JP4947080B2 - Position detecting device and electro-optical device - Google Patents

Position detecting device and electro-optical device Download PDF

Info

Publication number
JP4947080B2
JP4947080B2 JP2009078366A JP2009078366A JP4947080B2 JP 4947080 B2 JP4947080 B2 JP 4947080B2 JP 2009078366 A JP2009078366 A JP 2009078366A JP 2009078366 A JP2009078366 A JP 2009078366A JP 4947080 B2 JP4947080 B2 JP 4947080B2
Authority
JP
Japan
Prior art keywords
light
position detection
light emission
emission distribution
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009078366A
Other languages
Japanese (ja)
Other versions
JP2010231504A (en
Inventor
康憲 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Imaging Devices Corp filed Critical Epson Imaging Devices Corp
Priority to JP2009078366A priority Critical patent/JP4947080B2/en
Publication of JP2010231504A publication Critical patent/JP2010231504A/en
Application granted granted Critical
Publication of JP4947080B2 publication Critical patent/JP4947080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Description

本発明は位置検出装置及び電気光学装置に係り、特に、光学的に検出された値に基づい
て検出対象物の位置情報を取得する装置の構成に関する。
The present invention relates to a position detection device and an electro-optical device, and more particularly to a configuration of a device that acquires position information of an object to be detected based on an optically detected value.

一般に、液晶表示体などの電気光学装置を備えた表示機器には、表示画面を視認可能と
するために、或いは、その視認性を高めるために、バックライト等の照明装置が用いられ
る場合がある。また、上記表示機器には、表示画面にタッチパネル等の指示位置検出手段
が設けられる場合もあり、この場合には、表示画面の特定箇所をペンや指などで指示する
ことで、当該指示位置が検出され、情報処理装置等に入力される。
In general, in a display device including an electro-optical device such as a liquid crystal display, an illumination device such as a backlight may be used to make the display screen visible or to improve the visibility. . In addition, the display device may be provided with a designated position detecting means such as a touch panel on the display screen. In this case, the designated position is indicated by pointing a specific portion of the display screen with a pen or a finger. Detected and input to an information processing apparatus or the like.

上記のタッチパネル等の指示位置検出手段(位置座標入力手段)としては、表示画面へ
の接触状態を機械的・電気的に検出するための静電容量式若しくは抵抗膜式等のタッチパ
ネルが知られている他、例えば、表示画面に沿って多数の赤外線を縦横に走らせるととも
にこれらの赤外線を検出する光検出器を対応して設けることで、これらの赤外線を指等で
遮断したときに当該指等の位置座標を検出可能とした光学式タッチパネルが知られている
。一般に光学式タッチパネルといっても種々のものが知られているが、例えば、以下の特
許文献1及び2に記載されているものがある。
As the pointing position detection means (position coordinate input means) such as the above touch panel, a capacitive touch panel or a resistive touch panel for mechanically and electrically detecting a contact state with the display screen is known. In addition, for example, when a large number of infrared rays run vertically and horizontally along the display screen and a corresponding photodetector is provided to detect these infrared rays, the finger or the like can be used when these infrared rays are blocked by a finger or the like. There is known an optical touch panel that can detect the position coordinates. Various types of optical touch panels are generally known. For example, there are those described in Patent Documents 1 and 2 below.

特開2004−295644号公報JP 2004-295644 A 特開2004−303172号公報JP 2004-303172 A

しかしながら、前述の光学式タッチパネルでは、表示画面の近傍に検出すべき位置座標
の分解能に対応する多数の光源及び光検出器或いは光スイッチや導光構造などを配列させ
る必要があるので、光学素子の数が多くなるために高い製造コストを負担しなければなら
ず、また、消費電力が増大するという問題点がある。
However, in the optical touch panel described above, it is necessary to arrange a large number of light sources and photodetectors or optical switches or light guide structures corresponding to the resolution of position coordinates to be detected in the vicinity of the display screen. Since the number increases, high manufacturing costs must be borne, and power consumption increases.

そこで、本発明は上記問題点を解決するものであり、光学式位置検出手段を低コストか
つ低消費電力となるように構成できる位置検出装置及び電気光学装置(表示装置)を実現
することにある。
Accordingly, the present invention is to solve the above-described problems, and to provide a position detection device and an electro-optical device (display device) that can be configured so that the optical position detection means can be reduced in cost and power consumption. .

斯かる実情に鑑み、本発明の位置検出装置は、基体上に平面的行列状に配列され、その
配列面と交差する方向に位置検出光を放出する複数の位置検出用光源と、該複数の位置検
出用光源から放出される前記位置検出光の検出対象物による反射光を検出する光検出器と
、前記複数の位置検出用光源の前記配列面に沿った検出方向の一方側に向けて前記複数の
位置検出用光源の放出光量を漸減させ、前記配列面に沿って前記位置検出光の出射光量が
前記一方側に傾斜した第1の光出射分布をなす第1の駆動態様と、前記検出方向の前記一
方側とは逆の他方側に向けて前記複数の位置検出用光源の放出光量を漸減させ、前記配列
面に沿って前記位置検出光の出射光量が前記他方側に傾斜した第2の光出射分布をなす第
2の駆動態様とを切り替える光源制御手段と、前記第1の光出射分布及び前記第2の光出
射分布にそれぞれ起因する前記光検出器の出力成分に基づいて前記検出対象物の前記検出
方向に沿った位置情報を導出する位置情報導出手段と、を具備することを特徴とする。
In view of such circumstances, the position detection device of the present invention is arranged in a planar matrix on a substrate, and a plurality of position detection light sources that emit position detection light in a direction intersecting the arrangement surface, A photodetector for detecting reflected light from the detection target of the position detection light emitted from the position detection light source, and toward the one side in the detection direction along the array surface of the plurality of position detection light sources; A first driving mode in which a first light emission distribution in which a light emission amount of a plurality of position detection light sources is gradually decreased and a light emission amount of the position detection light is inclined to the one side along the arrangement surface; A second light quantity in which the emitted light quantity of the plurality of position detection light sources is gradually decreased toward the other side opposite to the one side in the direction, and the emitted light quantity of the position detection light is inclined to the other side along the array surface. For switching between the second driving mode having the light emission distribution of A position for deriving position information along the detection direction of the detection object based on output components of the light detectors respectively resulting from the control means and the first light emission distribution and the second light emission distribution; And an information deriving unit.

本発明によれば、光源制御手段が複数の位置検出用光源を制御することで、その配列面
と交差する方向に出射する位置検出光の光量分布として、複数の位置検出用光源の配列面
に沿った検出方向の一方側と他方側にそれぞれ傾斜した第1の光出射分布と第2の光出射
分布が形成され、両光出射分布の形成時における検出対象物による反射光の少なくとも一
部がそれぞれ光検出器で検出され、その検出された光量に対応する値が出力される。そし
て、この光検出器の出力は、上記両光出射分布に存在する検出方向に沿った出射光量の傾
斜によって検出対象物の上記検出方向の位置に応じて変化する。したがって、両光出射分
布にそれぞれ起因する光検出器の出力成分に基づいて検出対象物の検出方向に沿った位置
情報を求めることが可能になる。特に、第1の光出射分布と第2の光出射分布の双方に基
づく検出対象物の反射光を光検出器によって検出し、その双方にそれぞれ起因する出力成
分に基づいて検出対象物の配列方向の位置情報を求めることにより、外光や出射光量や反
射光量のレベル変動に影響されにくくなるため、当該位置情報の精度や再現性を高めるこ
とができる。なお、平面的行列状とは、位置検出用光源の配列が線状ではなく平面状に広
がっていることを言い、行列(マトリックス)のような格子状の配列態様そのものに限定
する趣旨ではない。
According to the present invention, the light source control unit controls the plurality of position detection light sources, so that the light quantity distribution of the position detection light emitted in the direction intersecting the array surface is set on the array surface of the plurality of position detection light sources. A first light emission distribution and a second light emission distribution that are inclined to one side and the other side of the detection direction along the detection direction, respectively, and at least a part of the reflected light by the detection object at the time of forming both light emission distributions Each is detected by a photodetector, and a value corresponding to the detected light amount is output. Then, the output of the photodetector changes in accordance with the position of the detection target in the detection direction due to the inclination of the emitted light quantity along the detection direction existing in the both light emission distributions. Therefore, it becomes possible to obtain position information along the detection direction of the detection target based on the output components of the light detectors resulting from both light emission distributions. Particularly, the reflected light of the detection object based on both the first light emission distribution and the second light emission distribution is detected by the photodetector, and the arrangement direction of the detection objects is based on the output components respectively resulting from both. By obtaining the position information, it becomes difficult to be influenced by the level fluctuation of the external light, the emitted light quantity, and the reflected light quantity, so that the accuracy and reproducibility of the position information can be improved. Note that the planar matrix means that the arrangement of the position detection light sources spreads in a plane rather than a line, and is not intended to be limited to a grid-like arrangement mode such as a matrix.

本発明では、上記のように位置検出光を放出する複数の位置検出用光源を平面的に配列
し、これらを光源制御手段により駆動して配列面に沿った検出方向に向けて相互に逆側に
傾斜した第1の光出射分布及び第2の光出射分布を形成し、両光出射分布の検出対象物に
よる反射光を光検出器によって検出するようにしたので、位置検出用光源及び光検出器を
分解能に対応する数だけ用意する必要がないため、素子数を抑制できるとともに消費電力
も低減できることから、光学式位置検出装置を低コストかつ低消費電力となるように構成
することができる。
In the present invention, as described above, a plurality of position detection light sources that emit position detection light are arranged in a plane, and these are driven by the light source control means to be opposite to each other in the detection direction along the arrangement surface. The first light emission distribution and the second light emission distribution which are inclined to each other are formed, and the reflected light from the detection object of both light emission distributions is detected by the photodetector. Since it is not necessary to prepare the number of devices corresponding to the resolution, the number of elements can be suppressed and the power consumption can be reduced. Therefore, the optical position detection device can be configured to be low in cost and low in power consumption.

ここで、両光出射分布にそれぞれ起因する光検出器の出力成分に基づいた検出対象物の
位置情報の導出方法は特に限定されないが、両光出射分布にそれぞれ起因する光検出器の
出力成分の比や差を用いて直接に位置情報を取得する方法だけでなく、たとえば、両光出
射分布にそれぞれ起因する光検出器の出力成分同士が相互に一致するように一方の光出射
分布のレベルを増減させたときの、当該レベルの増減量に基づいて検出対象物の位置情報
を導出する場合なども含まれる。
Here, the method for deriving the position information of the detection object based on the output components of the photodetectors caused by both light emission distributions is not particularly limited, but the output components of the photodetectors caused by the both light emission distributions are not particularly limited. In addition to the method of directly acquiring position information using the ratio or difference, for example, the level of one light emission distribution is set so that the output components of the photodetectors caused by both light emission distributions match each other. The case where the position information of the detection target is derived based on the amount of increase / decrease of the level when it is increased / decreased is also included.

本発明の一の態様においては、前記光源制御手段は前記第1の光出射分布と前記第2の
光出射分布とを交互に形成する。これによって、第1の光出射分布に基づく光検出器によ
る反射光の検出と、第2の光出射分布に基づく光検出器による反射光の検出とを順次に行
うことができるので、両検出を時間的に近接して実施することができる。特に、第1の光
出射分布を形成するための位置検出用光源の駆動と、第2の光出射分布を形成するための
位置検出用光源の駆動とを所定の駆動周期に基づいて逆相で実施するようにすることで、
光検出器の検出信号の位相解析により、両光出射分布にそれぞれ起因する出力成分を容易
に弁別することが可能になる。
In one aspect of the present invention, the light source control means alternately forms the first light emission distribution and the second light emission distribution. Accordingly, the detection of the reflected light by the photodetector based on the first light emission distribution and the detection of the reflected light by the photodetector based on the second light emission distribution can be sequentially performed. It can be carried out close in time. In particular, the driving of the position detection light source for forming the first light emission distribution and the driving of the position detection light source for forming the second light emission distribution are reversed in phase based on a predetermined driving cycle. By doing so,
By analyzing the phase of the detection signal of the photodetector, it becomes possible to easily discriminate the output components respectively resulting from both light emission distributions.

本発明の他の態様においては、前記光源制御手段は、前記検出方向と交差し前記配列面
に沿った第2の検出方向の一方側に向けて前記複数の位置検出用光源の放出光量を漸減さ
せ、前記配列面に沿って前記位置検出光の出射光量が前記第2の検出方向の一方側に傾斜
した第3の光出射分布をなす第3の駆動態様と、前記第2の検出方向の前記一方側とは逆
の他方側に向けて前記複数の位置検出用光源の放出光量を漸減させ、前記配列面に沿って
前記位置検出光の出射光量が前記第2の検出方向の前記他方側に傾斜した第4の光出射分
布をなす第4の駆動態様と切り替え、前記位置情報導出手段は、前記第3の光出射分布及
び前記第4の光出射分布にそれぞれ起因する前記光検出器の出力成分に基づいて前記検出
対象物の前記配列方向と交差する方向に沿った位置情報を導出する。この場合には、上記
検出方向と交差する第2の検出方向に沿った位置情報を得ることができるので、検出対象
物の平面位置情報を取得することが可能になる。
In another aspect of the present invention, the light source control unit gradually decreases the amount of light emitted from the plurality of position detection light sources toward one side of the second detection direction that intersects the detection direction and extends along the arrangement surface. And a third driving mode in which a third light emission distribution in which the emitted light quantity of the position detection light is inclined to one side of the second detection direction along the arrangement surface, and the second detection direction The amount of emitted light of the plurality of position detection light sources is gradually decreased toward the other side opposite to the one side, and the amount of emitted light of the position detection light along the arrangement surface is the other side in the second detection direction. The position information deriving means switches between the third light emission distribution and the fourth light emission distribution, respectively. Crosses the array direction of the detection objects based on output components It derives the position information along the direction. In this case, since the position information along the second detection direction that intersects the detection direction can be obtained, the planar position information of the detection object can be acquired.

