction at the slab hammering position and the amount of the maximum turn-around of the edge seam marks. About the succeeding slab to which width press is applied after that slab, a set surplus width is corrected by adding the increment to the surplus width which is set in the case where the amount of the deviation in the thickness direction at the slab hammering position is zero. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、凸部を有する一対のプレス金型で鋼のスラブを幅プレスするサイジングプレスが設置された熱間圧延設備にて、エッジシーム疵を余幅の部分に確実に含む幅の熱延鋼帯を製造する方法に関する。   The present invention is a hot-rolled steel having a width that surely includes an edge seam wrinkle in a surplus width portion in a hot rolling facility provided with a sizing press for width-pressing a steel slab with a pair of press dies having convex portions. The present invention relates to a method of manufacturing a strip.

幅を調整する設備の一種として、サイジングプレスを熱間圧延ラインに設置し、粗圧延機、仕上げ圧延機で圧延する前に、凸部を有する一対のプレス金型で鋼のスラブを幅方向にプレスすること(以下、幅プレスするという)が行われている。このようにすることにより、熱間圧延工程にて幅調整量を増やし、連続鋳造工程にて鋳造するスラブの幅統合を図り、熱延鋼帯の幅を作り分けしている。   As a kind of equipment to adjust the width, before installing a sizing press in the hot rolling line and rolling it with a roughing mill and a finishing mill, a pair of press dies with convex parts is used to move the steel slab in the width direction. Pressing (hereinafter referred to as width pressing) is performed. By doing in this way, the width adjustment amount is increased in the hot rolling process, the width of the slab cast in the continuous casting process is integrated, and the width of the hot-rolled steel strip is made differently.

熱間圧延設備にて、熱延鋼帯を製造すると、幅方向エッジ部近くに長手方向に延びた線状欠陥(エッジシーム疵と称される)が発生することがある。この長手方向に延びたエッジシーム疵9は、図6に示したように、被圧延材7を粗圧延し仕上げ圧延する熱間圧延過程で、被圧延材7の側面のしわ状欠陥8が表裏面に回り込んで生じる。圧延中の幅方向断面である図6(a)、(b)中、6は粗圧延用水平ロール、7は粗圧延中の被圧延材7を示した。また、図6(c)中、10は熱延鋼帯の上面または下面を示した。熱延鋼帯10の表裏面には、回り込み量dのエッジシーム疵9が生じる。 When a hot-rolled steel strip is manufactured by a hot rolling facility, a linear defect (referred to as an edge seam flaw) extending in the longitudinal direction near the widthwise edge portion may occur. As shown in FIG. 6, the edge seam trough 9 extending in the longitudinal direction has wrinkle-like defects 8 on the side surface of the material to be rolled 7 in the hot rolling process in which the material to be rolled 7 is roughly rolled and finish-rolled. It happens to wrap around. 6A and 6B, which are cross sections in the width direction during rolling, 6 indicates a horizontal roll for rough rolling, and 7 indicates a material 7 to be rolled during rough rolling. Moreover, in FIG.6 (c), 10 showed the upper surface or lower surface of the hot-rolled steel strip. The front and back surfaces of the hot rolled strip 10, Ejjishimu flaw 9 wraparound amount d e occurs.

ここで、被圧延材の側面に生じたしわ状欠陥が、表裏面に回り込むのを抑制するため、凸部を有する一対のプレス金型1を用い、図5(a)、(b)に示すように、スラブMを幅プレスする方法が開示されている(特許文献1、2)。図5(a)は、特許文献1に記載の凸部を有する一対のプレス金型1の形状を示す平面図、図5(b)はX−X断面図である。図5中、2はスラブ搬送方向に対し傾けて入側に設けた入側傾斜面、3はスラブ搬送方向に対し平行となるよう中間に設けた平行面、4はスラブ搬送方向に対し傾けて出側に設けた出側傾斜面であり、5は凸部である。凸部5は等脚台形形状であり、入側傾斜面2、平行面3および出側傾斜面4に形成され、一対のプレス金型1でスラブMを幅プレスする際、スラブMの側面に、等脚台形形状の凸部5に一致する凹み部を形成するようになっている。   Here, in order to suppress the wrinkle-like defect generated on the side surface of the material to be rolled around the front and back surfaces, a pair of press dies 1 having convex portions is used, as shown in FIGS. 5 (a) and 5 (b). Thus, a method of width-pressing the slab M is disclosed (Patent Documents 1 and 2). Fig.5 (a) is a top view which shows the shape of a pair of press metal mold | die 1 which has a convex part of patent document 1, FIG.5 (b) is XX sectional drawing. In FIG. 5, 2 is an incline inclined surface provided on the entrance side inclined with respect to the slab conveyance direction, 3 is a parallel surface provided in the middle so as to be parallel to the slab conveyance direction, and 4 is inclined with respect to the slab conveyance direction. Reference numeral 5 denotes an output side inclined surface provided on the output side, and reference numeral 5 denotes a convex portion. The convex portion 5 has an isosceles trapezoidal shape, and is formed on the entry side inclined surface 2, the parallel surface 3, and the exit side inclined surface 4. When the slab M is width-pressed by the pair of press dies 1, A recess corresponding to the convex part 5 having an isosceles trapezoidal shape is formed.

その前提条件は、一対のプレス金型1でスラブMを幅プレスする際、プレス金型によるスラブ叩き位置の厚み方向ずれがないことである。ここで、スラブ叩き位置の厚み方向ずれ量δは、等脚台形形状の凸部の上下方向中央位置1aと、スラブ厚み中心O位置との上下方向の差である(図5(b)および図1(a)参照)。
スラブ叩き位置の厚み方向ずれがない場合、スラブ1の側面に形成される凹み部の開始位置P、Qは、図5(b)に示したとおり、スラブの側面における厚み中央位置を境として、上下でほぼ同じ位置となる。
The precondition is that when the slab M is width-pressed by the pair of press dies 1, there is no deviation in the thickness direction of the slab hitting position by the press dies. Here, the thickness direction deviation amount δ at the slab hitting position is the vertical difference between the vertical center position 1a of the isosceles trapezoidal convex portion and the slab thickness center O position (FIG. 5B and FIG. 1 (a)).
When there is no deviation in the thickness direction of the slab hitting position, the start positions P and Q of the recesses formed on the side surface of the slab 1 are as shown in FIG. The upper and lower positions are almost the same.

