JP2010204788A - Illuminator and electrooptical device - Google Patents

Illuminator and electrooptical device Download PDF

Info

Publication number
JP2010204788A
JP2010204788A JP2009047636A JP2009047636A JP2010204788A JP 2010204788 A JP2010204788 A JP 2010204788A JP 2009047636 A JP2009047636 A JP 2009047636A JP 2009047636 A JP2009047636 A JP 2009047636A JP 2010204788 A JP2010204788 A JP 2010204788A
Authority
JP
Japan
Prior art keywords
light
detection
position detection
photodetector
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009047636A
Other languages
Japanese (ja)
Inventor
Yasunori Onishi
康憲 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Imaging Devices Corp filed Critical Epson Imaging Devices Corp
Priority to JP2009047636A priority Critical patent/JP2010204788A/en
Publication of JP2010204788A publication Critical patent/JP2010204788A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively constitute an optical position detecting means with low power consumption. <P>SOLUTION: A position detecting device 10 includes: position detection light sources 12A, 12B for emitting position detecting light beams L2a, L2b; a front surface 30a having a detection plane area 10P for emitting the position detection light beams; a photo detector 15 arranged in an area along the front surface and detecting at least a part of the reflection light of the position detection light beams from a detection object Ob which is arranged on the front surface in the detection plane area; and a control means for obtaining planar position information of the detection object in the detection plane area, based on the detection value of the reflection light by the photo detector. An optical detection azimuth range in the orthogonal direction of the front surface concerning the photo detector is smaller than an optical detection azimuth range in the direction along the front surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は照明装置及び電気光学装置に係り、特に、光学式位置検出手段を備えた表示機器に用いる場合に好適な照明装置の構成に関する。   The present invention relates to an illuminating device and an electro-optical device, and more particularly to a configuration of an illuminating device suitable for use in a display device including an optical position detecting unit.

一般に、液晶表示体などの電気光学装置を備えた表示機器には、表示画面を視認可能とするために、或いは、その視認性を高めるために、バックライト等の照明装置が用いられる場合がある。また、上記表示機器には、表示画面にタッチパネル等の指示位置検出手段が設けられる場合もあり、この場合には、表示画面の特定箇所をペンや指などで指示することで、当該指示位置が検出され、情報処理装置等に入力される。   In general, in a display device including an electro-optical device such as a liquid crystal display, an illumination device such as a backlight may be used to make the display screen visible or to improve the visibility. . In addition, the display device may be provided with a designated position detecting means such as a touch panel on the display screen. In this case, the designated position is indicated by pointing a specific portion of the display screen with a pen or a finger. Detected and input to an information processing apparatus or the like.

上記のタッチパネル等の指示位置検出手段(位置座標入力手段)としては、表示画面への接触状態を機械的・電気的に検出するための静電容量式若しくは抵抗膜式等のタッチパネルが知られている他、例えば、表示画面に沿って多数の赤外線を縦横に走らせるとともにこれらの赤外線を検出する光検出器を対応して設けることで、これらの赤外線を指等で遮断したときに当該指等の位置座標を検出可能とした光学式タッチパネルが知られている。一般に光学式タッチパネルといっても種々のものが知られているが、例えば、以下の特許文献1及び2に記載されているものがある。   As the pointing position detection means (position coordinate input means) such as the above touch panel, a capacitive touch panel or a resistive touch panel for mechanically and electrically detecting a contact state with the display screen is known. In addition, for example, when a large number of infrared rays run vertically and horizontally along the display screen and a corresponding photodetector is provided to detect these infrared rays, the finger or the like can be used when these infrared rays are blocked by a finger or the like. There is known an optical touch panel that can detect the position coordinates. Various types of optical touch panels are generally known. For example, there are those described in Patent Documents 1 and 2 below.

特開2004−295644号公報JP 2004-295644 A 特開2004−303172号公報JP 2004-303172 A

しかしながら、前述の光学式タッチパネルでは、表示画面の近傍に検出すべき位置座標の分解能に対応する多数の光源及び光検出器或いは光スイッチや導光構造などを配列させる必要があるので、光学素子の数が多くなるために高い製造コストを負担しなければならず、また、消費電力が増大するという問題点がある。   However, in the optical touch panel described above, it is necessary to arrange a large number of light sources and photodetectors or optical switches or light guide structures corresponding to the resolution of position coordinates to be detected in the vicinity of the display screen. Since the number increases, high manufacturing costs must be borne, and power consumption increases.

そこで、本発明は上記問題点を解決するものであり、光学式位置検出手段を低コストかつ低消費電力となるように構成できる照明装置、及び、これを用いた電気光学装置(表示装置)を実現することにある。   Accordingly, the present invention solves the above-described problems, and provides an illumination device that can be configured to reduce the cost and power consumption of an optical position detection unit, and an electro-optical device (display device) using the illumination device. It is to be realized.

斯かる実情に鑑み、本発明の位置検出装置は、位置検出光を放出する位置検出用光源と、該位置検出光を出射する検出平面領域を備えた表面と、該表面に沿った領域に配置され、前記検出平面領域において前記表面上に配置された検出対象物による前記位置検出光の反射光の少なくとも一部を検出する光検出器と、前記反射光の前記光検出器による検出値に基づいて前記検出対象物の前記検出平面領域内の平面的な位置情報を求める制御手段と、を具備し、前記光検出器の前記表面と直交する方向の光検出方位角範囲は、前記表面に沿った方向の光検出方位角範囲よりも狭いことを特徴とする。   In view of such circumstances, the position detection device of the present invention is arranged in a position detection light source that emits position detection light, a surface that includes a detection plane region that emits the position detection light, and a region along the surface. And a light detector for detecting at least a part of the reflected light of the position detection light by the detection object arranged on the surface in the detection plane region, and a detection value of the reflected light by the light detector. Control means for obtaining planar position information of the detection object in the detection plane region, and a light detection azimuth angle range in a direction perpendicular to the surface of the photodetector is along the surface. It is characterized by being narrower than the light detection azimuth range in the selected direction.

この発明によれば、位置検出用光源から放出される位置検出光が検出平面領域において表面上に配置される検出対象物により反射され、その反射光の少なくとも一部が表面に沿った領域に配置された光検出器によって検出され、この光検出器の検出値に基づいて制御部が検出対象物の検出平面領域内の平面的な位置情報を求める。このような位置検出装置では、従来のように表示画面の近傍に多数の素子や導光構造を設ける必要がないので、光学式位置検出手段を低コストかつ低消費電力となるように構成できる。特に、光検出器における表面と直交する方向の光検出方位角範囲が表面に沿った方向の光検出方位角範囲よりも狭いことにより、上記表面から検出予定高さ範囲よりも離間した物の位置を検出するなどの誤検出を防止することができるとともに、表面上の検出平面領域内のより広い範囲を光検出器によって検出することが可能になるので、検出漏れを低減でき、また、光検出器の数を低減することが可能になる。   According to the present invention, the position detection light emitted from the position detection light source is reflected by the detection object disposed on the surface in the detection plane region, and at least a part of the reflected light is disposed in the region along the surface. The control unit obtains planar position information in the detection plane area of the detection object based on the detection value of the photodetector. In such a position detection device, since it is not necessary to provide a large number of elements and light guide structures in the vicinity of the display screen as in the prior art, the optical position detection means can be configured to be low in cost and low in power consumption. In particular, the position of an object that is farther from the surface to be detected than the intended height range because the light detection azimuth range in the direction perpendicular to the surface of the photodetector is narrower than the light detection azimuth range in the direction along the surface. Detection error, and a wider range within the detection plane area on the surface can be detected by the photodetector, so that detection omissions can be reduced, and light detection The number of vessels can be reduced.

本発明の一の態様においては、前記光検出器は、前記反射光を検出する光検出部と、該光検出部へ前記反射光を導く受光部とを有し、該受光部には、前記光検出方位角範囲を前記表面と直交する方向に制限する検出方位限定手段が設けられる。これによれば、受光部に設けた検出方位限定手段で光検出方位角範囲を表面と直交する方向に制限することにより、本発明の上記態様の光検出方位角範囲を容易に実現することができる。特に、表面と直交する方向の光検出方位角範囲を的確に設定することができるため、表面上の検出不要な高さ範囲からの反射光による誤検出を確実に防止することができる。   In one aspect of the present invention, the photodetector includes a light detection unit that detects the reflected light, and a light receiving unit that guides the reflected light to the light detection unit. Detection azimuth limiting means for limiting the light detection azimuth range to a direction orthogonal to the surface is provided. According to this, the light detection azimuth angle range according to the present invention can be easily realized by limiting the light detection azimuth angle range to a direction orthogonal to the surface by the detection azimuth limiting means provided in the light receiving unit. it can. In particular, since the light detection azimuth range in the direction orthogonal to the surface can be set accurately, erroneous detection due to reflected light from a height range that does not require detection on the surface can be reliably prevented.

本発明の他の態様においては、前記光検出器は、前記反射光を検出する光検出部と、該光検出部へ前記反射光を導く受光部とを有し、該受光部には、前記光検出方位角範囲を前記表面に沿った方向に拡大する検出方位拡大手段が設けられる。これによれば、受光部に設けた検出方位拡大手段により光検出方位角範囲を表面に沿った方向に拡大することにより、本発明の上記態様の光検出方位角範囲を容易に実現することができる。特に、表面に沿った方向の光検出方位角範囲を検出平面領域の方位に応じて的確に設定することができるので、検出漏れの防止を確実に図ることができるとともに、光検出器の数をさらに容易に低減することが可能になる。   In another aspect of the present invention, the photodetector includes a light detection unit that detects the reflected light, and a light receiving unit that guides the reflected light to the light detection unit. Detection azimuth expanding means for expanding the light detection azimuth range in a direction along the surface is provided. According to this, the photodetection azimuth range of the above aspect of the present invention can be easily realized by enlarging the photodetection azimuth range in the direction along the surface by the detection azimuth expanding means provided in the light receiving unit. it can. In particular, the photodetection azimuth range in the direction along the surface can be accurately set according to the orientation of the detection plane area, so that detection omission can be reliably prevented and the number of photodetectors can be reduced. Further reduction can be achieved easily.

本発明の異なる態様においては、前記光検出器は、前記反射光を検出する光検出部と、該光検出部へ前記反射光を導く受光部とを有し、該受光部には、前記光検出方位角範囲を前記表面と直交する方向に制限する検出方位限定手段と、前記光検出方位角範囲を前記表面に沿った方向に拡大する検出方位拡大手段とが設けられる。これによれば、受光部に設けた検出方位限定手段と検出方向拡大手段とにより、光検出方位角範囲を前記表面と直交する方向に制限するとともに前記光検出方位角範囲を前記表面に沿った方向に拡大することにより、表面と直交する方向と表面に沿った方向についてそれぞれ範囲制限と範囲拡大とを行うので、上記態様の光検出方位角範囲をさらに容易に実現できる。   In another aspect of the present invention, the photodetector includes a light detection unit that detects the reflected light and a light receiving unit that guides the reflected light to the light detection unit. Detection azimuth limiting means for limiting the detection azimuth angle range to a direction orthogonal to the surface and detection azimuth expanding means for expanding the light detection azimuth angle range in a direction along the surface are provided. According to this, by the detection azimuth limiting means and the detection direction expanding means provided in the light receiving section, the light detection azimuth angle range is limited to a direction orthogonal to the surface, and the light detection azimuth angle range is along the surface. By enlarging in the direction, range limitation and range expansion are performed in the direction orthogonal to the surface and the direction along the surface, respectively, so that the light detection azimuth angle range of the above aspect can be realized more easily.

上記発明においては、前記検出方位制限手段は前記反射光を遮光する遮光材で構成される場合がある。これによれば、検出方位制限手段が反射光を遮光する遮光材で構成されることにより、光検出方位角範囲を容易に限定することができる。   In the above invention, the detection azimuth limiting means may be composed of a light blocking material that blocks the reflected light. According to this, since the detection azimuth limiting means is formed of the light shielding material that blocks the reflected light, the light detection azimuth angle range can be easily limited.

また、前記検出方位拡大手段は、前記反射光を偏向させることにより前記光検出方位角範囲を拡大する光偏向手段で構成されることが好ましい。光偏向手段により、光の屈折や反射を利用して反射光の進行方向を変えることで、光検出方位角範囲を容易に拡大することができる。   Moreover, it is preferable that the detection azimuth expanding unit is configured by a light deflection unit that expands the light detection azimuth range by deflecting the reflected light. The light detection azimuth range can be easily expanded by changing the traveling direction of the reflected light by utilizing the light refraction and reflection by the light deflecting means.

この場合において、前記光偏向手段は、前記光検出部とは反対側の面の前記表面に沿った断面が凸曲面状の透光材で構成されることが好ましい。これによれば、光検出部とは反対側の面の表面に沿った断面が凸曲面状のレンズ材で構成されることにより、凸曲面状のレンズ面によって表面に沿った方向において広い方位角範囲内の反射光が狭い方位角範囲内に集光されるため、簡易な構成で確実に光検出方位角範囲を拡大できる。   In this case, it is preferable that the light deflecting unit is formed of a translucent material having a convex curved surface in a cross section along the surface of the surface opposite to the light detection unit. According to this, since the cross section along the surface of the surface opposite to the light detection unit is configured by the convex curved lens material, a wide azimuth angle in the direction along the surface by the convex curved lens surface. Since the reflected light within the range is collected within a narrow azimuth range, the light detection azimuth range can be reliably expanded with a simple configuration.