この場合に、前記光源制御手段は、前記第1の光出射分布、前記第2の光出射分布、第
3の光出射分布及び前記第4の光出射分布を順次に形成しつつ、各光出射分布の形成時に
おいて前記光検出器の出力成分を取得することが好ましい。これによれば、検出方向と第
2の検出方向に沿った位置情報が順次に得られるので、検出対象物の平面位置情報を迅速
に取得することができる。この場合に、上記の四つの光出射分布の形成順序は特に限定さ
れない。
In this case, the light source control unit sequentially forms the first light emission distribution, the second light emission distribution, the third light emission distribution, and the fourth light emission distribution, and outputs each light emission. It is preferable to acquire the output component of the photodetector when the distribution is formed. According to this, since the positional information along the detection direction and the second detection direction is obtained sequentially, the planar position information of the detection target can be quickly acquired. In this case, the order of forming the four light emission distributions is not particularly limited.

なお、前記光源制御手段は、前記複数の位置検出用光源のうち前記配列面に分散配置さ
れた複数の第1群の前記位置検出用光源により前記第1の光出射分布若しくは前記第3の
光出射分布を形成し、前記複数の位置検出用光源のうち前記配列面に分散配置され、前記
第1群の位置検出用光源とは異なる複数の第2群の前記位置検出用光源により前記第2の
光出射分布若しくは前記第4の光出射分布を形成する場合がある。また、前記光源制御手
段は、前記複数の位置検出用光源を全て用いることにより前記第1の光出射分布と前記第
2の光出射分布をそれぞれ形成する場合もある。前者の場合には、第1の光出射分布と第
2の光出射分布が互いに異なる位置検出用光源を用いて形成されるので、光源の制御が容
易になる。後者の場合には、全ての位置検出用光源を用いて両光出射分布をそれぞれ形成
できるので、両光出射分布の傾斜態様をより精密に実現することが可能になる。
The light source control means may be configured to use the first light output distribution or the third light by the plurality of first group light sources for position detection distributed among the plurality of position detection light sources on the arrangement surface. An output distribution is formed, among the plurality of position detection light sources, is distributed on the array surface, and the second group of position detection light sources is different from the first group of position detection light sources. Or the fourth light emission distribution may be formed. The light source control unit may form the first light emission distribution and the second light emission distribution by using all of the plurality of position detection light sources, respectively. In the former case, since the first light emission distribution and the second light emission distribution are formed using different position detection light sources, the light source can be easily controlled. In the latter case, since both light emission distributions can be formed using all the position detection light sources, it is possible to more accurately realize the slope of both light emission distributions.

本発明の別の態様においては、前記光検出器は前記複数の位置検出用光源の配列面に配
置されている。本来、光検出器は位置検出光の検出対象物による反射光の少なくとも一部
を検出可能とされていればよいので、そうである限り特に配置については限定されるもの
ではないが、位置検出用光源が配列される配列面に光検出器も配置されることで、位置検
出装置の主要構成を基体上にまとめて設置することができるので、装置のコンパクト化や
製造の容易化を図ることができる。
In another aspect of the invention, the photodetector is arranged on an array surface of the plurality of position detection light sources. Originally, the light detector only needs to be able to detect at least a part of the reflected light of the position detection light by the detection target, so that the arrangement is not particularly limited as long as it is, but for position detection Since the photodetectors are also arranged on the arrangement surface on which the light sources are arranged, the main components of the position detection device can be installed together on the base, so that the device can be made compact and easy to manufacture. it can.

次に、本発明の電気光学装置は、基体上に平面的行列状に配列され、その配列面と交差
する方向に位置検出光を放出する複数の位置検出用光源と、該複数の位置検出用光源から
放出される前記位置検出光の検出対象物による反射光を検出する光検出器と、前記複数の
位置検出用光源の前記配列面に沿った検出方向の一方側に向けて前記複数の位置検出用光
源の放出光量を漸減させ、前記配列面に沿って前記位置検出光の出射光量が前記一方側に
傾斜した第1の光出射分布をなす第1の駆動態様と、前記検出方向の前記一方側とは逆の
他方側に向けて前記複数の位置検出用光源の放出光量を漸減させ、前記配列面に沿って前
記位置検出光の出射光量が前記他方側に傾斜した第2の光出射分布をなす第2の駆動態様
とを切り替える光源制御手段と、前記第1の光出射分布及び前記第2の光出射分布にそれ
ぞれ起因する前記光検出器の出力成分に基づいて前記検出対象物の前記検出方向に沿った
位置情報を導出する位置情報導出手段と、表示領域が前記配列面に対して前記配列面と重
なるように配置された電気光学パネルと、を具備することを特徴とする。
Next, an electro-optical device according to the present invention is arranged in a planar matrix on a substrate and emits position detection light in a direction intersecting the arrangement surface, and the plurality of position detection light sources. A plurality of positions toward one side of a detection direction along the array surface of the plurality of position detection light sources, and a photodetector that detects reflected light from the detection target of the position detection light emitted from the light source; A first driving mode in which a light emission amount of the detection light source is gradually decreased and a light emission distribution of the position detection light is inclined to the one side along the arrangement surface; Second light emission in which the emitted light amount of the plurality of position detection light sources is gradually decreased toward the other side opposite to the one side, and the emitted light amount of the position detection light is inclined to the other side along the array surface. Light source control means for switching between the second driving modes forming the distribution; Position information deriving means for deriving position information of the detection object along the detection direction based on output components of the photodetector respectively caused by the first light emission distribution and the second light emission distribution; And an electro-optic panel arranged so that a display region overlaps the arrangement surface with respect to the arrangement surface.

本発明の一の態様においては、前記表示領域は前記配列面に対し前記位置検出光の光出
射側に配置され、前記基体上には前記位置検出光と並行して照明光を放出する複数の前記
照明用光源が平面的に配列される。これによれば、いわゆる直下型の照明構造が設けられ
ることとなり、基体上に配列された複数の照明用光源から放出された照明光が電気光学パ
ネルの表示領域に照射されるため、電気光学パネルに対する照明機能を付加することがで
きるとともに、別途照明装置(バックライト等)を用いる場合に比べて電気光学装置の小
型化や部品点数の低減を図ることができる。
In one aspect of the present invention, the display region is disposed on the light emission side of the position detection light with respect to the arrangement surface, and a plurality of illumination light is emitted on the base in parallel with the position detection light. The illumination light sources are arranged in a plane. According to this, since a so-called direct-type illumination structure is provided, and illumination light emitted from a plurality of illumination light sources arranged on the base is irradiated to the display area of the electro-optical panel, the electro-optical panel Can be added, and the electro-optical device can be downsized and the number of parts can be reduced as compared with the case where a separate illumination device (backlight or the like) is used.

本発明の他の態様においては、前記電気光学パネルは前記配列面に対し前記位置検出光
の光出射側に配置され、前記位置検出光は前記電気光学パネルを透過して前記配列面とは
反対側に出射するように構成され、前記光検出器は前記電気光学パネルの内部に配置され
る。これによれば、位置検出光が電気光学パネルを透過して反対側に出射するので、電気
光学パネルに対して配列面とは反対側にある検出対象物による反射光を電気光学パネル内
に配置された光検出器で検出することが可能になる。ここで、電気光学パネル内に単一の
光検出器が設けられていても良く、複数の光検出器が設けられていてもよい。この場合、
光検出器は、電気光学パネルを構成する基板の内面上に形成されることが望ましい。また
、前記光検出器は前記複数の位置検出用光源の配列面に配置されてもよい。この場合には
、光検出器が位置検出用光源や場合によっては照明用光源とともに同じ基体上に配置され
るので、装置の構造を簡易に構成でき、装置のコンパクト化も可能になる。
In another aspect of the invention, the electro-optical panel is disposed on a light emission side of the position detection light with respect to the arrangement surface, and the position detection light is transmitted through the electro-optical panel and opposite to the arrangement surface. The photodetector is arranged inside the electro-optical panel. According to this, since the position detection light is transmitted through the electro-optical panel and emitted to the opposite side, the reflected light from the detection object on the opposite side of the arrangement surface with respect to the electro-optical panel is arranged in the electro-optical panel. It becomes possible to detect with the light detector. Here, a single photodetector may be provided in the electro-optical panel, or a plurality of photodetectors may be provided. in this case,
The photodetector is preferably formed on the inner surface of the substrate constituting the electro-optical panel. The photodetector may be arranged on an array surface of the plurality of position detection light sources. In this case, since the photodetector is disposed on the same substrate together with the position detection light source and, in some cases, the illumination light source, the structure of the apparatus can be easily configured, and the apparatus can be made compact.

本発明によれば、光学式位置検出手段を低コストかつ低消費電力となるように構成でき
る位置検出装置及び電気光学装置(表示装置)を実現することができるという優れた効果
を奏し得る。
According to the present invention, it is possible to achieve an excellent effect that it is possible to realize a position detection device and an electro-optical device (display device) in which the optical position detection unit can be configured at low cost and low power consumption.

第1実施形態の位置検出装置及び電気光学装置の概略構成を模式的に示す概略断面図。FIG. 3 is a schematic cross-sectional view schematically illustrating a schematic configuration of the position detection device and the electro-optical device according to the first embodiment. 第1実施形態の基体上の位置検出用光源及び照明用光源の配置を示す概略平面図。The schematic plan view which shows arrangement | positioning of the light source for position detection on the base | substrate of 1st Embodiment, and the light source for illumination. 第1実施形態の第1の光出射分布及び第2の光出射分布を示す説明図。Explanatory drawing which shows the 1st light emission distribution and 2nd light emission distribution of 1st Embodiment. 第1実施形態の第1の光出射分布における位置検出用光源の発光態様を模式的に示す概略斜視図(a)及び第2の光出射分布における位置検出用光源の発光態様を模式的に示す概略斜視図(b)。The schematic perspective view (a) which shows typically the light emission aspect of the position detection light source in the 1st light emission distribution of 1st Embodiment, and the light emission aspect of the position detection light source in the 2nd light emission distribution are shown typically. Schematic perspective view (b). 第1実施形態の第3の光出射分布及び第4の光出射分布を示す説明図。Explanatory drawing which shows the 3rd light emission distribution and 4th light emission distribution of 1st Embodiment. 第1実施形態の第3の光出射分布における位置検出用光源の発光態様を模式的に示す概略斜視図(a)及び第4の光出射分布における位置検出用光源の発光態様を模式的に示す概略斜視図(b)。The schematic perspective view (a) which shows typically the light emission aspect of the light source for position detection in the 3rd light emission distribution of 1st Embodiment, and the light emission aspect of the light source for position detection in a 4th light emission distribution are shown typically. Schematic perspective view (b). 第2実施形態の位置検出装置及び電気光学装置の概略構成を示す概略断面図。FIG. 6 is a schematic cross-sectional view illustrating a schematic configuration of a position detection device and an electro-optical device according to a second embodiment. 第2実施形態の電気光学パネル内の光検出器の配置を示す概略平面図。FIG. 6 is a schematic plan view showing the arrangement of photodetectors in an electro-optical panel of a second embodiment. 第3実施形態の位置検出装置及び電気光学装置の概略構成を示す概略断面図。FIG. 10 is a schematic cross-sectional view illustrating a schematic configuration of a position detection device and an electro-optical device according to a third embodiment. 第3実施形態の基体上の光検出器の配置を位置検出用光源及び照明用光源の配置とともに示す概略平面図。The schematic plan view which shows arrangement | positioning of the photodetector on the base | substrate of 3rd Embodiment with the arrangement | positioning of the light source for position detection, and the light source for illumination. 各実施形態の位置検出用光源の発光態様及び光検出器の検出態様を示すタイミングチャート。The timing chart which shows the light emission aspect of the light source for position detection of each embodiment, and the detection aspect of a photodetector. 各実施形態の複数の位置検出用光源の配列に沿った二方向の発光態様を示すグラフ(a)及び(b)。Graphs (a) and (b) showing light emission modes in two directions along an array of a plurality of position detection light sources in each embodiment. 実施形態の位置情報の検出原理を示す概略構成ブロック図。FIG. 2 is a schematic configuration block diagram illustrating a detection principle of position information according to the embodiment. 実施形態の複数の位置検出用光源の駆動構成を示す概略構成ブロック図。The schematic structure block diagram which shows the drive structure of the several light source for position detection of embodiment. 実施形態の複数の位置検出用光源の別の駆動構成を示す概略構成ブロック図。The schematic structure block diagram which shows another drive structure of the several light source for position detection of embodiment.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[第1実施形態]
図1は本発明に係る第1実施形態の照明装置及び電気光学装置(位置検出装置)の構成
を模式的に示す概略断面図、図2は照明装置の光源及び導光板を背面側から見た様子を模
式的に示す背面図である。
[First embodiment]
FIG. 1 is a schematic cross-sectional view schematically showing a configuration of an illumination device and an electro-optical device (position detection device) according to the first embodiment of the present invention, and FIG. 2 is a view of a light source and a light guide plate of the illumination device viewed from the back side. It is a rear view which shows a mode typically.