従来、熱延鋼帯の余幅bは、プレス金型によるスラブ叩き位置の厚み方向ずれがないこと前提として設定され、図7に示すとおり、製品幅aに余幅bを付与して熱延鋼帯10の幅W(目標幅Wともいう)を設定している。すなわち、製造した熱延鋼帯10について、各エッジシーム疵のエッジシーム疵回り込み量dを測定し、そのうちの最大値(エッジシーム疵最大回り込み量という)に応じて設定されている。このため、凸部を有する一対のプレス金型1でスラブMを幅プレスする際、スラブ叩き位置の厚み方向ずれがない場合においては、設定された余幅bに当る部分にエッジシーム疵が含まれるので、熱延鋼帯の幅Wは合格である。 Conventionally, the surplus width b of the hot-rolled steel strip is set on the premise that there is no deviation in the thickness direction of the slab hitting position by the press die, and as shown in FIG. A width W (also referred to as a target width W) of the steel strip 10 is set. That is, the hot rolled strip 10 manufactured, the Ejjishimu flaw wraparound amount d e of each Ejjishimu flaws measured, is set according to the maximum value of which (referred Ejjishimu flaws maximum wraparound amount). For this reason, when the slab M is width-pressed with a pair of press dies 1 having convex portions, when there is no deviation in the thickness direction of the slab hitting position, an edge seam wrinkle is included in a portion corresponding to the set surplus width b. Therefore, the width W of the hot-rolled steel strip is acceptable.

特開平10-52701号公報Japanese Patent Laid-Open No. 10-52701 特開2005-34887号公報Japanese Patent Laid-Open No. 2005-34887

しかしながら、実際には、凸部を有する一対のプレス金型1でスラブMを幅プレスする際、スラブ叩き位置の厚み方向ずれが生じ、これによって、設定された余幅bよりも内側にまでエッジシーム疵が回り込み、製品としての幅aを確保できないという問題があった。
また、特許文献1、2には、熱延鋼帯10のエッジシーム疵最大回り込み量を小さくする技術が記載されているが、スラブ叩き位置の厚み方向ずれが生じた場合、設定された余幅よりも内側にまでエッジシーム疵が回り込むということが考慮されていないという問題があった。
However, in actuality, when the slab M is width-pressed with a pair of press dies 1 having convex portions, a deviation in the thickness direction of the slab hitting position occurs, and as a result, the edge seam extends to the inner side of the set surplus width b. There was a problem that the wrinkles went around and the width a as a product could not be secured.
Patent Documents 1 and 2 describe a technique for reducing the maximum amount of edge seam wrinkles of the hot-rolled steel strip 10, but when a deviation in the thickness direction of the slab hitting position occurs, However, there was a problem that the edge seam sword did not take into consideration inward.

したがって、凸部を有する一対のプレス金型で鋼のスラブを幅プレスする際、スラブ叩き位置の厚み方向ずれが生じた場合、設定された余幅bを超えて内側の製品幅aにまでエッジシーム疵が入り込んで、図7に示した熱延鋼帯の幅Wは不合格、つまり製品幅aを確保できなくなる。このようなことになると、再度、別のスラブを充当し、熱延鋼帯の幅W(目標幅W)を設定し直して、熱延鋼帯を製造する必要があり、鋼帯製造工程を混乱させるばかりでなく、納期遅れにつながる恐れもある。   Therefore, when the steel slab is width-pressed with a pair of press dies having convex portions, if the slab hitting position is displaced in the thickness direction, the edge seam exceeds the set surplus width b to the inner product width a. The wrinkles enter and the width W of the hot-rolled steel strip shown in FIG. 7 is rejected, that is, the product width a cannot be secured. When this happens, it is necessary to reapply another slab, set the width W (target width W) of the hot-rolled steel strip again, and manufacture the hot-rolled steel strip. Not only can this be confusing, but it can also lead to delays in delivery.

本発明は、上記従来技術の問題点を解消し、凸部を有する一対のプレス金型で鋼のスラブを幅プレスするサイジングプレスが設置された熱間圧延設備にて、エッジシーム疵を余幅の部分に含む幅の熱延鋼帯を確実に製造する方法を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and in the hot rolling equipment provided with a sizing press for width-pressing a steel slab with a pair of press dies having convex portions, the edge seam wrinkles are provided with an extra width. It aims at providing the method of manufacturing the hot-rolled steel strip of the width | variety included in a part reliably.

本発明者らは、スラブ叩き位置の厚み方向ずれが生じる原因を鋭意検討した結果、金型を交換してから、ほぼ同一規格のスラブをまとめて仕上げ圧延する製造チャンスごとに、スラブ叩き位置の厚み方向ずれ量が異なり、スラブ叩き位置の厚み方向ずれが生じると、設定された余幅の部分よりも内側にまでエッジシーム疵が回り込み、エッジシーム疵最大周り込み量が増えるということを知見し、スラブ叩き位置の厚み方向ずれ量と、エッジシーム疵最大回り込み量との相関関係を、鋼種、スラブ寸法を含むスラブ規格ごとに予め求めておくことで、上記課題を解決できることを見出し、この知見に基づいて本発明をなすに至った。   As a result of earnestly examining the cause of the deviation in the thickness direction of the slab hitting position, the present inventors have found that the slab hitting position of each slab hitting position is changed every time the slab hitting position is finished and rolled together with the slab of almost the same standard after replacing the mold. When the amount of deviation in the thickness direction is different and the deviation in the thickness direction of the slab hitting position occurs, the edge seam 疵 wraps inward from the set margin width, and the maximum amount of edge seam 周 り wrap around increases. Based on this knowledge, we found that the above problem can be solved by obtaining in advance the correlation between the amount of displacement in the thickness direction of the struck position and the maximum amount of edge seam wrinkles for each slab standard including steel grade and slab dimensions. It came to make this invention.