また、前記光偏向手段は、前記光検出部の側の面の前記表面に沿った断面が凹凸状に構成され、若しくは、当該面が粗面とされた透光材で構成されることが好ましい。これによれば、表面に沿った方向において広い方位角範囲の端に近い方位からレンズ材に入射した反射光は、表面に沿った断面が凹凸状の上記光検出部の側の面により屈折されることにより、表面に沿った方向において狭い方位角範囲に偏向されて光検出部に導かれるので、簡易な構成で確実に光検出範囲を拡大できる。   In addition, the light deflecting unit is preferably formed of a translucent material in which a cross section along the surface of the surface on the light detection unit side is configured to be uneven, or the surface is a rough surface. . According to this, the reflected light incident on the lens material from the direction close to the end of the wide azimuth angle range in the direction along the surface is refracted by the surface on the side of the photodetection unit whose cross section along the surface is uneven. As a result, the light detection range is deflected to a narrow azimuth range in the direction along the surface and guided to the light detection unit, so that the light detection range can be reliably expanded with a simple configuration.

なお、上記光偏向手段として、光検出部の側の面に上記の凹凸状の断面を有するとともに、光検出部とは反対側の面に上記の凸曲面状の断面を有するレンズ材を用いることがさらに望ましい。この場合には、凹凸状の断面を備えた光検出部の側の面と、凸曲面状の断面を備えた光検出部とは反対側の面とにより、表面に沿った方向において光検出方位角範囲を確実かつ大幅に拡大することができる。   In addition, as the light deflecting means, a lens material having the convex-concave cross section on the surface on the light detection unit side and the convex curved cross section on the surface opposite to the light detection unit is used. Is more desirable. In this case, the light detection azimuth in the direction along the surface is determined by the surface on the side of the light detection unit having the concavo-convex cross section and the surface on the side opposite to the light detection unit having the convex curved cross section. The angular range can be expanded reliably and significantly.

本発明の或る態様においては、前記制御手段は、前記位置検出光によって構成される第1の光出射分布と、これとは異なる第2の光出射分布を前記表面上の前記検出平面領域にそれぞれ形成するとともに、前記第1の光出射分布を構成する第1の前記位置検出光に起因する前記光検出器の出力成分と、前記第2の光出射分布を構成する第2の前記位置検出光に起因する前記光検出器の出力成分とに基づいて前記検出対象物の位置情報を求める。これによれば、第1の光出射分布と第2の光出射分布の双方に基づく検出対象物の反射光を光検出器によって検出し、その双方にそれぞれ起因する出力成分に基づいて検出対象物の位置情報を求めることにより、外光や出射光量や反射光量のレベル変動に影響されにくくなるため、当該位置情報の精度や再現性を高めることができる。   In a certain aspect of the present invention, the control means applies a first light emission distribution constituted by the position detection light and a second light emission distribution different from the first light emission distribution to the detection plane region on the surface. Each of the output components of the light detectors formed from the first position detection light constituting the first light emission distribution and the second position detection constituting the second light emission distribution. Position information of the detection target is obtained based on an output component of the photodetector caused by light. According to this, the reflected light of the detection object based on both the first light emission distribution and the second light emission distribution is detected by the photodetector, and the detection object is based on the output components respectively resulting from both. By obtaining the position information, it becomes difficult to be influenced by the level fluctuation of the external light, the emitted light quantity, and the reflected light quantity, so that the accuracy and reproducibility of the position information can be improved.

ここで、両光出射分布にそれぞれ起因する光検出器の出力成分に基づいた検出対象物の位置情報の導出方法は特に限定されないが、両光出射分布にそれぞれ起因する光検出器の出力成分の比や差を用いて直接に位置情報を取得する方法だけでなく、たとえば、両光出射分布にそれぞれ起因する光検出器の出力成分同士が相互に一致するように一方の光出射分布のレベルを増減させたときの、当該レベルの増減量に基づいて検出対象物の位置情報を導出する場合なども含まれる。   Here, the method for deriving the position information of the detection object based on the output components of the photodetectors caused by both light emission distributions is not particularly limited, but the output components of the photodetectors caused by the both light emission distributions are not particularly limited. In addition to the method of directly acquiring position information using the ratio or difference, for example, the level of one light emission distribution is set so that the output components of the photodetectors caused by both light emission distributions match each other. The case where the position information of the detection target is derived based on the amount of increase / decrease of the level when it is increased / decreased is also included.

また、上記第1の光出射分布と第2の光出射分布は相互に識別可能な態様で形成されればよく、たとえば、相互に識別可能な位置検出光で形成されるのであれば同時に形成されてもよく、また、相互に識別不可能な位置検出光で形成されるのであれば時間差をもってそれぞれが形成されるなど、光検出器の出力成分を相互にいずれの光出射分布に起因するものであるか特定できる方法で行う。また、これらの第1の光出射分布と第2の光出射分布は同じ位置検出用光源から放出される位置検出光で構成されるものであってもよく、異なる位置検出用光源から放出される位置検出用光源で構成されるものであっても構わない。   Further, the first light emission distribution and the second light emission distribution may be formed in a manner that can be distinguished from each other. For example, if they are formed by position detection lights that can be distinguished from each other, they are formed at the same time. It is also possible that the output components of the photodetectors are caused by any light emission distribution with respect to each other, such as being formed with a time difference if they are formed with position detection lights that cannot be distinguished from each other. This is done in a way that can be identified. Further, the first light emission distribution and the second light emission distribution may be composed of position detection light emitted from the same position detection light source, and are emitted from different position detection light sources. A light source for position detection may be used.

次に、本発明の電気光学装置は、位置検出光を放出する位置検出用光源と、該位置検出光を出射する検出平面領域を備えた表面と、該表面に沿った領域に配置され、前記検出平面領域において前記表面上に配置された検出対象物による前記位置検出光の反射光の少なくとも一部を検出する光検出器と、前記反射光の前記光検出器による検出値に基づいて前記検出対象物の前記検出平面領域内の平面的な位置情報を求める制御手段と、前記検出平面領域に対し少なくとも一部が平面的に重なる表示領域を備え、前記表面を構成するか、或いは、前記表面の背後に配置された電気光学パネルと、を具備し、前記光検出器の前記表面と直交する方向の光検出方位角範囲は、前記表面に沿った方向の光検出方位角範囲よりも狭いことを特徴とする。   Next, an electro-optical device according to the present invention is disposed in a position detection light source that emits position detection light, a surface including a detection plane region that emits the position detection light, and a region along the surface, A light detector for detecting at least a part of the reflected light of the position detection light by the detection object arranged on the surface in the detection plane region; and the detection based on a detection value of the reflected light by the light detector. A control means for obtaining planar position information of the object in the detection plane area; and a display area that at least partially overlaps the detection plane area to form the surface, or the surface And a photodetection azimuth range in a direction perpendicular to the surface of the photodetector is narrower than a photodetection azimuth range in a direction along the surface. It is characterized by.

本発明の一の態様においては、前記表面には前記表示領域を光学的に露出する表示画面領域と、該表示画面領域を包囲する縁領域とが設けられ、前記検出平面範囲は前記表示画面領域内に配置され、前記光検出器は前記縁領域に配置される。これによれば、表示画面領域には、電気光学パネルの表示領域が光学的に露出されるとともに、検出平面範囲が配置されるので、表示画面領域内の表示画像を視認しながら検出平面範囲内において指示や操作を行うことができる。   In one aspect of the present invention, a display screen area that optically exposes the display area and an edge area that surrounds the display screen area are provided on the surface, and the detection plane area is the display screen area. And the photodetector is disposed in the edge region. According to this, since the display area of the electro-optical panel is optically exposed and the detection plane area is arranged in the display screen area, the display image area within the detection plane area can be viewed while visually checking the display image in the display screen area. Instructions and operations can be performed at.

本発明の他の態様においては、前記制御手段は、前記位置検出光によって構成される第1の光出射分布と、これとは異なる第2の光出射分布を前記表面上の前記検出平面領域にそれぞれ形成するとともに、前記第1の光出射分布を構成する第1の前記位置検出光に起因する前記光検出器の出力成分と、前記第2の光出射分布を構成する第2の前記位置検出光に起因する前記光検出器の出力成分とに基づいて前記検出対象物の位置情報を求める。   In another aspect of the present invention, the control means includes a first light emission distribution constituted by the position detection light and a second light emission distribution different from the first light emission distribution in the detection plane region on the surface. Each of the output components of the light detectors formed from the first position detection light constituting the first light emission distribution and the second position detection constituting the second light emission distribution. Position information of the detection target is obtained based on an output component of the photodetector caused by light.

位置検出装置及び電気光学装置の第1実施形態の構成を模式的に示す概略断面図。FIG. 3 is a schematic cross-sectional view schematically showing the configuration of the first embodiment of the position detection device and the electro-optical device. 第1実施形態の表面側の構造を模式的に示す概略平面図。The schematic plan view which shows the structure of the surface side of 1st Embodiment typically. 第1実施形態の表面側の構成を模式的に示す概略部分断面図。The schematic fragmentary sectional view which shows typically the structure by the side of the surface of 1st Embodiment. 第1実施形態の光検出器の縦断面図(a)及び横断面図(b)。The longitudinal cross-sectional view (a) and horizontal cross-sectional view (b) of the photodetector of 1st Embodiment. 第2実施形態の光検出器の縦断面図(a)及び横断面図(b)。The longitudinal cross-sectional view (a) and horizontal cross-sectional view (b) of the photodetector of 2nd Embodiment. 各実施形態に適用可能な構成例を示す光検出器の横断面図。The cross-sectional view of the photodetector which shows the structural example applicable to each embodiment. 第3実施形態の光検出器の縦断面図(a)及び横断面図(b)。The longitudinal cross-sectional view (a) and cross-sectional view (b) of the photodetector of 3rd Embodiment. 各実施形態に適用可能な構成例を示す光検出器の横断面図。The cross-sectional view of the photodetector which shows the structural example applicable to each embodiment. 位置検出装置の制御系の全体構成を示す概略ブロック図。The schematic block diagram which shows the whole structure of the control system of a position detection apparatus. 位置検出装置の検出時の各部の信号を示すタイミングチャート。The timing chart which shows the signal of each part at the time of the detection of a position detection apparatus. 制御部と各光源との接続関係を示すブロック図。The block diagram which shows the connection relation of a control part and each light source. 位置検出装置の検出時の様子を示す概略部分断面図。The schematic fragmentary sectional view which shows the mode at the time of the detection of a position detection apparatus. 位置検出装置の検出範囲の例を示す概略平面図(a)及び(b)。The schematic plan views (a) and (b) which show the example of the detection range of a position detection apparatus.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[第1実施形態]
図1は本発明に係る第1実施形態の位置検出装置及び電気光学装置の構成を模式的に示す概略断面図、図2は位置検出装置及び電気光学装置を検出側(視認側)から見た様子を模式的に示す概略平面図である。
[First embodiment]
FIG. 1 is a schematic cross-sectional view schematically showing a configuration of a position detection device and an electro-optical device according to the first embodiment of the present invention, and FIG. 2 is a view of the position detection device and the electro-optical device from the detection side (viewing side). It is a schematic plan view which shows a mode typically.

本実施形態の電気光学装置100は、照明光L1を放出する照明用光源11と、位置検出光L2a、L2bを放出する位置検出用光源12A、12Bと、照明光L1が入射する第1の導光板13Aと、位置検出光L2a、L2bが入射する第2の導光板13Bと、導光板13A及び13Bの背後に配置される反射板14と、上記位置検出光の出射側に配置された光検出器15とを備えている。また、導光板13A、13Bはアクリル樹脂やポリカーボネート樹脂等の透明導光体からなる。第1の導光板13Aは、一方の辺の端面である第1の光入射面13aaと、この光入射面と隣接するとともに交差(図示例では直交)する光出射面13acと、この光出射面13acの反対側の背面13adとを有する。また、第2の導光板13Bは、相互に対向する第2の光入射面13ba、13bbと、これらの光入射面と隣接するとともに交差(図示例では直交)する光出射面13bcと、この光出射面13bcの反対側の背面13bdとを有する。さらに、導光板13A、13Bの光出射側には、必要に応じて、照明光の均一化を図るための光拡散板、照明光の指向性を高めるためのプリズムシート等の集光板などの光学シート16が適宜に配置される。   The electro-optical device 100 according to the present embodiment includes an illumination light source 11 that emits illumination light L1, position detection light sources 12A and 12B that emit position detection light L2a and L2b, and a first light incident on the illumination light L1. Light plate 13A, second light guide plate 13B on which position detection lights L2a and L2b are incident, reflector 14 arranged behind light guide plates 13A and 13B, and light detection arranged on the emission side of the position detection light And a container 15. The light guide plates 13A and 13B are made of a transparent light guide such as acrylic resin or polycarbonate resin. The first light guide plate 13A includes a first light incident surface 13aa which is an end surface of one side, a light emitting surface 13ac which is adjacent to and intersects with the light incident surface (orthogonal in the illustrated example), and the light emitting surface. It has a back surface 13ad opposite to 13ac. The second light guide plate 13B includes second light incident surfaces 13ba and 13bb that face each other, a light emitting surface 13bc that is adjacent to and intersects with these light incident surfaces (orthogonal in the illustrated example), and the light. A back surface 13bd opposite to the exit surface 13bc. Furthermore, on the light exit side of the light guide plates 13A and 13B, optical diffusers such as a light diffusing plate for equalizing illumination light and a condensing plate such as a prism sheet for enhancing the directivity of the illumination light, if necessary. The sheet 16 is appropriately arranged.