図1に示すように、本実施形態の照明装置10は、照明光L1を放出する複数の照明用
光源11と、位置検出光L2a、L2bを放出する位置検出用光源12とを有し、これら
は基体13上においてそれぞれ平面的に配列されている。また、照明用光源11及び位置
検出用光源12から照明光L1及び位置検出光L2a、L2bの出射側に離間して光拡散
板16が配置されている。基体13は上記照明用光源11、位置検出用光源12及び光拡
散板16を収容するケース状に構成され、基体13の内面13aは白色ポリエチレンや鏡
面などの照明光L1を反射させる反射面として形成されている。また、照明用光源11及
び位置検出用光源12は基体13の底部13b上に配置されている。図示しないが、たと
えば、照明用光源11及び位置検出用光源12は配線基板上に実装される。さらに、基体
13の外側において上記位置検出光の出射側には光検出器15が配置され、照明装置10
とで位置検出装置を形成している。
As shown in FIG. 1, the illuminating device 10 of this embodiment includes a plurality of illumination light sources 11 that emit illumination light L1, and position detection light sources 12 that emit position detection light L2a and L2b. Are arranged in a plane on the substrate 13. Further, a light diffusion plate 16 is disposed away from the illumination light source 11 and the position detection light source 12 on the emission side of the illumination light L1 and the position detection lights L2a and L2b. The base 13 is configured in a case shape that accommodates the illumination light source 11, the position detection light source 12, and the light diffusing plate 16, and the inner surface 13 a of the base 13 is formed as a reflective surface that reflects the illumination light L 1 such as white polyethylene or a mirror surface. Has been. The illumination light source 11 and the position detection light source 12 are arranged on the bottom 13 b of the base 13. Although not shown, for example, the illumination light source 11 and the position detection light source 12 are mounted on a wiring board. Further, a photodetector 15 is disposed outside the base 13 on the emission side of the position detection light, and the illumination device 10.
And forms a position detecting device.

上記照明装置10の光出射側には、透過型の液晶表示体等よりなる電気光学パネル20
が配置される。この電気光学パネル20は、たとえば、透明な基板21と22をシール材
23で貼り合わせ、基板間に液晶24を配置してなり、この液晶24の配向状態を図示し
ない電極によりそれぞれ制御可能に構成した複数の画素を備えている。複数の画素は表示
領域内に平面的に配列され、この表示領域は上記配列面13と平面的に重なるように配置
される。なお、必要に応じて基板21及び22の外面側には偏光板(図示せず)が配置さ
れる。各画素は、半導体ICチップ等よりなる駆動回路25が出力する駆動信号によって
駆動され、画素ごとに所定の透過状態となるように制御される。
On the light emitting side of the illuminating device 10, an electro-optical panel 20 made of a transmissive liquid crystal display body or the like.
Is placed. The electro-optical panel 20 includes, for example, transparent substrates 21 and 22 bonded together with a sealing material 23, and a liquid crystal 24 disposed between the substrates. The alignment state of the liquid crystal 24 can be controlled by electrodes (not shown). A plurality of pixels are provided. The plurality of pixels are arranged in a plane in the display area, and the display area is arranged so as to overlap with the arrangement surface 13 in a plane. In addition, a polarizing plate (not shown) is arrange | positioned at the outer surface side of the board | substrates 21 and 22 as needed. Each pixel is driven by a drive signal output from a drive circuit 25 made of a semiconductor IC chip or the like, and is controlled so as to be in a predetermined transmission state for each pixel.

電気光学パネル20の導光板13とは反対側には光透過性を有する表装板30が配置さ
れ、この表装板30の外面(電気光学パネル20とは反対側の面)上に上記光検出器15
が配置される。この光検出器15はフォトダイオード等の受光素子であり、上記位置検出
光の強度を検出可能となるように構成される。例えば、後述するように位置検出光が赤外
線であれば、光検出器15も赤外線に感度を有する受光素子で構成される。なお、光検出
器15は少なくとも一つ設けられていれば良いが、複数設けても構わない。また、図示例
のように表層板30上などの最表面上に配置する場合に限定されず、後述するように電気
光学パネル20の内部や基体13の内部に配置してもよい。要は、光検出器は、後述する
検出対象物Obからの位置検出光L2a、L2bの反射光の少なくとも一部を検出できる
構成で設置されていればよい。
On the opposite side of the electro-optical panel 20 from the light guide plate 13, a light-transmitting surface plate 30 is disposed. On the outer surface of the surface plate 30 (the surface opposite to the electro-optical panel 20), the above-described photodetector. 15
Is placed. The light detector 15 is a light receiving element such as a photodiode, and is configured to detect the intensity of the position detection light. For example, as will be described later, when the position detection light is infrared, the photodetector 15 is also composed of a light receiving element having sensitivity to infrared. Note that at least one photodetector 15 may be provided, but a plurality of photodetectors 15 may be provided. Moreover, it is not limited to arrange | positioning on outermost surfaces, such as on the surface layer board 30 like the example of illustration, You may arrange | position in the inside of the electro-optical panel 20 and the inside of the base | substrate 13 so that it may mention later. In short, the photodetector only needs to be installed in a configuration that can detect at least part of reflected light of position detection light L2a and L2b from a detection object Ob described later.

照明用光源11は例えばLED(発光ダイオード)等の発光素子で構成され、図示しな
い駆動回路から出力される駆動信号に応じて例えば白色の照明光L1を放出する。図2に
示すように、複数の照明用光源11は基体13上に平面的に(すなわち、縦横に)分散し
て配置される。照明用光源11は基本的に基体13の底部表面に沿って設定された配列面
13P(図示一点鎖線)内において周期的に配列されている。図示例では照明用光源11
は、赤(R)、緑(G)及び青(B)の三色の発光チップ11R、11G、11Bを一体
化してなる発光素子で構成されるが、たとえば、青色発光ダイオードと蛍光材料との群み
合わせによって白色発光ダイオードとして構成されたものなど、照明光として用いること
のできる光を放出するものであれば特に限定されるものではない。
The illumination light source 11 is composed of a light emitting element such as an LED (light emitting diode), for example, and emits, for example, white illumination light L1 in accordance with a drive signal output from a drive circuit (not shown). As shown in FIG. 2, the plurality of illumination light sources 11 are arranged on the base 13 so as to be planarly dispersed (that is, vertically and horizontally). The illumination light sources 11 are periodically arranged in an array surface 13P (indicated by a one-dot chain line in the figure) basically set along the bottom surface of the base 13. In the illustrated example, the illumination light source 11
Is composed of a light emitting element formed by integrating light emitting chips 11R, 11G, and 11B of three colors of red (R), green (G), and blue (B). For example, a blue light emitting diode and a fluorescent material There is no particular limitation as long as it emits light that can be used as illumination light, such as a white light-emitting diode formed by grouping.

位置検出用光源12は、例えばLED(発光ダイオード)等の発光素子で構成され、図
示しない駆動回路から出力される駆動信号に応じて例えば赤外線である位置検出光L2a
、L2bを放出する。位置検出光は特に限定されないが、後述する信号処理等によって上
記照明光L1や外光と区別して検出可能なものが好ましく、上記照明光L1とは波長分布
や発光態様が異なることが好ましい。また、本発明の検出対象物Obにより効率的に反射
される波長域を有することが好ましい。例えば検出対象物Obが指等の人体であれば、人
体の表面で反射率の高い赤外線(特に可視光領域に近い近赤外線)であることが望ましい
。図2に示すように、位置検出用光源12は、基体13上に平面的に(すなわち、縦横に
)分散して配置される。また、位置検出用光源12は、上記照明用光源11と同様に、基
本的に基体13の底部13bの表面に沿って設定された配列面13P(図示一点鎖線)内
において周期的に配列されている。ここで、本明細書では、複数の位置検出用光源12が
配列されてなる配列領域に限定される面範囲を有し、位置検出用光源12の配列位置に沿
った面を上記配列面13Pという。配列面13Pは図示例では平面であるが、特に平面に
限定されるものではない。
The position detection light source 12 is composed of a light emitting element such as an LED (light emitting diode), for example, and position detection light L2a that is, for example, infrared light in accordance with a drive signal output from a drive circuit (not shown).
, L2b is released. The position detection light is not particularly limited, but is preferably one that can be detected separately from the illumination light L1 and external light by signal processing or the like to be described later, and preferably has a wavelength distribution or a light emission mode different from that of the illumination light L1. Moreover, it is preferable to have a wavelength range that is efficiently reflected by the detection object Ob of the present invention. For example, if the detection object Ob is a human body such as a finger, it is desirable to use infrared rays with high reflectivity on the surface of the human body (particularly near infrared rays close to the visible light region). As shown in FIG. 2, the position detection light sources 12 are arranged on the base 13 so as to be planarly dispersed (that is, vertically and horizontally). Similarly to the illumination light source 11, the position detection light source 12 is periodically arranged in an array surface 13 </ b> P (indicated by a one-dot chain line in the drawing) basically set along the surface of the bottom portion 13 b of the base 13. Yes. Here, in the present specification, a surface range that is limited to an array region in which a plurality of position detection light sources 12 are arrayed, and a surface along the array position of the position detection light sources 12 is referred to as the array surface 13P. . The array surface 13P is a plane in the illustrated example, but is not limited to a plane.

本実施形態において、上記配列面13Pは平面視矩形状に構成される。そして、図示例
では、照明用光源11が配列面13Pの縦横の辺に沿ってマトリクス状に配列されている
。すなわち、当該辺に沿ったX方向及びY方向に向けてそれぞれ照明用光源11が格子状
に配列されている。一方、位置検出用光源12は配列面13Pの縦横の辺に沿った複数の
列及び行があるが、それらの隣接する列又は行内における位置検出用光源が斜めに配置さ
れ、複数の位置検出用光源12は配列面13Pの辺に対して斜め方向に沿って縦横に配列
されている。すなわち、当該辺に沿ったX方向及びY方向に向けてそれぞれ位置検出用光
源12が配列されているが、その配列態様はX方向及びY方向に沿った格子状ではなく、
X方向とY方向に対して傾斜した斜め方向の格子状とされている。ただし、照明用光源1
1及び位置検出用光源12の配列態様は上記構成に限定されるものではない。たとえば、
位置検出用光源12が配列面13Pの辺に沿ったX方向及びY方向に向けて縦横に格子状
に配列されていてもよい。
In the present embodiment, the array surface 13P has a rectangular shape in plan view. In the illustrated example, the illumination light sources 11 are arranged in a matrix along the vertical and horizontal sides of the arrangement surface 13P. That is, the illumination light sources 11 are arranged in a grid pattern in the X direction and the Y direction along the side. On the other hand, the position detection light source 12 has a plurality of columns and rows along the vertical and horizontal sides of the array surface 13P. The position detection light sources in the adjacent columns or rows are arranged obliquely, and a plurality of position detection light sources are arranged. The light sources 12 are arranged vertically and horizontally along an oblique direction with respect to the side of the arrangement surface 13P. That is, the position detection light sources 12 are arranged in the X direction and the Y direction along the side, respectively, but the arrangement mode is not a lattice shape along the X direction and the Y direction.
It is a grid in an oblique direction inclined with respect to the X direction and the Y direction. However, the illumination light source 1
1 and the position of the position detection light source 12 are not limited to the above-described configuration. For example,
The position detection light sources 12 may be arranged in a lattice form vertically and horizontally in the X direction and the Y direction along the side of the arrangement surface 13P.

また、図示例では、照明用光源11と位置検出用光源12が交互に配列されているが、
照明用光源11の数と位置検出用光源12の数とが大きく異なる場合には、数の多い光源
の複数個置きに数の少ない光源が一つといった態様で配列されていてもよい。なお、照明
用光源11及び位置検出用光源12の配列態様は、配列面13P内に沿ったいずれの方向
に見ても分布密度が一定であることが好ましい。また、図示例では照明用光源11と位置
検出用光源12のいずれについても配列範囲が共通の配列面13P内に設定されているが
、相互に異なる範囲内で配列されていてもよい。
In the illustrated example, the illumination light sources 11 and the position detection light sources 12 are alternately arranged.
When the number of the illumination light sources 11 and the number of the position detection light sources 12 are greatly different, a small number of light sources may be arranged for every plural number of light sources. Note that it is preferable that the arrangement form of the illumination light source 11 and the position detection light source 12 has a constant distribution density when viewed in any direction along the arrangement surface 13P. In the illustrated example, the arrangement range is set in the common arrangement plane 13P for both the illumination light source 11 and the position detection light source 12, but they may be arranged in different ranges.

本実施形態の照明装置10では、照明用光源11から配列面13Pと交差する方向(図
示例では直交する方向)に照明光L1が放出され、この照明光L1は光拡散板16を通過
して均一化され、電気光学パネル20の表示領域に照射される。電気光学パネル20の表
示領域は透光性とされているので、表示領域内の各画素の光透過率に応じて上記照明光L
1が変調されて形成された画像は、表装板30を通して視認側(図示上側)から視認する
ことができる。
In the illumination device 10 of the present embodiment, the illumination light L1 is emitted from the illumination light source 11 in a direction intersecting with the arrangement surface 13P (a direction orthogonal to the illustrated example), and the illumination light L1 passes through the light diffusion plate 16. It is made uniform and irradiated to the display area of the electro-optical panel 20. Since the display area of the electro-optical panel 20 is translucent, the illumination light L is selected according to the light transmittance of each pixel in the display area.
An image formed by modulating 1 can be viewed from the viewing side (upper side in the drawing) through the front panel 30.

一方、位置検出用光源12から配列面13Pと交差する方向(図示例では直交する方向
)に位置検出光L2a、L2bが放出され、この位置検出光L2a、L2bは光拡散板1
6及び電気光学パネル20の表示領域を透過し、表装板30から出射する。そして、表装
板30の表面上に指などの検出対象物Obが配置されると、この検出対象物Obによって
位置検出光L2a、L2bが反射され、その反射光の少なくとも一部が光検出器15にお
いて検出される。
On the other hand, the position detection lights L2a and L2b are emitted from the position detection light source 12 in a direction intersecting the array surface 13P (a direction orthogonal in the illustrated example), and the position detection lights L2a and L2b are emitted from the light diffusing plate 1.
6 and the display area of the electro-optical panel 20 are transmitted through the display board 30. Then, when the detection object Ob such as a finger is arranged on the surface of the cover plate 30, the position detection lights L2a and L2b are reflected by the detection object Ob, and at least a part of the reflected light is detected by the photodetector 15. Is detected.