すなわち本発明は、以下のとおりである。
(1)凸部を有する一対のプレス金型で鋼のスラブを幅方向に幅プレスするサイジングプレスが設置された熱間圧延設備にて、前記スラブを幅方向に幅プレスしてから、引き続き幅プレスしたスラブを熱間圧延し、予め設定された余幅に製品幅を加えた目標幅の熱延鋼帯を得る際、プレス金型の凸部の中央からスラブ厚み中心までの上下方向距離で表わされるスラブ叩き位置の厚み方向ずれ量と、エッジシーム疵最大回り込み量との相関関係を、鋼種、スラブ寸法を含むスラブ規格ごとに予め求めておく。ついで、一対のプレス金型によるスラブ叩き位置の厚み方向ずれ量をスラブごとに検出し、前記の相関関係に基づき、スラブ叩き位置の厚み方向ずれ量が零である場合に対するエッジシーム疵最大回り込み量の増分を決定し、当該スラブの後に幅プレスする後行スラブについて、スラブ叩き位置の厚み方向ずれ量が零である場合に設定された余幅に前記増分を加え、設定された余幅を修正することを特徴とするエッジシーム疵を含まない熱延鋼帯の製造方法。
(2)幅プレス途中または幅プレス後に前記スラブの側面の形状を測定して、前記スラブの側面に形成される凹み部の開始位置から表裏面側の縁までの距離の差を求め、スラブ叩き位置の厚み方向ずれ量を検出することを特徴とする上記(1)に記載のエッジシーム疵を含まない熱延鋼帯の製造方法。
(3)前記スラブの側面に、厚み方向に並行するスリット状の光を当てて走査し、カメラで前記スラブの側面から反射されるスリット状の光を撮像し、前記カメラで撮像した画像データに基づき、前記スラブの側面の形状を測定することを特徴とする上記(2)に記載のエッジシーム疵を含まない熱延鋼帯の製造方法。
That is, the present invention is as follows.
(1) In a hot rolling facility equipped with a sizing press that presses a steel slab in the width direction with a pair of press dies having convex portions, the slab is width-pressed in the width direction, and then the width is continued. When hot-rolling the pressed slab to obtain a hot-rolled steel strip with a target width obtained by adding the product width to the preset extra width, the vertical distance from the center of the convex part of the press mold to the center of the slab thickness The correlation between the thickness direction deviation amount of the expressed slab hitting position and the edge seam wrinkle maximum wrapping amount is obtained in advance for each slab standard including steel type and slab size. Next, the amount of deviation in the thickness direction of the slab hitting position by the pair of press dies is detected for each slab, and based on the above correlation, the edge seam 疵 maximum wraparound amount when the thickness direction deviation of the slab hitting position is zero For the subsequent slab that determines the increment and presses the width after the slab, the increment is added to the set margin when the displacement in the thickness direction of the slab hitting position is zero, and the set margin is corrected. A method for producing a hot-rolled steel strip that does not include edge seam wrinkles.
(2) The shape of the side surface of the slab is measured during or after the width press to determine the difference in distance from the start position of the recessed portion formed on the side surface of the slab to the edge on the front and back surfaces. The manufacturing method of a hot-rolled steel strip that does not include an edge seam wrinkle according to the above (1), wherein an amount of positional deviation in the thickness direction is detected.
(3) A slit-like light parallel to the thickness direction is applied to the side surface of the slab for scanning, and the slit-like light reflected from the side surface of the slab is imaged with a camera. The method of manufacturing a hot-rolled steel strip that does not include edge seam wrinkles according to (2) above, wherein the shape of the side surface of the slab is measured.

本発明法によれば、スラブ叩き位置の厚み方向ずれ量をスラブごとに検出し、当該スラブにスラブ叩き位置の厚み方向ずれがある場合、当該スラブの後に幅プレスする後行スラブについて、スラブ叩き位置の厚み方向ずれ量が零である場合に設定された余幅に、当該スラブについて決定した増分を加え、設定された余幅を修正する。
このため、後行スラブの余幅は、スラブ叩き位置の厚み方向ずれ量が零である場合に設定された余幅に、後行スラブよりも前に当該スラブについて決定した増分を加え、エッジシーム疵最大回り込み量が増える増分を下回らないように修正した余幅となっている。
According to the method of the present invention, the displacement amount in the thickness direction of the slab striking position is detected for each slab, and when the slab has a displacement in the thickness direction of the slab striking position, the slab striking is performed for the subsequent slab to be width-pressed after the slab. The increment determined for the slab is added to the margin set when the positional deviation in the thickness direction is zero, and the set margin is corrected.
For this reason, the margin of the trailing slab is obtained by adding the increment determined for the slab before the trailing slab to the margin set when the displacement in the thickness direction of the slab hitting position is zero. The margin is corrected so that the maximum wraparound amount does not fall below the increment.

したがって、エッジシーム疵を余幅の部分に含ませた幅(目標幅という)の熱延鋼帯を確実に製造することができる。その後熱延鋼帯をトリミングラインに供給し、修正された余幅の部分を切断除去し、製品幅の部分にエッジシーム疵を含まない熱延鋼帯が得られるから、プレス金型によるスラブ叩き位置の厚み方向ずれがあっても、鋼帯製造工程を混乱させずかつ納期遅れもなく、エッジシーム疵を含まない熱延鋼帯が出荷できる。   Therefore, it is possible to reliably manufacture a hot-rolled steel strip having a width (referred to as a target width) in which the edge seam is included in the extra width portion. After that, the hot-rolled steel strip is fed to the trimming line, and the corrected extra width is cut and removed, so that a hot-rolled steel strip that does not contain edge seams in the product width can be obtained. Even if there is a deviation in the thickness direction, hot-rolled steel strips without edge seam flaws can be shipped without disrupting the steel strip manufacturing process and without delay in delivery.

(a)〜(d)は本発明法を知見した各熱延過程における断面図である。(A)-(d) is sectional drawing in each hot rolling process which discovered this invention method. スラブ叩き位置の厚み方向ずれ量δとエッジシーム疵最大回り込み量dmaxとの相関関係を示す特性図の一例である。It is an example of a characteristic diagram showing the correlation between the thickness direction shift amount δ and Ejjishimu flaw maximum wraparound amount d max of the slab hitting position. (a)は本発明法に用いて好適なスラブ側面形状検出装置の構成図、(b)はそれを用いた検出法の説明図である。(A) is a block diagram of a slab side surface shape detection apparatus suitable for use in the method of the present invention, and (b) is an explanatory diagram of a detection method using it. 本発明法を適用して好適な熱間圧延設備の構成図である。It is a block diagram of a suitable hot rolling facility applying the method of the present invention. 特許文献1に記載された一対のプレス金型の形状を示す(a)は平面図、(b)はX−X断面図である。(A) which shows the shape of a pair of press metal mold | die described in patent document 1, (b) is a top view, (b) is XX sectional drawing. (a)、(b)はエッジシーム疵の発生過程を示す圧延幅方向断面図、(c)は熱延鋼帯のエッジシーム疵を示す平面図である。(A), (b) is sectional drawing of the rolling width direction which shows the generation | occurrence | production process of edge seam wrinkles, (c) is a top view which shows the edge seam wrinkles of a hot-rolled steel strip. 熱延鋼帯の目標幅Wの定義を示す平面図である。It is a top view which shows the definition of the target width W of a hot-rolled steel strip.