上記電気光学装置100内において、位置検出装置10は、位置検出用光源12A、12Bと、第2の導光板13Bと、光検出器15とによって構成される。この導光板13Bの上記位置検出光L2a、L2bの光出射側には、透過型の液晶表示体等よりなる電気光学パネル20が配置される。この電気光学パネル20は、たとえば、透明な基板21と22をシール材23で貼り合わせ、基板間に液晶24を配置してなり、この液晶24の配向状態を図示しない電極によりそれぞれ制御可能に構成した複数の画素を備えている。なお、必要に応じて基板21及び22の外面側には偏光板(図示せず)が配置される。各画素は、半導体ICチップ等よりなる駆動回路25が出力する駆動信号によって駆動され、画素ごとに所定の透過状態となるように制御される。   In the electro-optical device 100, the position detection device 10 includes position detection light sources 12A and 12B, a second light guide plate 13B, and a photodetector 15. An electro-optical panel 20 made of a transmissive liquid crystal display or the like is disposed on the light output side of the position detection lights L2a and L2b of the light guide plate 13B. The electro-optical panel 20 includes, for example, transparent substrates 21 and 22 bonded together with a sealing material 23, and a liquid crystal 24 disposed between the substrates. The alignment state of the liquid crystal 24 can be controlled by electrodes (not shown). A plurality of pixels are provided. In addition, a polarizing plate (not shown) is arrange | positioned at the outer surface side of the board | substrates 21 and 22 as needed. Each pixel is driven by a drive signal output from a drive circuit 25 made of a semiconductor IC chip or the like, and is controlled so that each pixel is in a predetermined transmission state.

電気光学パネル20は、上記複数の画素が配列されてなる表示領域を有し、この表示領域は、導光板13Aの光出射面13acの照明光L1が出射される範囲と平面的に重なるように配置される。また、導光板13Bの光出射面13bcの位置検出光L2a、L2bが出射される範囲とも平面的に重なるように配置される。   The electro-optical panel 20 has a display area in which the plurality of pixels are arranged, and the display area is planarly overlapped with a range where the illumination light L1 of the light emission surface 13ac of the light guide plate 13A is emitted. Be placed. Moreover, it arrange | positions so that it may planarly overlap with the range from which position detection light L2a and L2b of the light-projection surface 13bc of the light-guide plate 13B are radiate | emitted.

電気光学パネル20の位置検出用光源12A、12B及び導光板13Bとは反対側には光透過性を有する表装板30が配置され、この表装板30の外面(電気光学パネル20とは反対側の面)上に光検出器15が配置される。この光検出器15はフォトダイオード等の受光素子であり、上記位置検出光の強度を検出可能となるように構成される。例えば、後述するように位置検出光が赤外線であれば、光検出器15も赤外線に感度を有する受光素子で構成される。ここで、表装板30の表面30aは位置検出装置10において位置検出光L2a、L2bが出射される上述の本願発明の表面を構成するものであるが、この表面を構成する表装板30自体は必須構成ではなく、たとえば、当該表面が電気光学パネル20の視認側の面で構成されていてもよい。   On the opposite side of the electro-optical panel 20 from the position detection light sources 12A and 12B and the light guide plate 13B, a light-transmitting front panel 30 is disposed. The outer surface of the front panel 30 (on the side opposite to the electro-optical panel 20). The photodetector 15 is disposed on the surface. The light detector 15 is a light receiving element such as a photodiode, and is configured to detect the intensity of the position detection light. For example, as will be described later, when the position detection light is infrared, the photodetector 15 is also composed of a light receiving element having sensitivity to infrared. Here, the surface 30a of the cover plate 30 constitutes the surface of the above-described invention of the present invention from which the position detection light L2a and L2b are emitted in the position detection device 10, but the cover plate 30 itself constituting this surface is essential. Instead of the configuration, for example, the surface may be configured by a surface on the viewing side of the electro-optical panel 20.

照明用光源11は例えばLED(発光ダイオード)等の発光素子で構成され、図示しない駆動回路から出力される駆動信号に応じて例えば白色の照明光L1を放出する。通常、複数の照明用光源11が第1の光入射面13aaに沿って(すなわち、導光板13Aの辺に沿って)配列された状態とされる。これによって、第1の導光板13Aの光出射面13acから出射される照明光L1の輝度の均一性を高めることができる。   The illumination light source 11 is composed of a light emitting element such as an LED (light emitting diode), for example, and emits, for example, white illumination light L1 in accordance with a drive signal output from a drive circuit (not shown). Normally, a plurality of illumination light sources 11 are arranged along the first light incident surface 13aa (that is, along the side of the light guide plate 13A). Thereby, the uniformity of the luminance of the illumination light L1 emitted from the light emission surface 13ac of the first light guide plate 13A can be improved.

位置検出用光源12A、12Bは例えばLED(発光ダイオード)等の発光素子で構成され、図示しない駆動回路から出力される駆動信号に応じて例えば赤外線である位置検出光L2a、L2bを放出する。位置検出光は特に限定されないが、後述する信号処理等によって上記照明光L1や外光と区別して検出可能なものが好ましく、上記照明光L1とは波長分布や発光態様が異なることが好ましい。   The position detection light sources 12A and 12B are composed of light emitting elements such as LEDs (light emitting diodes), for example, and emit position detection lights L2a and L2b, for example, infrared rays in response to a drive signal output from a drive circuit (not shown). The position detection light is not particularly limited, but is preferably one that can be detected separately from the illumination light L1 and external light by signal processing or the like to be described later, and preferably has a wavelength distribution or a light emission mode different from that of the illumination light L1.

また、位置検出光は、本発明の対象物体Obにより効率的に反射される波長域を有することが好ましい。例えば対象物体Obが指等の人体であれば、人体の表面で反射率の高い赤外線(特に可視光領域に近い近赤外線)であることが望ましい。位置検出用光源12A、12Bは相互に異なる位置から位置検出光を放出するように構成される。図示例では導光板13Bの相互に対向する光入射面13ba、13bbへ向けて反対側に位置検出光L2aとL2bを放出する。上記位置検出用光源12A、12Bは、それぞれが光入射面13baと13bbにおいて導光板13Bの辺に沿って複数配列されていることが好ましい。   The position detection light preferably has a wavelength range that is efficiently reflected by the target object Ob of the present invention. For example, if the target object Ob is a human body such as a finger, it is desirable to use infrared rays with high reflectivity on the surface of the human body (particularly near infrared rays close to the visible light region). The position detection light sources 12A and 12B are configured to emit position detection light from different positions. In the illustrated example, the position detection lights L2a and L2b are emitted to the opposite sides toward the light incident surfaces 13ba and 13bb facing each other of the light guide plate 13B. It is preferable that a plurality of the position detection light sources 12A and 12B are arranged along the side of the light guide plate 13B on the light incident surfaces 13ba and 13bb.

本実施形態の第1の導光板13Aは本質的に第1の光入射面13aa側から反対側の外縁部13abに向けた内部伝播光に対する光出射面13acからの出射光の光量比率が単調に増加する導光特性を有している。この導光特性は、例えば、第1の導光板13Aの光出射面13ac又は背面13adに形成された光偏向用若しくは光散乱用の微細な凹凸形状の屈折面の面積、印刷層の形成密度などで構成される光散乱構造の散乱率を上記内部伝播方向に向けて徐々に高めることで実現される。このような導光特性を設けることで、第1の光入射面13aaから入射した照明光L1は光出射面13acからほぼ均一に出射され、その結果、第1の導光板13Aが面状光源として作用するように構成される。この照明光L1は上記電気光学パネル20を透過して表装板30から視認側に出射される。   In the first light guide plate 13A of the present embodiment, the ratio of the amount of light emitted from the light exit surface 13ac to the internally propagated light from the first light incident surface 13aa side toward the outer edge portion 13ab on the opposite side is monotonic. It has increasing light guide properties. The light guide characteristics include, for example, the area of a fine refracted surface for light deflection or light scattering formed on the light exit surface 13ac or the back surface 13ad of the first light guide plate 13A, the formation density of the printing layer, and the like. This is realized by gradually increasing the scattering rate of the light scattering structure constituted by the above toward the internal propagation direction. By providing such a light guide characteristic, the illumination light L1 incident from the first light incident surface 13aa is emitted almost uniformly from the light emitting surface 13ac, and as a result, the first light guide plate 13A serves as a planar light source. Configured to work. The illumination light L1 passes through the electro-optical panel 20 and is emitted from the front panel 30 to the viewing side.

なお、本実施形態では、第1の光入射面13aaに隣接する光出射側の表面部分(光出射面13acの外周部)には傾斜面13agが設けられ、これにより第1の導光板13Aの外周部では第1の光入射面13aaに向けて第1の導光板13Aの厚みが徐々に増加するように構成される。この傾斜面13agを有する入光構造によって光出射面13acが設けられる部分の厚みの増加を抑制しつつ、第1の光入射面13aaの高さを大きくして照明用光源11の光放出領域の高さと対応するように形成される。これは、近年の表示装置の薄型化の要請に応えるために第1の導光板13Aの厚みを小さくしつつ、小型化が進展していない発光素子(照明用光源11)からの放出光の採り込み効率を高めて照明輝度を向上させるためである。   In the present embodiment, an inclined surface 13ag is provided on the surface portion on the light emitting side adjacent to the first light incident surface 13aa (the outer peripheral portion of the light emitting surface 13ac), whereby the first light guide plate 13A In the outer peripheral portion, the thickness of the first light guide plate 13A is gradually increased toward the first light incident surface 13aa. The height of the first light incident surface 13aa is increased by suppressing the increase in the thickness of the portion where the light exit surface 13ac is provided by the light incident structure having the inclined surface 13ag, and the light emission region of the illumination light source 11 is increased. It is formed to correspond to the height. This is to reduce the thickness of the first light guide plate 13A in order to meet the recent demand for thin display devices, and to collect emitted light from a light emitting element (illumination light source 11) that has not been miniaturized. This is to improve the illumination brightness by increasing the illumination efficiency.

また、第2の導光板13Bでは、位置検出光L2aが第2の光入射面13baから入射して反対側に向けて内部を伝播するとともに光出射面13bcから徐々に出射し、また、位置検出光L2bが第2の光入射面13bbから入射して反対側に向けて内部を伝搬するとともに光出射面13bcから徐徐に出射するように構成される。この導光板13Bの導光特性も、上記と同様の光散乱構造を適宜に設けることによって設定される。これらの位置検出光L2a、L2bは上記電気光学パネル20を透過して表装板30から検出側(視認側)に出射される。   In the second light guide plate 13B, the position detection light L2a is incident from the second light incident surface 13ba, propagates in the opposite direction, and is gradually emitted from the light emitting surface 13bc. The light L2b is configured to enter from the second light incident surface 13bb, propagate through the inside toward the opposite side, and gradually exit from the light emitting surface 13bc. The light guide characteristics of the light guide plate 13B are also set by appropriately providing the same light scattering structure as described above. These position detection lights L2a and L2b are transmitted through the electro-optical panel 20 and emitted from the front panel 30 to the detection side (viewing side).

図2に示すように、表装板30の検出側には電気光学装置100の表示画面領域を確定する開口部101aを備えた枠体101が配置され、この枠体101の上記表示画面領域に臨む開口縁(縁領域に相当する。)101bの一部には、光検出器15が表示画面領域に臨むように露出している。この光検出器15は、検出器本体15Aと、受光部材15Bとを有している。検出器本体15Aは枠体101の内部に配置され、受光部材15Bは、検出器本体15Aに対して上記反射光を導くように構成され、上記開口縁101bに露出した状態とされる。   As shown in FIG. 2, a frame body 101 having an opening 101 a for determining a display screen area of the electro-optical device 100 is arranged on the detection side of the front panel 30, and faces the display screen area of the frame body 101. The photodetector 15 is exposed at a part of the opening edge (corresponding to the edge region) 101b so as to face the display screen region. This photodetector 15 has a detector main body 15A and a light receiving member 15B. The detector main body 15A is arranged inside the frame body 101, and the light receiving member 15B is configured to guide the reflected light to the detector main body 15A and is exposed to the opening edge 101b.

上記開口部101aによって光学的に露出してなる上記表示画面領域では、上述のように上記照明光L1が電気光学パネル20を透過した後に出射することで、視認側から電気光学パネル20の表示領域によって形成された所定の画像が視認できるようになっている。また、上記表示画面領域内には、上記位置検出光L2a、L2bが表面から出射する検出平面領域10Pが設けられている。この検出平面領域10Pは、上述のようにして上記位置検出光L2a、L2bが出射する領域であり、検出平面領域10P内において表装板30の表面30a上に指やペン先などの検出対象物を配置すると、当該検出対象物の反射光を上記光検出器15が検出することにより、後述するようにして検出平面領域10P内の平面的な位置情報を得ることができるようになっている。なお、本願において、平面的な位置情報とは検出平面領域の平面内の少なくとも一方向に沿った位置情報を言う。   In the display screen region that is optically exposed by the opening 101a, the illumination light L1 is emitted after passing through the electro-optical panel 20 as described above, so that the display region of the electro-optical panel 20 from the viewing side. The predetermined image formed by can be visually recognized. In the display screen area, a detection plane area 10P from which the position detection lights L2a and L2b are emitted from the surface is provided. The detection plane area 10P is an area where the position detection lights L2a and L2b are emitted as described above, and a detection object such as a finger or a pen tip is placed on the surface 30a of the cover plate 30 in the detection plane area 10P. When arranged, when the photodetector 15 detects the reflected light of the detection object, planar position information in the detection plane region 10P can be obtained as described later. In the present application, the planar position information refers to position information along at least one direction in the plane of the detection plane area.

本実施形態では、図2に示すように、光検出器15の光検出方位角範囲は、検出平面領域Pの表面30a(図示例の場合には表装板30の表面である。)に沿った方向については、検出器本体15Aの本来の範囲10Sよりも広く、検出平面領域10Pの全体を包含する広角の範囲10Tとされている。また、図3に示すように、上記表面30aと直交する方向については、検出器本体15Aの本来の範囲10Qよりも狭く、表面30a上の限定された高さ範囲(例えば、0〜15mm、特に、1〜10mm程度)に対応する範囲10Rとされている。   In the present embodiment, as shown in FIG. 2, the light detection azimuth angle range of the photodetector 15 is along the surface 30a of the detection plane region P (in the illustrated example, the surface of the cover plate 30). The direction is a wide-angle range 10T that is wider than the original range 10S of the detector body 15A and covers the entire detection plane region 10P. Also, as shown in FIG. 3, the direction orthogonal to the surface 30a is narrower than the original range 10Q of the detector body 15A and has a limited height range on the surface 30a (for example, 0 to 15 mm, particularly The range is 10R corresponding to about 1 to 10 mm.