本実施形態においては、位置検出用光源12によって、表装板30から出射される位置
検出光L2aの第1の光出射分布D1と、表装板30から出射される位置検出光L2bの
第2の光出射分布D2がそれぞれ形成される。第1の光出射分布D1は、上述のように配
列された複数の位置検出用光源12から放出される放出光量がX方向の一方Xa側に向け
て漸次減少するように制御されることによって、位置検出光L2aの出射光量がX方向の
一方Xa側へ傾斜した分布とされる。この第1の光出射分布D1は図3に示す光強度分布
のグラフ中に実線で示されたものであり、図4(a)の概略斜視図に模式的に図示してあ
る。このとき、図示例の第1の光出射分布D1は、Y方向に平坦な光強度分布を有する。
ただし、本発明では、第1の光出射分布D1においてY方向の光強度分布は平坦である必
要はなく図示例に限定されない。
In the present embodiment, the first light emission distribution D1 of the position detection light L2a emitted from the front panel 30 and the second light of the position detection light L2b emitted from the front panel 30 by the position detection light source 12. An outgoing distribution D2 is formed. The first light emission distribution D1 is controlled such that the amount of emitted light emitted from the plurality of position detection light sources 12 arranged as described above gradually decreases toward one Xa side in the X direction. The emitted light quantity of the position detection light L2a is a distribution that is inclined toward one Xa side in the X direction. The first light emission distribution D1 is indicated by a solid line in the graph of the light intensity distribution shown in FIG. 3, and is schematically shown in the schematic perspective view of FIG. At this time, the first light emission distribution D1 in the illustrated example has a flat light intensity distribution in the Y direction.
However, in the present invention, the light intensity distribution in the Y direction need not be flat in the first light emission distribution D1, and is not limited to the illustrated example.

一方、第2の光出射分布D2は、上述のように配列された複数の位置検出用光源12か
ら放出される放出光量がX方向の上記一方Xa側とは反対側の他方Xb側に向けて漸次減
少するように制御されることによって、位置検出光L2bの出射光量がX方向の他方Xb
側へ傾斜した分布とされる。この第2の光出射分布D2は図3に示す光強度分布のグラフ
中に破線で示されたものであり、図4(b)の概略斜視図に模式的に図示してある。この
とき、図示例の第2の光出射分布D2は、Y方向に平坦な光強度分布を有する。ただし、
本発明では、第2の光出射分布D2においてY方向の光強度分布は平坦である必要はなく
図示例に限定されない。ここで、図3においては、X方向の位置座標として、他方Xb側
の原点をx=0とし、一方Xa側の最大値をx=1とする相対座標系を導入している。
On the other hand, in the second light emission distribution D2, the amount of emitted light emitted from the plurality of position detection light sources 12 arranged as described above is directed toward the other Xb side opposite to the one Xa side in the X direction. By being controlled so as to gradually decrease, the emitted light quantity of the position detection light L2b becomes the other Xb in the X direction.
The distribution is inclined to the side. The second light emission distribution D2 is indicated by a broken line in the graph of the light intensity distribution shown in FIG. 3, and is schematically shown in the schematic perspective view of FIG. At this time, the second light emission distribution D2 in the illustrated example has a flat light intensity distribution in the Y direction. However,
In the present invention, the light intensity distribution in the Y direction need not be flat in the second light emission distribution D2, and is not limited to the illustrated example. Here, in FIG. 3, a relative coordinate system in which the origin on the other Xb side is set to x = 0 and the maximum value on the Xa side is set to x = 1 is introduced as the position coordinate in the X direction.

上記のように、位置検出光L2aにより構成される上記第1の光出射分布D1はX方向
の一方Xa側に傾斜した分布であるため、検出対象物ObがX方向の一方Xa側に移動す
ると位置検出光L2aの反射光量が減少し、この位置検出光L2aの反射光量に対応する
光検出器15の出力成分も検出対象物ObのX方向の位置に応じて減少する。一方、位置
検出光L2bにより構成される上記第2の光出射分布D2はX方向の他方Xb側に傾斜し
た分布であるため、検出対象物ObがX方向の一方Xa側に移動すると位置検出光L2b
の反射光量が増加し、この位置検出光L2bの反射光量に対応する光検出器15の出力成
分も検出対象物Obの位置に応じて増加する。
As described above, since the first light emission distribution D1 configured by the position detection light L2a is a distribution inclined to one Xa side in the X direction, the detection object Ob moves to one Xa side in the X direction. The amount of reflected light of the position detection light L2a decreases, and the output component of the photodetector 15 corresponding to the amount of reflected light of the position detection light L2a also decreases according to the position of the detection object Ob in the X direction. On the other hand, since the second light emission distribution D2 constituted by the position detection light L2b is a distribution inclined to the other Xb side in the X direction, the position detection light when the detection object Ob moves to the one Xa side in the X direction. L2b
And the output component of the photodetector 15 corresponding to the reflected light amount of the position detection light L2b also increases according to the position of the detection object Ob.

さらに、本実施形態では、位置検出用光源12によって、表装板30から出射される位
置検出光L2aの第3の光出射分布D1と、表装板30から出射される位置検出光L2b
の第4の光出射分布D2がそれぞれ形成される。第3の光出射分布D3は、上述のように
配列された複数の位置検出用光源12から放出される放出光量がY方向の一方Ya側に向
けて漸次減少するように制御されることによって、位置検出光L2aの出射光量がY方向
の一方Ya側へ傾斜した分布とされる。この第3の光出射分布D3は図5に示す光強度分
布のグラフ中に実線で示されたものであり、図6(a)の概略斜視図に模式的に図示して
ある。このとき、図示例の第3の光出射分布D3は、X方向に平坦な光強度分布を有する
。ただし、本発明では、第3の光出射分布D3においてX方向の光強度分布は平坦である
必要はなく図示例に限定されない。ここで、図5においては、Y方向の位置座標として、
他方Yb側の原点をy=0とし、一方Ya側の最大値をy=1とする相対座標系を導入し
ている。
Furthermore, in the present embodiment, the position detection light source 12 emits the third light emission distribution D1 of the position detection light L2a emitted from the front panel 30 and the position detection light L2b emitted from the front panel 30.
The fourth light emission distributions D2 are respectively formed. The third light emission distribution D3 is controlled such that the amount of emitted light emitted from the plurality of position detection light sources 12 arranged as described above gradually decreases toward one Ya side in the Y direction. The emitted light quantity of the position detection light L2a is a distribution that is inclined toward one Ya side in the Y direction. The third light emission distribution D3 is indicated by a solid line in the graph of the light intensity distribution shown in FIG. 5, and is schematically shown in the schematic perspective view of FIG. At this time, the third light emission distribution D3 in the illustrated example has a flat light intensity distribution in the X direction. However, in the present invention, the light intensity distribution in the X direction need not be flat in the third light emission distribution D3 and is not limited to the illustrated example. Here, in FIG. 5, as the position coordinates in the Y direction,
On the other hand, a relative coordinate system is introduced in which the origin on the Yb side is y = 0 and the maximum value on the Ya side is y = 1.

一方、第4の光出射分布D4は、上述のように配列された複数の位置検出用光源12か
ら放出される放出光量がY方向の上記一方Ya側とは反対側の他方Yb側に向けて漸次減
少するように制御されることによって、位置検出光L2bの出射光量がY方向の他方Yb
側へ傾斜した分布とされる。この第4の光出射分布D4は図5に示す光強度分布のグラフ
中に破線で示されたものであり、図6(b)の概略斜視図に模式的に図示してある。この
とき、図示例の第4の光出射分布D4は、X方向に平坦な光強度分布を有する。ただし、
本発明では、第4の光出射分布D1においてX方向の光強度分布は平坦である必要はなく
図示例に限定されない。
On the other hand, in the fourth light emission distribution D4, the amount of emitted light emitted from the plurality of position detection light sources 12 arranged as described above is directed toward the other Yb side opposite to the one Ya side in the Y direction. By being controlled so as to gradually decrease, the amount of emitted light of the position detection light L2b becomes Yb in the Y direction.
The distribution is inclined to the side. The fourth light emission distribution D4 is indicated by a broken line in the light intensity distribution graph shown in FIG. 5, and is schematically shown in the schematic perspective view of FIG. 6B. At this time, the fourth light emission distribution D4 in the illustrated example has a flat light intensity distribution in the X direction. However,
In the present invention, the light intensity distribution in the X direction need not be flat in the fourth light emission distribution D1, and is not limited to the illustrated example.

上記のように、位置検出光L2aにより構成される上記第3の光出射分布D3はY方向
の一方Ya側に傾斜した分布であるため、検出対象物ObがY方向の一方Ya側に移動す
ると位置検出光L2aの反射光量が減少し、この位置検出光L2aの反射光量に対応する
光検出器15の出力成分も検出対象物ObのY方向の位置に応じて減少する。一方、位置
検出光L2bにより構成される上記第4の光出射分布D4はY方向の他方Yb側に傾斜し
た分布であるため、検出対象物ObがY方向の一方Ya側に移動すると位置検出光L2b
の反射光量が増加し、この位置検出光L2bの反射光量に対応する光検出器15の出力成
分も検出対象物Obの位置に応じて増加する。
As described above, since the third light emission distribution D3 configured by the position detection light L2a is a distribution inclined to one Ya side in the Y direction, when the detection object Ob moves to one Ya side in the Y direction. The amount of reflected light of the position detection light L2a decreases, and the output component of the photodetector 15 corresponding to the amount of reflected light of the position detection light L2a also decreases according to the position of the detection object Ob in the Y direction. On the other hand, since the fourth light emission distribution D4 configured by the position detection light L2b is a distribution inclined to the other Yb side in the Y direction, the position detection light is detected when the detection object Ob moves to the one Ya side in the Y direction. L2b
And the output component of the photodetector 15 corresponding to the reflected light amount of the position detection light L2b also increases according to the position of the detection object Ob.

なお、本実施形態において、上述のように位置検出光として二つの符号L2a、L2b
を示しているのは、後述する位置情報の取得方法においては、第1の光出射分布D1と第
2の光出射分布D2を用いてX方向の位置情報を取得し、第3の光出射分布D3と第4の
光出射分布D4を用いてY方向の位置情報を取得するようにしているが、それぞれの方向
の位置情報の取得に際して用いる二つの光出射分布に基づく位置検出光を互いに区別する
ための便宜上のものである。したがって、位置検出光L2aとL2bは相互に識別可能な
異なる波長分布を有していても、或いは、相互に識別不能で異なる波長分布を有していな
くてもよい。また、相互に異なる群の位置検出用光源12から放出されたものであっても
、同じ群の位置検出用光源12から放出されたものであってもよい。
In the present embodiment, as described above, two symbols L2a and L2b are used as position detection light.
In the position information acquisition method to be described later, the position information in the X direction is acquired using the first light emission distribution D1 and the second light emission distribution D2, and the third light emission distribution is obtained. The position information in the Y direction is obtained using D3 and the fourth light emission distribution D4, but the position detection lights based on the two light emission distributions used for obtaining the position information in the respective directions are distinguished from each other. This is for convenience. Therefore, the position detection lights L2a and L2b may have different wavelength distributions that can be distinguished from each other, or may not have different wavelength distributions that cannot be distinguished from each other. Further, the light sources may be emitted from different groups of position detection light sources 12 or may be emitted from the same group of position detection light sources 12.

次に、上記光検出器15による位置検出光L2a、L2bの検出に基づいて検出対象物
Obの位置情報を取得する方法について説明する。この位置情報の取得方法は種々のもの
が考えられるが、例えば、その一例として、二つの位置検出光L2aとL2bの検出光量
の比率に基づいてそれらの減衰係数の比率を求め、この減衰係数の比率から両位置検出光
の伝播距離を求めることにより、対応する二つの光源を結ぶ方向の位置座標を求める方法
が挙げられる。
Next, a method for acquiring the position information of the detection object Ob based on the detection of the position detection lights L2a and L2b by the photodetector 15 will be described. There are various methods for acquiring the position information. For example, as an example, the ratio of the attenuation coefficients is obtained based on the ratio of the detected light amounts of the two position detection lights L2a and L2b. There is a method of obtaining position coordinates in a direction connecting two corresponding light sources by obtaining the propagation distance of both position detection lights from the ratio.

ここで、位置検出光L2aを放出する第1群の位置検出用光源12An(n=1、2、
・・・、k;kは2以上の自然数)によって第1の光出射分布D1が形成され、位置検出
光L2bを放出する第2群の位置検出用光源12Bn(n=1、2、・・・、k;kは2
以上の自然数)によって第2の光出射分布が形成されるとした場合において、検出対象物
ObのX方向の位置座標を求める場合について具体的に説明する。第1群の位置検出用光
源12Anの制御量(例えば電流量)、変換係数及び放出光量をIa、ka及びEa、第
2群の位置検出用光源12Bnの制御量(電流量)、変換係数及び放出光量をIb、k及
びEbとすれば、以下の式(1)及び(2)が成立する。
Here, a first group of position detection light sources 12An (n = 1, 2,...) That emits position detection light L2a.
..., k; k is a natural number of 2 or more, and the first light emission distribution D1 is formed, and a second group of position detection light sources 12Bn (n = 1, 2,...) That emits position detection light L2b.・, K; k is 2
In the case where the second light emission distribution is formed by the above natural number), the case of obtaining the position coordinates in the X direction of the detection object Ob will be specifically described. The control amount (for example, current amount), the conversion coefficient and the emitted light amount of the first group of position detection light sources 12An are Ia, ka and Ea, the control amount (current amount) of the second group of position detection light sources 12Bn, the conversion coefficient, and the like. If the amount of emitted light is Ib, k, and Eb, the following equations (1) and (2) are established.