まず、本発明法を適用して好適な熱間圧延設備について説明する。
図4は、特許文献1に記載された熱間圧延設備20の構成図であり、サイジングプレス22は、加熱炉21と粗圧延機23の間に設置されている。粗圧延機23はエッジャーロール26と粗圧延用水平ロール27を具備する4スタンドで構成され、仕上げ圧延機24は7スタンドで構成されている。幅計28はサイジングプレス以降の各設備の入出側に設置されている。
First, a suitable hot rolling facility to which the present invention method is applied will be described.
FIG. 4 is a configuration diagram of the hot rolling facility 20 described in Patent Document 1, and a sizing press 22 is installed between the heating furnace 21 and the roughing mill 23. The rough rolling mill 23 is composed of four stands each having an edger roll 26 and a rough rolling horizontal roll 27, and the finish rolling mill 24 is composed of seven stands. The width gauge 28 is installed on the entrance / exit side of each facility after the sizing press.

Mは鋼のスラブを示し、幅プレスするスラブMは、加熱炉21で加熱されて搬送テーブル上に抽出される場合あるいは熱間圧延ラインの搬送テーブル上に連続鋳造機から直送されてくる場合がある。なお、スラブMを長手方向にわたり幅プレスするには、スラブMの搬送方向への送り量を金型の平行部の長さを超えないように設定し、送り量だけスラブMを送った後、凸部を有する一対のプレス金型で叩くという動作を繰り返す(図5(a)参照)。熱間圧延して所定の目標幅、所定の仕上げ厚みとした熱延鋼帯10は巻き取り機25で巻き取られ、その後トリミング工程などに送られる。ただし、本発明法適用前は、スラブ叩き位置が板厚方向にずれていないことを前提として余幅が設定されていた。   M denotes a steel slab, and the slab M to be width-pressed may be heated on the heating furnace 21 and extracted onto the transfer table, or may be sent directly from the continuous casting machine onto the transfer table of the hot rolling line. is there. In order to width-press the slab M in the longitudinal direction, the feed amount in the conveyance direction of the slab M is set so as not to exceed the length of the parallel part of the mold, and after sending the slab M by the feed amount, The operation of hitting with a pair of press dies having convex portions is repeated (see FIG. 5A). The hot-rolled steel strip 10 having a predetermined target width and a predetermined finished thickness by hot rolling is wound up by a winder 25 and then sent to a trimming process or the like. However, before application of the method of the present invention, the extra width was set on the assumption that the slab hitting position was not shifted in the plate thickness direction.

次いで、上記した熱間圧延設備にて、凸部を有する一対のプレス金型でスラブMを幅プレスする際、スラブ叩き位置の厚み方向ずれが生じる原因を鋭意検討し、本発明を成すに至った経緯について説明する。図1(a)〜(d)は本発明法を成すに至った各熱延過程における断面図である。ここで、スラブ叩き位置の厚み方向ずれ量はδで表わされ、後述するように、スラブ側面形状検出装置で検出することができる(図3参照)。なお、スラブ叩き位置の厚み方向ずれは、凸部を有する一対のプレス金型1を交換したタイミングでサイジングプレスの設備特性によって起る(図1(a)参照)。   Next, when the slab M is width-pressed with a pair of press dies having convex portions in the hot rolling facility described above, the cause of the displacement in the thickness direction of the slab hitting position has been intensively studied, and the present invention has been achieved. The background is explained. 1 (a) to 1 (d) are cross-sectional views in each of the hot rolling processes that have led to the method of the present invention. Here, the displacement amount in the thickness direction of the slab hitting position is represented by δ, and can be detected by a slab side surface shape detection device as described later (see FIG. 3). In addition, the thickness direction shift | offset | difference of a slab hitting position arises with the installation characteristic of a sizing press at the timing which replaced a pair of press metal mold | die 1 which has a convex part (refer Fig.1 (a)).

したがって、サイジングプレスの設備特性によって、一対のプレス金型1によるスラブ叩き位置の厚み方向ずれが生じた場合、凸部に対応する凹み部の開始位置P、Qは、図1(b)に示したとおり、スラブ中心0に対してほぼ点対称であり、スラブMの側面の上、下部で形状が異なる。
このようなスラブMを後続する粗圧延機に供給し、粗圧延用水平ロール6で粗圧延中の状態を図1(c)に、被圧延材7に粗圧延、仕上げ圧延を施して得られる熱延鋼帯10のエッジシーム疵9の発生位置を図1(d)に示した。
Therefore, when the thickness direction shift of the slab hitting position by the pair of press dies 1 occurs due to the equipment characteristics of the sizing press, the start positions P and Q of the recess corresponding to the protrusion are shown in FIG. As described above, the shape is substantially point-symmetric with respect to the slab center 0, and the shape is different between the upper side and the lower side of the slab M.
Such a slab M is supplied to the subsequent rough rolling mill, and the state during rough rolling with the horizontal roll 6 for rough rolling is obtained by subjecting the material to be rolled 7 to rough rolling and finish rolling in FIG. The generation position of the edge seam ridge 9 of the hot-rolled steel strip 10 is shown in FIG.

被圧延材7の両側面におけるふくらみ形状は、図1(c)に示したように形成され、これに対応して、図1(d)に示したように、スラブ中心0に対してほぼ点対称であり、スラブMの側面の上、下部で回り込み量の異なるエッジシーム疵9が、表裏面に生じる。そして、スラブMの側面の上、下部のうち、凸部でずれて叩かれた部分からの回り込み量が大きくなるということが分かった。図1(d)中、d、dは、凸部でずれて叩かれた部分から生じたエッジシーム疵の回り込み量である。 The bulge shape on both side surfaces of the material 7 to be rolled is formed as shown in FIG. 1 (c), and correspondingly, as shown in FIG. Edge seam ridges 9 that are symmetrical and have different wraparound amounts on the upper and lower sides of the slab M are formed on the front and back surfaces. And it turned out that the amount of wraparound from the part which was struck by the convex part among the upper part and the lower part of the side surface of the slab M increases. In FIG. 1 (d), d 1 and d 2 are wraparound amounts of the edge seam ridges produced from the portions hit by being shifted by the convex portions.