上記のようにして、本実施形態の光検出器15の光検出方位角範囲は、表面30aに沿った方向よりも表面30aと直交する方向に狭く形成される。このような光検出方位角範囲を設ける理由は以下のとおりである。図12に示すように、光検出器15の表面30aと直交する方向の光検出方位角範囲10Qが大きいと、本来は検出平面領域10P内において表面30a上に配置された検出対象物Obの位置P1を検出するための位置検出装置であるはずが、検出平面領域10Pの外側に配置された、或いは、表面30aから離間した位置にある検出対象物Ob′の位置P2からの反射光を検出してしまい、検出対象物の誤検出を招く。一方、図13(a)に示すように、光検出器15が検出平面範囲10Pに隣接して配置される場合、その表面30aに沿った方向の光検出方位角範囲10Sが狭いと、検出平面領域10Pを全てカバーすることができないので、検出平面領域10P内に検出できない領域10Px,10Pyが生じてしまう。これでは、光検出器15の数を増やすか、或いは、図13(b)に示すように光検出器15を検出平面領域10Pから図示の距離Lxだけ離間させる必要があるので、前者の場合にはコスト増となり、後者の場合には感度の低下や装置の大型化を招く。   As described above, the light detection azimuth angle range of the photodetector 15 of the present embodiment is formed narrower in the direction orthogonal to the surface 30a than in the direction along the surface 30a. The reason for providing such a light detection azimuth angle range is as follows. As shown in FIG. 12, when the light detection azimuth angle range 10Q in the direction orthogonal to the surface 30a of the photodetector 15 is large, the position of the detection object Ob originally arranged on the surface 30a in the detection plane region 10P. Although it is supposed to be a position detection device for detecting P1, it detects the reflected light from the position P2 of the detection object Ob ′ arranged outside the detection plane region 10P or at a position separated from the surface 30a. This leads to erroneous detection of the detection object. On the other hand, as shown in FIG. 13A, when the photodetector 15 is disposed adjacent to the detection plane range 10P, if the light detection azimuth range 10S in the direction along the surface 30a is narrow, the detection plane Since the entire region 10P cannot be covered, undetectable regions 10Px and 10Py are generated in the detection plane region 10P. In this case, it is necessary to increase the number of the light detectors 15 or to separate the light detectors 15 from the detection plane region 10P by the distance Lx as shown in FIG. 13B. Increases the cost. In the latter case, the sensitivity is lowered and the size of the apparatus is increased.

本実施形態では、上述の理由により光検出方位角範囲を表面30aと直交する方向において表面30aに沿った方向よりも狭くしている。そして、このようにするために、上記受光部材15Bを検出器本体15Aの受光面側に設けている。図4(a)は光検出器15の拡大縦断面図、図4(b)は同拡大横断面図である。本実施形態では、検出器本体15Aは、PINダイオードチップなどのフォトダイオード素子で構成される光検出部15aaと、この光検出部15aaが実装固定されたベース部15abと、光検出部15aaを覆い、封止する透明な封止材からなる窓部15acとによって構成される。ベース部15abは凹状に形成された収容部を有し、この収容部の底部に上記光検出部15aaが固定されている。   In the present embodiment, the light detection azimuth range is made narrower in the direction perpendicular to the surface 30a than in the direction along the surface 30a for the reasons described above. For this purpose, the light receiving member 15B is provided on the light receiving surface side of the detector main body 15A. 4A is an enlarged longitudinal sectional view of the photodetector 15, and FIG. 4B is an enlarged transverse sectional view of the same. In the present embodiment, the detector main body 15A covers the light detection unit 15aa composed of a photodiode element such as a PIN diode chip, the base unit 15ab on which the light detection unit 15aa is mounted and fixed, and the light detection unit 15aa. And a window portion 15ac made of a transparent sealing material to be sealed. The base portion 15ab has a housing portion formed in a concave shape, and the light detection portion 15aa is fixed to the bottom of the housing portion.

本実施形態では、上記検出器本体15Aの窓部15ac(受光面)上に受光部材15Bが設けられ、この受光部材15Bは、上記検出器本体15Aの受光面へ反射光を導くように構成される。受光部材15Bは、表面30aと直交する方向(図4(a)における上下方向)の両側に遮光部15baと15bbを配し、その間に透光部15bcを配した構造を備えている。遮光部15ba、15bbは反射光を透過させない素材で構成されていればよいが、遮光部自体における反射を防止する上で黒色樹脂等の光吸収材(反射光を吸収する素材)で構成されることが好ましい。また、透光部15bcは反射光を透過させるアクリル樹脂等の透光性素材で構成されていればよいが、反射光に対する高い透過率(例えば80%以上)を有する透明材で構成されることが望ましい。遮光部と透光部とは接着、一体成形(二色成形など)、溶接などの種々の方法で固定される。遮光部15ba、15bbは、光検出器15の表面30aと直交する方向の光検出方位角範囲10Rを検出本体15Aの本来の範囲10Qよりも制限する検出方位限定手段を構成する。この検出方位限定手段は、本実施形態では、遮光部15baと15bbによりそれぞれ本来の範囲10Qに対して表面30aと直交する方向の両側において方位角範囲を制限している。   In the present embodiment, a light receiving member 15B is provided on the window 15ac (light receiving surface) of the detector main body 15A, and the light receiving member 15B is configured to guide reflected light to the light receiving surface of the detector main body 15A. The The light receiving member 15B has a structure in which light shielding portions 15ba and 15bb are arranged on both sides in a direction perpendicular to the surface 30a (vertical direction in FIG. 4A), and a light transmitting portion 15bc is arranged therebetween. The light shielding portions 15ba and 15bb only need to be made of a material that does not transmit reflected light. However, the light shielding portions 15ba and 15bb are made of a light absorbing material such as a black resin (a material that absorbs reflected light) in order to prevent reflection at the light shielding portion itself. It is preferable. Moreover, although the translucent part 15bc should just be comprised with translucent materials, such as an acrylic resin which permeate | transmits reflected light, it is comprised with the transparent material which has the high transmittance | permeability (for example, 80% or more) with respect to reflected light. Is desirable. The light shielding portion and the light transmitting portion are fixed by various methods such as adhesion, integral molding (two-color molding, etc.), welding, and the like. The light shielding portions 15ba and 15bb constitute detection azimuth limiting means for restricting the light detection azimuth angle range 10R in the direction orthogonal to the surface 30a of the photodetector 15 from the original range 10Q of the detection main body 15A. In this embodiment, the detection azimuth limiting means limits the azimuth angle range on both sides in the direction orthogonal to the surface 30a with respect to the original range 10Q by the light shielding portions 15ba and 15bb.

また、上記受光部材15Bは、図4(b)に示すように光検出部15aaとは反対側の面が凸曲面状に構成された形状を有し、当該形状の平面形状を有する透光部15bcは外部より入射する上記反射光をより狭い入射角範囲に集光するレンズ材として機能する。なお、上記遮光部15ba、15bbもまた上記形状の平面形状を有し、透光部15bcの表面30aと直交する方向両側を完全に覆っている。本実施形態では、透光部15bcの光検出部15aaとは反対側の面が凸曲面状とされることに起因する受光部材15Bの集光作用によって、表面30aに沿った方向(図4(b)の上下方向)の広い範囲10Tから入射した反射光が検出器本体15Aの本来の光検出方位角範囲10S内に収められて検出可能とされる。したがって、透光部15bcは、光検出器15の表面30aに沿った方向の光検出方位角範囲10Tを本来の範囲10Sよりも拡大する検出方位拡大手段を構成する。この検出方位拡大手段は、本実施形態では、透光部15bcの凸曲面状の外面によりそれぞれ本来の範囲10Sに対して表面30aに沿った方向の両側において方位角範囲を拡大している。   Further, as shown in FIG. 4B, the light receiving member 15B has a shape in which a surface opposite to the light detection portion 15aa is formed in a convex curved surface, and a light transmitting portion having a planar shape of the shape. Reference numeral 15bc functions as a lens material that collects the reflected light incident from the outside in a narrower incident angle range. The light shielding portions 15ba and 15bb also have a planar shape as described above, and completely cover both sides in the direction orthogonal to the surface 30a of the light transmitting portion 15bc. In the present embodiment, the direction along the surface 30a (FIG. 4 (FIG. 4)) due to the light condensing action of the light receiving member 15B due to the surface of the light transmitting portion 15bc opposite to the light detecting portion 15aa being convex. Reflected light incident from a wide range 10T in the vertical direction (b) is accommodated in the original light detection azimuth angle range 10S of the detector body 15A and can be detected. Therefore, the translucent part 15bc constitutes a detection azimuth expanding means for expanding the light detection azimuth angle range 10T in the direction along the surface 30a of the photodetector 15 more than the original range 10S. In this embodiment, the detection azimuth expanding means expands the azimuth angle range on both sides in the direction along the surface 30a with respect to the original range 10S by the convex curved outer surface of the light transmitting portion 15bc.

なお、本実施形態において説明した上記構成では、第1の導光板13Aを電気光学パネル20側に配置し、第2の導光板13Bを反対側に配置して相互に平面的に重なるように構成しているが、これとは逆に、第2の導光板13Bを電気光学パネル20側に配置し、第1の導光板13Aを反対側に配置してもよい。また、上記構成では、第1の導光板13Aにおいて光入射面13aa及び照明用光源11が配置される側と、第2の導光板13Bにおいて光入射面13ba及び位置検出用光源12Aが配置される側とを同じ側に配置しているが、相互に異なる側(反対側、或いは、相互に直交する側など)に配置しても構わない。   In the configuration described in the present embodiment, the first light guide plate 13A is disposed on the electro-optical panel 20 side, and the second light guide plate 13B is disposed on the opposite side so as to overlap each other in a plane. However, conversely, the second light guide plate 13B may be disposed on the electro-optical panel 20 side, and the first light guide plate 13A may be disposed on the opposite side. In the above configuration, the light incident surface 13aa and the illumination light source 11 are disposed on the first light guide plate 13A, and the light incident surface 13ba and the position detection light source 12A are disposed on the second light guide plate 13B. Although the sides are arranged on the same side, they may be arranged on different sides (opposite sides or sides orthogonal to each other).

なお、本実施形態において、検出器本体15Aの窓部15acの表面と受光部材15Bの透光部15bcの光検出部15aa側の面は、透明な接着剤によって接着固定されていることが好ましいが、図示しない別の固定手段(接着テープ、保持具など)により単に当接した状態とされていたり、或いは、わずかな間隙を介して対向配置されていたりしてもよい。   In the present embodiment, it is preferable that the surface of the window portion 15ac of the detector main body 15A and the surface of the light transmitting member 15B on the light detection portion 15aa side are bonded and fixed with a transparent adhesive. They may be simply brought into contact with another fixing means (not shown) (adhesive tape, holder, etc.), or may be arranged to face each other with a slight gap.

上記のように構成された第1実施形態においては、照明光L1は、第1の光入射面13aaから第1の導光板13Aに入射した後に内部を伝播しながら徐々に光出射面13acの全体から面状に出射し、電気光学パネル20を通過した後に表装板30を透過して表示画面領域において視認側に出射する。この照明光L1は、電気光学パネル20の各画素の光透過率がそれぞれ制御されることで形成される表示画像を視認可能に構成する。   In the first embodiment configured as described above, the illumination light L1 gradually enters the first light guide plate 13A from the first light incident surface 13aa and then gradually propagates through the interior of the light emitting surface 13ac. And then passes through the electro-optic panel 20 and then passes through the front panel 30 and exits to the viewing side in the display screen area. The illumination light L1 is configured so that a display image formed by controlling the light transmittance of each pixel of the electro-optical panel 20 can be visually recognized.

第1の位置検出光L2aは、第2の光入射面13baから第2の導光板13Aの内部を伝播しながら徐々に光出射面13acの全体から面状に出射し、電気光学パネル20を通過して表装板30を透過して検出平面領域10Pにおいて出射する。このとき、表装板30の表面30a上に対象物体Obが存在すると、この対象物体Obによる反射光が表装板30上に配置された光検出器15で検出される。   The first position detection light L2a is gradually emitted from the entire light emission surface 13ac into a planar shape while propagating through the second light incident surface 13ba through the second light guide plate 13A, and passes through the electro-optical panel 20. Then, the light passes through the front mounting plate 30 and exits in the detection plane region 10P. At this time, if the target object Ob exists on the surface 30 a of the cover plate 30, the light reflected by the target object Ob is detected by the photodetector 15 disposed on the cover plate 30.

また、位置検出光L2bも、第2の光入射面13baから第2の導光板13Bに入射した後に内部を伝播しながら徐々に光出射面13bcの全体から面状に出射し、電気光学パネル20及び表装板30を透過して検出平面領域10Pにおいて出射する。このとき、表装板30の表面上に対象物体Obが存在すると、この対象物体Obによる反射光が表装板30の表面30aに沿った位置であって、検出平面領域10P以外の位置(図示例では当該領域10Pに隣接する位置)に配置された光検出器15で検出される。そして、光検出器15で検出される反射光の光量には、上記の複数の位置検出光L2a、L2bの寄与が含まれる。   Further, the position detection light L2b is also emitted from the entire light emitting surface 13bc into a planar shape while propagating through the inside after being incident on the second light guide plate 13B from the second light incident surface 13ba. And it permeate | transmits the surface mounting plate 30, and inject | emits in the detection plane area | region 10P. At this time, if the target object Ob exists on the surface of the cover plate 30, the reflected light from the target object Ob is a position along the surface 30a of the cover plate 30 and a position other than the detection plane region 10P (in the illustrated example). It is detected by the photodetector 15 arranged at a position adjacent to the region 10P. The amount of reflected light detected by the photodetector 15 includes the contribution of the plurality of position detection lights L2a and L2b.