Ea=k・Ia…(1)   Ea = k · Ia (1)

Eb=k・Ib…(2)   Eb = k · Ib (2)

また、第1群の位置検出光L2aの減衰係数及び検出光量をfa及びHa、第2群の位
置検出光L2bの減衰係数及び検出光量をfb及びHbとすれば、以下の式(3)及び(
4)が成立する。
If the attenuation coefficient and the detected light amount of the first group position detection light L2a are fa and Ha, and the attenuation coefficient and the detected light amount of the second group position detection light L2b are fb and Hb, the following equation (3) and (
4) is established.

Ha=fa・Ea=fa・k・Ia…(3)   Ha = fa · Ea = fa · k · Ia (3)

Hb=fb・Eb=fb・k・Ib…(4)   Hb = fb · Eb = fb · k · Ib (4)

したがって、両位置検出光の検出光量の比であるHa/Hbが両光出射分布D1、D2
にそれぞれ起因する光検出器15の出力成分の比で検出できるとすれば、Ha/Hb=(
fa・Ea)/(fb・Eb)=(fa/fb)・(Ia/Ib)となるから、放出光量
の比Ea/Eb又は制御量の比Ia/Ibに相当する値が分かれば、減衰係数の比fa/
fbが以下の式(5)により判明する。
Therefore, Ha / Hb, which is the ratio of the detected light amounts of the two position detection lights, is the two light emission distributions D1, D2.
If it can be detected by the ratio of the output components of the photodetector 15 due to the above, Ha / Hb = (
fa · Ea) / (fb · Eb) = (fa / fb) · (Ia / Ib), so if the value corresponding to the ratio Ea / Eb of the amount of emitted light or the ratio Ia / Ib of the control amount is known, attenuation Coefficient ratio fa /
fb is determined by the following equation (5).

fa/fb=(Ha/Hb)・(Ib/Ia)…(5)   fa / fb = (Ha / Hb). (Ib / Ia) (5)

ここで、減衰係数fa、fbは、位置検出用光源12An、12Bnから放出された位
置検出光L2a、L2bの光量(放出光量)に対する光検出器15によって検出された位
置検出光L2a、L2bの光量(検出光量又は出力成分)の比であるから、検出対象物O
bのX座標上の位置によって図3に示す第1の光出射分布D1及び第2の光出射分布D2
の傾斜態様に応じて変化する。ここで、X座標として、X方向のうち最も他方Xb側の原
点をx=0、最も一方Xa側の最大値をx=1とする相対的な座標系を用いることとする
と、減衰係数の比fa/fbは、検出対象物ObのX方向の座標xに関して(1−x)/
xと正の相関を有することとなる。いずれにしても、上記の相関関係を予め設定しておく
ことで、減衰係数の比fa/fbに基づいて、検出対象物Obの位置情報である座標xの
値を得ることができる。
Here, the attenuation coefficients fa and fb are the light amounts of the position detection lights L2a and L2b detected by the light detector 15 with respect to the light amounts (emission light amounts) of the position detection lights L2a and L2b emitted from the position detection light sources 12An and 12Bn. Since it is the ratio of (detected light quantity or output component), the detection object O
The first light emission distribution D1 and the second light emission distribution D2 shown in FIG. 3 depending on the position of b on the X coordinate.
It changes according to the inclination mode. Here, as the X coordinate, if a relative coordinate system is used in which the origin on the other Xb side in the X direction is x = 0 and the maximum value on the one Xa side is x = 1, the ratio of the attenuation coefficient is assumed. fa / fb is (1-x) / with respect to the coordinate x in the X direction of the detection object Ob.
It has a positive correlation with x. In any case, by setting the above correlation in advance, the value of the coordinate x, which is the position information of the detection object Ob, can be obtained based on the ratio fa / fb of the attenuation coefficient.

上記減衰係数の比fa/fbを求めるには、検出光量の比Ha/Hbを得るために位置
検出光L2aとL2bとを弁別する必要がある。このような方法としては、例えば、第1
群の位置検出用光源12Anと第2群の位置検出用光源12Bnを別々に設けるとともに
、位置検出光L2aとL2bを識別して検出できるようにすればよい。ただし、位置検出
光L2aとL2bが識別して検出できない場合でも、第1群の位置検出用光源12Anと
第2群の位置検出用光源12Bnを異なるタイミングで点灯し、それぞれのタイミングで
検出光量を求めることで、上記の弁別が可能になる。たとえば、第1群の位置検出用光源
12Anと第2群の位置検出用光源12Bnを逆相で点滅(例えば、矩形波状若しくは正
弦波状の駆動信号を伝播距離の差に起因する位相差が無視できる周波数で相互に180度
の位相差を持つように動作)させた上で、検出光量の波形を位相的に解析する方法がある
。すなわち、位置検出用光源12An及び12Bnを制御することで上記の第1の光出射
分布D1と、第2の光出射分布D2とを交互に形成し、これに応じて出力される光検出器
15の検出信号に基づいて一定の処理を行う。
In order to obtain the attenuation coefficient ratio fa / fb, it is necessary to discriminate between the position detection lights L2a and L2b in order to obtain the detection light quantity ratio Ha / Hb. As such a method, for example, the first
The group position detection light source 12An and the second group position detection light source 12Bn may be provided separately, and the position detection lights L2a and L2b may be identified and detected. However, even if the position detection lights L2a and L2b cannot be identified and detected, the first group of position detection light sources 12An and the second group of position detection light sources 12Bn are turned on at different timings, and the detected light amounts are detected at the respective timings. By determining, the above discrimination becomes possible. For example, the first group of position detection light sources 12An and the second group of position detection light sources 12Bn blink in opposite phases (for example, a phase difference caused by a difference in propagation distance of a rectangular or sinusoidal drive signal can be ignored. There is a method of analyzing the waveform of the detected light quantity in a phase manner after operating so as to have a phase difference of 180 degrees with respect to each other in frequency. That is, by controlling the position detection light sources 12An and 12Bn, the first light emission distribution D1 and the second light emission distribution D2 are alternately formed, and the photodetector 15 output in accordance with the first light emission distribution D1 and the second light emission distribution D2. A certain process is performed based on the detected signal.

また、第1群の位置検出用光源12Anと第2群の位置検出用光源12Bnが別々に用
意されていなくても、位置検出光L2aによる第1の光出射分布D1と位置検出光L2b
による第2の光出射分布D2を同じ複数の位置検出用光源12により異なるタイミングで
形成し、それぞれのタイミングで検出光量を求めることでも、上記の弁別が可能になる。
たとえば、同じ複数の位置検出用光源12の放出光量の分布を変えることによって上記の
第1の光出射分布D1と第2の光出射分布D2とを交互に形成し、これに応じて出力され
る光検出器15の検出信号に基づいて一定の処理を行う。
Even if the first group of position detection light sources 12An and the second group of position detection light sources 12Bn are not separately provided, the first light emission distribution D1 and the position detection light L2b by the position detection light L2a are provided.
The above-described discrimination can also be achieved by forming the second light emission distribution D2 by the same plurality of position detection light sources 12 at different timings and obtaining the detected light quantity at each timing.
For example, the first light emission distribution D1 and the second light emission distribution D2 are alternately formed by changing the distribution of the emitted light quantity of the same plurality of position detection light sources 12, and output according to this. A certain process is performed based on the detection signal of the photodetector 15.

図11は、位置検出用光源12Anの制御信号S1及び位置検出用光源12Bnの制御
信号S2と、光検出器15の検出信号E0とを示すタイミングチャートである。上記制御
信号S1とS2は図示例ではそれぞれ矩形波であり、相互に逆相の信号とされ、これに応
じて位置検出光L2aとL2bの発光タイミングも逆相とされる。そして、光検出器15
の検出信号E0は、上記制御信号S1、S2に対して適宜の時間遅れtdを有する応答で
ある、位置検出光L2aの検出成分(第1又は第3の光出射分布D1又はD3に起因する
出力成分)E1と、位置検出光L2bの検出成分E2(第2又は第4の光出射分布D2又
はD4に起因する出力成分)の和になる。
FIG. 11 is a timing chart showing the control signal S1 of the position detection light source 12An, the control signal S2 of the position detection light source 12Bn, and the detection signal E0 of the photodetector 15. The control signals S1 and S2 are rectangular waves in the illustrated example, and are opposite in phase to each other, and the light emission timings of the position detection lights L2a and L2b are also opposite in phase. And the photodetector 15
The detection signal E0 is a response having an appropriate time delay td with respect to the control signals S1 and S2, and the detection component of the position detection light L2a (the output resulting from the first or third light emission distribution D1 or D3) Component) E1 and the sum of the detection component E2 of the position detection light L2b (the output component resulting from the second or fourth light emission distribution D2 or D4).

上記の検出信号E0は制御信号S1、S2を形成するクロック信号と同期して解析され
る。この場合、検出信号E0のうち、制御信号S1の位相と対応する位相において得られ
る検出成分E1の振幅と、制御信号S2の位相と対応する位相において得られる検出成分
E2の振幅とをそれぞれ導出して上記の検出光量の比Ha/Hbを求めることができる。
そして、上記式(5)から減衰係数の比fa/fbを算出し、これに基づいて検出対象物
Obのx座標を求めることができる。この場合の回路構成は図13に示されている。
The detection signal E0 is analyzed in synchronization with the clock signals forming the control signals S1 and S2. In this case, out of the detection signal E0, the amplitude of the detection component E1 obtained at the phase corresponding to the phase of the control signal S1 and the amplitude of the detection component E2 obtained at the phase corresponding to the phase of the control signal S2 are derived. Thus, the ratio Ha / Hb of the detected light quantity can be obtained.
Then, the ratio fa / fb of the attenuation coefficient is calculated from the above equation (5), and the x coordinate of the detection object Ob can be obtained based on the ratio. The circuit configuration in this case is shown in FIG.

図13に示すように、クロック信号CLKに従って動作する制御部Sから上記制御信号
S1、S2及び駆動設定信号I1、I2を駆動部IA、IBに出力し、駆動部IA、IB
がこれらの信号に基づいて位置検出用光源12An、12Bnを電流値Ia、Ibにて駆
動する。光検出器15は検出回路DSにより検出信号E0を出力し、この検出信号E0は
解析部Pにおいて解析される。解析部Pは制御部Sから出力される同期信号S0に基づい
て検出信号E0を解析し、導出された比Ha/Hb及び電流値Ia、Ibに基づいて最終
的に上記減衰係数の比fa/fb、或いは、座標xに相当する出力信号Psを出力する。
As shown in FIG. 13, the control unit S operating in accordance with the clock signal CLK outputs the control signals S1, S2 and the drive setting signals I1, I2 to the drive units IA, IB, and the drive units IA, IB
Based on these signals, the position detection light sources 12An and 12Bn are driven with the current values Ia and Ib. The photodetector 15 outputs a detection signal E0 by the detection circuit DS, and the detection signal E0 is analyzed by the analysis unit P. The analysis unit P analyzes the detection signal E0 based on the synchronization signal S0 output from the control unit S, and finally the ratio fa / Hb of the attenuation coefficient based on the derived ratio Ha / Hb and the current values Ia and Ib. Output signal Ps corresponding to fb or coordinate x is output.

ただし、検出信号E0の解析後の上記式(5)に基づいた検出対象物Obのx座標の算
出は上記方法に限られない。たとえば、一方の制御量Iaを一定値Imに固定し、検出波
形の変化が観測できなくなるように(すなわち、検出光量の比Ha/Hbが1となるよう
に)他方の制御量Ibを制御し、このときの制御量Ib=Im・(fa/fb)から上記
減衰係数の比fa/fbを導出することも可能である。この場合、上記解析部Pから検出
光量の比Ha/Hbに対応する帰還信号Fsを制御部Sにフィードバックし、この帰還信
号Fsの値に応じて制御部Sから出力される駆動設定信号I2を変えることで、電流値I
bをHa/Hb=1となるように制御する。
However, the calculation of the x coordinate of the detection object Ob based on the above equation (5) after the analysis of the detection signal E0 is not limited to the above method. For example, one control amount Ia is fixed to a constant value Im, and the other control amount Ib is controlled so that a change in the detected waveform cannot be observed (that is, the detected light quantity ratio Ha / Hb becomes 1). The damping coefficient ratio fa / fb can be derived from the control amount Ib = Im · (fa / fb) at this time. In this case, the feedback signal Fs corresponding to the detected light quantity ratio Ha / Hb is fed back to the control unit S from the analysis unit P, and the drive setting signal I2 output from the control unit S in accordance with the value of the feedback signal Fs. By changing the current value I
b is controlled so that Ha / Hb = 1.

また、両制御量の和を常に一定値Im=Ia+Ibに保ちつつ、Ha/Hb=1となる
ように制御してもよい。この場合には、式(5)によりIb=Im・fb/(fa+fb
)となるので、fb/(fa+fb)=αとすると、fa/fb=(1−α)/αにより
、減衰係数の比が求まる。
Alternatively, control may be performed so that Ha / Hb = 1 while always maintaining the sum of both control amounts at a constant value Im = Ia + Ib. In this case, according to the equation (5), Ib = Im · fb / (fa + fb
Therefore, when fb / (fa + fb) = α, the ratio of the attenuation coefficient is obtained by fa / fb = (1−α) / α.