以上、熱間圧延設備にて、凸部を有する一対のプレス金型1でスラブMを幅プレスする際、スラブ叩き位置の厚み方向ずれが生じる原因を鋭意検討し、凸部で叩かれたスラブ叩き位置が、スラブMの側面の上部または下部にずれると、スラブ中心0に対してほぼ点対称で、一方の面への回り込み量は減少するが、他方の面への回り込み量は増大し、結果として、凸部でずれて叩かれた部分からの回り込み量が、スラブ叩き位置の厚み方向ずれがない場合と比べて増大することを把握した。ここで、エッジシーム疵最大回り込み量をdmaxとする。 As described above, when the slab M is width-pressed with a pair of press dies 1 having a convex portion in a hot rolling facility, the cause of the deviation in the thickness direction of the slab striking position has been intensively studied, and the slab hit by the convex portion When the striking position is shifted to the upper part or the lower part of the side surface of the slab M, the slab center is substantially point-symmetric with respect to the slab center 0, and the amount of wrap around one surface decreases, but the amount of wrap around the other surface increases. As a result, it was understood that the amount of wraparound from the portion hit by being shifted by the convex portion increased compared to the case where there was no deviation in the thickness direction of the slab hitting position. Here, the maximum amount of edge seam wrinkles is d max .

次いで本発明者らは、図4に示した熱間圧延設備を用い、スラブ叩き位置の厚み方向ずれ量δと、エッジシーム疵最大回り込み量dmaxとの関係を定量的に把握する実験を行なった。
(実験条件)
実験設備:図4に示した熱間圧延設備のサイジングプレス22に組み込んだ一対のプレス金型1の形状は、断面台形形状の凸部5を、平行な底辺間を結ぶ辺の長さの等しい等脚台形とした(図1(a)参照)。
スラブMの規格:鋼種=SUS430、スラブ寸法=厚み200〜260mm、スラブ幅500〜2000mm、加熱温度=1100〜1300℃、幅プレス量=30〜250mm、スラブ長さ=4500〜12500mm、スラブ重量=0〜32ton。
(実験方法)
等脚台形とした凸部5を有する一対のプレス金型1でスラブMをサイジングプレス22で幅プレスした後、一旦スラブMを冷却し、冷却したスラブの側面形状に基づき、スラブ長手方向3ヶ所を測り、その平均値でスラブ叩き位置の厚み方向ずれ量δを検出した。その後、スラブMを加熱炉に再装入して加熱し、加熱したスラブMをサイジングプレス22は空通とし、それ以降は工程材と同様に被圧延材を熱間圧延して熱延鋼帯を得、得た熱延鋼帯のエッジシーム疵回り込み量を調べた。その結果を図2に示す。
(実験結果)
図2に示した結果から、鋼種、スラブ寸法を含むスラブ規格がほぼ同じであるスラブに関し、スラブ叩き位置の厚み方向ずれ量δとエッジシーム疵最大回り込み量dmaxとに相関関係があることが分かる。図2中の曲線は、エッジシーム疵最大回り込み量dmaxの各実験点を下回らないように決めた余幅増分決定カーブである。この余幅増分決定カーブによれば、当該スラブにスラブ叩き位置の厚み方向ずれ量が検出された場合、当該スラブとスラブ規格がほぼ同じであり、当該スラブの後に幅プレスする後行スラブについて、エッジシーム疵が余幅に含まれるようにするための増分を決定することができる。例えば、当該スラブのスラブ叩き位置の厚み方向ずれ量δ=4mmと検出された場合、δ=4mmにおけるdmaxの値21.2mmからδ=0mmにおけるdmaxの基準値16.2mmを引いて、増分(=21.2−16.2=5.0mm)を算出する。次いで、当該スラブの後に幅プレスする後行スラブに対しては、スラブ叩き位置の厚み方向ずれ量が、当該スラブと同じだけ、すなわちこの例ではスラブ叩き位置の厚み方向ずれ量δ=4mmあると予測できる。
Then the present inventors, using a hot rolling equipment shown in FIG. 4, was performed in the thickness direction shift amount δ of the slab hitting position, the quantitatively grasp experiments the relationship between Ejjishimu flaw maximum wraparound amount d max .
(Experimental conditions)
Experimental equipment: The shape of the pair of press dies 1 incorporated in the sizing press 22 of the hot rolling equipment shown in FIG. 4 is equal in the length of the side connecting the convex portions 5 having a trapezoidal cross section between the parallel bases. The shape is an isosceles trapezoid (see FIG. 1A).
Standard of slab M: Steel type = SUS430, slab size = thickness 200-260 mm, slab width 500-2000 mm, heating temperature = 1100-1300 ° C., width press amount = 30-250 mm, slab length = 4500-12500 mm, slab weight = 0 to 32 tons.
(experimental method)
After a slab M is width-pressed by a sizing press 22 with a pair of press dies 1 having an isosceles trapezoidal shape 5, the slab M is once cooled, and three locations in the longitudinal direction of the slab are based on the side shape of the cooled slab. The thickness direction deviation amount δ of the slab hitting position was detected with the average value. Thereafter, the slab M is recharged into the heating furnace and heated, and the slab M is heated in the sizing press 22, and thereafter, the material to be rolled is hot-rolled and hot-rolled steel strip in the same manner as the process material. Then, the amount of edge seam wrap around the obtained hot-rolled steel strip was examined. The result is shown in FIG.
(Experimental result)
The results shown in FIG. 2 show that there is a correlation between the thickness direction deviation amount δ at the slab striking position and the edge seam 疵 maximum wraparound amount d max for slabs having almost the same slab standard including steel type and slab size. . Curve in FIG. 2 is a surplus width increment determined curve determined so as not to fall below the respective experimental points of Ejjishimu flaw maximum wraparound amount d max. According to this extra width increase determination curve, when the thickness direction deviation amount of the slab hitting position is detected in the slab, the slab and the slab standard are almost the same, and the subsequent slab to be width-pressed after the slab, An increment to allow the edge seam to be included in the extra width can be determined. For example, by subtracting the reference value 16.2mm of d max in the case where it is detected and the thickness direction shift amount [delta] = 4 mm slab hitting position of the slab, [delta] = [delta] = 0 mm from the value 21.2mm of d max in 4 mm, The increment (= 21.2-16.2 = 5.0 mm) is calculated. Next, for a subsequent slab that is width-pressed after the slab, the amount of deviation in the thickness direction of the slab hitting position is the same as that of the slab, that is, in this example, the amount of deviation in the thickness direction of the slab hitting position is δ = 4 mm. Predictable.