次に、上記光検出器15での検出に基づいて対象物体Obの位置情報の取得方法について説明する。この位置情報の取得方法は種々のものが考えられるが、例えば、その一例として、光検出器15における二つの位置検出光の検出光量の比率に基づいてそれらの減衰係数の比率を求め、この減衰係数の比率から両位置検出光の伝播距離を求めることにより、上記検出平面領域10P内の検出対象物Obの所定方向の位置座標を求める方法が挙げられる。   Next, a method for acquiring position information of the target object Ob based on detection by the photodetector 15 will be described. There are various possible methods for acquiring the position information. For example, as an example, the ratio of the attenuation coefficients of the two detectors of the position detection light in the photodetector 15 is obtained, and the attenuation coefficient is obtained. There is a method of obtaining the position coordinates of the detection object Ob in the predetermined direction in the detection plane region 10P by obtaining the propagation distance of both position detection lights from the ratio of the coefficients.

より具体的には、1又は複数の第1の位置検出用光源12An(n=1〜k;kは任意の自然数)によって表面30aから出射される第1の位置検出光L2aの出射光量分布である第1の光出射分布D1が上記検出平面領域10Pに形成され、1又は複数の第2の位置検出用光源12Bn(n=1〜k;kは任意の自然数)によって表面30aから出射される第2の位置検出光L2bの出射光量分布である第2の光出射分布D2が検出平面範囲10Pに形成される場合を挙げて説明する。この場合、第1の光出射分布D1は、例えばX方向(図1参照)の一方側(図1の右側)に向けて徐々に出射光量が減少する分布であり、第2の光出射分布D2は、X方向の他方側(図1の左側)に向けて徐々に出射光量が減少する分布である。これらの分布D1、D2は、それぞれの位置検出光L2a、L2bが導光板13B内を伝播する過程で減衰しつつ、上記光散乱構造によって適宜の出射態様が得られることで実現される。ここで、第1の位置検出用光源12Anの制御量(例えば電流量)、変換係数及び放出光量をIa、ka及びEa、第2の位置検出用光源12Bnの制御量(電流量)、変換係数及び放出光量をIb、k及びEbとすれば、以下の式(1)及び(2)が成立する。   More specifically, the emission light amount distribution of the first position detection light L2a emitted from the surface 30a by one or a plurality of first position detection light sources 12An (n = 1 to k; k is an arbitrary natural number). A certain first light emission distribution D1 is formed in the detection plane region 10P and emitted from the surface 30a by one or a plurality of second position detection light sources 12Bn (n = 1 to k; k is an arbitrary natural number). A case where the second light emission distribution D2 that is the emission light amount distribution of the second position detection light L2b is formed in the detection plane range 10P will be described. In this case, the first light emission distribution D1 is, for example, a distribution in which the amount of emitted light gradually decreases toward one side (the right side in FIG. 1) in the X direction (see FIG. 1), and the second light emission distribution D2 Is a distribution in which the amount of emitted light gradually decreases toward the other side in the X direction (left side in FIG. 1). These distributions D1 and D2 are realized by obtaining appropriate emission modes by the light scattering structure while the position detection lights L2a and L2b are attenuated in the process of propagating through the light guide plate 13B. Here, the control amount (for example, current amount), the conversion coefficient and the emitted light amount of the first position detection light source 12An are Ia, ka and Ea, the control amount (current amount) of the second position detection light source 12Bn, and the conversion coefficient. Assuming that the amount of emitted light is Ib, k, and Eb, the following equations (1) and (2) are established.

Ea=k・Ia…(1)   Ea = k · Ia (1)

Eb=k・Ib…(2)   Eb = k · Ib (2)

また、第1の位置検出光L2aの減衰係数及び検出光量をfa及びHa、第2の位置検出光L2bの減衰係数及び検出光量をfb及びHbとすれば、以下の式(3)及び(4)が成立する。   If the attenuation coefficient and the detected light amount of the first position detection light L2a are fa and Ha, and the attenuation coefficient and the detected light amount of the second position detection light L2b are fb and Hb, the following equations (3) and (4) ) Holds.

Ha=fa・Ea=fa・k・Ia…(3)   Ha = fa · Ea = fa · k · Ia (3)

Hb=fb・Eb=fb・k・Ib…(4)   Hb = fb · Eb = fb · k · Ib (4)

したがって、両位置検出光L2a、L2bの検出光量の比であるHa/Hbが両光出射分布D1、D2にそれぞれ起因する光検出器15の出力成分の比で検出できるとすれば、Ha/Hb=(fa・Ea)/(fb・Eb)=(fa/fb)・(Ia/Ib)となるから、放出光量の比Ea/Eb又は制御量の比Ia/Ibに相当する値が分かれば、減衰係数の比fa/fbが以下の式(5)により判明する。   Therefore, if Ha / Hb, which is the ratio of the detected light amounts of the two position detection lights L2a and L2b, can be detected by the ratio of the output components of the photodetector 15 caused by the two light emission distributions D1 and D2, respectively, Ha / Hb = (Fa · Ea) / (fb · Eb) = (fa / fb) · (Ia / Ib), so if the value corresponding to the ratio Ea / Eb of the emitted light quantity or the ratio Ia / Ib of the control amount is known. The ratio fa / fb of the damping coefficient is found from the following equation (5).

fa/fb=(Ha/Hb)・(Ib/Ia)…(5)   fa / fb = (Ha / Hb). (Ib / Ia) (5)

ここで、減衰係数fa、fbは、位置検出用光源12An、12Bnから放出された位置検出光L2a、L2bの光量(放出光量)に対する光検出器15によって検出された位置検出光L2a、L2bの光量(検出光量又は出力成分)の比であるから、検出対象物ObのX座標上の位置によって、第1の光出射分布D1及び第2の光出射分布D2の傾斜態様に応じて変化する。ここで、X座標として、X方向のうち最も他方Xb側の原点をx=0、最も一方Xa側の最大値をx=1とする相対的な座標系を用いることとすると、減衰係数の比fa/fbは、検出対象物ObのX方向の座標xに関して(1−x)/xと正の相関を有することとなる。いずれにしても、上記の相関関係を予め設定しておくことで、減衰係数の比fa/fbに基づいて、検出対象物Obの位置情報である座標xの値を得ることができる。   Here, the attenuation coefficients fa and fb are the light amounts of the position detection lights L2a and L2b detected by the light detector 15 with respect to the light amounts (emission light amounts) of the position detection lights L2a and L2b emitted from the position detection light sources 12An and 12Bn. Since it is the ratio of (detected light quantity or output component), it changes according to the inclination of the first light emission distribution D1 and the second light emission distribution D2 depending on the position of the detection object Ob on the X coordinate. Here, as the X coordinate, if a relative coordinate system is used in which the origin on the other Xb side in the X direction is x = 0 and the maximum value on the one Xa side is x = 1, the ratio of the attenuation coefficient is assumed. fa / fb has a positive correlation with (1-x) / x with respect to the coordinate x in the X direction of the detection object Ob. In any case, by setting the above correlation in advance, the value of the coordinate x, which is the position information of the detection object Ob, can be obtained based on the ratio fa / fb of the attenuation coefficient.

上記減衰係数の比fa/fbを求めるには、検出光量の比Ha/Hbを得るために位置検出光L2aとL2bとを弁別する必要がある。このような方法としては、例えば、第1群の位置検出用光源12Anと第2群の位置検出用光源12Bnを別々に設けるとともに、位置検出光L2aとL2bを識別して検出できるようにすればよい。ただし、位置検出光L2aとL2bが識別して検出できない場合でも、第1群の位置検出用光源12Anと第2群の位置検出用光源12Bnを異なるタイミングで点灯し、それぞれのタイミングで検出光量を求めることで、上記の弁別が可能になる。たとえば、第1群の位置検出用光源12Anと第2群の位置検出用光源12Bnを逆相で点滅(例えば、矩形波状若しくは正弦波状の駆動信号を伝播距離の差に起因する位相差が無視できる周波数で相互に180度の位相差を持つように動作)させた上で、検出光量の波形を位相的に解析する方法がある。すなわち、位置検出用光源12An及び12Bnを制御することで上記の第1の光出射分布D1と、第2の光出射分布D2とを交互に形成し、これに応じて出力される光検出器15の検出信号に基づいて一定の処理を行う。   In order to obtain the attenuation coefficient ratio fa / fb, it is necessary to discriminate between the position detection lights L2a and L2b in order to obtain the detection light quantity ratio Ha / Hb. As such a method, for example, a first group of position detection light sources 12An and a second group of position detection light sources 12Bn are provided separately, and the position detection lights L2a and L2b can be identified and detected. Good. However, even if the position detection lights L2a and L2b cannot be identified and detected, the first group of position detection light sources 12An and the second group of position detection light sources 12Bn are turned on at different timings, and the detected light amounts are detected at the respective timings. By determining, the above discrimination becomes possible. For example, the first group of position detection light sources 12An and the second group of position detection light sources 12Bn blink in opposite phases (for example, a phase difference caused by a difference in propagation distance of a rectangular or sinusoidal drive signal can be ignored. There is a method of analyzing the waveform of the detected light quantity in a phase manner after operating so as to have a phase difference of 180 degrees with respect to each other in frequency. That is, by controlling the position detection light sources 12An and 12Bn, the first light emission distribution D1 and the second light emission distribution D2 are alternately formed, and the photodetector 15 output in accordance with the first light emission distribution D1 and the second light emission distribution D2. A certain process is performed based on the detected signal.

図10は、位置検出用光源12Anの制御信号S1及び位置検出用光源12Bnの制御信号S2と、光検出器15の検出信号E0とを示すタイミングチャートである。上記制御信号S1とS2は図示例ではそれぞれ矩形波であり、相互に逆相の信号とされ、これに応じて位置検出光L2aとL2bの発光タイミングも逆相とされる。そして、光検出器15の検出信号E0は、上記制御信号S1、S2に対して適宜の時間遅れtdを有する応答である、位置検出光L2aの検出成分(第1の光出射分布D1に起因する出力成分)E1と、位置検出光L2bの検出成分E2(第2の光出射分布D2に起因する出力成分)の和になる。   FIG. 10 is a timing chart showing the control signal S1 of the position detection light source 12An, the control signal S2 of the position detection light source 12Bn, and the detection signal E0 of the photodetector 15. The control signals S1 and S2 are rectangular waves in the illustrated example, and are opposite in phase to each other, and the light emission timings of the position detection lights L2a and L2b are also opposite in phase. The detection signal E0 of the light detector 15 is a response having a suitable time delay td with respect to the control signals S1 and S2, which is a detection component of the position detection light L2a (due to the first light emission distribution D1). The sum of the output component) E1 and the detection component E2 of the position detection light L2b (the output component resulting from the second light emission distribution D2).

上記の検出信号E0は制御信号S1、S2を形成するクロック信号と同期して解析される。この場合、検出信号E0のうち、制御信号S1の位相と対応する位相において得られる検出成分E1の振幅と、制御信号S2の位相と対応する位相において得られる検出成分E2の振幅とをそれぞれ導出して上記の検出光量の比Ha/Hbを求めることができる。そして、上記式(5)から減衰係数の比fa/fbを算出し、これに基づいて検出対象物Obのx座標を求めることができる。この場合の回路構成は図9に示されている。   The detection signal E0 is analyzed in synchronization with the clock signals forming the control signals S1 and S2. In this case, out of the detection signal E0, the amplitude of the detection component E1 obtained at the phase corresponding to the phase of the control signal S1 and the amplitude of the detection component E2 obtained at the phase corresponding to the phase of the control signal S2 are derived. Thus, the ratio Ha / Hb of the detected light quantity can be obtained. Then, the ratio fa / fb of the attenuation coefficient is calculated from the above equation (5), and the x coordinate of the detection object Ob can be obtained based on the ratio. The circuit configuration in this case is shown in FIG.

図9に示すように、クロック信号CLKに従って動作する制御部Sから上記制御信号S1、S2及び駆動設定信号I1、I2を駆動部IA、IBに出力し、駆動部IA、IBがこれらの信号に基づいて位置検出用光源12An、12Bnを電流値Ia、Ibにて駆動する。光検出器15は検出回路DSにより検出信号E0を出力し、この検出信号E0は解析部Pにおいて解析される。解析部Pは制御部Sから出力される同期信号S0に基づいて検出信号E0を解析し、導出された比Ha/Hb及び電流値Ia、Ibに基づいて最終的に上記減衰係数の比fa/fb、或いは、座標xに相当する出力信号Psを出力する。ここで、制御部S及び解析部Pは上述の制御手段に相当する。   As shown in FIG. 9, the control signals S1 and S2 and the drive setting signals I1 and I2 are output to the drive units IA and IB from the control unit S operating according to the clock signal CLK, and the drive units IA and IB receive these signals. Based on this, the position detection light sources 12An and 12Bn are driven with the current values Ia and Ib. The photodetector 15 outputs a detection signal E0 by the detection circuit DS, and the detection signal E0 is analyzed by the analysis unit P. The analysis unit P analyzes the detection signal E0 based on the synchronization signal S0 output from the control unit S, and finally the ratio fa / Hb of the attenuation coefficient based on the derived ratio Ha / Hb and the current values Ia and Ib. Output signal Ps corresponding to fb or coordinate x is output. Here, the control part S and the analysis part P correspond to the above-mentioned control means.