本実施形態の場合、上述のようにして検出対象物ObのX方向の位置情報については、
上述のように第1の光出射分布D1と第2の光出射分布D2を用いてそれぞれ検出成分E
1とE2を求めることにより、例えば第1群の位置検出用光源12Anと第2群の位置検
出用光源12Bnを相互に逆相で駆動することで座標xを取得することができる。一方、
検出対象物ObのY方向の位置情報については、図5に示す第3の光出射分布D3及び第
4の光出射分布D4を用いてそれぞれ上記と同様に検出成分E1とE2を求めることによ
り、図5に示す座標yを取得することができる。
In the case of the present embodiment, the position information in the X direction of the detection object Ob as described above is as follows.
As described above, each of the detection components E using the first light emission distribution D1 and the second light emission distribution D2.
By obtaining 1 and E2, for example, the coordinate x can be obtained by driving the first group of position detection light sources 12An and the second group of position detection light sources 12Bn in opposite phases. on the other hand,
For the position information in the Y direction of the detection object Ob, the detection components E1 and E2 are obtained in the same manner as described above using the third light emission distribution D3 and the fourth light emission distribution D4 shown in FIG. The coordinate y shown in FIG. 5 can be acquired.

本実施形態においては、複数の位置検出用光源12が配列面13P内において平面的に
配列されているが、一例として、X方向に位置検出用光源12が6列、Y方向に位置検出
用光源12が6列それぞれマトリクス状に配列された場合を考える。すなわち、位置検出
用光源として、それぞれX方向に配列された6つの行である、第1行12A1、12A2
、・・・、12A6と、第2行12B1、12B2、12B3、12B4、12B5、1
2B6と、第3行12C1、12C2、12C3、12C4、12C5、12C6と、第
4行12D1、12D2、12D3、12D4、12D5、12D6と、第5行12E1
、12E2、12E3、12E4、12E5、12E6と、第6行12F1、12F2、
12F3、12F4、12F5、12F6とが設けられた場合である。この場合、各光出
射分布D1〜D4を形成する態様の一例は図12(a)及び(b)に示される。図12(
a)では、X方向に配列された複数の位置検出用光源の行に属する12A1〜12A6の
放出光量Ea、Ebを各光源において左右の実線及び二点鎖線と中央の点線でそれぞれ示
している。図12(b)ではY方向に配列された複数の位置検出用光源の列に属する12
A1〜12F1の放出光量Ea,Ebを各光源において左右の実線及び二点鎖線と中央の
点線でそれぞれ示している。
In the present embodiment, a plurality of position detection light sources 12 are arranged in a plane within the arrangement surface 13P. As an example, six rows of position detection light sources 12 in the X direction and position detection light sources in the Y direction are used. Consider a case in which 12 columns are arranged in a matrix of 6 columns. That is, the first rows 12A1 and 12A2 are six rows arranged in the X direction as the position detection light sources.
,..., 12A6 and second rows 12B1, 12B2, 12B3, 12B4, 12B5, 1
2B6, third row 12C1, 12C2, 12C3, 12C4, 12C5, 12C6, fourth row 12D1, 12D2, 12D3, 12D4, 12D5, 12D6, and fifth row 12E1
, 12E2, 12E3, 12E4, 12E5, 12E6 and the sixth row 12F1, 12F2,
This is a case where 12F3, 12F4, 12F5, and 12F6 are provided. In this case, an example of an aspect for forming each of the light emission distributions D1 to D4 is shown in FIGS. 12 (a) and 12 (b). FIG.
In a), the emitted light amounts Ea and Eb of 12A1 to 12A6 belonging to a plurality of position detection light source rows arranged in the X direction are respectively shown by the left and right solid lines, the two-dot chain line, and the central dotted line. In FIG. 12B, 12 belongs to a row of a plurality of position detection light sources arranged in the Y direction.
The emitted light amounts Ea and Eb of A1 to 12F1 are indicated by left and right solid lines, two-dot chain lines, and a central dotted line in each light source.

上記第1の光出射分布D1は、図12(a)において実線で示すようにX方向の一方X
a側に放出光量Eaを漸次低減させていくことで形成される。同様に、上記第2の光出射
分布D2は、図12(a)において二点鎖線で示すようにX方向の他方Xb側に漸次放出
光量Ebを低減させていくことで形成される。これらの光出射分布D1、D2においては
、図12(b)において実線で示すように各光源はY方向には一定の放出光量Ea、Eb
を有するように設定される。
The first light emission distribution D1 is one X in the X direction as shown by a solid line in FIG.
It is formed by gradually reducing the amount of emitted light Ea on the a side. Similarly, the second light emission distribution D2 is formed by gradually reducing the amount of emitted light Eb toward the other Xb side in the X direction as indicated by a two-dot chain line in FIG. In these light emission distributions D1 and D2, each light source emits a constant amount of emitted light Ea, Eb in the Y direction as indicated by a solid line in FIG.
Is set to have.

一方、第3の光出射分布D3は、図12(b)において二点鎖線で示すようにY方向の
一方Ya側に放出光量Eaを漸次低減させていくことで形成される。また、第4の光出射
分布D4は、図12(b)において点線で示すようにY方向の他方Yb側に放出光量Eb
を漸次低減させていくことで形成される。これらの場合、図12(a)において点線で示
すように各光源はX方向には一定の放出光量Ea,Ebを有するように設定される。
On the other hand, the third light emission distribution D3 is formed by gradually reducing the amount of emitted light Ea toward one Ya side in the Y direction as indicated by a two-dot chain line in FIG. Further, the fourth light emission distribution D4 has a light emission amount Eb on the other Yb side in the Y direction as indicated by a dotted line in FIG.
It is formed by gradually reducing. In these cases, as indicated by the dotted lines in FIG. 12A, each light source is set to have a constant emission light amount Ea, Eb in the X direction.

上記の各光出射分布D1〜D4を形成するための構成としては、図13に示す第1群の
位置検出用光源12Anと、第2群の複数の位置検出用光源12Bnをそれぞれ平面的に
配列し、これらを制御部Sによって制御する。すなわち、図14に示すように、位置検出
用光源12An(n=1〜k)のそれぞれ制御量である電流値Ia1、Ia2、Ia3、
・・・、Iakを、駆動設定信号Ia1、Ia2、Ia3、・・・、Iakを制御部Sか
ら駆動部IA1、IA2、IA3、・・・、IAkに与えることによって制御し、同様に
、位置検出用光源12Bn(n=1〜k)のそれぞれ制御量である電流値Ib1、Ib2
、Ib3、・・・、Ibkを、駆動設定信号Ib1、Ib2、Ib3、・・・、Ibkを
制御部Sから駆動部IB1、IB2、IB3、・・・、IBkに与えることによって制御
する。そして、第1の光出射分布D1を第1群の複数の位置検出用光源12Anで形成し
、第2の光出射分布D2を第2群の複数の位置検出用光源12Bnによって形成すること
で座標xを求め、第3の光出射分布D3を第1群の複数の位置検出用光源12Anで形成
し、第4の光出射分布D2を第2群の複数の位置検出用光源12Bnによって形成するこ
とで座標yを求める。
As a configuration for forming each of the light emission distributions D1 to D4, the first group of position detection light sources 12An and the second group of plurality of position detection light sources 12Bn shown in FIG. These are controlled by the control unit S. That is, as shown in FIG. 14, current values Ia1, Ia2, Ia3, which are control amounts of the position detection light source 12An (n = 1 to k),
.., Iak is controlled by applying drive setting signals Ia1, Ia2, Ia3,..., Iak from the control unit S to the drive units IA1, IA2, IA3,. Current values Ib1 and Ib2 that are control amounts of the detection light source 12Bn (n = 1 to k), respectively.
, Ib3,..., Ibk are controlled by giving drive setting signals Ib1, Ib2, Ib3,..., Ibk from the control unit S to the drive units IB1, IB2, IB3,. The first light emission distribution D1 is formed by a plurality of position detection light sources 12An in the first group, and the second light emission distribution D2 is formed by a plurality of position detection light sources 12Bn in the second group. x is obtained, and the third light emission distribution D3 is formed by the plurality of position detection light sources 12An in the first group, and the fourth light emission distribution D2 is formed by the plurality of position detection light sources 12Bn in the second group. To obtain the coordinate y.

また、図13に示す回路の駆動部IA及び位置検出用光源12An並びに駆動部IB及
び位置検出用光源12Bnを図14に示す駆動部IA1〜IAk及び位置検出用光源12
A1〜12Ak並びに駆動部IB1〜1Bk及び位置検出用光源12B1〜12Bkによ
って構成されるものとし、各駆動部IA1〜IAk及びIB1〜1Bkを制御信号Sa1
〜Sak及びSb1〜Sbkにより、位置検出用光源12A1〜12Akと、位置検出用
光源12B1〜12Bkを逆相で駆動することで、図13に示す回路によって本実施形態
のX方向及びY方向の位置情報の導出を全て実行できる。
Further, the drive unit IA and the position detection light source 12An and the drive unit IB and the position detection light source 12Bn of the circuit shown in FIG. 13 are replaced with the drive units IA1 to IAk and the position detection light source 12 shown in FIG.
A1 to 12Ak, driving units IB1 to 1Bk, and position detection light sources 12B1 to 12Bk, and the driving units IA1 to IAk and IB1 to 1Bk are controlled by the control signal Sa1.
By driving the position detection light sources 12A1 to 12Ak and the position detection light sources 12B1 to 12Bk in opposite phases by Sak and Sb1 to Sbk, the positions in the X direction and the Y direction of the present embodiment by the circuit shown in FIG. All information derivation can be performed.

この場合に、各光出射分布D1とD2又はD3とD4を用いてX又はY方向の位置情報
を導出する場合においては、上述のHa/Hb=1となるようにIbを制御する方法は、
第2の光出射分布D2又はD4の傾斜分布の光強度を全体的に上下にシフトさせる制御を
行うことに相当する。すなわち、図3又は図5に破線で示す第2の光出射分布D2又は第
4の光出射分布D4の光強度を全体的にシフト量δだけ上下にシフトさせることで、第1
の光出射分布D1と第2の光出射分布D2の交点位置(Ha/Hb=1が成立する位置に
相当する。)をX方向又はY方向に移動させることができる。したがって、Ha/Hb=
1が成立するように上記シフト量δを変化させることで、上記交点位置が検出対象物Ob
のX方向又はY方向の位置と一致するように制御することができる。そして、このときの
シフト量δに基づいて検出対象物Obの座標x又はyを導出することができる。
In this case, when the position information in the X or Y direction is derived using each of the light emission distributions D1 and D2 or D3 and D4, the method of controlling Ib so that Ha / Hb = 1 is as follows:
This corresponds to performing control to shift the light intensity of the gradient distribution of the second light emission distribution D2 or D4 up and down as a whole. That is, the light intensity of the second light emission distribution D2 or the fourth light emission distribution D4 indicated by the broken line in FIG. 3 or FIG.
The intersection position of the light emission distribution D1 and the second light emission distribution D2 (corresponding to a position where Ha / Hb = 1 is established) can be moved in the X direction or the Y direction. Therefore, Ha / Hb =
By changing the shift amount δ so that 1 is established, the intersection position becomes the detection object Ob.
It can be controlled to coincide with the position in the X direction or Y direction. Then, the coordinates x or y of the detection object Ob can be derived based on the shift amount δ at this time.

図15は、図12を参照して説明したように、制御部Sによって縦6行横6列のマトリ
ックス状の複数の位置検出用光源12を制御する態様を示す構成図である。この場合、こ
れらの複数の位置検出用光源12を上述のように第1群と第2群に分けて制御してもよい
が、これらの光源を全て用いて各光出射分布D1〜D4を形成してもよい。このように全
ての位置検出用光源12によって各光出射分布D1〜D4を形成することで、駆動周期内
において各位置検出用光源の輝度を切り替える必要があるために制御が複雑になるものの
、より多数の光源を用いて光出射分布を形成するために、各光出射分布の傾斜態様の均一
性の向上が可能となり、位置情報の精度を高めることができるという利点がある。
FIG. 15 is a configuration diagram illustrating a mode in which the control unit S controls the plurality of position-detecting light sources 12 in a matrix of 6 rows and 6 columns as described with reference to FIG. In this case, the plurality of position detection light sources 12 may be controlled separately in the first group and the second group as described above, but the light emission distributions D1 to D4 are formed using all these light sources. May be. Although the light emission distributions D1 to D4 are formed by all the position detection light sources 12 in this way, the brightness of each position detection light source needs to be switched within the drive cycle, but the control becomes more complicated. Since the light emission distribution is formed using a large number of light sources, it is possible to improve the uniformity of the slope of each light emission distribution and to improve the accuracy of the position information.

以上のように、本実施形態では、検出対象物ObのX方向の位置情報とY方向の位置情
報をそれぞれ第1の光出射分布D1及び第2の光出射分布D2並びに第3の光出射分布及
び第4の光出射分布D4を用いて取得するが、さらに、第1の光出射分布D1及び第2の
光出射分布D2の形成とこれに基づく座標xの導出と、第3の光出射分布及び第4の光出
射分布D4の形成とこれに基づく座標Yの導出とを交互に行うことで上記の検出対象物O
bの平面位置を求めることができる。実際には、複数の位置検出用光源12を用いて第1
乃至第4の光出射分布D1〜D4を順次に形成し、これらの各分布の形成時に対応する光
検出器の出力成分から座標x、yを導出する。ここで、各分布の形成順序は特に限定され
るものではない。また、四つの分布D1〜D4の形成を周期的に繰り返し行うことで、当
該周期に対応する出力成分の解析も容易になる。
As described above, in the present embodiment, the position information in the X direction and the position information in the Y direction of the detection object Ob are respectively used as the first light emission distribution D1, the second light emission distribution D2, and the third light emission distribution. And the fourth light emission distribution D4, and the formation of the first light emission distribution D1 and the second light emission distribution D2, the derivation of the coordinate x based thereon, and the third light emission distribution. And the formation of the fourth light emission distribution D4 and the derivation of the coordinate Y based on the formation are alternately performed to detect the detection object O.
The plane position of b can be obtained. Actually, the first light source using a plurality of position detection light sources 12 is used.
The fourth to fourth light emission distributions D1 to D4 are sequentially formed, and the coordinates x and y are derived from the output components of the photodetector corresponding to the formation of each distribution. Here, the order of forming each distribution is not particularly limited. Further, by periodically repeating the formation of the four distributions D1 to D4, it becomes easy to analyze the output component corresponding to the cycle.