このように予測できる理由は、スラブ叩き位置の厚み方向ずれは、凸部を有する一対のプレス金型1を交換したタイミングでサイジングプレスの設備特性によって起り、一対の金型を交換してから製造チャンス(ほぼ同一規格のスラブをまとめて仕上げ圧延するチャンス)ごとに、スラブ叩き位置の厚み方向ずれ量δが異なることによる。
以上説明したように、本発明法は、スラブ叩き位置の厚み方向ずれ量δと、エッジシーム疵最大回り込み量との相関関係を、たとえば図2に示したように、鋼種、スラブ寸法を含むスラブ規格ごとに予め求めておき、スラブ叩き位置の厚み方向ずれ量δをスラブごとに検出し、当該スラブについて、スラブ叩き位置の厚み方向ずれ量δとエッジシーム疵最大回り込み量との相関関係に基づき、スラブ叩き位置の厚み方向ずれ量が零である場合に対するエッジシーム疵最大回り込み量の増分を決定する。次いで、当該スラブの後に幅プレスする後行スラブについて、スラブ叩き位置の厚み方向ずれ量が零である場合に設定された余幅に前記増分を加え、設定された余幅を修正する。
The reason why this can be predicted is that the displacement in the thickness direction of the slab hitting position is caused by the equipment characteristics of the sizing press at the timing when the pair of press dies 1 having convex portions is replaced, and is manufactured after the pair of dies are replaced. This is because the amount of deviation δ in the thickness direction of the slab striking position is different for each chance (an opportunity to finish and roll slabs of almost the same standard together).
As described above, according to the method of the present invention, the correlation between the displacement amount δ in the thickness direction of the slab hitting position and the maximum wraparound amount of the edge seam 疵, for example, as shown in FIG. The thickness direction deviation amount δ of the slab striking position is detected for each slab, and the slab is detected based on the correlation between the thickness direction deviation amount δ of the slab striking position and the edge seam 疵 maximum wraparound amount. The increment of the edge seam 疵 maximum wraparound amount with respect to the case where the displacement amount in the thickness direction of the hit position is zero is determined. Next, for the succeeding slab that is width-pressed after the slab, the increment is added to the surplus set when the displacement amount in the thickness direction of the slab hitting position is zero, and the set surplus width is corrected.

このようにすることで、後行スラブについて、修正された余幅に製品幅を加えた目標幅の熱延鋼帯を得ることができる。
スラブ叩き位置の厚み方向ずれ量δの検出は、図3(a)に示したようなスラブ側面形状検出装置を用いるのが好適である。このスラブ側面形状検出装置は、スラブMの側面に厚み方向に並行するスリット状の光11を当てて走査するスリット光投光手段12と、スラブMの側面から反射されるスリット状の光11を撮像するカメラ13と、カメラ13に接続された画像処理装置14とを、具備している。このようなスラブ側面形状検出装置によれば、カメラ13で撮像して得たスラブMの側面の画像データに基づき、図3(b)に示したように、側面の形状に基づき、該側面の上、下部で凸部に対応する凹み部の開始位置Pから側面の縁までの距離L、Lを求め、求めた上下の距離の差(=L−L)でスラブ叩き位置の厚み方向ずれ量を精度よくオンラインで検出することができる。
By doing in this way, about a succeeding slab, the hot-rolled steel strip of the target width which added the product width to the corrected surplus width can be obtained.
It is preferable to use a slab side surface shape detecting device as shown in FIG. 3A to detect the thickness direction deviation amount δ of the slab hitting position. This slab side surface shape detecting device applies slit light projecting means 12 that scans the side surface of the slab M by applying slit-shaped light 11 parallel to the thickness direction, and slit-shaped light 11 reflected from the side surface of the slab M. A camera 13 for imaging and an image processing device 14 connected to the camera 13 are provided. According to such a slab side surface shape detection device, based on the image data of the side surface of the slab M obtained by imaging with the camera 13, as shown in FIG. The distances L 1 and L 2 from the start position P of the dent corresponding to the convex part at the upper and lower parts to the edge of the side surface are obtained, and the slab hitting position is determined by the difference between the obtained vertical distances (= L 1 −L 2 ). The amount of deviation in the thickness direction can be accurately detected online.

(実施例1)本発明例1として、等脚台形形状の凸部5を有する一対のプレス金型で幅プレスした当該スラブについて、厚み方向に並行するスリット状の光を当てて走査し、カメラで前記スラブの側面から反射されるスリット状の光を撮像し、前記カメラで撮像した画像データに基づき、スラブの側面形状を測定した。その結果、一対のプレス金型の一方(駆動側)が上方に他方(操作側)が下方に4mmずれていたため、スラブ叩き位置の厚み方向ずれ量δ=4mmとし、図2示した余幅増分決定カーブに基づき、当該スラブのエッジシーム疵最大回り込み量の増分(+5mm)を決定し、当該スラブの後に幅プレスする後行スラブについて、スラブ叩き位置の厚み方向ずれがないとして設定された余幅に前記増分(+5mm)を加え、設定された余幅を修正した。この余幅を付与する熱間圧延を実施し熱延鋼帯を得た。 (Embodiment 1) As Example 1 of the present invention, a slab that is width-pressed by a pair of press dies having an isosceles trapezoidal convex portion 5 is scanned by applying slit-like light parallel to the thickness direction, and a camera is scanned. Then, the slit-shaped light reflected from the side surface of the slab was imaged, and the side surface shape of the slab was measured based on the image data captured by the camera. As a result, one of the pair of press dies (driving side) was shifted upward by 4 mm while the other (operation side) was shifted downward by 4 mm. Therefore, the thickness direction deviation amount δ = 4 mm at the slab hitting position, and the extra width increment shown in FIG. Based on the determination curve, determine the increment (+ 5mm) of the edge seam 疵 maximum wraparound amount of the slab, and set the remaining width for the subsequent slab that is width-pressed after the slab as there is no deviation in the thickness direction of the slab hitting position. The increment (+5 mm) was added to correct the set margin. Hot rolling to give this extra width was performed to obtain a hot-rolled steel strip.