ただし、検出信号E0の解析後の上記式(5)に基づいた検出対象物Obのx座標の算出は上記方法に限られない。たとえば、一方の制御量Iaを一定値Imに固定し、検出波形の変化が観測できなくなるように(すなわち、検出光量の比Ha/Hbが1となるように)他方の制御量Ibを制御し、このときの制御量Ib=Im・(fa/fb)から上記減衰係数の比fa/fbを導出することも可能である。この場合、上記解析部Pから検出光量の比Ha/Hbに対応する帰還信号Fsを制御部Sにフィードバックし、この帰還信号Fsの値に応じて制御部Sから出力される駆動設定信号I2を変えることで、電流値IbをHa/Hb=1となるように制御する。   However, the calculation of the x coordinate of the detection object Ob based on the above equation (5) after the analysis of the detection signal E0 is not limited to the above method. For example, one control amount Ia is fixed to a constant value Im, and the other control amount Ib is controlled so that a change in the detected waveform cannot be observed (that is, the detected light quantity ratio Ha / Hb becomes 1). The damping coefficient ratio fa / fb can be derived from the control amount Ib = Im · (fa / fb) at this time. In this case, the feedback signal Fs corresponding to the detected light quantity ratio Ha / Hb is fed back to the control unit S from the analysis unit P, and the drive setting signal I2 output from the control unit S in accordance with the value of the feedback signal Fs. By changing, the current value Ib is controlled to be Ha / Hb = 1.

また、両制御量の和を常に一定値Im=Ia+Ibに保ちつつ、Ha/Hb=1となるように制御してもよい。この場合には、式(5)によりIb=Im・fb/(fa+fb)となるので、fb/(fa+fb)=αとすると、fa/fb=(1−α)/αにより、減衰係数の比が求まる。   Alternatively, control may be performed so that Ha / Hb = 1 while always maintaining the sum of both control amounts at a constant value Im = Ia + Ib. In this case, since Ib = Im · fb / (fa + fb) according to the equation (5), when fb / (fa + fb) = α, the ratio of the attenuation coefficient is given by fa / fb = (1−α) / α. Is obtained.

本実施形態の場合、上述のようにして検出平面領域10P内における検出対象物ObのX方向の位置情報については、上述のように第1の光出射分布D1と第2の光出射分布D2を用いてそれぞれ検出成分E1とE2を求めることにより、例えば第1群の位置検出用光源12Anと第2群の位置検出用光源12Bnを相互に逆相で駆動することで座標xを取得することができる。一方、検出平面領域10P内における検出対象物ObのY方向の位置情報については、X方向と同様に第3の光出射分布D3(Y方向の一方側へ傾斜した出射光量分布を有するもの)及び第4の光出射分布D4(Y方向の他方側へ傾斜した出射光量分布を有するもの)を用いてそれぞれ上記と同様に検出成分E1とE2を求めることにより座標yを取得することができる。   In the case of the present embodiment, as described above, the position information in the X direction of the detection target Ob in the detection plane region 10P is obtained by using the first light emission distribution D1 and the second light emission distribution D2 as described above. By using the obtained detection components E1 and E2, respectively, for example, the coordinate x can be obtained by driving the first group of position detection light sources 12An and the second group of position detection light sources 12Bn in opposite phases. it can. On the other hand, as for the position information in the Y direction of the detection object Ob in the detection plane region 10P, the third light emission distribution D3 (having the emitted light amount distribution inclined to one side in the Y direction) and the X direction, The coordinate y can be obtained by obtaining the detection components E1 and E2 in the same manner as described above using the fourth light emission distribution D4 (having the emitted light amount distribution inclined to the other side in the Y direction).

上記の各光出射分布D1〜D4を形成するための構成としては、例えば、図9に示す第1の位置検出用光源12Anと第2の複数の位置検出用光源12Bnをそれぞれ複数設けて制御部Sによって制御する。すなわち、図11に示すように、位置検出用光源12An(n=1〜k)のそれぞれ制御量である電流値Ia1、Ia2、Ia3、・・・、Iakを、駆動設定信号Ia1、Ia2、Ia3、・・・、Iakを制御部Sから駆動部IA1、IA2、IA3、・・・、IAkに与えることによって制御し、同様に、位置検出用光源12Bn(n=1〜k)のそれぞれ制御量である電流値Ib1、Ib2、Ib3、・・・、Ibkを、駆動設定信号Ib1、Ib2、Ib3、・・・、Ibkを制御部Sから駆動部IB1、IB2、IB3、・・・、IBkに与えることによって制御する。そして、例えば、第1の光出射分布D1を第1群の複数の位置検出用光源12Anで形成し、第2の光出射分布D2を第2群の複数の位置検出用光源12Bnによって形成することで座標xを求め、第3の光出射分布D3を第1群の複数の位置検出用光源12Anで形成し、第4の光出射分布D2を第2群の複数の位置検出用光源12Bnによって形成することで座標yを求める。   As a configuration for forming each of the light emission distributions D1 to D4, for example, a plurality of first position detection light sources 12An and a plurality of second plurality of position detection light sources 12Bn shown in FIG. S is controlled. That is, as shown in FIG. 11, the current values Ia1, Ia2, Ia3,..., Iak, which are control amounts of the position detection light source 12An (n = 1 to k), are respectively set as drive setting signals Ia1, Ia2, Ia3. ,..., Iak is supplied from the control unit S to the driving units IA1, IA2, IA3,..., IAk, and similarly, the control amount of each of the position detection light sources 12Bn (n = 1 to k) is controlled. , Ibk and drive setting signals Ib1, Ib2, Ib3,..., Ibk from the control unit S to the drive units IB1, IB2, IB3,. Control by giving. For example, the first light emission distribution D1 is formed by a plurality of position detection light sources 12An in the first group, and the second light emission distribution D2 is formed by a plurality of position detection light sources 12Bn in the second group. The coordinate x is obtained from the above, the third light emission distribution D3 is formed by the plurality of position detection light sources 12An in the first group, and the fourth light emission distribution D2 is formed by the plurality of position detection light sources 12Bn in the second group. To obtain the coordinate y.

なお、上記の構成では、第1の位置検出用光源12Anと第2の位置検出用光源12Bnが別々の分布を形成するものとしているが、位置検出用光源が別々に用意されていなくても、位置検出光L2aによる第1の光出射分布D1と位置検出光L2bによる第2の光出射分布D2を同じ複数の位置検出用光源12により異なるタイミングで形成し、それぞれのタイミングで検出光量を求めることでも、上記の弁別が可能になる。たとえば、位置検出用光を導光板13Bを介して出射する本実施形態とは異なり、表面30aの背後に、検出平面範囲10P内に分散して配列された複数の位置検出用光源を配置し、これらの複数の位置検出用光源から放出された位置検出光が表面30aから直接に出射するように構成してもよい。この場合、複数の位置検出用光源の放出光量の分布を変えることによって上記の第1の光出射分布D1と第2の光出射分布D2とをそれぞれ形成することができる。そして、例えば、第1の光出射分布D1と第2の光出射分布D2とを交互に形成し、これに応じて出力される光検出器15の検出信号に基づいて一定の処理を行う。   In the above configuration, the first position detection light source 12An and the second position detection light source 12Bn form different distributions. However, even if the position detection light sources are not separately prepared, The first light emission distribution D1 by the position detection light L2a and the second light emission distribution D2 by the position detection light L2b are formed at different timings by the same plurality of position detection light sources 12, and the detected light quantity is obtained at each timing. However, the above discrimination becomes possible. For example, unlike the present embodiment in which the position detection light is emitted through the light guide plate 13B, a plurality of position detection light sources arranged in the detection plane range 10P are arranged behind the surface 30a, The position detection light emitted from the plurality of position detection light sources may be directly emitted from the surface 30a. In this case, the first light emission distribution D1 and the second light emission distribution D2 can be formed by changing the distribution of the emitted light quantity of the plurality of position detection light sources. Then, for example, the first light emission distribution D1 and the second light emission distribution D2 are alternately formed, and a certain process is performed based on the detection signal of the photodetector 15 output in response thereto.

本実施形態によれば、特に画素ごとに光変調状態を制御するタイプの電気光学パネル20を照明して表示を行いつつ、その表示画面上の検出対象物Obの平面的な位置情報を検出することができる。このとき、位置検出光L2a、L2bを検出平面領域10Pにおいて表面30aから所定の分布で出射させ、これらが検出対象物Obで反射されてなる反射光を光検出器15で検出することで検出対象物Obの平面位置情報を得ることができるので、従来の表示画面上に多数の光源や光検出器、或いは、光スイッチ等を配列させる方法に比べると、位置検出用の素子数を大幅に低減することができ、大幅な構造の簡易化、製造コストの低減、及び消費電力の低減を図ることができる。   According to the present embodiment, in particular, the planar position information of the detection object Ob on the display screen is detected while illuminating and displaying the electro-optical panel 20 that controls the light modulation state for each pixel. be able to. At this time, the position detection lights L2a and L2b are emitted from the surface 30a with a predetermined distribution in the detection plane area 10P, and the light reflected by the detection object Ob is detected by the light detector 15 to be detected. Since the planar position information of the object Ob can be obtained, the number of elements for position detection is greatly reduced compared to the conventional method of arranging a large number of light sources, photodetectors, optical switches, etc. on the display screen. Thus, the structure can be greatly simplified, the manufacturing cost can be reduced, and the power consumption can be reduced.

また、本実施形態では、相互に逆向きの傾斜を有する第1の光出射分布D1と第2の光出射分布D2、或いは、第3の光出射分布D3と第4の光出射分布D4を用いて、それぞれX方向とY方向の位置情報を求めるようにしているので、外光による光検出器15の検出光量の絶対値レベルの変動、或いは、位置検出装置や電気光学装置の内部の光学的構造、たとえば、導光板13Bの導光特性、光学シート16、電気光学パネル20、表装板30などにおける光透過率の変動やばらつきに起因する、上記検出光量(出力成分)の個々の絶対値レベルの変動やばらつきによる影響を排除することができる。すなわち、X方向の位置情報を導出するに際しては、第1の光出射分布D1と第2の光出射分布D2に基づく検出光量の比(位置検出光L2aとL2bの検出光量の比でもある。)Ha/Hbを用いることで、位置検出光の放出光量Ea,Eb、出射光量、検出光量のそれぞれの絶対値レベルによる影響が抑制され、Y方向の位置情報を導出するに際しては、第3の光出射分布D3と第4の光出射分布D4に基づく検出光量の比を用いることで、同様に絶対値レベルによる影響が抑制される。   In the present embodiment, the first light emission distribution D1 and the second light emission distribution D2 or the third light emission distribution D3 and the fourth light emission distribution D4 having inclinations opposite to each other are used. Thus, the position information in the X direction and the Y direction is obtained, respectively, so that fluctuations in the absolute value level of the detected light amount of the light detector 15 due to external light, or the optical inside the position detection device and the electro-optical device, are detected. Each absolute value level of the detected light amount (output component) due to the structure, for example, the light guide characteristics of the light guide plate 13B, fluctuations or variations in the light transmittance in the optical sheet 16, the electro-optical panel 20, the cover plate 30, etc. It is possible to eliminate the effects of fluctuations and variations. That is, when deriving the position information in the X direction, the ratio of the detected light quantity based on the first light emission distribution D1 and the second light emission distribution D2 (also the ratio of the detected light quantity of the position detection lights L2a and L2b). By using Ha / Hb, the influence of the absolute value levels of the emitted light amounts Ea and Eb, the emitted light amount, and the detected light amount of the position detection light is suppressed, and the third light is used when deriving the position information in the Y direction. By using the ratio of the detected light amount based on the emission distribution D3 and the fourth light emission distribution D4, the influence of the absolute value level is similarly suppressed.

また、本実施形態では上記複数の位置検出用光源12An、12Bnとともに複数の照明用光源11を設け、複数の照明用光源11によって電気光学パネル20を照明しているため、位置検出装置10を照明ユニット付きの電気光学装置100内にコンパクトに組み込むことができる。   In the present embodiment, since the plurality of illumination light sources 11 are provided together with the plurality of position detection light sources 12An and 12Bn, and the electro-optical panel 20 is illuminated by the plurality of illumination light sources 11, the position detection device 10 is illuminated. The electro-optical device 100 with the unit can be compactly incorporated.

なお、本実施形態では、第1の光出射分布D1又は第3の光出射分布D3に起因する検出光量Haと、第2の光出射分布D2又は第4の光出射分布D4に起因する検出光量Hbの比に基づいて検出対象物Obの位置情報が導出されるが、本発明は検出光量HaとHbの比に基づいて位置情報を導出する場合に限らない。たとえば、検出対象物Obの座標x、yと検出光量の差Ha−Hbとの間にも相関関係があるので、検出光量HaとHbの差に基づいて位置情報を導出することも可能である。いずれにしても、たとえば、二つの出力成分の任意の関数、例えば、F=(Ma・Ha)/(Mb・Hb)やF=Ma・Ha−Mb・Hb(MaとMbはそれぞれ結合係数)を用いるなど、両光出射分布にそれぞれ起因する出力成分である検出光量HaとHbの双方を用いて位置情報が導出されれば、位置情報の導出をより正確かつ安定的に行うことができる。   In this embodiment, the detected light amount Ha caused by the first light emission distribution D1 or the third light emission distribution D3 and the detected light amount caused by the second light emission distribution D2 or the fourth light emission distribution D4. Although the position information of the detection object Ob is derived based on the ratio of Hb, the present invention is not limited to the case where the position information is derived based on the ratio of the detected light amounts Ha and Hb. For example, since there is a correlation between the coordinates x and y of the detection target Ob and the difference Ha−Hb between the detected light amounts, it is also possible to derive the position information based on the difference between the detected light amounts Ha and Hb. . In any case, for example, an arbitrary function of two output components, for example, F = (Ma · Ha) / (Mb · Hb) or F = Ma · Ha−Mb · Hb (Ma and Mb are coupling coefficients, respectively) If the position information is derived using both the detected light amounts Ha and Hb, which are output components respectively resulting from both light emission distributions, such as using the position information, the position information can be derived more accurately and stably.