本実施形態によれば、特に画素ごとに光変調状態を制御するタイプの電気光学パネル2
0を照明して表示を行いつつ、その表示画面上の検出対象物Obの位置情報を検出するこ
とができる。このとき、位置検出光L2a、L2bを配列面13Pと交差(図示例では直
交)する方向に放出させ、これらが検出対象物Obで反射されてなる反射光を光検出器1
5で検出することで検出対象物Obの平面位置情報を得ることができるので、従来の表示
画面上に多数の光源や光検出器、或いは、光スイッチ等を配列させる方法に比べると、位
置検出用の素子数を大幅に低減することができ、大幅な構造の簡易化、製造コストの低減
、及び消費電力の低減を図ることができる。
According to this embodiment, the electro-optical panel 2 of a type that controls the light modulation state for each pixel in particular.
The position information of the detection object Ob on the display screen can be detected while displaying by illuminating 0. At this time, the position detection lights L2a and L2b are emitted in a direction intersecting (orthogonal in the illustrated example) with the array surface 13P, and the reflected light reflected by the detection object Ob is detected by the photodetector 1.
By detecting at 5, it is possible to obtain the planar position information of the detection object Ob, so that position detection is possible compared to the conventional method of arranging a large number of light sources, photodetectors, optical switches, etc. on the display screen. Therefore, the number of elements can be greatly reduced, and the structure can be greatly simplified, the manufacturing cost can be reduced, and the power consumption can be reduced.

特に、本実施形態では、配列された複数の位置検出用光源12を用いることで、傾斜し
た光出射分布を厳密に形成することができるため、位置情報の精度を高めることができる
。また、位置検出用光源12が平面的に配列されていることで、X方向、Y方向のいずれ
の方向にも傾斜した適宜の光出射分布を形成することができるので、素子数の増加を抑制
しつつ位置情報の精度を向上できるという利点もある。
In particular, in the present embodiment, by using a plurality of arranged position detection light sources 12, an inclined light emission distribution can be strictly formed, so that the accuracy of position information can be increased. In addition, since the position detection light sources 12 are arranged in a plane, an appropriate light emission distribution inclined in both the X direction and the Y direction can be formed, thereby suppressing an increase in the number of elements. However, there is an advantage that the accuracy of the position information can be improved.

また、本実施形態では、相互に逆向きの傾斜を有する第1の光出射分布D1と第2の光
出射分布D2、或いは、第3の光出射分布D3と第4の光出射分布D4を用いて、それぞ
れX方向とY方向の位置情報を求めるようにしているので、外光による光検出器15の検
出光量の絶対値レベルの変動、或いは、位置検出装置や電気光学装置の内部の光学的構造
、たとえば、基体13の内面13aの形状、光拡散板16、電気光学パネル20、表装板
30などにおける光透過率の変動やばらつきに起因する、上記検出光量(出力成分)の個
々の絶対値レベルの変動やばらつきによる影響を排除することができる。すなわち、X方
向の位置情報を導出するに際しては、第1の光出射分布D1と第2の光出射分布D2に基
づく検出光量の比(位置検出光L2aとL2bの検出光量の比でもある。)Ha/Hbを
用いることで、位置検出光の放出光量Ea,Eb、出射光量、検出光量のそれぞれの絶対
値レベルによる影響が抑制され、Y方向の位置情報を導出するに際しては、第3の光出射
分布D3と第4の光出射分布D4に基づく検出光量の比を用いることで、同様に絶対値レ
ベルによる影響が抑制される。
In the present embodiment, the first light emission distribution D1 and the second light emission distribution D2 or the third light emission distribution D3 and the fourth light emission distribution D4 having inclinations opposite to each other are used. Thus, the position information in the X direction and the Y direction is obtained, respectively, so that fluctuations in the absolute value level of the detected light amount of the light detector 15 due to external light, or the optical inside the position detection device and the electro-optical device, are detected. Each absolute value of the detected light amount (output component) due to the structure, for example, the shape of the inner surface 13a of the base 13, the light diffusing plate 16, the electro-optical panel 20, the surface mounting plate 30 and the like, due to fluctuations and variations in light transmittance. The influence of level fluctuations and variations can be eliminated. That is, when deriving the position information in the X direction, the ratio of the detected light quantity based on the first light emission distribution D1 and the second light emission distribution D2 (also the ratio of the detected light quantity of the position detection lights L2a and L2b). By using Ha / Hb, the influence of the absolute value levels of the emitted light amounts Ea and Eb, the emitted light amount, and the detected light amount of the position detection light is suppressed, and the third light is used when deriving the position information in the Y direction. By using the ratio of the detected light amount based on the emission distribution D3 and the fourth light emission distribution D4, the influence of the absolute value level is similarly suppressed.

さらに、本実施形態では、平面的に配列された複数の位置検出用光源12の放出光量E
a、EbをX方向及びY方向に沿って変化させることで当該方向に沿った傾斜を有する各
光出射分布D1〜D4を形成し、上記方向に沿った位置情報を得るようにしているので、
位置情報の導出に用いる光出射分布D1〜D4の傾斜態様が光源12の放出光量の分布に
よって直接決定されるため、導光特性などのばらつきにはほとんど影響されにくくなる。
Furthermore, in this embodiment, the emitted light amount E of the plurality of position detection light sources 12 arranged in a plane.
Since a and Eb are changed along the X direction and the Y direction to form the light emission distributions D1 to D4 having an inclination along the direction, and position information along the direction is obtained.
Since the inclination of the light emission distributions D1 to D4 used for deriving the position information is directly determined by the distribution of the emitted light quantity of the light source 12, it is hardly affected by variations in the light guide characteristics.

なお、本実施形態では上記複数の位置検出用光源12とともに複数の照明用光源11を
基体13上に平面的に配列し、複数の照明用光源11によって電気光学パネル20を照明
しているため、照明装置10を電気光学装置100内にコンパクトに組み込むことができ
る。
In the present embodiment, a plurality of illumination light sources 11 are arranged in a plane on the base 13 together with the plurality of position detection light sources 12, and the electro-optical panel 20 is illuminated by the plurality of illumination light sources 11. The illumination device 10 can be incorporated in the electro-optical device 100 in a compact manner.

また、本実施形態では、第1の光出射分布D1又は第3の光出射分布D3に起因する検
出光量Haと、第2の光出射分布D2又は第4の光出射分布D4に起因する検出光量Hb
の比に基づいて検出対象物Obの位置情報が導出されるが、本発明は検出光量HaとHb
の比に基づいて位置情報を導出する場合に限らない。たとえば、検出対象物Obの座標x
、yと検出光量の差Ha−Hbとの間にも相関関係があるので、検出光量HaとHbの差
に基づいて位置情報を導出することも可能である。いずれにしても、たとえば、二つの出
力成分の任意の関数、例えば、F=(Ma・Ha)/(Mb・Hb)やF=Ma・Ha−
Mb・Hb(MaとMbはそれぞれ結合係数)を用いるなど、両光出射分布にそれぞれ起
因する出力成分である検出光量HaとHbの双方を用いて位置情報が導出されれば、位置
情報の導出をより正確かつ安定的に行うことができる。
In the present embodiment, the detected light amount Ha caused by the first light emission distribution D1 or the third light emission distribution D3 and the detected light amount caused by the second light emission distribution D2 or the fourth light emission distribution D4. Hb
The position information of the detection object Ob is derived based on the ratio of the detected light amounts Ha and Hb.
However, the present invention is not limited to the case where the position information is derived based on the ratio. For example, the coordinate x of the detection object Ob
, Y and the difference Ha−Hb between the detected light amounts, there is also a correlation, so that it is also possible to derive position information based on the difference between the detected light amounts Ha and Hb. In any case, for example, an arbitrary function of two output components, for example, F = (Ma · Ha) / (Mb · Hb) or F = Ma · Ha−
If position information is derived using both the detected light amounts Ha and Hb, which are output components resulting from both light emission distributions, such as using Mb · Hb (Ma and Mb are respectively coupling coefficients), the position information is derived. Can be performed more accurately and stably.

[第2実施形態]
次に、図7及び図8を参照して本発明の第2実施形態について説明する。図7は本実施
形態の概略縦断面図、図8は本実施形態の電気光学パネル20の平面構造を示す平面透視
図である。この第2実施形態では、光検出器15′の配置以外は第1実施形態と同様に構
成されるので、同一部分には同一符号を付し、それらの説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a schematic longitudinal sectional view of the present embodiment, and FIG. 8 is a plan perspective view showing a planar structure of the electro-optical panel 20 of the present embodiment. Since the second embodiment is configured in the same manner as in the first embodiment except for the arrangement of the photodetector 15 ', the same parts are denoted by the same reference numerals, and description thereof is omitted.

本実施形態において、光検出器15′は電気光学パネル20の内部に配置される。図8
に示すように、電気光学パネル20には、基板21及び22の内面(他方の基板に対向す
る面)上に設けられた構造によって構成される画素20Gが平面的に(縦横に)配列され
ており、これらの各画素20Gにおいては、その内部に形成された電極により与えられる
電界で液晶24を制御することにより、それぞれ透過率を独立して制御できるように構成
される。画素20Gの間にはブラックマトリクスや金属層などで遮光された画素間領域2
0Hが設けられ、画素20Gを通過する光以外の光を射光することにより、画像の品位を
高めるようにしている。
In the present embodiment, the photodetector 15 ′ is disposed inside the electro-optical panel 20. FIG.
As shown in FIG. 2, the electro-optical panel 20 includes pixels 20G each having a structure provided on the inner surfaces of the substrates 21 and 22 (surfaces facing the other substrate) arranged in a plane (vertically and horizontally). Each of the pixels 20G is configured such that the transmittance can be controlled independently by controlling the liquid crystal 24 with an electric field applied by an electrode formed therein. Between the pixels 20G, an inter-pixel region 2 shielded by a black matrix, a metal layer, or the like.
0H is provided, and the image quality is improved by projecting light other than the light passing through the pixel 20G.

本実施形態では、上記光検出器15′は画素間領域20Hに配置されることにより画素
20Gに影響を与えないように構成されているが、電気光学パネル20の視認側から受け
る反射光を検出可能となるように、画素間領域20Hを構成するための遮光膜よりも視認
側に形成される。たとえば、視認側の基板22の内面上に遮光膜が形成される場合には、
光検出器15′は基板22の内面上の当該遮光膜よりも下層に形成される。また、視認側
とは反対側の基板21の内面上に遮光膜が形成される場合には、光検出器15′は基板2
2の任意の階層に形成されるか、或いは、基板21の内面上の当該遮光膜よりも上層に形
成される。
In the present embodiment, the photodetector 15 ′ is configured so as not to affect the pixel 20G by being disposed in the inter-pixel region 20H, but detects reflected light received from the viewing side of the electro-optical panel 20. In order to be possible, it is formed on the viewing side with respect to the light shielding film for configuring the inter-pixel region 20H. For example, when a light shielding film is formed on the inner surface of the substrate 22 on the viewing side,
The photodetector 15 ′ is formed below the light shielding film on the inner surface of the substrate 22. When a light-shielding film is formed on the inner surface of the substrate 21 opposite to the viewing side, the photodetector 15 '
It is formed in an arbitrary layer of 2 or in an upper layer than the light shielding film on the inner surface of the substrate 21.

なお、本実施形態では、単一の光検出器15′が表示領域とほぼ対応する検出平面範囲
のすべての位置からの反射光を検出することができる位置に、例えば図示の表示領域の中
央領域に配置されている。ただし、光検出器15′は複数設けられていてもよく、この場
合には、表示領域内において複数の光検出器15′が分散して配置されていることが好ま
しく、表示領域内において複数の光検出器15′が周期的に配列されていることがより望
ましい。
In the present embodiment, the single photodetector 15 ′ can detect the reflected light from all positions in the detection plane range substantially corresponding to the display area, for example, at the center area of the display area shown in the figure. Is arranged. However, a plurality of photodetectors 15 ′ may be provided. In this case, it is preferable that a plurality of photodetectors 15 ′ are distributed in the display area, and a plurality of photodetectors 15 ′ are arranged in the display area. More preferably, the photodetectors 15 'are arranged periodically.

[第3実施形態]
次に、次に、図9及び図10を参照して本発明の第3実施形態について説明する。図9
は本実施形態の概略縦断面図、図10は本実施形態の基体13の底部の平面構造を示す平
面図である。この第3実施形態では、光検出器15″の配置以外は、上記第1実施形態及
び第2実施形態と同様に構成されるので、同一部分には同一符号を付し、それらの説明は
省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG.
FIG. 10 is a schematic longitudinal sectional view of the present embodiment, and FIG. 10 is a plan view showing a planar structure of the bottom of the base 13 of the present embodiment. In the third embodiment, except for the arrangement of the photodetector 15 ″, it is configured in the same manner as in the first embodiment and the second embodiment, so the same parts are denoted by the same reference numerals and the description thereof is omitted. To do.