得られた熱延鋼帯をトリミング工程に送り、余幅の部分を切断し除去した結果、エッジシーム疵がない所望する製品幅を得ることができた。
(実施例2)本発明例2として、等脚台形形状の凸部5を有する一対のプレス金型で幅プレスした当該スラブについて、冷却後、側面形状を小型マイクロメータを用いて人手で測定した。その結果、一対のプレス金型の一方(駆動側)が下方に他方(操作側)が上方に2mmずれていたため、スラブ叩き位置の厚み方向ずれ量δ=2mmとし、図2示した余幅増分決定カーブに基づき、当該スラブのエッジシーム疵最大回り込み量の増分(=17.5−16.2=1.3mm)を決定し、当該スラブの後に幅プレスする後行スラブについて、スラブ叩き位置の厚み方向ずれがないとして設定された余幅に前記増分1.3mmを加え、設定された余幅を修正した。この余幅を付与する熱間圧延を実施した。
As a result of sending the obtained hot-rolled steel strip to the trimming process and cutting off and removing the excess width portion, a desired product width free from edge seam wrinkles could be obtained.
(Example 2) As Example 2 of the present invention, the slab width-pressed with a pair of press dies having an isosceles trapezoidal convex portion 5 was cooled, and the side shape was manually measured using a small micrometer. . As a result, one of the pair of press dies (drive side) was shifted downward by 2 mm and the other (operation side) was shifted upward by 2 mm. Based on the determination curve, the increment of the edge seam 疵 maximum wraparound amount of the slab is determined (= 17.5-16.2 = 1.3 mm), and the thickness of the slab hitting position is determined for the subsequent slab that is width-pressed after the slab. The above-mentioned increment of 1.3 mm was added to the extra width set as having no direction shift, and the preset extra width was corrected. Hot rolling to give this extra width was performed.

得られた熱延鋼帯をトリミング工程に送り、余幅の部分を切断し除去した結果、エッジシーム疵がない所望する製品幅を得ることができた。
(実施例3)従来例として、サイジングプレスによる幅プレスを発明例1と同じ条件で行なったスラブについて、発明例1と同様にしてスラブの側面形状を測定した。その結果、発明例1のスラブと同じだけ、一対のプレス金型によるスラブ叩き位置の板厚方向ずれ量が生じていたが、従来どおり、スラブ叩き位置の板厚方向ずれ量が生じていないとして設定された余幅のままとし、この余幅を付与する熱間圧延を実施した。
As a result of sending the obtained hot-rolled steel strip to the trimming process and cutting off and removing the excess width portion, a desired product width free from edge seam wrinkles could be obtained.
(Example 3) As a conventional example, a side shape of a slab was measured in the same manner as in Invention Example 1 for a slab that was subjected to width pressing by a sizing press under the same conditions as in Invention Example 1. As a result, as much as the slab of Invention Example 1, the amount of deviation in the thickness direction of the slab hitting position by the pair of press dies was generated, but as usual, the amount of deviation in the thickness direction of the slab hitting position was not generated. The set margin was left as it was, and hot rolling was performed to give this margin.

得られた熱延鋼帯の余幅をトリミング工程で切断し除去したが、エッジシーム疵が製品幅内に残ったため、再度、トリミング工程でエッジシーム疵が製品幅内に含まれないようにトリミングを実施せざるを得ず、熱延鋼帯の生産を阻害し、製品幅未満の熱延鋼帯となったので、狭幅の製品に振り替えざるを得なかった。   The excess width of the obtained hot-rolled steel strip was cut and removed in the trimming process, but the edge seam wrinkles remained within the product width, so trimming was performed again so that the edge seam wrinkles were not included in the product width in the trimming process. As a result, the production of the hot-rolled steel strip was obstructed and the hot-rolled steel strip was less than the product width, so it had to be transferred to a narrow-width product.

M スラブ
O スラブ断面中心
δ 厚み方向ずれ量
エッジシーム疵の回り込み量
max エッジシーム疵最大回り込み量
、d エッジシーム疵の回り込み量
P、Q 凸部に対応する凹み部の開始位置
、L 凸部に対応する凹み部の開始位置から側面の縁までの距離
W 熱延鋼帯の目標幅
a 製品幅
b 余幅
1 一対のプレス金型
1a 等脚台形形状の凸部の上下方向中央位置
2 入側傾斜面
3 平行面
4 出側傾斜面
5 金型の凸部
6 粗圧延用水平ロール
7 被圧延材
8 しわ状欠陥
9 エッジシーム疵
10 熱延鋼帯
11 スリット光
12 スリット光投光手段
13 カメラ
14 画像処理装置
20 熱間圧延設備
21 加熱炉
22 サイジングプレス
23 粗圧延機
24 仕上げ圧延機
25 巻き取り機
26 エッジャーロール
27 粗圧延用水平ロール
28 幅計
M Slab O Center of slab cross section δ Thickness direction deviation amount d e Edge seam 回 り wrap amount d max Edge seam 疵 Maximum wrap amount d 1 , d 2 Edge seam 回 り wrap amount P, Q Start position of recess corresponding to convex portion L 1 , L 2 Distance from the start position of the recess corresponding to the convex portion to the edge of the side surface W Target width of the hot-rolled steel strip a Product width b Extra width 1 A pair of press dies 1a Top and bottom of the isosceles trapezoidal convex portion Center position in the direction 2 Inlet side inclined surface 3 Parallel surface 4 Outlet side inclined surface 5 Convex portion of the mold 6 Horizontal roll for rough rolling 7 Rolled material 8 Wrinkle defect 9 Edge seam
10 Hot-rolled steel strip
11 Slit light
12 Slit light projection means
13 Camera
14 Image processing device
20 Hot rolling equipment
21 Heating furnace
22 Sizing press
23 Rough rolling mill
24 Finishing mill
25 Winder
26 Edger roll
27 Horizontal roll for rough rolling
28 Width meter

Claims (3)

凸部を有する一対のプレス金型で鋼のスラブを幅方向に幅プレスするサイジングプレスが設置された熱間圧延設備にて、前記スラブを幅方向に幅プレスしてから、引き続き幅プレスしたスラブを熱間圧延し、予め設定された余幅に製品幅を加えた目標幅の熱延鋼帯を得る際、
前記凸部の中央からスラブ厚み中心までの上下方向距離で表わされるスラブ叩き位置の厚み方向ずれ量と、エッジシーム疵最大回り込み量との相関関係を、鋼種、スラブ寸法を含むスラブ規格ごとに予め求めておき、
スラブ叩き位置の厚み方向ずれ量をスラブごとに検出し、前記の相関関係に基づき、スラブ叩き位置の厚み方向ずれ量が零である場合に対するエッジシーム疵最大回り込み量の増分を決定し、
当該スラブの後に幅プレスする後行スラブについて、スラブ叩き位置の厚み方向ずれ量が零である場合に設定された余幅に前記増分を加え、設定された余幅を修正することを特徴とするエッジシーム疵を含まない熱延鋼帯の製造方法。
A slab that has been pressed in the width direction after the width of the slab is pressed in the width direction in a hot rolling facility provided with a sizing press that presses the width of the steel slab in the width direction with a pair of press dies having convex portions. When hot rolling a steel strip with a target width obtained by adding a product width to a preset extra width,
The correlation between the deviation in the thickness direction of the slab striking position expressed by the vertical distance from the center of the convex part to the center of the slab thickness and the maximum wraparound amount of the edge seam 疵 is determined in advance for each slab standard including steel grade and slab size. And
The amount of deviation in the thickness direction of the slab hitting position is detected for each slab, and based on the correlation, the increment of the edge seam 疵 maximum wraparound amount when the thickness direction deviation of the slab hitting position is zero is determined,
For the subsequent slab to be width-pressed after the slab, the increment is added to the set margin when the thickness direction deviation amount at the slab hitting position is zero, and the set margin is corrected. A method for producing a hot-rolled steel strip that does not contain edge seams.
幅プレス途中または幅プレス後に前記スラブの側面の形状を測定し、該側面の形状に基づき、該側面の上、下部で凸部に対応する凹み部の開始位置から側面の縁までの距離を求め、求めた上下の距離の差で、スラブ叩き位置の厚み方向ずれ量を検出することを特徴とする請求項1に記載のエッジシーム疵を含まない熱延鋼帯の製造方法。   Measure the shape of the side surface of the slab during or after the width press, and based on the shape of the side surface, find the distance from the start position of the recessed portion corresponding to the convex portion above and below the side surface to the edge of the side surface The method for producing a hot-rolled steel strip free from edge seam wrinkles according to claim 1, wherein the amount of deviation in the thickness direction of the slab hitting position is detected from the difference between the obtained vertical distances. 前記スラブの側面に、厚み方向に並行するスリット状の光を当てて走査し、カメラで前記スラブの側面から反射されるスリット状の光を撮像し、前記カメラで撮像した画像データに基づき、前記スラブの側面の形状を測定することを特徴とする請求項2に記載のエッジシーム疵を含まない熱延鋼帯の製造方法。   The side surface of the slab is scanned by applying slit-shaped light parallel to the thickness direction, the slit-shaped light reflected from the side surface of the slab is imaged with a camera, and based on the image data captured by the camera, The method of manufacturing a hot-rolled steel strip that does not include an edge seam flaw according to claim 2, wherein the shape of the side surface of the slab is measured.
JP2009053631A 2009-03-06 2009-03-06 Method of manufacturing hot-rolled steel strip Pending JP2010207824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053631A JP2010207824A (en) 2009-03-06 2009-03-06 Method of manufacturing hot-rolled steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053631A JP2010207824A (en) 2009-03-06 2009-03-06 Method of manufacturing hot-rolled steel strip

Publications (1)

Publication Number Publication Date
JP2010207824A true JP2010207824A (en) 2010-09-24

Family

ID=42968585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053631A Pending JP2010207824A (en) 2009-03-06 2009-03-06 Method of manufacturing hot-rolled steel strip

Country Status (1)

Country Link
JP (1) JP2010207824A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053610A1 (en) 2010-09-16 2012-04-26 Suzuki Motor Corporation Control device of a vehicle power transmission mechanism
CN103357659A (en) * 2012-03-27 2013-10-23 上海梅山钢铁股份有限公司 Mobile-type strip steel flattening device and mobile-type strip steel flattening method
JP2014200813A (en) * 2013-04-04 2014-10-27 Jfeスチール株式会社 Die striking position shift detection method in width pressing of slab
CN114669599A (en) * 2022-02-28 2022-06-28 首钢京唐钢铁联合有限责任公司 Method for prolonging on-machine time of hammerhead of hot-rolling width-fixing press

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053610A1 (en) 2010-09-16 2012-04-26 Suzuki Motor Corporation Control device of a vehicle power transmission mechanism
CN103357659A (en) * 2012-03-27 2013-10-23 上海梅山钢铁股份有限公司 Mobile-type strip steel flattening device and mobile-type strip steel flattening method
JP2014200813A (en) * 2013-04-04 2014-10-27 Jfeスチール株式会社 Die striking position shift detection method in width pressing of slab
CN114669599A (en) * 2022-02-28 2022-06-28 首钢京唐钢铁联合有限责任公司 Method for prolonging on-machine time of hammerhead of hot-rolling width-fixing press

Similar Documents

Publication Publication Date Title
JP4781361B2 (en) Metal strip straightening method
JP2010207824A (en) Method of manufacturing hot-rolled steel strip
JP6809488B2 (en) Hot-rolled rough rolling method, hot-rolled rough rolling equipment, hot-rolled steel sheet manufacturing method, and hot-rolled steel sheet manufacturing equipment
JP6806099B2 (en) Rolling machine leveling setting method, rolling mill leveling setting device, and steel sheet manufacturing method
JP6597679B2 (en) Method for evaluating strain of steel sheet
JP6680284B2 (en) Rolling mill leveling setting method, rolling mill leveling setting device, and steel plate manufacturing method
JP2019038035A (en) Hat-shaped steel sheet pile, manufacturing method of hat-shaped steel sheet pile, and manufacturing facility therefor
JP5582288B2 (en) Manufacturing method of hot-rolled steel strip with reduced edge seam
JP6311627B2 (en) Rolling mill control method, rolling mill control apparatus, and steel plate manufacturing method
JP5949691B2 (en) Plate width control method and plate width control device
JP6795008B2 (en) Steel sheet pile manufacturing equipment and manufacturing method
JP3332712B2 (en) Planar shape control method and planar shape control device
TWI664033B (en) Method for edging and device for edging
TWI763572B (en) Method and system for rolling a steel slab having a wedge shape
JP3211709B2 (en) Manufacturing method of section steel
JP4846680B2 (en) Thermal crown prediction method and thermal crown prediction apparatus
JP6308178B2 (en) Hot slab width pressing method
JP3211710B2 (en) Manufacturing method of section steel
JP2010075977A (en) Method of forming slab with sizing press
KR101330548B1 (en) Apparatus for adjusting skewness of hot rolled steel sheet and method thereof
JP3351239B2 (en) Hot-rolled steel strip rolling method and apparatus
JP2004351484A (en) Method and equipment for producing hot-rolled steel strip
JP2010064117A (en) Method for manufacturing hot-rolled steel sheet
KR101410157B1 (en) System for measuring asymmetric upper and lower amount of side surface of slab
JPH10265843A (en) Production of stainless steel sheet