なお、本実施形態では、本発明の検出方位制限手段と検出方位拡大手段のいずれも備えた構成について説明したが、本発明においては、表面30aと直交する方向の光検出方位角範囲が表面30aに沿った方向の範囲より狭くなっていればよく、このような構成としては、本実施形態や他の実施形態若しくは構成例において、検出方位制限手段と検出方位拡大手段のいずれかを備えていれば足りる。   In the present embodiment, the configuration including both the detection azimuth limiting means and the detection azimuth expanding means of the present invention has been described. However, in the present invention, the light detection azimuth angle range in the direction orthogonal to the surface 30a is the surface 30a. In this embodiment and other embodiments or configuration examples, either of the detection azimuth limiting means and the detection azimuth expansion means may be provided as such a configuration. It's enough.

[第2実施形態]
次に、図5を参照して本発明の第2実施形態について説明する。図5(a)は本実施形態の光検出器の概略縦断面図、図5(b)は同概略横断面図である。この第2実施形態では、光検出器15′の構造以外は第1実施形態と同様に構成されるので、同一部分には同一符号を付し、それらの説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5A is a schematic longitudinal sectional view of the photodetector of the present embodiment, and FIG. 5B is a schematic transverse sectional view thereof. Since the second embodiment is configured in the same manner as in the first embodiment except for the structure of the photodetector 15 ', the same parts are denoted by the same reference numerals, and description thereof is omitted.

本実施形態の光検出器15′では、第1実施形態と同様の検出器本体15Aに異なる受光部材17Bが接続されている。この受光部材17Bは、検出器本体15Aの受光面上に配置された透光部17bcに遮光部17bai、17bbi、17bao、17bboが取り付けられ、これらの遮光部によって表面30aと直交する方向の光検出方位角範囲が制限されることで狭い範囲10Rが実現される。ここで、遮光部17bai、17bbiは検出器本体15Aと透光部17bcとの間に配置され、遮光部17bao、17bboは透光部17bcの検出器本体15Aとは反対側の外面上に配置される。また、遮光部17bai、17baoは透光部17bcの上部側に配置され、表面30aから離れた側の光検出方位角範囲を制限し、遮光部17bbi、17bboは透光部17bcの下部側に配置され、表面30aの側の光検出方位角範囲を制限している。   In the photodetector 15 ′ of this embodiment, a different light receiving member 17B is connected to a detector body 15A similar to that of the first embodiment. In the light receiving member 17B, light-shielding portions 17bai, 17bbi, 17bao, and 17bbo are attached to a light-transmitting portion 17bc disposed on the light-receiving surface of the detector main body 15A, and light detection in a direction perpendicular to the surface 30a is performed by these light-shielding portions. A narrow range 10R is realized by limiting the azimuth range. Here, the light shielding portions 17bai and 17bbi are disposed between the detector main body 15A and the light transmitting portion 17bc, and the light shielding portions 17bao and 17bbo are disposed on the outer surface of the light transmitting portion 17bc opposite to the detector main body 15A. The Further, the light shielding portions 17bai and 17bao are arranged on the upper side of the light transmitting portion 17bc, restrict the light detection azimuth range on the side away from the surface 30a, and the light shielding portions 17bbi and 17bbo are arranged on the lower side of the light transmitting portion 17bc. The light detection azimuth range on the surface 30a side is limited.

なお、本実施形態においても、図5(b)に示すように、透光部17bcの光検出部15aaとは反対側の面の表面30aに沿った断面形状が凸曲面状に構成され、これによって表面30aに沿った光検出方位角範囲10Tが広角となるように構成されている。   Also in the present embodiment, as shown in FIG. 5B, the cross-sectional shape along the surface 30a of the surface opposite to the light detection unit 15aa of the translucent part 17bc is configured as a convex curved surface. Thus, the light detection azimuth range 10T along the surface 30a is configured to be a wide angle.

なお、上記透光部や遮光部は第1実施形態と同様のものを用いることができ、相互間の取付態様も上記と同様にすることができる。   In addition, the said light transmission part and the light-shielding part can use the thing similar to 1st Embodiment, and the attachment aspect between them can also be made the same as the above.

図6は本実施形態並びに他の実施形態に共通に適用できる構成例を示す光検出器15′の横断面図である。この光検出器15′においては、上記第2実施形態とほぼ同様の構造を有するが、上記透光部17bcの光検出部15aa側の面に表面30aに沿った断面形状を表面30aに沿った方向(図6の上下方向)に凹凸状に構成する表面凹凸構造17bdが設けられている点で異なる。   FIG. 6 is a cross-sectional view of a photodetector 15 ′ showing a configuration example that can be commonly applied to the present embodiment and other embodiments. The photodetector 15 ′ has a structure substantially similar to that of the second embodiment, but a cross-sectional shape along the surface 30a is formed along the surface 30a on the surface of the light transmitting portion 17bc on the light detecting portion 15aa side. The difference is that a surface uneven structure 17bd configured to be uneven in the direction (vertical direction in FIG. 6) is provided.

上記表面凹凸構造17bdは、図示例の場合には表面30aに沿った断面が三角状の凹凸形状とされ、この断面形状が表面30aと直交する方向(図6の紙面と直交する方向)にそのまま延在した構造となっている。透光部17bcに入射した反射光は、この表面凹凸構造17bdによって屈折された後に検出器本体15Aに入射するので、表面30aに沿った方向の光検出方位角範囲10Tの端部近傍側から入射した高入射角の反射光であっても、表面凹凸構造17bdによって偏向されることで、低入射角の反射光となって光検出部15aaにおいて検出可能となる。したがって、この表面凹凸構造17bdもまた、本発明の検出方位拡大手段に相当する。この表面凹凸構造17bdは図示例の三角状の凹凸形状に限らず、矩形状の凹凸構造、波型の凹凸構造などであってもよい。   In the illustrated example, the surface concavo-convex structure 17bd has a triangular concavo-convex shape in cross section along the surface 30a, and the cross-sectional shape as it is in a direction orthogonal to the surface 30a (a direction orthogonal to the paper surface of FIG. 6). It has an extended structure. Since the reflected light that has entered the light transmitting portion 17bc is refracted by the surface uneven structure 17bd and then enters the detector body 15A, it enters from the vicinity of the end of the light detection azimuth angle range 10T in the direction along the surface 30a. Even the reflected light with a high incident angle is deflected by the surface uneven structure 17bd to become a reflected light with a low incident angle and can be detected by the light detection unit 15aa. Therefore, this surface concavo-convex structure 17bd also corresponds to the detection direction expanding means of the present invention. The surface concavo-convex structure 17bd is not limited to the triangular concavo-convex shape in the illustrated example, but may be a rectangular concavo-convex structure, a corrugated concavo-convex structure, or the like.

なお、表面凹凸構造17bdは、屈折率の異なる界面を凹凸状に構成することによって反射光を屈折させるものであるので、検出器本体15Aの窓部15acの表面(受光面)と、透光部17bcの光検出部15aa側の面との関係は、上記屈折率が異なる限り、相互に透明な接着剤で接着されていても、相互に当接していても、相互に間隙を介して対向配置されていてもよい。この点は後述する図8に示す構成例でも同様である。   The surface uneven structure 17bd refracts reflected light by forming an interface having different refractive indexes in an uneven shape, so that the surface (light receiving surface) of the window portion 15ac of the detector body 15A and the light transmitting portion As long as the refractive index is different, the relationship between the 17bc and the surface on the light detection unit 15aa side is opposed to each other with a gap between them even if they are bonded with a transparent adhesive or are in contact with each other. May be. This also applies to the configuration example shown in FIG.

本構成例では、透光部17bcの光検出部15aaとは反対側の面の表面30aに沿った断面形状が凸曲面状とされているので、当該面の上述の集光機能に基づく検出方位の拡大作用とともに表面凹凸構造17bdによる検出方位の拡大作用が果たされる。ただし、透光部17bcの光検出部15aaとは反対側の面を平坦とすることなどによって当該面の集光機能をなくした状態で、光検出部15aa側の面に表面凹凸構造17bdを形成しただけでも、光検出方位角範囲を表面30aに沿った方向に拡大することができる。   In the present configuration example, since the cross-sectional shape along the surface 30a of the surface opposite to the light detection unit 15aa of the translucent part 17bc is a convex curved surface, the detection direction based on the above-described condensing function of the surface In addition to the effect of expanding the detection azimuth, the effect of expanding the detection orientation by the surface uneven structure 17bd is achieved. However, the surface uneven structure 17bd is formed on the surface on the light detection unit 15aa side in a state where the condensing function of the surface is eliminated by flattening the surface of the light transmission unit 17bc opposite to the light detection unit 15aa. Even just doing, the photodetection azimuth range can be expanded in the direction along the surface 30a.

[第3実施形態]
次に、図7を参照して本発明の第3実施形態について説明する。図7(a)は本実施形態の光検出器の概略縦断面図、図7(b)は同概略横断面図である。この第3実施形態では、光検出器15″の構造以外は第1実施形態と同様に構成されるので、同一部分には同一符号を付し、それらの説明は省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 7A is a schematic longitudinal sectional view of the photodetector of this embodiment, and FIG. 7B is a schematic transverse sectional view thereof. In the third embodiment, the structure is the same as that of the first embodiment except for the structure of the photodetector 15 ″, so the same parts are denoted by the same reference numerals and the description thereof is omitted.

本実施形態の光検出器15″は、上記と同様の検出器本体15Aと、受光部材18Bとを備えている。受光部材18Bは、遮光部18ba、18bbと透光部18bcとを有する。遮光部18ba、18bbは上記実施形態と同様の素材で同様に透光部18bcに取り付けられ、透光部18bcもまた上記実施形態と同様の素材で構成される。   The photodetector 15 ″ of this embodiment includes a detector main body 15A similar to the above and a light receiving member 18B. The light receiving member 18B includes light shielding portions 18ba and 18bb and a light transmitting portion 18bc. The parts 18ba and 18bb are made of the same material as that of the above embodiment and are similarly attached to the light transmitting portion 18bc. The light transmitting portion 18bc is also made of the same material as that of the above embodiment.

透光部18bcは、光検出部15aa側の面が平坦(一般的には検出器本体15Aの窓部15acの表面と対応した面形状)に構成されているのに対し、光検出部15aaとは反対側の面が表面30aと直交する方向と表面30aに沿った方向の双方において凸曲面状に(すなわち、凸レンズ状に)構成されている。これに対応して、遮光部18ba、18bbは、透光部18bcの光検出部15aaとは反対側の凸曲面状の面の周縁部分にまで回り込むように配置され、表面30aと直交する方向の光検出方位角範囲10Rを両側から限定している。   The light transmitting portion 18bc is configured so that the surface on the light detecting portion 15aa side is flat (generally, a surface shape corresponding to the surface of the window portion 15ac of the detector main body 15A), whereas the light detecting portion 15aa The opposite surface is formed in a convex curved surface shape (that is, in a convex lens shape) in both the direction orthogonal to the surface 30a and the direction along the surface 30a. Correspondingly, the light shielding portions 18ba and 18bb are arranged so as to wrap around the peripheral portion of the convex curved surface on the opposite side of the light detecting portion 15aa of the light transmitting portion 18bc, and in a direction orthogonal to the surface 30a. The light detection azimuth range 10R is limited from both sides.

図8は、本実施形態並びに他の実施形態に共通に適用できる構成例を示す光検出器15″の横断面図である。この光検出器15″においては、透光部18bcの光検出部15aa側の面が粗面(微細な凹凸状に構成された面)18bdとなっている点で異なる。その粗面18bdは、サンドブラスト処理、研削加工、エッチング処理などによって形成することができる。   FIG. 8 is a cross-sectional view of a photodetector 15 ″ showing a configuration example that can be commonly applied to the present embodiment and other embodiments. In this photodetector 15 ″, the light detector of the translucent portion 18bc. The difference is that the surface on the 15aa side is a rough surface (surface formed in a fine uneven shape) 18bd. The rough surface 18bd can be formed by sandblasting, grinding, etching, or the like.

この構成例においては、透光部18bcに入射した反射光は透光部18bcから検出器本体15Aに向けて出射する際に粗面18bdによって散乱されるので、表面30aに沿った方向の光検出方位角範囲10Tの端部近傍側から入射した高入射角の反射光であっても、粗面18bdによって散乱されることで、低入射角の反射光となって光検出部15aaにおいて検出可能となる。したがって、この粗面18bdもまた、本発明の検出方位拡大手段に相当する。   In this configuration example, the reflected light incident on the light transmitting portion 18bc is scattered by the rough surface 18bd when emitted from the light transmitting portion 18bc toward the detector main body 15A, and thus light detection in the direction along the surface 30a is performed. Even the high incident angle reflected light incident from the side near the end of the azimuth angle range 10T is scattered by the rough surface 18bd, so that it can be detected by the light detection unit 15aa as a low incident angle reflected light. Become. Therefore, this rough surface 18bd also corresponds to the detection direction expanding means of the present invention.

本構成例では、透光部18bcの光検出部15aaとは反対側の面の表面30aに沿った断面形状が凸曲面状とされているので、当該面の上述の集光機能に基づく検出方位の拡大作用とともに粗面18bdによる検出方位の拡大作用が果たされる。ただし、透光部18bcの光検出部15aaとは反対側の面を平坦とすることなどによって当該面の集光機能をなくした状態で、光検出部15aa側の面を粗面18bdとしただけでも、光検出方位角範囲を表面30aに沿った方向に拡大することができる。   In this configuration example, since the cross-sectional shape along the surface 30a of the surface opposite to the light detection unit 15aa of the light transmitting unit 18bc is a convex curved surface, the detection direction based on the above-described light collecting function of the surface In addition to the enlargement effect, the detection orientation enlargement effect by the rough surface 18bd is achieved. However, the surface on the light detection unit 15aa side is simply a rough surface 18bd in a state in which the light condensing function of the surface is eliminated by flattening the surface of the light transmission unit 18bc opposite to the light detection unit 15aa. However, the light detection azimuth angle range can be expanded in the direction along the surface 30a.

尚、本発明の照明装置及び電気光学装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、二つの導光板を隣接配置し、相互に所定の順序で平面的に重ねて用いているが、二つの導光板を逆の順序で重ねてもよく、また、場合によっては電気光学パネルを挟んだ両側に配置してもよい。例えば、電気光学パネルの背後に照明用導光板を配置し、電気光学パネルの視認側に位置検出用導光板を配置してもよい。さらに、導光板を用いた光出射構造に限らず、たとえば直下型の照明ユニットと同様に検出平面範囲内に配列された複数の位置検出光源を用いて直接に表面から位置検出光を出射させる構造とすることも可能である。   Note that the illumination device and the electro-optical device of the present invention are not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, two light guide plates are arranged adjacent to each other and are used by overlapping them in a predetermined order in a plane, but the two light guide plates may be stacked in reverse order, and depending on circumstances. May be arranged on both sides of the electro-optical panel. For example, an illumination light guide plate may be disposed behind the electro-optical panel, and a position detection light guide plate may be disposed on the viewing side of the electro-optical panel. In addition to the light emitting structure using the light guide plate, for example, a structure for emitting position detection light directly from the surface using a plurality of position detection light sources arranged in the detection plane range in the same manner as a direct illumination unit. It is also possible.

さらに、上記実施形態における位置検出方法としては二種の位置検出光の伝搬距離の差に応じて変化する光量の減衰率に対応する光量比に基づいて位置情報を求める方法を例示したが、本発明は、二種の位置検出光の伝搬距離の差に応じて変化する位相差によって位置情報を求めることもできるなど、上記の検出方法に何ら限定されるものではない。   Furthermore, as the position detection method in the above embodiment, a method for obtaining position information based on the light amount ratio corresponding to the attenuation rate of the light amount that changes in accordance with the difference in propagation distance between the two types of position detection light is illustrated. The invention is not limited to the detection method described above, such that the position information can be obtained from a phase difference that changes in accordance with the difference in propagation distance between the two types of position detection light.

10…照明装置、11…照明用光源、12A、12B…位置検出用光源、13A、13B…導光板、13aa…第1の光入射面、13ag…傾斜面、13ba…第2の光入射面、13ac、13bc…光出射面、13ad、13bd…背面、14…反射板、15…光検出器、15A…検出器本体、15aa…光検出部、15B…受光部材、15ba、15bb…遮光部、15bc…透光部、16…光学シート、20…電気光学パネル、30…表装板、L1…照明光、L2a、L2b…位置検出光、100…電気光学装置 DESCRIPTION OF SYMBOLS 10 ... Illuminating device, 11 ... Light source for illumination, 12A, 12B ... Light source for position detection, 13A, 13B ... Light guide plate, 13aa ... First light incident surface, 13ag ... Inclined surface, 13ba ... Second light incident surface, 13ac, 13bc ... light emitting surface, 13ad, 13bd ... back surface, 14 ... reflecting plate, 15 ... light detector, 15A ... detector body, 15aa ... light detecting portion, 15B ... light receiving member, 15ba, 15bb ... light shielding portion, 15bc DESCRIPTION OF SYMBOLS ... Translucent part, 16 ... Optical sheet, 20 ... Electro-optical panel, 30 ... Front panel, L1 ... Illumination light, L2a, L2b ... Position detection light, 100 ... Electro-optical apparatus

Claims (12)

位置検出光を放出する位置検出用光源と、
該位置検出光を出射する検出平面領域を備えた表面と、
該表面に沿った領域に配置され、前記検出平面領域において前記表面上に配置された検出対象物による前記位置検出光の反射光の少なくとも一部を検出する光検出器と、
前記反射光の前記光検出器による検出値に基づいて前記検出対象物の前記検出平面領域内の前記表面上の位置情報を求める制御手段と、
を具備し、
前記光検出器の前記表面と直交する方向の光検出方位角範囲は、前記表面に沿った方向の光検出方位角範囲よりも狭いことを特徴とする位置検出装置。
A position detection light source that emits position detection light;
A surface having a detection plane region for emitting the position detection light;
A photodetector that is disposed in a region along the surface and detects at least a part of the reflected light of the position detection light by a detection object disposed on the surface in the detection plane region;
Control means for obtaining position information on the surface of the detection object in the detection plane area based on a detection value of the reflected light by the photodetector;
Comprising
The position detection device according to claim 1, wherein a light detection azimuth range in a direction orthogonal to the surface of the photodetector is narrower than a light detection azimuth range in a direction along the surface.
前記光検出器は、前記反射光を検出する光検出部と、該光検出部へ前記反射光を導く受光部とを有し、該受光部には、前記光検出方位角範囲を前記表面と直交する方向に制限する検出方位限定手段が設けられることを特徴とする請求項1に記載の位置検出装置。   The light detector includes a light detection unit that detects the reflected light and a light receiving unit that guides the reflected light to the light detection unit. The light detection unit includes the light detection azimuth range as the surface. The position detection device according to claim 1, further comprising a detection azimuth limiting unit that limits the direction to an orthogonal direction. 前記光検出器は、前記反射光を検出する光検出部と、該光検出部へ前記反射光を導く受光部とを有し、該受光部には、前記光検出方位角範囲を前記表面に沿った方向に拡大する検出方位拡大手段が設けられることを特徴とする請求項1に記載の位置検出装置。   The photodetector includes a light detection unit that detects the reflected light, and a light receiving unit that guides the reflected light to the light detection unit. The light detection unit has the light detection azimuth range on the surface. The position detection apparatus according to claim 1, further comprising a detection azimuth expanding unit that expands in a direction along the line. 前記光検出器は、前記反射光を検出する光検出部と、該光検出部へ前記反射光を導く受光部とを有し、該受光部には、前記光検出方位角範囲を前記表面と直交する方向に制限する検出方位限定手段と、前記光検出方位角範囲を前記表面に沿った方向に拡大する検出方位拡大手段とが設けられることを特徴とする請求項1に記載の位置検出装置。   The light detector includes a light detection unit that detects the reflected light and a light receiving unit that guides the reflected light to the light detection unit. The light detection unit includes the light detection azimuth range as the surface. The position detection apparatus according to claim 1, further comprising: a detection azimuth limiting unit that limits the direction to an orthogonal direction; and a detection azimuth expansion unit that expands the light detection azimuth range in a direction along the surface. . 前記検出方位制限手段は前記反射光を遮光する遮光材で構成されることを特徴とする請求項2又は4に記載の位置検出装置。   The position detection apparatus according to claim 2, wherein the detection azimuth limiting unit is formed of a light blocking material that blocks the reflected light. 前記検出方位拡大手段は、前記反射光を偏向させることにより前記光検出方位角範囲を拡大する光偏向手段で構成されることを特徴とする請求項3又は4に記載の位置検出装置。   5. The position detection device according to claim 3, wherein the detection azimuth expanding unit includes a light deflection unit that expands the range of the light detection azimuth angle by deflecting the reflected light. 前記光偏向手段は、前記光検出部とは反対側の面の前記表面に沿った断面が凸曲面状の透光材で構成されることを特徴とする請求項6に記載の位置検出装置。   The position detecting device according to claim 6, wherein the light deflecting unit is formed of a translucent material having a convex curved surface in a cross section along the surface of the surface opposite to the light detecting unit. 前記光偏向手段は、前記光検出部の側の面の前記表面に沿った断面が凹凸状に構成され、若しくは、当該面が粗面とされた透光材で構成されることを特徴とする請求項6又は7に記載の位置検出装置。   The light deflecting means is formed of a light-transmitting material in which a cross section along the surface of the surface on the light detection unit side is configured to be uneven, or the surface is a rough surface. The position detection device according to claim 6 or 7. 前記制御手段は、前記位置検出光によって構成される第1の光出射分布と、これとは異なる第2の光出射分布を前記表面上の前記検出平面領域にそれぞれ形成するとともに、前記第1の光出射分布を構成する第1の前記位置検出光に起因する前記光検出器の出力成分と、前記第2の光出射分布を構成する第2の前記位置検出光に起因する前記光検出器の出力成分とに基づいて前記検出対象物の位置情報を求めることを特徴とする請求項1乃至8のいずれか一項に記載の位置検出装置。   The control means forms a first light emission distribution constituted by the position detection light and a second light emission distribution different from the first light emission distribution in the detection plane region on the surface, and The output component of the photodetector due to the first position detection light constituting the light emission distribution and the second detector of the photodetector due to the second position detection light constituting the second light emission distribution. The position detection apparatus according to claim 1, wherein position information of the detection target is obtained based on an output component. 位置検出光を放出する位置検出用光源と、
該位置検出光を出射する検出平面領域を備えた表面と、
該表面に沿った領域に配置され、前記検出平面領域において前記表面上に配置された検出対象物による前記位置検出光の反射光の少なくとも一部を検出する光検出器と、
前記反射光の前記光検出器による検出値に基づいて前記検出対象物の前記検出平面領域内の平面的な位置情報を求める制御手段と、
前記検出平面領域に対し少なくとも一部が平面的に重なる表示領域を備え、前記表面を構成するか、或いは、前記表面の背後に配置された電気光学パネルと、
を具備し、
前記光検出器の前記表面と直交する方向の光検出方位角範囲は、前記表面に沿った方向の光検出方位角範囲よりも狭いことを特徴とする電気光学装置。
A position detection light source that emits position detection light;
A surface having a detection plane region for emitting the position detection light;
A photodetector that is disposed in a region along the surface and detects at least a part of the reflected light of the position detection light by a detection object disposed on the surface in the detection plane region;
Control means for obtaining planar position information in the detection plane area of the detection object based on a detection value of the reflected light by the photodetector;
An electro-optic panel that includes a display area that at least partially overlaps the detection plane area in a planar manner, configures the surface, or is disposed behind the surface;
Comprising
An electro-optical device, wherein a light detection azimuth range in a direction orthogonal to the surface of the photodetector is narrower than a light detection azimuth range in a direction along the surface.
前記表面には前記表示領域を光学的に露出する表示画面領域と、該表示画面領域を包囲する縁領域とが設けられ、前記検出平面範囲は前記表示画面領域内に配置され、前記光検出器は前記縁領域に配置されることを特徴とする請求項9に記載の電気光学装置。   A display screen area for optically exposing the display area and an edge area surrounding the display screen area are provided on the surface, and the detection plane area is disposed in the display screen area, and the photodetector The electro-optical device according to claim 9, wherein the electro-optical device is disposed in the edge region. 前記制御手段は、前記位置検出光によって構成される第1の光出射分布と、これとは異なる第2の光出射分布を前記表面上の前記検出平面領域にそれぞれ形成するとともに、前記第1の光出射分布を構成する第1の前記位置検出光に起因する前記光検出器の出力成分と、前記第2の光出射分布を構成する第2の前記位置検出光に起因する前記光検出器の出力成分とに基づいて前記検出対象物の位置情報を求めることを特徴とする請求項9又は10に記載の電気光学装置。   The control means forms a first light emission distribution constituted by the position detection light and a second light emission distribution different from the first light emission distribution in the detection plane region on the surface, and The output component of the photodetector due to the first position detection light constituting the light emission distribution and the second detector of the photodetector due to the second position detection light constituting the second light emission distribution. 11. The electro-optical device according to claim 9, wherein position information of the detection target is obtained based on an output component.
JP2009047636A 2009-03-02 2009-03-02 Illuminator and electrooptical device Withdrawn JP2010204788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047636A JP2010204788A (en) 2009-03-02 2009-03-02 Illuminator and electrooptical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047636A JP2010204788A (en) 2009-03-02 2009-03-02 Illuminator and electrooptical device

Publications (1)

Publication Number Publication Date
JP2010204788A true JP2010204788A (en) 2010-09-16

Family

ID=42966231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047636A Withdrawn JP2010204788A (en) 2009-03-02 2009-03-02 Illuminator and electrooptical device

Country Status (1)

Country Link
JP (1) JP2010204788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086649A (en) * 2009-10-13 2011-04-28 Seiko Epson Corp Light detector, optical position detection apparatus, and display apparatus with position detection capability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134362A (en) * 2006-02-20 2006-05-25 Fujitsu Ltd Light emission detector and coordinate detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134362A (en) * 2006-02-20 2006-05-25 Fujitsu Ltd Light emission detector and coordinate detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086649A (en) * 2009-10-13 2011-04-28 Seiko Epson Corp Light detector, optical position detection apparatus, and display apparatus with position detection capability

Similar Documents

Publication Publication Date Title
JP4513918B2 (en) Illumination device and electro-optical device
US8896576B2 (en) Touch panel, liquid crystal panel, liquid crystal display device, and touch panel-integrated liquid crystal display device
JP4706771B2 (en) Position detecting device and electro-optical device
EP2336859A1 (en) Coordinate sensor, electronic device, display device, and light-receiving unit
US20090103853A1 (en) Interactive Surface Optical System
JP2009295318A (en) Lighting system and electro-optical device
JP6757779B2 (en) Non-contact input device
JP5515280B2 (en) Position detecting device and electro-optical device
JP2014021790A (en) Coordinate input device, coordinate detection method and coordinate input system
JP2008186374A (en) Optical touch panel
WO2013094376A1 (en) Input system
JP5944255B2 (en) Operation member having light emitting unit and coordinate input system having the same
JP2013250815A (en) Coordinate input device and coordinate input system
JP2009198360A (en) Optical touch panel
JP2010204788A (en) Illuminator and electrooptical device
JP4947080B2 (en) Position detecting device and electro-optical device
JP4952726B2 (en) POSITION DETECTION DEVICE, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC DEVICE
JP2013250817A (en) Coordinate input device and coordinate input system
WO2013132925A1 (en) Input device and input system provided therewith
JP2013250816A (en) Coordinate input device, and coordinate input system
JP5813533B2 (en) Input device and input system
JP2010231505A (en) Position detecting device and electro-optical device
JP2016151988A (en) Input system
JP2013250812A (en) Coordinate input device, coordinate detection method, and coordinate input system
JP2014002476A (en) Coordinate input device and coordinate input system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120306