本実施形態においては、光検出器15″が基体13上に照明用光源11や位置検出用光
源12とともに配置されている。図示例では、複数の光検出器15″が、照明用光源11
や位置検出用光源12が配置されている場所から離間し、照明光L1や位置検出光L2a
、L2bが直接に入射しない位置に分散して配置されている。
In the present embodiment, the light detector 15 ″ is disposed on the base 13 together with the illumination light source 11 and the position detection light source 12. In the illustrated example, a plurality of light detectors 15 ″ are provided.
And the position detection light source 12 away from the place where the position detection light source 12 is disposed.
, L2b are distributed at positions where they are not directly incident.

本実施形態において、検出対象物Obで反射された位置検出光L2a、L2bの反射光
は、電気光学パネル20及び光拡散板16を逆に透過して基体13の内部に戻り、基体1
3上の光検出器15″で検出される。図示例では複数の光検出器15″が分散して配置さ
れているが、単一の光検出器15″のみが配置されていてもよい。ただし、この場合には
、光検出器15″は、位置検出範囲の全ての位置から入射する反射光を検出することがで
きる位置、たとえば、図示のように配列面13Pの中央領域に配置されることが好ましい
In the present embodiment, the reflected lights of the position detection lights L2a and L2b reflected by the detection object Ob are transmitted through the electro-optical panel 20 and the light diffusion plate 16 in reverse, and return to the inside of the base body 13.
3 is detected in a distributed manner in the illustrated example, but only a single photodetector 15 '' may be provided. However, in this case, the photodetector 15 ″ is disposed at a position where reflected light incident from all positions in the position detection range can be detected, for example, in the central region of the array surface 13P as illustrated. It is preferable.

尚、本発明の照明装置及び電気光学装置は、上述の図示例にのみ限定されるものではな
く、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
Note that the illumination device and the electro-optical device of the present invention are not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

10…照明装置、11…照明用光源、12、12An、12Bn…位置検出用光源、13
…基体、13a…内面、13b…底部、15、15′、15″…光検出器、16…光拡散
板、20…電気光学パネル、30…表装板、D1…第1の光出射分布、D2…第2の光出
射分布、D3…第3の光出射分布、D4…第4の光出射分布、Ea,Eb…放出光量、f
a,fb…減衰係数、Ha,Hb…検出光量(出力成分)
DESCRIPTION OF SYMBOLS 10 ... Illuminating device, 11 ... Light source for illumination, 12, 12An, 12Bn ... Light source for position detection, 13
DESCRIPTION OF SYMBOLS ... Base | substrate, 13a ... Inner surface, 13b ... Bottom part, 15, 15 ', 15 "... Photodetector, 16 ... Light diffusing plate, 20 ... Electro-optical panel, 30 ... Front plate, D1 ... 1st light emission distribution, D2 ... second light emission distribution, D3 ... third light emission distribution, D4 ... fourth light emission distribution, Ea, Eb ... amount of emitted light, f
a, fb: attenuation coefficient, Ha, Hb: detected light quantity (output component)

Claims (9)

平面的行列状に配列され、その配列面と交差する方向に位置検出光を放出する複数の位
置検出用光源と、
該複数の位置検出用光源から放出される前記位置検出光の検出対象物による反射光を検
出する光検出器と、
前記複数の位置検出用光源の前記配列面に沿った検出方向の一方側に向けて前記複数の
位置検出用光源の放出光量を漸減させ、前記配列面に沿って前記位置検出光の出射光量が
前記一方側に傾斜した第1の光出射分布をなす第1の駆動態様と、前記検出方向の前記一
方側とは逆の他方側に向けて前記複数の位置検出用光源の放出光量を漸減させ、前記配列
面に沿って前記位置検出光の出射光量が前記他方側に傾斜した第2の光出射分布をなす第
2の駆動態様とを切り替える光源制御手段と、
前記第1の光出射分布及び前記第2の光出射分布にそれぞれ起因する前記光検出器の出
力成分に基づいて前記検出対象物の前記検出方向に沿った位置情報を導出する位置情報導
出手段と、
を具備することを特徴とする位置検出装置。
A plurality of position detection light sources arranged in a planar matrix and emitting position detection light in a direction intersecting with the arrangement surface;
A photodetector for detecting reflected light from a detection object of the position detection light emitted from the plurality of position detection light sources;
The amount of emitted light of the plurality of position detection light sources is gradually decreased toward one side in the detection direction along the array surface of the plurality of position detection light sources, and the amount of emitted light of the position detection light is increased along the array surface. The first driving mode having a first light emission distribution inclined to the one side and the emitted light quantity of the plurality of position detection light sources are gradually decreased toward the other side opposite to the one side in the detection direction. A light source control means for switching between a second driving mode that forms a second light emission distribution in which the emitted light quantity of the position detection light is inclined to the other side along the arrangement surface;
Position information deriving means for deriving position information of the detection object along the detection direction based on output components of the photodetector respectively caused by the first light emission distribution and the second light emission distribution; ,
A position detection apparatus comprising:
前記光源制御手段は、前記第1の光出射分布と前記第2の光出射分布とを交互に形成す
ることを特徴とする請求項1に記載の位置検出装置。
The position detection device according to claim 1, wherein the light source control unit alternately forms the first light emission distribution and the second light emission distribution.
前記光源制御手段は、前記検出方向と交差し前記配列面に沿った第2の検出方向の一方
側に向けて前記複数の位置検出用光源の放出光量を漸減させ、前記配列面に沿って前記位
置検出光の出射光量が前記第2の検出方向の一方側に傾斜した第3の光出射分布をなす第
3の駆動態様と、前記第2の検出方向の前記一方側とは逆の他方側に向けて前記複数の位
置検出用光源の放出光量を漸減させ、前記配列面に沿って前記位置検出光の出射光量が前
記第2の検出方向の他方側に傾斜した第4の光出射分布をなす第4の駆動態様とを切り替
え、
前記位置情報導出手段は、前記第3の光出射分布及び前記第4の光出射分布にそれぞれ
起因する前記光検出器の出力成分に基づいて前記検出対象物の前記配列方向と交差する方
向に沿った位置情報を導出することを特徴とする請求項1又は2に記載の位置検出装置。
The light source control means gradually decreases the amount of emitted light of the plurality of position detection light sources toward one side of a second detection direction that intersects the detection direction and extends along the array surface, and moves along the array surface. A third driving mode in which a third light emission distribution in which the amount of emitted position detection light is inclined to one side in the second detection direction and the other side opposite to the one side in the second detection direction; A fourth light emission distribution in which the emitted light quantity of the plurality of position detection light sources is gradually decreased toward the second side, and the emitted light quantity of the position detection light is inclined to the other side in the second detection direction along the array surface. Switching to the fourth driving mode,
The position information deriving unit is arranged along a direction intersecting with the arrangement direction of the detection objects based on output components of the photodetector caused by the third light emission distribution and the fourth light emission distribution, respectively. The position detection apparatus according to claim 1, wherein position information is derived.
前記光源制御手段は、前記第1の光出射分布、前記第2の光出射分布、第3の光出射分
布及び前記第4の光出射分布を順次に形成しつつ、各光出射分布の形成時において前記光
検出器の出力成分を取得することを特徴とする請求項3に記載の位置検出装置。
The light source control unit sequentially forms the first light emission distribution, the second light emission distribution, the third light emission distribution, and the fourth light emission distribution, while forming each light emission distribution. The position detection device according to claim 3, wherein an output component of the photodetector is acquired.
前記光検出器は前記複数の位置検出用光源の配列面に配置されていることを特徴とする
請求項1乃至4のいずれか一項に記載の位置検出装置。
5. The position detection device according to claim 1, wherein the photodetector is arranged on an array surface of the plurality of position detection light sources. 6.
平面的行列状に配列され、その配列面と交差する方向に位置検出光を放出する複数の位
置検出用光源と、
該複数の位置検出用光源から放出される前記位置検出光の検出対象物による反射光を検
出する光検出器と、
前記複数の位置検出用光源の前記配列面に沿った検出方向の一方側に向けて前記複数の
位置検出用光源の放出光量を漸減させ、前記配列面に沿って前記位置検出光の出射光量が
前記一方側に傾斜した第1の光出射分布をなす第1の駆動態様と、前記検出方向の前記一
方側とは逆の他方側に向けて前記複数の位置検出用光源の放出光量を漸減させ、前記配列
面に沿って前記位置検出光の出射光量が前記他方側に傾斜した第2の光出射分布をなす第
2の駆動態様とを切り替える光源制御手段と、
前記第1の光出射分布及び前記第2の光出射分布にそれぞれ起因する前記光検出器の出
力成分に基づいて前記検出対象物の前記検出方向に沿った位置情報を導出する位置情報導
出手段と、
表示領域が前記配列面に対して重なるように配置された電気光学パネルと、
を具備することを特徴とする電気光学装置。
A plurality of position detection light sources arranged in a planar matrix and emitting position detection light in a direction intersecting with the arrangement surface;
A photodetector for detecting reflected light from a detection object of the position detection light emitted from the plurality of position detection light sources;
The amount of emitted light of the plurality of position detection light sources is gradually decreased toward one side in the detection direction along the array surface of the plurality of position detection light sources, and the amount of emitted light of the position detection light is increased along the array surface. The first driving mode having a first light emission distribution inclined to the one side and the emitted light quantity of the plurality of position detection light sources are gradually decreased toward the other side opposite to the one side in the detection direction. A light source control means for switching between a second driving mode that forms a second light emission distribution in which the emitted light quantity of the position detection light is inclined to the other side along the arrangement surface;
Position information deriving means for deriving position information of the detection object along the detection direction based on output components of the photodetector respectively caused by the first light emission distribution and the second light emission distribution; ,
An electro-optical panel arranged such that a display region overlaps the array surface;
An electro-optical device comprising:
前記表示領域は前記配列面に対し前記位置検出光の光出射側に配置され、前記基体上に
は前記位置検出光と並行して照明光を放出する複数の前記照明用光源が平面的に配列され
ることを特徴とする請求項6に記載の電気光学装置。
The display area is arranged on the light emission side of the position detection light with respect to the arrangement surface, and a plurality of illumination light sources that emit illumination light in parallel with the position detection light are arranged in a plane on the base. The electro-optical device according to claim 6.
前記電気光学パネルは前記配列面に対し前記位置検出光の光出射側に配置され、前記位
置検出光は前記電気光学パネルを透過して前記配列面とは反対側に出射するように構成さ
れ、前記光検出器は前記電気光学パネルの内部に配置されることを特徴とする請求項6に
記載の電気光学装置。
The electro-optical panel is disposed on the light emission side of the position detection light with respect to the arrangement surface, and the position detection light is configured to pass through the electro-optical panel and emit to the opposite side of the arrangement surface. The electro-optical device according to claim 6, wherein the photodetector is disposed inside the electro-optical panel.
前記光検出器は前記複数の位置検出用光源の配列面に配置されることを特徴とする請求
項6乃至8のいずれか一項に記載の電気光学装置。
The electro-optical device according to claim 6, wherein the photodetector is disposed on an array surface of the plurality of position detection light sources.
JP2009078366A 2009-03-27 2009-03-27 Position detecting device and electro-optical device Expired - Fee Related JP4947080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078366A JP4947080B2 (en) 2009-03-27 2009-03-27 Position detecting device and electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078366A JP4947080B2 (en) 2009-03-27 2009-03-27 Position detecting device and electro-optical device

Publications (2)

Publication Number Publication Date
JP2010231504A JP2010231504A (en) 2010-10-14
JP4947080B2 true JP4947080B2 (en) 2012-06-06

Family

ID=43047249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078366A Expired - Fee Related JP4947080B2 (en) 2009-03-27 2009-03-27 Position detecting device and electro-optical device

Country Status (1)

Country Link
JP (1) JP4947080B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423543B2 (en) 2010-04-02 2014-02-19 セイコーエプソン株式会社 Optical position detector
JP2012160041A (en) * 2011-02-01 2012-08-23 Seiko Epson Corp Irradiation unit, optical detector and information processing system
JP6314688B2 (en) 2014-06-25 2018-04-25 船井電機株式会社 Input device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540574A (en) * 1991-08-06 1993-02-19 Fujitsu Ltd Position recognizing device
JP2009032005A (en) * 2007-07-26 2009-02-12 Toshiba Corp Input display device and input display panel
JP4623154B2 (en) * 2008-07-24 2011-02-02 エプソンイメージングデバイス株式会社 Illumination device, coordinate input device, electro-optical device, and electronic apparatus

Also Published As

Publication number Publication date
JP2010231504A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
KR101019835B1 (en) Illumination device and electro-optical apparatus
JP4706771B2 (en) Position detecting device and electro-optical device
US8896576B2 (en) Touch panel, liquid crystal panel, liquid crystal display device, and touch panel-integrated liquid crystal display device
JP5467372B2 (en) Input device
KR101030834B1 (en) Illumination device, coordinate inputting device, electro-optical device, and electronic apparatus
JP6757779B2 (en) Non-contact input device
JP2009295318A (en) Lighting system and electro-optical device
JP2012133782A (en) Touch sensing display device
JP5515280B2 (en) Position detecting device and electro-optical device
JP2011257337A (en) Optical position detection device and display device with position detection function
JP2011257338A (en) Optical position detection device and display device with position detection function
JP2008186374A (en) Optical touch panel
KR20120073269A (en) Touch screen display device
JP4947080B2 (en) Position detecting device and electro-optical device
US20160018329A1 (en) Optical detection system with tilted sensor
JP2010198548A (en) Position detector, electrooptical device, and electronic equipment
JP2010231505A (en) Position detecting device and electro-optical device
JP5142797B2 (en) Touch panel
JP2017142577A (en) Non-contact display input device and method
JP2013250817A (en) Coordinate input device and coordinate input system
JP2010204788A (en) Illuminator and electrooptical device
KR101268533B1 (en) Optical touch screen apparatus
JP5007707B2 (en) Electronics
JPWO2016113917A1 (en) Non-contact input device and method
KR101268531B1 (en) Optical touch screen apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees