WO2013094376A1 - Input system - Google Patents

Input system Download PDF

Info

Publication number
WO2013094376A1
WO2013094376A1 PCT/JP2012/080847 JP2012080847W WO2013094376A1 WO 2013094376 A1 WO2013094376 A1 WO 2013094376A1 JP 2012080847 W JP2012080847 W JP 2012080847W WO 2013094376 A1 WO2013094376 A1 WO 2013094376A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
pen
guide plate
transparent
Prior art date
Application number
PCT/JP2012/080847
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 訓明
藤原 恒夫
謙一郎 三上
直樹 芝
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280058289.1A priority Critical patent/CN103959213A/en
Publication of WO2013094376A1 publication Critical patent/WO2013094376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an input system using a pen having a light emitting unit.
  • a bar-shaped operation member such as a touch pen or a stylus pen
  • a coordinate input device position detection device
  • the pen is brought close to or in contact with the coordinate input area of the coordinate input device, and the coordinate input device determines the coordinates of the position where the pen approaches or touches (hereinafter referred to as touch).
  • the obtained coordinates are, for example, for displaying an object such as a point image or a straight line image on a display screen such as a liquid crystal display separate from the coordinate input device or a liquid crystal panel laminated integrally with the coordinate input device. Used for.
  • the position detection device disclosed in Patent Document 1 has a plurality of plate-like optical absorbers that absorb light inside or an optical shield 102 that shields light at a distance from each other.
  • a measurement object 104 for example, a pen
  • the light that has been totally reflected and propagated in a direction parallel to the plate-shaped optical absorber or optical shield in the light guide is reflected by the light. Light is received by the detecting means and the position of the detected object is detected.
  • the display 130 includes PSDs 1000-1 and 1000-2, light sources 1010 and 1020, and light guide units 1030 and 1040.
  • the light guide unit 1030 uniformly distributes the light from the light source 1010 and guides it to the PSD 1000-1 across the display 130.
  • the light guide 1040 can uniformly distribute light and guide it across the display 130 to the PSD 1000-2, as shown by the lines from the light guide 1040 in FIG. Then, when the user brings the stylus 720 into contact with the upper surface of the display 130 at the point 1050 in FIG. 14, a part of the light guided from the light guide unit 1030 hinders reaching the PSD 1000-1 as shown in FIG.
  • PSDs 1000-1 and 1000-2 generate values x1 and y1 corresponding to the X and Y coordinates of contact point 1050 on display 130, respectively.
  • a side view of the display 130 of FIG. 14 is shown in FIG.
  • the display 130 includes a backlight 1110, mirrors 1120 and 1130, PSD 1140, a light guide unit 1150, an active matrix plate 1160, a liquid crystal 1170, and a filter 1180.
  • light from the light source 1110 is transmitted through a light guide including a series of external coupling structures similar to the external coupling structure 1155 in the light guide 1150, similar to the light guide 1150.
  • the external coupling structure 1155 prevents total internal reflection of light, guides or couples light from the light guide 1150 to the liquid crystal 1170, and transmits light toward one or more mirrors for reflection to one or more PSDs. In order to guide a part, the light guide 1150 is distributed in the length direction.
  • the light receivers 203a to 203d are arranged on the concave surfaces 200a to 200d around the flat plate member 202 containing the fluorescent dye, and the light source unit 205 is arranged. Fluorescence generated when the flat plate member is irradiated with light from the light is received by each light receiver, and the coordinates of the light irradiation point are obtained from the fluorescence intensity measured by each light receiver.
  • Light absorbing members 204a to 204d for preventing stray light are disposed on the sides of the flat plate member 202 other than the concave surfaces 200a to 200d.
  • the above-described position detection device of Patent Document 1 includes a light guide body 101 having a complicated structure in which a plurality of optical absorbers or optical shields 102 are arranged in parallel at a distance from each other.
  • the light detection means 103 is provided for the light guide region. This complicates the apparatus and increases costs.
  • FIG. 13 only one of the two-dimensional coordinates (x coordinate, y coordinate) can be specified. If two-dimensional coordinates are to be obtained, in addition to the structure shown in FIG. 13, the same structure as that shown in FIG. 13 must be arranged so that the light guide directions are orthogonal to each other. This increases the size of the apparatus and further increases costs.
  • the optical touch screen of Patent Document 2 described above performs position detection by blocking light spreading on the upper surface of the display 130. For this reason, if an object other than a pen is touched in the detection area, infrared light in the vicinity of the object is blocked, so that it is erroneously recognized as a pen input. In particular, if the palm touches the detection area by mistake, the pen touch on the optical path shielded by the palm cannot be recognized.
  • the optical touch screen of Patent Document 2 is applied to a table-type terminal, it is assumed that books, paper materials, dishes, cups, and the like are placed on the table surface. Have difficulty.
  • the light shielding method has a problem that erroneous recognition is likely to occur when a detection object other than one pen touches the detection area.
  • the optical touch screen of Patent Document 2 in order to propagate light along the upper surface of the display 130, mirrors 1120 and 1130 are arranged so as to protrude from the upper surface to the upper portion as shown in FIG. For this reason, when applied to a table type terminal, the surroundings rise like a bank, and the table surface cannot be made completely flat.
  • the light shielding method when stray light including sunlight enters the photodetector, there is a problem that the contact of the pen cannot be detected due to the influence of the stray light, and it is difficult to place the device outdoors or near a window.
  • the coordinate input apparatus of the above-mentioned patent document 3 calculates
  • the present invention has been made in view of the above problems, and an object of the present invention is an input system including a full flat coordinate input device and a light-emitting pen, which has a simple structure and the device. It is an object of the present invention to provide an input system that is not erroneously recognized even if a hand or the like comes close to or touches a surface.
  • an input system is: A light guide member; An operation member having a light emitting portion for making light incident on the light guide member by contacting the light guide member; At least two detection means that are located at positions that do not protrude above the upper surface of the light guide member and that are separated from each other.
  • the at least two detecting means for detecting propagating light propagating through the inside of the optical member The detecting means detects a position coordinate of a point where the light emitting unit contacts the light guide member by detecting a traveling direction of the propagated light from the detected propagated light. Yes.
  • the position coordinates are obtained by capturing the light that has propagated to at least two locations apart from each other in the light guide member. That is, even if the detection means is placed at each location, the total number of detection devices may be two. In some cases, the detection devices can be collected from each location by a mirror or the like. There is no need to arrange a light receiving element (imaging element) in each light guide region. For this reason, the apparatus is not complicated or enlarged, and costs are not increased.
  • the light guide member does not require a complicated structure and does not cost.
  • the detection unit is provided at a position that does not protrude upward from the upper surface of the light guide member. Since it is the structure which each captures the light which propagates inside, the upper surface of a light guide member can be made into the uppermost surface of a coordinate input device, and there is nothing which protrudes upwards from a light guide member. Therefore, even when this input device is applied to a table type terminal, the table surface can be made completely flat without the surroundings being raised like a bank.
  • the coordinate input device as in Patent Document 3 performs position coordinate detection using a change in light intensity, so that the detection accuracy is insufficient due to the influence of external light, but two or more locations. Since the traveling direction of the propagation light can be obtained from the observation point with high accuracy, the point where the propagation light is generated, that is, the point where the light emitting unit contacts the light guide member can be accurately obtained.
  • the present invention having the above-described configuration can provide a highly versatile input device that is fully flat and that is not erroneously recognized even if a hand touches the surface of the device.
  • one form of the input system which concerns on this invention is It is preferable that the light is diffused and radiated to the light guide member when the light emitting unit contacts the light guide member.
  • the position coordinates of the point where the propagation light is generated can be accurately obtained regardless of the state of the light emitting unit.
  • the light guide member has one side;
  • the detecting means is preferably provided at least at both ends of the one side of the light guide member.
  • the position which captures the light which propagates the inside of a light guide member is the both ends of the said one side, and the said capture positions are comparatively separated, it is possible to detect a position coordinate with high accuracy. it can.
  • one form of the input system which concerns on this invention is It is preferable that an end portion of the light guide member is provided with a conical optical path conversion unit that guides the propagation light to the detection unit.
  • the detection unit can be arranged at a desired position by providing the optical path conversion unit.
  • the optical path conversion unit (for example, a mirror) is provided in the at least two locations, and the detection unit receives light guided below the upper surface of the light guide member by the optical path conversion unit and photoelectrically converts the light. it can.
  • the detection unit receives light guided below the upper surface of the light guide member by the optical path conversion unit and photoelectrically converts the light. it can.
  • the configuration without an optical path conversion unit in the configuration without an optical path conversion unit, the light propagated inside the light guide plate expands the area of the upper surface of the light guide plate from the end of the light guide plate. Since it has an optical axis along the direction, it is necessary to cause the image sensor to receive this light as it is.
  • the imaging element it is necessary to dispose the imaging element in a direction that increases the area of the upper surface of the light guide plate, and the input device increases in size in a direction that increases the area of the upper surface of the light guide plate.
  • the light receiving unit detection means It can arrange
  • one form of the input system which concerns on this invention is An image display panel having a plurality of pixels; It is preferable to drive the pixels of the image display panel based on the position coordinates detected by the detection means.
  • the pixel corresponding to the position coordinate on the image display panel can be driven and viewed.
  • FIG. 2 is a cross-sectional view taken along line AA ′ shown in FIG.
  • FIG. 2 is a figure which shows the structure of the pen of the input system of one Embodiment of this invention.
  • It is a figure of the acquired image acquired in the image sensor with which the pen input device of the input system of one embodiment of the present invention was equipped.
  • It is a perspective view which shows the structure of the input system of other embodiment of this invention.
  • FIG. 10 It is a perspective view which shows the structure of a part of input system of other embodiment of this invention. It is a top view which shows the modification of the structure shown in FIG. It is a top view which shows the structure of a part of input system of other embodiment of this invention. It is sectional drawing which shows the one part schematic structure of the input system of other embodiment of this invention. It is a perspective view of the one part structure shown in FIG. 10 and FIG. It is a figure of a conventional structure. It is a figure of a conventional structure. It is a figure of a conventional structure. It is a figure of a conventional structure. It is a figure of a conventional structure. It is a figure of a conventional structure.
  • Embodiment 1 An embodiment of an input system according to the present invention will be described with reference to FIGS.
  • FIG. 1 is a perspective view showing the configuration of the input system of this embodiment
  • FIG. 2 is a cross-sectional view taken along line AA ′ shown in FIG.
  • the input system 50 of the present embodiment includes a pen input device 40 (coordinate input device) and a pen 3 (operation member), and is a touch surface that is the surface of the pen input device 40.
  • the pen 3 touches (contacts) the (upper surface)
  • the touch position coordinates on the touch surface can be obtained.
  • the pen input device 40 includes a liquid crystal display panel 2 (image display panel), and a rectangular transparent light guide plate 1 (light guide member) disposed on the display surface side of the liquid crystal display panel 2.
  • the transparent light guide plate 1 has imaging units 10 and 20 (detecting means) disposed at both ends of a certain side.
  • the liquid crystal display panel 2 has a liquid crystal layer sandwiched between a pair of substrates, and each substrate is provided with at least various electrodes for changing the orientation of liquid crystal molecules in the liquid crystal layer by applying a voltage. Then, by changing the orientation of the liquid crystal molecules by applying a voltage, the amount of light transmitted through the liquid crystal layer of each pixel is adjusted to perform a desired display.
  • a conventionally known liquid crystal display panel can be used as the configuration of the liquid crystal display panel 2.
  • the transparent light guide plate 1 is a single flat plate made of a translucent material. As shown in FIG. 1, the liquid crystal display panel 2 is disposed so as to overlap the display surface side.
  • the size of the transparent light guide plate 1 can be configured substantially the same as that of the liquid crystal display panel.
  • one side where the imaging units 10 and 20 are disposed is configured to be larger than the liquid crystal display panel 2. Accordingly, at least a part of the imaging units 10 and 20 can be disposed on the back side of the transparent light guide plate 1. Thereby, the enlargement of the size of the direction which spreads along the touch surface of the pen input device 40 is suppressed, and it contributes to realization of a compact size.
  • the surface of the transparent light guide plate 1 opposite to the liquid crystal display panel 2 is a touch surface touched by the pen 3.
  • the end portions (corners) where the imaging units 10 and 20 are disposed in the transparent light guide plate 1 are each provided with a concave conical cutout 1a (light path conversion portion).
  • the angle ( ⁇ shown in FIG. 2) formed by the conical surface of the notch 1a and the back surface of the transparent light guide plate 1 is 45 degrees or less, and 30 degrees or 45 degrees is selected.
  • a mirror coating 6 optical path changing portion is applied to the conical cutout 1a.
  • the optical path of light propagating through the transparent light guide plate 1 and reaching the notch 1a is formed below the transparent light guide plate 1, that is, on the back surface of the transparent light guide plate 1 by the notch 1a. Change towards.
  • the optical path can be changed below the transparent light guide plate 1 by the conical surface of the notch 1 a. That is, the transparent light guide plate 1 does not have to be a perfect quadrangle, and may be a substantial quadrangle such that the corners are notched as described above, or the corners are R-processed.
  • the thickness of the transparent light guide plate 1 is mainly 1 to 3 mm.
  • a material of the transparent light guide plate 1 for example, acrylic is used, and polycarbonate or glass may be used. Further, the thickness of the transparent light guide plate 1 is mainly 1 to 3 mm, but it may be thicker than this.
  • the size of the transparent light guide plate 1 (the size of the touch surface) can be about 1 m square, but is not limited thereto.
  • the imaging units 10 and 20 are means for detecting propagation light that enters the transparent light guide plate 1 from the light emitting unit 30 of the pen 3 and propagates through the inside of the transparent light guide plate 1. It arrange
  • the imaging unit 10 includes a lens 11, a visible light cut filter 12, and an imaging element 13.
  • the imaging unit 20 includes a lens 21, a visible light cut filter 22, and an imaging element 23.
  • the imaging units 10 and 20 are connected to the transparent light guide plate 1 and have a structure in which light that does not propagate through the transparent light guide plate 1 is not coupled to the imaging elements 13 and 23.
  • the notch 1a is formed in a conical surface shape, but the present invention is not limited to this, and may be formed in a polygonal surface shape.
  • the pen 3 corresponding to the pen input device 40 is an operation member called a touch pen or a stylus pen. Details of the pen 3 will be described with reference to FIG.
  • FIG. 3 is a diagram showing the configuration of the pen 3, and for convenience of explanation, a part of the housing is removed to expose the internal structure.
  • the pen 3 has a light emitting unit 30 that has a light emitting element 31 that emits infrared light and a light guide member 32 that guides the infrared light to the tip of the pen 3, and a power supply device 33. And the control device 34 are stored.
  • the light emitting unit 30 is disposed at the tip of the pen 3 and the light diffusion member 36 diffuses light on the light emitting side of the light emitting unit 30. There is a point that is attached.
  • the light diffusing member 36 is made of a resin containing a light diffusing material. Glass beads can be used as the light diffusion material.
  • a fluororesin specifically, polytetrafluoroethylene
  • silicon rubber can be used, and it is preferable that the resin is configured to have elasticity.
  • the light exit surface of the light diffusing member 36 has a taper, more specifically, a curved surface, as shown in FIG. That is, the light diffusing member 36 is generally hemispherical and has a diameter of 2.5 to 5.5 mm. If the diameter is smaller than 2.5, there is a possibility that the sufficiently diffused light cannot be formed, and it is sufficient when the light diffusion member 36 is used in contact with the transparent light guide plate 1 of the pen input device 40. There is a possibility that light that can secure a contact area is not sufficiently coupled to the surface of the transparent light guide plate 1.
  • the diffused light may be excessively spread and it may be difficult to accurately detect the position, and the light diffusing member 36 is brought into contact with the transparent light guide plate 1 of the pen input device 40.
  • the contact area is too large, the frictional resistance becomes too large and the operability may be impaired. Therefore, if the diameter is 2.5 to 5.5 mm, the position coordinates can be detected with high accuracy while light can be diffused, and a smooth writing feeling (touch feeling) can be realized.
  • the curved surface does not need to be configured with a uniform curvature, and the curvature may be different between the region that is the tip of the pen 3 and the region that surrounds it.
  • the curved surface may be provided with a fine uneven shape on the surface. Light can be diffused by the fine unevenness. Further, when the light diffusing member 36 is used in contact with the transparent light guide plate 1 of the pen input device 40, the contact area with the transparent light guide plate 1 is reduced due to the fine unevenness, and the frictional force when sliding is reduced. Therefore, a smooth writing taste (touch feeling) can be realized.
  • the light diffusing member 36 is constituted by a resin alone without including the light diffusing material, and the fine unevenness is provided in the region facing the transparent light guide plate 1 in the resin. Also, a light diffusion effect can be achieved.
  • the fine irregularities are formed in addition to the light diffusion material, the light diffusion effect can be further enhanced.
  • the fine irregularities can be formed by molding, but are not limited to this method.
  • the light emitting surface of the light diffusing member 36 is subjected to wear resistance processing. This is unnecessary when the light diffusing member 36 is made of polytetrafluoroethylene, but when the light diffusing member 36 is made of another material that is not excellent in wear resistance, the light emission It is effective to apply a wear resistant process to the surface.
  • wear resistance processing there is no restriction
  • the light diffusing member 36 is configured to be detachable from the pen 3. Even if the light diffusing member 36 is damaged for some reason (including deterioration with time), the use of the pen 3 can be continued only by replacing the light diffusing member 36. Compared to the configuration in which the pen 3 is replaced, the use can be continued at a low cost.
  • the member on the side to which the light diffusing member 36 is attached in this embodiment, the light guide member 32
  • the light guide member 32 has a groove structure, an occlusal structure, or a portion in contact with the light diffusing member 36, or A fitting structure is provided (not shown), and the light diffusion member 36 is provided with a structure that matches the structure (not shown).
  • the light diffusion member 36 is attached to the light guide member 32.
  • the present invention is not limited to this, and the light diffusion member 36 may be attached to the housing 35. It may be other embodiments.
  • the light emitting element 31 may be an LED (light emitting diode) or an LD (laser diode) that emits infrared light.
  • the number of LEDs or LDs is not limited to one provided for one pen 3, and a plurality of LEDs or LDs may be mounted.
  • the power supply device 33 may be configured to include a battery, for example, or may be configured to be rechargeable.
  • the control device 34 controls the light emission of the light emitting element 31.
  • a mechanism for emitting light only when the light emitting element 31 comes into contact with the transparent light guide plate 1 is included.
  • This mechanism is configured by using a pressure-sensitive switch or the like, and can control the light emission time, thereby reducing power consumption and extending battery life.
  • the pen 3 is provided with a light source (light emitting unit) that emits infrared light, and is configured to diffuse and radiate infrared light from the pen tip.
  • a light source light emitting unit
  • part of the infrared light emitted from the pen tip is coupled to the transparent light guide plate 1 and propagates through the transparent light guide plate 1. Since the pen 3 diffuses and emits infrared light from the pen tip, the light coupled to the transparent light guide plate 1 diffuses and radiates inside the transparent light guide plate 1. Thereby, a position coordinate can be calculated
  • the imaging units 10 and 20 capture infrared light propagating through the transparent light guide plate 1 (hereinafter referred to as propagation light 4a and 4b), respectively, and from the respective images obtained from the imaging element 13, Find the two-dimensional position coordinates of the contact.
  • the light receiving surface of the image sensor 13 is disposed so as to be parallel to the surface of the transparent light guide plate 1.
  • Infrared light emitted from the pen 3 is diffused radially around the pen tip and propagates through the transparent light guide plate 1, and some of the light beams 4 a and 4 b are conical surface cutouts 1 a.
  • the image pickup units 10 and 20 receive the reflected light from the end face. Specifically, the reflected light of the end face is collected by the lenses 11 and 21, subsequently passes through the visible light cut filters 12 and 22, and is finally received by the imaging elements 13 and 23.
  • the visible light cut filters 12 and 22 transmit infrared light emitted from the pen and serve to block light in other wavelength bands. Visible light cut filters 12 and 22 block stray light such as sunlight and liquid crystal display panel backlight light, and can increase the SN ratio.
  • the light emitted from the pen 3 propagates through the transparent light guide plate 1 and the emitted light passes through the lens 11 to form a linear image 15 on the image sensor 13.
  • the position of the linear image 15 changes depending on the position of the pen 3, and by analyzing the acquired image of the imaging unit, angles ⁇ and ⁇ formed by the light beams 4a and 4b and one side of the transparent light guide plate are obtained, respectively. Using the principle of surveying, the position coordinates of the point where the pen tip serving as the light source contacts is obtained.
  • FIG. 4A when the pen is at the position 3a, a linear image 15 is formed.
  • a linear image 17 is formed.
  • FIG. 4B shows an acquired image of the image sensor 13.
  • the pen tip of the pen 3 in the state of irradiating infrared rays is not in contact with the transparent light guide plate 1, nothing appears in the acquired image of the image sensor 13.
  • the pen tip of the pen 3 in the state of irradiating infrared rays from the light emitting unit comes into contact with the transparent light guide plate 1 and the infrared light is coupled to the transparent light guide plate 1, as shown in FIG.
  • a part of the light beam 4a is guided to the imaging device 13, a linear image is formed on the imaging surface of the imaging device 13, and the linear image 15 appears on the acquired image.
  • the position of the linear image 15 shown in FIG. 4 changes depending on the position of the contact point of the pen tip of the pen 3, and when the position of the contact point of the pen tip is changed, the linear image is a line indicated by a broken line. It changes like the image 17.
  • the locus of the linear image is a fan shape 16 indicated by a one-dot chain line.
  • the rotation angle ⁇ 1 ′ of the line segment connecting the fan-shaped center and the line image (with the center of the arc as the rotation center) is the line segment connecting the pen 3 and the image sensor 13 and the certain side of the transparent light guide plate 1.
  • the angle is the same as the angle ⁇ 1 formed by.
  • Alpha 1 ' is found, alpha 1' from the acquired image of the imaging element alpha 1 is obtained from.
  • formed a line-shaped image 17, by obtaining the inclination alpha 2 'of the line-shaped image 17, alpha 2 is calculated.
  • the position of the light emitting point is specified from the analysis of the acquired image, and the angle ⁇ formed by the line segment connecting the pen 3 and the image sensor 23 and the certain side of the transparent light guide plate 1 is obtained.
  • the coordinates X and Y of the point where the pen tip contacts are obtained by ⁇ and ⁇ obtained as described above and L that can be obtained in advance.
  • L is an interval between the image sensor 13 and the image sensor 23 and is a fixed value.
  • the interval L between the image pickup elements is a distance between the optical axis center of the lens 11 and the optical axis center of the lens 21.
  • the input system 50 is provided with a position coordinate detector (not shown).
  • the position coordinate detection unit can be provided in the pen input device 40.
  • the pixel at the position corresponding to the position coordinates of the liquid crystal display panel 2 is driven, and the user visually recognizes the touch position of the pen 3.
  • a control unit (not shown) that controls the driving of the liquid crystal display panel 2 acquires information on the position coordinates obtained by the position coordinate detection unit and drives the liquid crystal display panel 2 based on the information. Good.
  • the input system 50 can obtain the position coordinates of the pen 3 by capturing the propagated light at at least two positions apart from each other at the end of the transparent light guide plate 1. That is, the total number of image sensors may be two, that is, the image sensor 13 and the image sensor 23 as shown in FIG. Therefore, it is not necessary to arrange an image sensor in each light guide region as in Patent Document 1, and the apparatus is not complicated and large, and the cost is not increased.
  • the transparent light guide plate is a single simple plate, and the complicated light guide cost as in Patent Document 1 is not required.
  • the touch surface of the transparent light guide plate 1 is It becomes the uppermost surface of the pen input device 40, and the image sensor does not protrude above the touch surface. Therefore, even when the pen input device 40 of the input system 50 of this embodiment is applied to a table type terminal, the table surface can be made completely flat without the surroundings rising like a bank.
  • the input system 50 is not a light shielding method, but has a configuration in which light that has propagated inside the light guide plate is received by the imaging device, so that there is no possibility of erroneous recognition due to stray light including sunlight. Accurate position detection can be realized, and therefore it is possible to place the device outdoors or near a window.
  • the pen input device 40 of the input system 50 includes light that does not propagate through the transparent light guide plate 1 because the imaging units 10 and 20 that receive the light emitted from the tip of the pen 3 are connected to the transparent light guide plate 1. Has a structure that is not coupled to the imaging elements 13 and 23. Therefore, even if illumination light is applied from the normal direction of the touch surface of the transparent light guide plate 1, since the light is not coupled to the transparent light guide plate 1, stray light is not guided to the imaging elements 13 and 23. For this reason, the pen input device 40 is not easily affected by external light, and can be disposed outdoors or near a window.
  • the present invention having the above-described configuration provides a highly versatile input system that realizes a full flat coordinate input device and that is not erroneously recognized even if a hand touches the surface of the device. be able to.
  • the present invention is not limited to this, and even when a plurality of pens are used, for example, the light emission timing of each pen. If a plurality of pens are in contact with the touch surface of the transparent light guide plate 1 at the same time, the respective position coordinates can be obtained.
  • the present invention is not limited to this, and the light is acquired from two different locations on the one side. It is good also as composition to do.
  • the present invention is not limited to this, and each of the two adjacent sides of the transparent light guide plate 1 is provided. Locations for acquiring light may be provided, and the position coordinates of the pen 3 may be obtained from the distance between the locations and an image obtained from each location.
  • the light emitted from the tip of the pen 3 is configured to diffuse by the light diffusion member 36 provided at the tip of the pen 3. Thereby, a sufficient amount of light can be coupled to the transparent light guide plate 1 without depending on the inclination angle of the pen 3. Therefore, accurate position detection can be realized.
  • Embodiment 2 Another embodiment of the present invention will be described.
  • the same member number is attached
  • FIG. 5 is a perspective view showing the configuration of the input system of this embodiment.
  • the difference between this embodiment and the above-mentioned Embodiment 1 exists in the structure of the both ends of a certain side of the transparent light-guide plate 1.
  • FIG. 5 is a perspective view showing the configuration of the input system of this embodiment. The difference between this embodiment and the above-mentioned Embodiment 1 exists in the structure of the both ends of a certain side of the transparent light-guide plate 1.
  • the mirror coating 6 is applied to the conical surface of the cutout 1a of the transparent light guide plate 1.
  • the notch 1a ′ of the transparent light guide plate 1 of the pen input device 40 ′ forms an angle perpendicular or substantially perpendicular to the back surface of the transparent light guide plate 1.
  • a cylindrical surface is formed, and the cylindrical surface of the notch 1a 'is not mirror-coated. Instead, mirror elements 14 and 24 are disposed adjacent to the notch 1a'. Is different.
  • the end surface of the transparent light guide plate 1 is processed so as to be provided with an arc-shaped notch as in the first embodiment, but unlike the first embodiment, it has a vertical surface.
  • the imaging unit 10 ′ includes a mirror element 14, a lens 11, a visible light cut filter 12, and an imaging element 13.
  • the imaging unit 20 ′ has a mirror element 24, a lens 21, a visible light cut filter 22, and an imaging element 23.
  • the mirror elements 14 and 24 include cylindrical surfaces 14b and 24b and conical surfaces 14a and 24a, and the conical surfaces 14a and 24a are mirror-coated.
  • the light beam propagating through the transparent light guide plate 1 and guided to the four corners of the light guide plate is transmitted through the notch 1 a ′ having the concave cylindrical surface of the transparent light guide plate 1 and emitted from the transparent light guide plate 1.
  • 24 are guided to the conical surfaces 14 a, 24 a and reflected by the conical surfaces 14 a, 24 a are guided toward the back surface of the transparent light guide plate 1.
  • the light is condensed by the lenses 11 and 12, passed through the visible light cut filters 12 and 22, received by the image sensors 13 and 23, and the same method as that of the first embodiment described above from the inclination angle of the linear image of the photographed image.
  • the azimuth angles ⁇ and ⁇ of the luminous flux are obtained.
  • the size of the transparent light guide plate 1 is as large as about 1 m square.
  • the mirror elements 14 and 24 separately as in the present embodiment, it is only necessary to apply a mirror coating to the conical surfaces of the mirror elements 14 and 24 that are much smaller than the transparent light guide plate 1, and the work is easy.
  • the cost of the mirror element can be reduced.
  • light utilization efficiency can be improved by reflecting light that is refracted on the conical surface and emitted to the outside of the light guide plate and guiding it to the imaging unit side.
  • FIG. 6 is a diagram showing another form of the transparent light guide plate 1 provided in the pen input device 40 provided in the input system of the present embodiment.
  • FIG. 7 is a perspective view schematically showing the arrangement of the transparent light guide plate 1 and the imaging unit 10 provided in the pen input device 40.
  • the transparent light guide plate 1 of the present embodiment is provided with a notch 1a ′′ at a position inside the end portion of the transparent light guide plate 1. As shown in FIG. 6, the notch 1 a ′′ has a funnel-like structure formed in the transparent light guide plate 1. The notch 1a ′′ forms a hole 1b penetrating the back surface of the transparent light guide plate 1 at the conical tip.
  • the notch 1a ′′ is fitted with a light shielding member 60 having a conical shape and having a hole at the tip thereof, and external light is provided in the notch 1a ′′. Is configured to prevent intrusion.
  • the surface of the light shielding member 60 facing the notch 1a ′′ is configured to reflect light.
  • the light propagating through the transparent light guide plate 1 reaches the notch 1 a ′′, converts the optical path, is guided below the back surface of the transparent light guide plate 1 from the vicinity of the hole 1 b, and enters the imaging unit 10.
  • It has a configuration.
  • the description of the other imaging unit 20 described in the first embodiment is omitted, but light also enters the imaging unit 20 in the same manner as in the present embodiment. Can be configured.
  • FIGS. 8 and 9 another embodiment of the present invention will be described as follows.
  • the pen input device 40 provided in the input system of the first embodiment is provided with two imaging units 10 and 20 as detection means, whereas in this embodiment, as shown in FIG. The difference is that three imaging units 10, 20, and 70 (detecting means) are provided.
  • the traveling direction of the propagation light of one of the two pens 3A and 3B (the optical path of the propagation light toward the imaging unit) and the propagation light of the other pen
  • the traveling directions overlap, the linear images also overlap, so it is not possible to specify which of the two pens 3A and 3B is in front.
  • the imaging unit 10 with two optical paths that do not overlap each pen 3 A and 3 B. It becomes possible to obtain the contact positions of the pens 3A and 3B using 20 and 70.
  • the imaging unit 70 is the same as the imaging units 10 and 20 and includes a unit lens 71, a visible light cut filter 72, and an imaging element 73.
  • the pen 3B if the pen 3B is present at point P 3, overlaps the optical path of the pen 3B pen 3A to the imaging unit 10.
  • two imaging units 20 and 70 are used to detect the pen 3A, while the imaging units 10 and 70 are used to detect the pen 3B.
  • the optical paths do not overlap.
  • the position coordinates of the contact points of the pens 3A and 3B can be reliably specified.
  • N M + 1 It becomes.
  • the pen when there are two imaging units, there is a possibility that when the pen is brought into contact with the vicinity of the side of the transparent light guide plate 1 provided with the two imaging units, it becomes a blind spot and cannot be detected by the two imaging units.
  • the pen if there are three imaging units, for example, if they are arranged at the vertices of a triangle, the pen can be touched anywhere on the transparent light guide plate 1 without generating a blind spot. The position coordinates of the contact point of the pen can be reliably specified.
  • the contact position of each pen can be obtained using the combination of the imaging unit 20 and the imaging unit 70 by the two optical paths that do not overlap and the combination of the imaging unit 10 and the imaging unit 70. It becomes possible.
  • the position coordinates of the contact point of the pen can be ensured regardless of where the pen touches the transparent light guide plate 1 without generating a blind spot. It becomes possible to specify.
  • any two of the four imaging units 10, 20, 70, and 80 can be used. This is because, for example, when only two imaging units are arranged along one side of the transparent light guide plate 1, the signal quality may be degraded when the pen contact point is far from these imaging units. is there. Therefore, by disposing the imaging units at the four corners of the transparent light guide plate 1 as in this modification, when the contact point of the pen 3 is far from the imaging units 10 and 20, the imaging units 70 and By detecting at 80, the signal quality can be detected without causing deterioration.
  • the pen input device 40 ′′ provided in the input system 50 ′ of the present embodiment includes an optical member 90 (optical path conversion unit) that is closely fixed to the back surface of the transparent light guide plate 1 ′.
  • the pen input device 40 of the first embodiment are different in that the shape of the transparent light guide plate 1 ′ is different.
  • the imaging units 10 and 20 are disposed at positions where light is emitted from the optical member 90.
  • the pen input device 40 ′′ of the present embodiment allows a part of the propagation light propagating through the transparent light guide plate 1 ′ to be transmitted from the back surface of the transparent light guide plate 1 ′ by the optical member 90 described later from the back surface of the transparent light guide plate 1 ′. Also take down. Therefore, it is not necessary to provide a notch in the light guide plate as in the first embodiment. That is, the transparent light guide plate 1 ′ only needs to have a configuration (structure) capable of propagating light therein, and does not require any other processing.
  • the optical member 90 is a translucent material disposed between the back surface of the transparent light guide plate 1 ′ and the imaging units 10 and 20 described later.
  • FIG. 11 is a cross-sectional view taken along line AA ′ shown in FIG.
  • FIG. 12 is a view showing the outer shape of the optical member 90
  • the optical member 90 has a flat upper surface (adjacent surface), and is bonded and fixed to the back surface of the transparent light guide plate 1 'as shown in FIG.
  • the optical member 90 takes out the light propagating through the transparent light guide plate 1 ′ from the back surface of the transparent light guide plate 1 ′, enters the extracted light into itself and couples it inside, and propagates through the inside. It is the composition which makes it.
  • the bonding method between the optical member 90 and the transparent light guide plate 1 ′ is not particularly limited. However, as described above, the optical member 90 takes out light from the transparent light guide plate 1 ′ and makes it incident, so this is not hindered. Adhering and fixing using a method or material.
  • the optical member 90 is made of a material having the same or higher refractive index than the transparent light guide plate 1 ′. This prevents light propagating through the transparent light guide plate 1 ′ from being reflected at the boundary surface between the optical member 90 and the transparent light guide plate 1 ′ and returning again to the inside of the transparent light guide plate 1 ′.
  • the extraction efficiency of light from ′ can be increased.
  • the optical member 60 is made of high refractive index glass or polycarbonate having a higher refractive index than glass. Thereby, it is possible to efficiently extract light from the transparent light guide plate 1 ′ and to enter the optical member 90.
  • this invention can comprise a transparent light-guide plate from materials other than glass
  • a transparent light-guide plate is an acrylic
  • an optical member is acrylic, high refractive index glass, polycarbonate similarly. It can consist of
  • the optical member 90 is made of a material having a refractive index higher than that of the transparent light guide plate 1 ′.
  • the light propagating through the transparent light guide plate 1 ′ is the optical member 90 and the transparent light guide plate 1.
  • the optical member 90 may be made of a material having the same refractive index as that of the transparent light guide plate 1 ′. .
  • the optical member 90 is provided with a concave conical cutout 90a in a region near the corner of the transparent light guide plate 1 ′ on the end surface adjacent to the upper surface.
  • the angle ( ⁇ shown in FIG. 2) formed by the conical surface of the notch 90a and the back surface of the optical member 90 is 45 degrees or less, and 30 degrees or 45 degrees is selected.
  • the conical cutout 90a may be provided with a mirror coating (optical path changing portion).
  • the light propagating through the optical member 90 and reaching the notch 90a changes its optical path toward the lower side of the optical member 90, that is, toward the back surface of the optical member 90 by the notch 90a. Let That is, the light propagating through the transparent light guide plate 1 ′ travels downward from the lower surface of the transparent light guide plate 1 ′.
  • the cutout 90a is formed in a conical surface shape, but the present invention is not limited to this, and may be formed in a hyperboloid shape or a polygonal surface shape.
  • the shape of the optical member 90 is similar to a fan shape as shown in FIG. 12 when viewed from the upper surface side, but is not limited to this.
  • the manufacturing method of the optical member 90 is not particularly limited, but can be manufactured at low cost by plastic molding or glass molding.
  • the optical member 90 is disposed on the back surface in the vicinity of two adjacent corners of the four corners of the rectangular transparent light guide plate 1 ′ as shown in FIG.
  • the arrangement position of the optical member 90 is not limited to this. Since the two imaging units 10 and 20 are arranged apart from each other in order to realize a detection method described later, the light is propagated through the transparent light guide plate 1 ′ corresponding to the arrangement position of the imaging units 10 and 20.
  • the optical member 90 may be arranged in the middle of the light path where light finally enters each imaging unit.
  • the imaging units 10 and 20 are disposed immediately below the conical surface notch 90a of the optical member 90, and are disposed at two positions apart from each other at the end of the transparent light guide plate 1 ′. Further, the imaging units 10 and 20 do not protrude above the touch surface of the transparent light guide plate 1 ′.
  • the imaging units 10 and 20 have a structure in which light that does not propagate through the transparent light guide plate 1 ′ is not coupled to the imaging elements 13 and 23.
  • the present invention can be provided for any type of input system that uses a light emitting pen to determine the coordinate position of the pen.

Abstract

Provided is an input system that is equipped with a completely flat coordinates input apparatus and a light-emitting pen, and wherein no mis-recognition will happen even if a hand or the like comes in proximity or in contact with the surface of the apparatus. An input system (50) of an embodiment of the present invention is provided with a pen input apparatus (40) and a pen (3) that emits light, and the pen input apparatus (40) comprises: a transparent light-guiding plate (1) onto the surface of which the pen (3) can come in contact, and that can couple the light of the pen (3) so as to be propagated therewithin; and image pickup units (10, 20) that pick up portions of luminous flux propagating within the transparent light-guiding plate (1), at mutually different locations. The contact coordinate-position of the pen (3) is obtained on the basis of the images captured by each of the image pickup units.

Description

入力システムInput system
 本発明は、発光部を有するペンを用いた入力システムに関する。 The present invention relates to an input system using a pen having a light emitting unit.
 タッチペン、スタイラスペン等の棒状の操作部材(以下、ペンと記載する)と、当該ペンによる座標入力を受け付けるタブレット、タッチパネル等の座標入力装置(位置検出装置)とを組み合わせた入力システムが知られている。ペンを、座標入力装置の座標入力領域に接近または接触させ、座標入力装置は、ペンが接近又は接触(以下、タッチと記載する)した位置の座標を求める。求められた座標は、例えば座標入力装置とは別体の液晶ディスプレイ、又は座標入力装置に一体的に積層されている液晶パネル等の表示画面に点画像、直線画像等のオブジェクトを表示するため等に用いられる。 There is known an input system in which a bar-shaped operation member (hereinafter referred to as a pen) such as a touch pen or a stylus pen is combined with a coordinate input device (position detection device) such as a tablet or a touch panel that accepts coordinate input by the pen. Yes. The pen is brought close to or in contact with the coordinate input area of the coordinate input device, and the coordinate input device determines the coordinates of the position where the pen approaches or touches (hereinafter referred to as touch). The obtained coordinates are, for example, for displaying an object such as a point image or a straight line image on a display screen such as a liquid crystal display separate from the coordinate input device or a liquid crystal panel laminated integrally with the coordinate input device. Used for.
 特許文献1に開示されている位置検出装置は、図13に示すように、内部に光を吸収する複数の板状の光学的吸収体又は光を遮蔽する光学的遮蔽体102を互いに距離をおいて複数平行に配置した板状の導光体101と、板状の光学的吸収体又は光学的遮蔽体に直角の導光体端面に光を感知する光検出手段103を配置し、前記導光体表面に光を発する被測定物104(例えばペン)を接触させたとき、前記導光体内を板状の光学的吸収体又は光学的遮蔽体と平行の方向に全反射伝搬した光を前記光検出手段で受光し被検出物の位置を検出する。 As shown in FIG. 13, the position detection device disclosed in Patent Document 1 has a plurality of plate-like optical absorbers that absorb light inside or an optical shield 102 that shields light at a distance from each other. A plurality of plate-like light guides 101 arranged in parallel, and light detection means 103 for sensing light on the end face of the light guide perpendicular to the plate-like optical absorber or optical shield. When a measurement object 104 (for example, a pen) that emits light is brought into contact with the body surface, the light that has been totally reflected and propagated in a direction parallel to the plate-shaped optical absorber or optical shield in the light guide is reflected by the light. Light is received by the detecting means and the position of the detected object is detected.
 また、特許文献2に記載の光学タッチスクリーンは、図14に示すように、ディスプレイ130は、PSD1000-1、1000-2、光源1010、1020、導光部1030、1040を含む。図14において導光部1030からの線により示すように、導光部1030は、光源1010からの光を一様に分布させてディスプレイ130を横切ってPSD1000-1に案内する。同様に、導光部1040は、図14において導光部1040からの線により示すように、光を一様に分布させてディスプレイ130を横切ってPSD1000-2に案内しうる。そして、ユーザが図14のポイント1050でディスプレイ130の上面にスタイラス720を接触させると、図14に示すように導光部1030から案内された光の一部は、PSD1000-1への到達を妨げられている。同様に、導光部1040からの光の一部は、PSD1000-2への到達を妨げられている。そして、PSD1000-1と1000-2は、ディスプレイ130上の接触ポイント1050のX、Y座標に対応する値x1とy1を生成する。図14のディスプレイ130の側面を図15に示す。ディスプレイ130は、バックライト1110、ミラー1120、1130、PSD1140、導光部1150、アクティブマトリクス板1160、液晶1170およびフィルタ1180を含む。図15に示すように光源1110からの光は、導光部1150と同様の、導光部1150内の外部結合構造1155と同様な一連の外部結合構造を含む導光部を通じて伝達される。外部結合構造1155は、光の全内部反射を妨げ、導光部1150からの光を液晶1170に案内または結合するとともに、1以上のPSDへの反射のための1以上のミラーに向けて光の一部を案内するために、導光部1150の長さ方向に分布される。 In the optical touch screen described in Patent Document 2, as shown in FIG. 14, the display 130 includes PSDs 1000-1 and 1000-2, light sources 1010 and 1020, and light guide units 1030 and 1040. As shown by the line from the light guide unit 1030 in FIG. 14, the light guide unit 1030 uniformly distributes the light from the light source 1010 and guides it to the PSD 1000-1 across the display 130. Similarly, the light guide 1040 can uniformly distribute light and guide it across the display 130 to the PSD 1000-2, as shown by the lines from the light guide 1040 in FIG. Then, when the user brings the stylus 720 into contact with the upper surface of the display 130 at the point 1050 in FIG. 14, a part of the light guided from the light guide unit 1030 hinders reaching the PSD 1000-1 as shown in FIG. It has been. Similarly, part of the light from the light guide unit 1040 is prevented from reaching the PSD 1000-2. Then, PSDs 1000-1 and 1000-2 generate values x1 and y1 corresponding to the X and Y coordinates of contact point 1050 on display 130, respectively. A side view of the display 130 of FIG. 14 is shown in FIG. The display 130 includes a backlight 1110, mirrors 1120 and 1130, PSD 1140, a light guide unit 1150, an active matrix plate 1160, a liquid crystal 1170, and a filter 1180. As shown in FIG. 15, light from the light source 1110 is transmitted through a light guide including a series of external coupling structures similar to the external coupling structure 1155 in the light guide 1150, similar to the light guide 1150. The external coupling structure 1155 prevents total internal reflection of light, guides or couples light from the light guide 1150 to the liquid crystal 1170, and transmits light toward one or more mirrors for reflection to one or more PSDs. In order to guide a part, the light guide 1150 is distributed in the length direction.
 また、特許文献3に記載の座標入力装置は、図16に示すように、蛍光染料を含有する平板部材202の周囲の凹面200a~dに受光器203a~dが配置されており、光源部205からの光が平板部材に照射されたときに発生する蛍光を各受光器で受光し、各受光器で測定された蛍光強度から光の照射点の座標を求める。なお、平板部材202の周囲の凹面200a~d以外の辺には迷光を防止するための光吸収部材204a~dが配置されている。 In the coordinate input device described in Patent Document 3, as shown in FIG. 16, the light receivers 203a to 203d are arranged on the concave surfaces 200a to 200d around the flat plate member 202 containing the fluorescent dye, and the light source unit 205 is arranged. Fluorescence generated when the flat plate member is irradiated with light from the light is received by each light receiver, and the coordinates of the light irradiation point are obtained from the fluorescence intensity measured by each light receiver. Light absorbing members 204a to 204d for preventing stray light are disposed on the sides of the flat plate member 202 other than the concave surfaces 200a to 200d.
特開2004-338168号公報(2004年12月2日公開)JP 2004-338168 A (released on December 2, 2004) 特表2011-522303号公報(2011年7月26日公表)Special table 2011-522303 gazette (announced July 26, 2011) 特開平11-327769号公報(1999年11月30日公開)Japanese Patent Laid-Open No. 11-327769 (published on November 30, 1999)
 しかしながら、上述の特許文献1の位置検出装置では、光学的吸収体又は光学的遮蔽体102を互いに距離をおいて複数平行に配置した複雑な構造の導光体101を備えており、且つそれぞれの導光領域に対して光検出手段103を備えている。そのため、装置が複雑化し、コストがかかる。また、図13では、二次元座標(x座標、y座標)のうちの一方の座標しか特定することができない。もし、二次元座標を求める場合には、図13の構造に加えて、図13と同じ構造のものを導光方向が直交する方向になるように配置しなければならない。これでは、装置が大型化し、更にコストがかかる。 However, the above-described position detection device of Patent Document 1 includes a light guide body 101 having a complicated structure in which a plurality of optical absorbers or optical shields 102 are arranged in parallel at a distance from each other. The light detection means 103 is provided for the light guide region. This complicates the apparatus and increases costs. In FIG. 13, only one of the two-dimensional coordinates (x coordinate, y coordinate) can be specified. If two-dimensional coordinates are to be obtained, in addition to the structure shown in FIG. 13, the same structure as that shown in FIG. 13 must be arranged so that the light guide directions are orthogonal to each other. This increases the size of the apparatus and further increases costs.
 また、上述の特許文献2の光学タッチスクリーンは、ディスプレイ130の上面に広がる光を遮断することによって位置検出を行う。そのため、ペン以外の物体でも検知領域内をタッチすると、その近傍の赤外光が遮断されるため、誤ってペン入力と認識される。特に、あやまって手のひらが検知領域に触れると、手のひらで遮光された光路上でのペンタッチが認識できない。また特許文献2の光学タッチスクリーンをテーブル型端末に適用した場合、本、紙資料、皿、コップなどがテーブル面上に置かれることが想定されるが、遮光方式では上記の理由により、対応が困難である。すなわち、遮光方式ではペン一本以外のものが検知領域をタッチすると、誤認識が生じやすいという課題がある。また特許文献2の光学タッチスクリーンでは、ディスプレイ130の上面に沿って光を伝搬させるため、図15に示すように、ミラー1120、1130が上面から上部に出っ張って配置されている。そのためテーブル型端末に適用した場合、周囲が土手のように盛り上がる形となり、テーブル面を完全にフラットにすることができない。また遮光方式では、太陽光を含む迷光が光検出器に入射したとき、その迷光の影響でペンの接触が検知できなくなるという課題があり、屋外や窓際に装置を置くことが難しい。 Also, the optical touch screen of Patent Document 2 described above performs position detection by blocking light spreading on the upper surface of the display 130. For this reason, if an object other than a pen is touched in the detection area, infrared light in the vicinity of the object is blocked, so that it is erroneously recognized as a pen input. In particular, if the palm touches the detection area by mistake, the pen touch on the optical path shielded by the palm cannot be recognized. In addition, when the optical touch screen of Patent Document 2 is applied to a table-type terminal, it is assumed that books, paper materials, dishes, cups, and the like are placed on the table surface. Have difficulty. That is, the light shielding method has a problem that erroneous recognition is likely to occur when a detection object other than one pen touches the detection area. Further, in the optical touch screen of Patent Document 2, in order to propagate light along the upper surface of the display 130, mirrors 1120 and 1130 are arranged so as to protrude from the upper surface to the upper portion as shown in FIG. For this reason, when applied to a table type terminal, the surroundings rise like a bank, and the table surface cannot be made completely flat. In the light shielding method, when stray light including sunlight enters the photodetector, there is a problem that the contact of the pen cannot be detected due to the influence of the stray light, and it is difficult to place the device outdoors or near a window.
 また、上述の特許文献3の座標入力装置は、4箇所の測定点の蛍光強度の差から蛍光光の発生点の座標を求めるが、外部光の影響を受けやすく、位置座標検出の精度が充分でない。そのため、例えばペン入力装置に適用した場合に、細い線が描けない等の課題が生じる。 Moreover, although the coordinate input apparatus of the above-mentioned patent document 3 calculates | requires the coordinate of the generation | occurrence | production point of fluorescent light from the difference of the fluorescence intensity of four measurement points, it is easy to be influenced by external light and the accuracy of position coordinate detection is enough. Not. Therefore, when it applies to a pen input device, for example, the subject that a thin line cannot be drawn arises.
 本発明は、上記の課題に鑑みて為されたものであり、その目的は、フルフラットな座標入力装置と発光ペンとを備えた入力システムであって、簡易な構造であり、且つ、当該装置表面に手などが近接または接触しても誤認識されない入力システムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is an input system including a full flat coordinate input device and a light-emitting pen, which has a simple structure and the device. It is an object of the present invention to provide an input system that is not erroneously recognized even if a hand or the like comes close to or touches a surface.
 そこで、上記の課題を解決するために、本発明に係る入力システムは、
 導光部材と、
 上記導光部材に接触することによって当該導光部材に光を入射させる発光部を有する操作部材と、
 上記導光部材の上面よりも上方に突出しない位置に在って、且つ、互いに離れた箇所に在る少なくとも2つの検知手段であって、上記発光部から上記導光部材に入射して当該導光部材の内部を伝搬する伝搬光を検知する当該少なくとも2つの検知手段と、を具備し、
 上記検知手段は、上記検知した伝搬光から当該伝搬光の進行方向を検知することにより、上記発光部が上記導光部材に接触した点の位置座標を検知することを特徴とすることを特徴としている。
In order to solve the above problems, an input system according to the present invention is:
A light guide member;
An operation member having a light emitting portion for making light incident on the light guide member by contacting the light guide member;
At least two detection means that are located at positions that do not protrude above the upper surface of the light guide member and that are separated from each other. The at least two detecting means for detecting propagating light propagating through the inside of the optical member,
The detecting means detects a position coordinate of a point where the light emitting unit contacts the light guide member by detecting a traveling direction of the propagated light from the detected propagated light. Yes.
 上記の構成によれば、導光部材における互いに離れた少なくとも二箇所に伝搬した光を捕らえることによって、位置座標を求める。すなわち、各箇所に上記検知手段を置いたとしても検知手段の総数は2つでよく、場合によっては、各箇所からミラーなどによって1つの検知手段に集めることもできるので、特許文献1のように各導光領域に受光素子(撮像素子)を配置する必要がない。そのため、装置を複雑化・大型化することなく、コストもかからない。 According to the above configuration, the position coordinates are obtained by capturing the light that has propagated to at least two locations apart from each other in the light guide member. That is, even if the detection means is placed at each location, the total number of detection devices may be two. In some cases, the detection devices can be collected from each location by a mirror or the like. There is no need to arrange a light receiving element (imaging element) in each light guide region. For this reason, the apparatus is not complicated or enlarged, and costs are not increased.
 また上記の構成によれば、導光部材に複雑な構造を要さず、コストがかからない。 Further, according to the above configuration, the light guide member does not require a complicated structure and does not cost.
 また上記の構成によれば、導光部材の上面よりも上方に突出しない位置に検知手段が設けられ、この検知手段によって、導光部材の端部における互いに離れた複数箇所で、導光部材の内部を伝搬する光をそれぞれ捕える構成であるので、導光部材の上面が座標入力装置の最上面とすることができ、導光部材から上部に出っ張るものがない。よって、本入力装置をテーブル型端末に適用した場合であっても、周囲が土手のように盛り上がることなく、テーブル面を完全にフラットにすることができる。 Further, according to the above configuration, the detection unit is provided at a position that does not protrude upward from the upper surface of the light guide member. Since it is the structure which each captures the light which propagates inside, the upper surface of a light guide member can be made into the uppermost surface of a coordinate input device, and there is nothing which protrudes upwards from a light guide member. Therefore, even when this input device is applied to a table type terminal, the table surface can be made completely flat without the surroundings being raised like a bank.
 また上記の構成によれば、特許文献1のように二次元の位置座標を求めるために複数枚の導光部材を準備する必要がなく、装置の小型化に寄与することができる。 Further, according to the above configuration, there is no need to prepare a plurality of light guide members in order to obtain a two-dimensional position coordinate as in Patent Document 1, which can contribute to downsizing of the apparatus.
 また上記の構成によれば、上述のような遮光方式ではなく、導光部材の内部を伝搬した光を用いるので、太陽光を含む迷光によって誤認識が生じる虞がなく正確な位置検出を実現することができ、故に、屋外や窓際に装置を置くことも可能である。 Moreover, according to said structure, since the light which propagated the inside of the light guide member is used instead of the above light-shielding system, there exists no possibility that misrecognition will be caused by the stray light containing sunlight, and an exact position detection is implement | achieved. It is therefore possible to place the device outdoors or near the window.
 また上記の構成によれば、特許文献3のような座標入力装置では光強度変化を用いて位置座標検出を行っているため、外部光の影響を受け検出精度が不十分なのに対し、二箇所以上の観測点から伝搬光の進行方向を精度良く得ることができるため、伝搬光の発生した点、すなわち発光部が導光部材に接触した点を正確に求めることができる。 Further, according to the above configuration, the coordinate input device as in Patent Document 3 performs position coordinate detection using a change in light intensity, so that the detection accuracy is insufficient due to the influence of external light, but two or more locations. Since the traveling direction of the propagation light can be obtained from the observation point with high accuracy, the point where the propagation light is generated, that is, the point where the light emitting unit contacts the light guide member can be accurately obtained.
 したがって、上記の構成を具備する本発明は、フルフラットで、且つ、当該装置表面に手などが接触しても誤認識されない汎用性の高い入力装置を提供することができる。 Therefore, the present invention having the above-described configuration can provide a highly versatile input device that is fully flat and that is not erroneously recognized even if a hand touches the surface of the device.
 また本発明に係る入力システムの一形態は、上記の構成に加えて、
 上記発光部が上記導光部材に接触することにより、光が上記導光部材に拡散放射されることが好ましい。
Moreover, in addition to said structure, one form of the input system which concerns on this invention is
It is preferable that the light is diffused and radiated to the light guide member when the light emitting unit contacts the light guide member.
 上記の構成によれば、上記発光部の状況に関係なく、伝搬光が発生した点の位置座標を精度よく求めることができる。 According to the above configuration, the position coordinates of the point where the propagation light is generated can be accurately obtained regardless of the state of the light emitting unit.
 また本発明に係る入力システムの一形態は、上記の構成に加えて、
 上記導光部材は一辺を有し、
 上記検知手段は、上記導光部材の上記一辺の両端に少なくとも設けられていることが好ましい。
Moreover, in addition to said structure, one form of the input system which concerns on this invention is
The light guide member has one side;
The detecting means is preferably provided at least at both ends of the one side of the light guide member.
 上記の構成によれば、導光部材の内部を伝搬する光を捕らえる位置が、上記一辺の両端であり、当該捕らえる位置同士が比較的離れていることから、精度よく位置座標を検出することができる。 According to said structure, since the position which captures the light which propagates the inside of a light guide member is the both ends of the said one side, and the said capture positions are comparatively separated, it is possible to detect a position coordinate with high accuracy. it can.
 また本発明に係る入力システムの一形態は、上記の構成に加えて、
 上記導光部材の端部に、上記検知手段へ上記伝搬光を導く円錐形の光路変換部を設けていることが好ましい。
Moreover, in addition to said structure, one form of the input system which concerns on this invention is
It is preferable that an end portion of the light guide member is provided with a conical optical path conversion unit that guides the propagation light to the detection unit.
 上記の構成によれば、上記光路変換部を設けることによって、上記検知手段を所望の位置に配置することができる。 According to the above configuration, the detection unit can be arranged at a desired position by providing the optical path conversion unit.
 例えば、上記少なくとも二箇所に上記光路変換部(例えばミラー)を設けて上記検知手段が光路変換部によって上記導光部材の上記上面よりも下方に導かれた光を受光して光電変換することができる。この構成と、比較構成として光路変換部が無い構成を想定すると、光路変換部が無い構成では、導光板の内部を伝搬した光は、導光板の端部から、導光板の上面の面積を拡げる方向に沿った光軸を有するため、この光を、そのまま撮像素子に受光させる必要がある。この場合、導光板の上面の面積を拡げる方向に撮像素子を配設しなければならず、入力装置が、導光板の上面の面積を拡げる方向に大型化することになる。一方、上記のように光路変換部を有した構成であれば、導光部材の内部を伝搬した光を導光部材の上面よりも下方に導くことができるので、受光部(検知手段)を当該下方に配設することができ、上述のような大型化を回避することができる。 For example, the optical path conversion unit (for example, a mirror) is provided in the at least two locations, and the detection unit receives light guided below the upper surface of the light guide member by the optical path conversion unit and photoelectrically converts the light. it can. Assuming this configuration and a configuration without an optical path conversion unit as a comparative configuration, in the configuration without an optical path conversion unit, the light propagated inside the light guide plate expands the area of the upper surface of the light guide plate from the end of the light guide plate. Since it has an optical axis along the direction, it is necessary to cause the image sensor to receive this light as it is. In this case, it is necessary to dispose the imaging element in a direction that increases the area of the upper surface of the light guide plate, and the input device increases in size in a direction that increases the area of the upper surface of the light guide plate. On the other hand, since the light propagating through the inside of the light guide member can be guided below the upper surface of the light guide member with the configuration having the optical path conversion unit as described above, the light receiving unit (detection means) It can arrange | position below and can avoid the enlargement as mentioned above.
 また本発明に係る入力システムの一形態は、上記の構成に加えて、
 複数の画素を有する画像表示パネルをさらに具備し、
 上記検知手段によって検知された上記位置座標に基づいて、上記画像表示パネルの上記画素を駆動することが好ましい。
Moreover, in addition to said structure, one form of the input system which concerns on this invention is
An image display panel having a plurality of pixels;
It is preferable to drive the pixels of the image display panel based on the position coordinates detected by the detection means.
 上記の構成によれば、画像表示パネルにおける上記位置座標に対応した画素を駆動して視認することができるように構成することができる。 According to the above configuration, the pixel corresponding to the position coordinate on the image display panel can be driven and viewed.
 以上のように、本発明により、フルフラットで、簡易な構造であり、且つ、当該装置表面に手などが近接または接触しても誤認識されない入力システムを実現することができる。 As described above, according to the present invention, it is possible to realize an input system that has a full flat and simple structure and that is not erroneously recognized even if a hand or the like approaches or touches the surface of the apparatus.
本発明の一実施形態の入力システムの構成を示す斜視図である。It is a perspective view which shows the structure of the input system of one Embodiment of this invention. 図1に示す切断線A-A´の矢視断面図である。FIG. 2 is a cross-sectional view taken along line AA ′ shown in FIG. 本発明の一実施形態の入力システムのペンの構成を示す図である。It is a figure which shows the structure of the pen of the input system of one Embodiment of this invention. 本発明の一実施形態の入力システムのペン入力装置に具備された撮像素子において取得される取得画像の図である。It is a figure of the acquired image acquired in the image sensor with which the pen input device of the input system of one embodiment of the present invention was equipped. 本発明の他の実施形態の入力システムの構成を示す斜視図である。It is a perspective view which shows the structure of the input system of other embodiment of this invention. 本発明の他の実施形態の入力システムの一部の構成を示す上面図である。It is a top view which shows the structure of a part of input system of other embodiment of this invention. 本発明の他の実施形態の入力システムの一部の概略構成を示す斜視図である。It is a perspective view which shows the one part schematic structure of the input system of other embodiment of this invention. 本発明の他の実施形態の入力システムの一部の構成を示す斜視図である。It is a perspective view which shows the structure of a part of input system of other embodiment of this invention. 図8に示す構成の変形例を示す上面図である。It is a top view which shows the modification of the structure shown in FIG. 本発明の他の実施形態の入力システムの一部の構成を示す上面図である。It is a top view which shows the structure of a part of input system of other embodiment of this invention. 本発明の他の実施形態の入力システムの一部の概略構成を示す断面図である。It is sectional drawing which shows the one part schematic structure of the input system of other embodiment of this invention. 図10および図11に示す一部の構成の斜視図である。It is a perspective view of the one part structure shown in FIG. 10 and FIG. 従来構成の図である。It is a figure of a conventional structure. 従来構成の図である。It is a figure of a conventional structure. 従来構成の図である。It is a figure of a conventional structure. 従来構成の図である。It is a figure of a conventional structure.
 〔実施形態1〕
 本発明に係る入力システムの一実施形態について、図1~図4を参照して説明する。
Embodiment 1
An embodiment of an input system according to the present invention will be described with reference to FIGS.
 図1は、本実施形態の入力システムの構成を示す斜視図であり、図2は、図1に示す切断線A-A´の矢視断面図である。 FIG. 1 is a perspective view showing the configuration of the input system of this embodiment, and FIG. 2 is a cross-sectional view taken along line AA ′ shown in FIG.
 (入力システムの構成)
 本実施形態の入力システム50は、図1に示すように、ペン入力装置40(座標入力装置)と、ペン3(操作部材)とを具備しており、ペン入力装置40の表面であるタッチ面(上面)にペン3がタッチ(接触)すると、タッチ面でのタッチ位置座標を求めることができる。
(Configuration of input system)
As shown in FIG. 1, the input system 50 of the present embodiment includes a pen input device 40 (coordinate input device) and a pen 3 (operation member), and is a touch surface that is the surface of the pen input device 40. When the pen 3 touches (contacts) the (upper surface), the touch position coordinates on the touch surface can be obtained.
 ●ペン入力装置40
 ペン入力装置40は、図1に示すように、液晶表示パネル2(画像表示パネル)と、液晶表示パネル2の表示面側に重ねて配置された四角形の透明導光板1(導光部材)と、透明導光板1の或る一辺の両端にそれぞれ配設された撮像ユニット10、20(検知手段)とを有している。
● Pen input device 40
As shown in FIG. 1, the pen input device 40 includes a liquid crystal display panel 2 (image display panel), and a rectangular transparent light guide plate 1 (light guide member) disposed on the display surface side of the liquid crystal display panel 2. The transparent light guide plate 1 has imaging units 10 and 20 (detecting means) disposed at both ends of a certain side.
 液晶表示パネル2は、一対の基板間に液晶層を挟持しており、各基板には、電圧印加によって当該液晶層の液晶分子の配向を変えるための各種電極が少なくとも設けられている。そして、電圧印加によって液晶分子の配向を変化させることによって、各画素の液晶層を透過する光の透過量を調整して所望の表示をおこなう。液晶表示パネル2の構成は、従来周知の液晶表示パネルを用いることができる。 The liquid crystal display panel 2 has a liquid crystal layer sandwiched between a pair of substrates, and each substrate is provided with at least various electrodes for changing the orientation of liquid crystal molecules in the liquid crystal layer by applying a voltage. Then, by changing the orientation of the liquid crystal molecules by applying a voltage, the amount of light transmitted through the liquid crystal layer of each pixel is adjusted to perform a desired display. As the configuration of the liquid crystal display panel 2, a conventionally known liquid crystal display panel can be used.
 透明導光板1は、透光性材料からなる一枚の平板である。図1に示すように、液晶表示パネル2の表示面側に重ねて配設されている。透明導光板1の大きさは、液晶表示パネルと略同じに構成することができる。本実施形態では、図1に示すように、撮像ユニット10、20を配設する一辺側が液晶表示パネル2よりも大きく構成されている。これにより、撮像ユニット10、20の少なくとも一部分を、透明導光板1の背面側に配設することができる。これにより、ペン入力装置40のタッチ面に沿って拡がる方向のサイズの大型化を抑制し、コンパクトサイズの実現に寄与している。 The transparent light guide plate 1 is a single flat plate made of a translucent material. As shown in FIG. 1, the liquid crystal display panel 2 is disposed so as to overlap the display surface side. The size of the transparent light guide plate 1 can be configured substantially the same as that of the liquid crystal display panel. In the present embodiment, as shown in FIG. 1, one side where the imaging units 10 and 20 are disposed is configured to be larger than the liquid crystal display panel 2. Accordingly, at least a part of the imaging units 10 and 20 can be disposed on the back side of the transparent light guide plate 1. Thereby, the enlargement of the size of the direction which spreads along the touch surface of the pen input device 40 is suppressed, and it contributes to realization of a compact size.
 透明導光板1の液晶表示パネル2とは反対側の表面が、ペン3によってタッチされるタッチ面である。 The surface of the transparent light guide plate 1 opposite to the liquid crystal display panel 2 is a touch surface touched by the pen 3.
 また、透明導光板1における撮像ユニット10、20を配設する端部(角)はそれぞれ、凹型の円錐面状の切り欠き1a(光路変換部)が設けられている。この切り欠き1aの円錐面と透明導光板1背面とがなす角度(図2に示すγ)は、45度以下であり、30度や45度が選ばれる。円錐面状の切り欠き1aにはミラーコーティング6(光路変換部)を施してある。これにより、図2に示すように透明導光板1の内部を伝搬して切り欠き1aに至った光の光路を、切り欠き1aによって透明導光板1の下方、すなわち、透明導光板1の背面に向けて変化させる。なお、ミラーコーティング6が無くても、切り欠き1aの円錐面によって、光路を透明導光板1の下方に変化させることが可能である。すなわち、透明導光板1は、完全な四角形である必要はなく、上述のように角が切り欠かれていたり、あるいは、角がR加工されているなどの実質的な四角形であってよい。 Further, the end portions (corners) where the imaging units 10 and 20 are disposed in the transparent light guide plate 1 are each provided with a concave conical cutout 1a (light path conversion portion). The angle (γ shown in FIG. 2) formed by the conical surface of the notch 1a and the back surface of the transparent light guide plate 1 is 45 degrees or less, and 30 degrees or 45 degrees is selected. A mirror coating 6 (optical path changing portion) is applied to the conical cutout 1a. As a result, as shown in FIG. 2, the optical path of light propagating through the transparent light guide plate 1 and reaching the notch 1a is formed below the transparent light guide plate 1, that is, on the back surface of the transparent light guide plate 1 by the notch 1a. Change towards. Even without the mirror coating 6, the optical path can be changed below the transparent light guide plate 1 by the conical surface of the notch 1 a. That is, the transparent light guide plate 1 does not have to be a perfect quadrangle, and may be a substantial quadrangle such that the corners are notched as described above, or the corners are R-processed.
 透明導光板1の厚さは1~3mmが主に用いられる。透明導光板1の材料としては、例えばアクリルが用いられ、ポリカーボネートやガラスでも構わない。また透明導光板1の厚さは1~3mmが主に用いられるが、これより厚くてもかまわない。また、透明導光板1のサイズ(タッチ面のサイズ)は、約1m角とすることができるが、これに制限されるものではない。 The thickness of the transparent light guide plate 1 is mainly 1 to 3 mm. As a material of the transparent light guide plate 1, for example, acrylic is used, and polycarbonate or glass may be used. Further, the thickness of the transparent light guide plate 1 is mainly 1 to 3 mm, but it may be thicker than this. In addition, the size of the transparent light guide plate 1 (the size of the touch surface) can be about 1 m square, but is not limited thereto.
 撮像ユニット10、20は、ペン3の発光部30から透明導光板1に入射して透明導光板1の内部を伝搬する伝搬光を検知する手段であり、透明導光板1の円錐面状の切り欠き1aの直下に配置されている。つまり、撮像ユニット10、20は、透明導光板1の端部における互いに離れた二箇所に配設されている。また、撮像ユニット10、20は、透明導光板1のタッチ面よりも上方には突出していない。撮像ユニット10は、レンズ11と、可視光カットフィルタ12と、撮像素子13とを有している。また撮像ユニット20も同様に、レンズ21と、可視光カットフィルタ22、撮像素子23とを有している。撮像ユニット10、20は、透明導光板1に接続されていて、透明導光板1を伝搬しない光は撮像素子13、23に結合しない構造になっている。 The imaging units 10 and 20 are means for detecting propagation light that enters the transparent light guide plate 1 from the light emitting unit 30 of the pen 3 and propagates through the inside of the transparent light guide plate 1. It arrange | positions directly under the notch 1a. In other words, the imaging units 10 and 20 are disposed at two locations separated from each other at the end of the transparent light guide plate 1. In addition, the imaging units 10 and 20 do not protrude above the touch surface of the transparent light guide plate 1. The imaging unit 10 includes a lens 11, a visible light cut filter 12, and an imaging element 13. Similarly, the imaging unit 20 includes a lens 21, a visible light cut filter 22, and an imaging element 23. The imaging units 10 and 20 are connected to the transparent light guide plate 1 and have a structure in which light that does not propagate through the transparent light guide plate 1 is not coupled to the imaging elements 13 and 23.
 なお、本実施形態では、切り欠き1aが円錐面状に構成されているが、本発明はこれに限定されるものではなく、多角面状に構成されていてもよい。 In this embodiment, the notch 1a is formed in a conical surface shape, but the present invention is not limited to this, and may be formed in a polygonal surface shape.
 ●ペン3
 一方、ペン入力装置40に対応するペン3は、いわゆるタッチペン、スタイラスペンと呼ばれる操作部材である。ペン3の詳細について、図3を用いて説明する。
Pen 3
On the other hand, the pen 3 corresponding to the pen input device 40 is an operation member called a touch pen or a stylus pen. Details of the pen 3 will be described with reference to FIG.
 図3は、ペン3の構成を示す図であり、説明の便宜上、筐体の一部を取り外して、内部構造を露出させている。ペン3は、外形となる筐体35の内部に、赤外光を出射する発光素子31および当該赤外光をペン3の先端へと導く導光部材32を有する発光部30と、電源装置33と、制御装置34とが、格納されている。そして、本実施形態のペン3の特徴的構成として、ペン3の先端に発光部30が配置された構成となっているとともに、発光部30の光出射側に、光を拡散させる光拡散部材36を取り付けている点がある。 FIG. 3 is a diagram showing the configuration of the pen 3, and for convenience of explanation, a part of the housing is removed to expose the internal structure. The pen 3 has a light emitting unit 30 that has a light emitting element 31 that emits infrared light and a light guide member 32 that guides the infrared light to the tip of the pen 3, and a power supply device 33. And the control device 34 are stored. As a characteristic configuration of the pen 3 according to the present embodiment, the light emitting unit 30 is disposed at the tip of the pen 3 and the light diffusion member 36 diffuses light on the light emitting side of the light emitting unit 30. There is a point that is attached.
 この光拡散部材36は、光拡散材料を含有する樹脂から構成されている。上記光拡散材料としては、ガラスビーズを用いることができる。また上記樹脂としては、フッ素樹脂(具体例としてはポリテトラフルオロエチレン)、シリコンラバーを用いることができ、弾性を有して構成されていることが好ましい。弾性材を用いることによって、ペン入力装置40の透明導光板1にペン3の先端、すなわち光拡散部材36を接触させて用いる場合に、透明導光板1表面を傷付けることなく、且つ、接触によって僅かに接触部分が変形して透明導光板1表面との接触面積を大きくすることができるので、透明導光板1表面にカップリングする光量を多くすることができる。 The light diffusing member 36 is made of a resin containing a light diffusing material. Glass beads can be used as the light diffusion material. As the resin, a fluororesin (specifically, polytetrafluoroethylene) and silicon rubber can be used, and it is preferable that the resin is configured to have elasticity. By using the elastic material, when using the transparent light guide plate 1 of the pen input device 40 in contact with the tip of the pen 3, that is, the light diffusing member 36, the surface of the transparent light guide plate 1 is not damaged and is slightly touched by the contact. Since the contact portion is deformed to increase the contact area with the surface of the transparent light guide plate 1, the amount of light coupled to the surface of the transparent light guide plate 1 can be increased.
 光拡散部材36の光出射面は、図3に示すように、テーパーを有しており、より具体的には曲面を有している。すなわち、光拡散部材36は概ね半球体であり、直径が2.5~5.5mmである。直径が2.5よりも小さいと、十分に拡散した光を形成することができない虞があり、且つ、光拡散部材36をペン入力装置40の透明導光板1に接触させて用いる場合に十分な接触面積を確保することができる光が十分に透明導光板1表面にカップリングしない虞がある。また、直径が5.5mmを超える場合、拡散光が拡がりすぎて正確な位置検出をおこなうことが困難になる虞があり、且つ、光拡散部材36をペン入力装置40の透明導光板1に接触させる場合に接触面積が広すぎることから摩擦抵抗が大きくなりすぎて操作性を損なう虞がある。故に、直径を2.5~5.5mmとすれば、光を拡散させることができつつ、位置座標を精度よく検出することができるとともに、滑らかな書き味(タッチ感)を実現することができる。なお、この曲面は、均一な曲率によって構成されている必要はなく、ペン3の最も先端部となる領域とそれを囲む領域とで曲率を異ならせても良い。 The light exit surface of the light diffusing member 36 has a taper, more specifically, a curved surface, as shown in FIG. That is, the light diffusing member 36 is generally hemispherical and has a diameter of 2.5 to 5.5 mm. If the diameter is smaller than 2.5, there is a possibility that the sufficiently diffused light cannot be formed, and it is sufficient when the light diffusion member 36 is used in contact with the transparent light guide plate 1 of the pen input device 40. There is a possibility that light that can secure a contact area is not sufficiently coupled to the surface of the transparent light guide plate 1. If the diameter exceeds 5.5 mm, the diffused light may be excessively spread and it may be difficult to accurately detect the position, and the light diffusing member 36 is brought into contact with the transparent light guide plate 1 of the pen input device 40. In this case, since the contact area is too large, the frictional resistance becomes too large and the operability may be impaired. Therefore, if the diameter is 2.5 to 5.5 mm, the position coordinates can be detected with high accuracy while light can be diffused, and a smooth writing feeling (touch feeling) can be realized. . Note that the curved surface does not need to be configured with a uniform curvature, and the curvature may be different between the region that is the tip of the pen 3 and the region that surrounds it.
 さらに、この曲面には、表面に微細な凹凸形状が設けられていても良い。この微細凹凸によって、光を拡散させることができる。また、光拡散部材36をペン入力装置40の透明導光板1に接触させて用いる場合、この微細凹凸によって透明導光板1との接触面積が減少し、摺動させたときの摩擦力が低減するので、滑らかな書き味(タッチ感)を実現することができる。なお、このように微細凹凸を設ける態様の場合は、光拡散部材36に光拡散材料を含めることなく樹脂単体で構成し、当該樹脂における透明導光板1との対向領域に微細凹凸を設けることによっても、光拡散効果を奏することができる。換言すれば、光拡散材料を含めるのに加えて微細凹凸を形成すれば、より光拡散効果を高めることができる。微細凹凸は、型成形によって形成することができるが、この方法に限定されるものでない。なお、微細凹凸を設けることにより透明導光板1との接触面積が減少するが、それに因るカップリング光量の減少は5%程度であるため、位置座標の検出に大きな影響は与えない。 Further, the curved surface may be provided with a fine uneven shape on the surface. Light can be diffused by the fine unevenness. Further, when the light diffusing member 36 is used in contact with the transparent light guide plate 1 of the pen input device 40, the contact area with the transparent light guide plate 1 is reduced due to the fine unevenness, and the frictional force when sliding is reduced. Therefore, a smooth writing taste (touch feeling) can be realized. In addition, in the case of the aspect which provides the fine unevenness in this way, the light diffusing member 36 is constituted by a resin alone without including the light diffusing material, and the fine unevenness is provided in the region facing the transparent light guide plate 1 in the resin. Also, a light diffusion effect can be achieved. In other words, if the fine irregularities are formed in addition to the light diffusion material, the light diffusion effect can be further enhanced. The fine irregularities can be formed by molding, but are not limited to this method. Although the contact area with the transparent light guide plate 1 is reduced by providing fine irregularities, the reduction of the coupling light amount due to the reduction is about 5%, so that the detection of position coordinates is not greatly affected.
 また、光拡散部材36の光出射面には、耐磨耗加工が施されていることが好ましい。光拡散部材36がポリテトラフルオロエチレンによって構成されている場合には不要であるが、光拡散部材36自体が耐磨耗に優れていない他の材料から構成されている場合には、その光出射面に耐磨耗加工を施すことは有効である。耐磨耗加工とは、特に制限はないが、例えばポリテトラフルオロエチレンを光拡散部材36の光出射面にコーティングする加工が挙げられる。 Further, it is preferable that the light emitting surface of the light diffusing member 36 is subjected to wear resistance processing. This is unnecessary when the light diffusing member 36 is made of polytetrafluoroethylene, but when the light diffusing member 36 is made of another material that is not excellent in wear resistance, the light emission It is effective to apply a wear resistant process to the surface. Although there is no restriction | limiting in particular with an abrasion-resistant process, For example, the process which coats the polytetrafluoroethylene on the light-projection surface of the light-diffusion member 36 is mentioned.
 さらに、この光拡散部材36は、ペン3に対して着脱可能に構成されている。光拡散部材36が何らかの理由で損傷した場合(経時劣化を含む)であっても、光拡散部材36を交換するだけでペン3の使用を継続することができる。ペン3ごと交換する構成に比べて、低コストで使用を継続することができる。着脱可能であるために、光拡散部材36が取り付けられる側の部材(本実施形態では、導光部材32)には、光拡散部材36と接触する部分に、溝構造、咬合する構造、または、嵌め合う構造が設けられており(不図示)、光拡散部材36には、その構造に合う構造が設けられている(不図示)。なお、本実施形態では、導光部材32に光拡散部材36を取り付ける態様であるが、本発明はこれに限定されるものではなく、筐体35に光拡散部材36を取り付ける態様であってもよく、他の態様であってもよい。 Furthermore, the light diffusing member 36 is configured to be detachable from the pen 3. Even if the light diffusing member 36 is damaged for some reason (including deterioration with time), the use of the pen 3 can be continued only by replacing the light diffusing member 36. Compared to the configuration in which the pen 3 is replaced, the use can be continued at a low cost. In order to be detachable, the member on the side to which the light diffusing member 36 is attached (in this embodiment, the light guide member 32) has a groove structure, an occlusal structure, or a portion in contact with the light diffusing member 36, or A fitting structure is provided (not shown), and the light diffusion member 36 is provided with a structure that matches the structure (not shown). In the present embodiment, the light diffusion member 36 is attached to the light guide member 32. However, the present invention is not limited to this, and the light diffusion member 36 may be attached to the housing 35. It may be other embodiments.
 上記発光素子31は、赤外光を発するLED(light emitting diode)あるいはLD(laser diode)を用いることができる。なお、LEDもしくはLDは、1つのペン3に対して1つだけ設けられている構成に限らず、複数個を搭載してもよい。 The light emitting element 31 may be an LED (light emitting diode) or an LD (laser diode) that emits infrared light. The number of LEDs or LDs is not limited to one provided for one pen 3, and a plurality of LEDs or LDs may be mounted.
 上記電源装置33から電源を受けて発光した発光素子31からの赤外光は、上記導光部材32を経てこの光拡散部材36に入射し、当該光拡散部材36の上記光拡散材料および上記微細凹凸によって乱反射する。そして、光拡散部材36の光出射面から拡散光となって出射される。 Infrared light from the light emitting element 31 that receives light from the power supply device 33 and enters the light diffusing member 36 through the light guiding member 32 enters the light diffusing material 36 and the fine light. Diffusely reflected by unevenness. And it is radiate | emitted as diffused light from the light-projection surface of the light-diffusion member 36. FIG.
 電源装置33は、例えば電池を内蔵する構成とすることができるほか、充電式に構成されていてもよい。 The power supply device 33 may be configured to include a battery, for example, or may be configured to be rechargeable.
 上記制御装置34は、発光素子31の発光を制御する。例えば、発光素子31が透明導光板1に接触したときにのみに発光する仕組み等が盛り込まれる。この仕組みは感圧スイッチ等を用いることにより構成され、発光時間を制御できるため、消費電力を低減し、電池寿命を延ばすことができる。 The control device 34 controls the light emission of the light emitting element 31. For example, a mechanism for emitting light only when the light emitting element 31 comes into contact with the transparent light guide plate 1 is included. This mechanism is configured by using a pressure-sensitive switch or the like, and can control the light emission time, thereby reducing power consumption and extending battery life.
 以上のように、ペン3には、赤外光を出射する光源(発光部)が設けられており、ペン先から赤外光が拡散放射される構成となっている。ペン3のペン先が透明導光板1に接触すると、ペン先から放射された赤外光の一部が、透明導光板1に結合して、透明導光板1内を伝搬する。ペン3は、ペン先から赤外光を拡散放射するため、透明導光板1に結合した光は、透明導光板1内を拡散放射する。これにより、位置座標を精度よく求めることができる。 As described above, the pen 3 is provided with a light source (light emitting unit) that emits infrared light, and is configured to diffuse and radiate infrared light from the pen tip. When the pen tip of the pen 3 comes into contact with the transparent light guide plate 1, part of the infrared light emitted from the pen tip is coupled to the transparent light guide plate 1 and propagates through the transparent light guide plate 1. Since the pen 3 diffuses and emits infrared light from the pen tip, the light coupled to the transparent light guide plate 1 diffuses and radiates inside the transparent light guide plate 1. Thereby, a position coordinate can be calculated | required accurately.
 そして、撮像ユニット10、20は、透明導光板1の内部を伝搬する赤外光(以下、伝搬光4a、4bと記載する)を、それぞれ捕らえて、撮像素子13から得られる各画像から、当該接触の二次元の位置座標を求める。撮像素子13の受光面は、透明導光板1の表面と平行であるように配設されている。以下に、ペン入力の検出原理について詳述する。 The imaging units 10 and 20 capture infrared light propagating through the transparent light guide plate 1 (hereinafter referred to as propagation light 4a and 4b), respectively, and from the respective images obtained from the imaging element 13, Find the two-dimensional position coordinates of the contact. The light receiving surface of the image sensor 13 is disposed so as to be parallel to the surface of the transparent light guide plate 1. Hereinafter, the detection principle of pen input will be described in detail.
 (ペン入力の検出原理)
 ペン3のペン先がペン入力装置のタッチ面(透明導光板表面)に接触したとき、ライトペンから放射される赤外光の一部が屈折率Nの透明導光板1内に入射する。この入射光のうち、透明導光板1内の伝搬角θが、式;
sin(90°-θ) > 1/N
に示す条件を満たす光束は、図2に示すように、透明導光板1内に閉じ込められ、透明導光板1の表面、および裏面での反射を繰り返し、透明導光板1内を進行する。
(Pen input detection principle)
When the pen tip of the pen 3 comes into contact with the touch surface (transparent light guide plate surface) of the pen input device, a part of infrared light emitted from the light pen enters the transparent light guide plate 1 having a refractive index N. Of this incident light, the propagation angle θ P in the transparent light guide plate 1 is given by the formula:
sin (90 ° −θ P )> 1 / N
2 is confined in the transparent light guide plate 1 and repeatedly reflected on the front and back surfaces of the transparent light guide plate 1 and travels through the transparent light guide plate 1 as shown in FIG.
 ペン3から発せられた赤外光はペン先を中心にして放射状に拡散され、透明導光板1内を伝搬し、その光束のうちの一部の光束4a、4bは円錐面状の切り欠き1aの端面にも導かれ、当該端面の反射光が撮像ユニット10、20で受光される。具体的には、当該端面の反射光は、レンズ11、21にて集光され、続いて、可視光カットフィルタ12、22を通って、最後に撮像素子13、23に受光される。可視光カットフィルタ12、22はペンから放射される赤外光を透過し、それ以外の波長帯の光を遮断する役割を果たす。可視光カットフィルタ12、22により、太陽光や、液晶表示パネルバックライト光等の迷光が遮断され、SN比を高くすることができる。 Infrared light emitted from the pen 3 is diffused radially around the pen tip and propagates through the transparent light guide plate 1, and some of the light beams 4 a and 4 b are conical surface cutouts 1 a. The image pickup units 10 and 20 receive the reflected light from the end face. Specifically, the reflected light of the end face is collected by the lenses 11 and 21, subsequently passes through the visible light cut filters 12 and 22, and is finally received by the imaging elements 13 and 23. The visible light cut filters 12 and 22 transmit infrared light emitted from the pen and serve to block light in other wavelength bands. Visible light cut filters 12 and 22 block stray light such as sunlight and liquid crystal display panel backlight light, and can increase the SN ratio.
 図4(a)に示すように、ペン3から発せられ透明導光板1内を伝搬し、出射された光はレンズ11を経て、撮像素子13に線状の像15を形成する。線状の像15の位置はペン3の位置によって変化し、撮像ユニットの取得画像を分析することにより、光束4a、4bと透明導光板の一辺とがなす角度α、βがそれぞれ求められ、三角測量の原理を用いて発光源となるペン先が接した点の位置座標が求められる。図4(a)において、ペンが3aの位置にあるとき、線状の像15が形成される。このペンが3bの位置に移動したとき、線状の像17が形成される。 As shown in FIG. 4A, the light emitted from the pen 3 propagates through the transparent light guide plate 1 and the emitted light passes through the lens 11 to form a linear image 15 on the image sensor 13. The position of the linear image 15 changes depending on the position of the pen 3, and by analyzing the acquired image of the imaging unit, angles α and β formed by the light beams 4a and 4b and one side of the transparent light guide plate are obtained, respectively. Using the principle of surveying, the position coordinates of the point where the pen tip serving as the light source contacts is obtained. In FIG. 4A, when the pen is at the position 3a, a linear image 15 is formed. When the pen moves to the position 3b, a linear image 17 is formed.
 図4(b)に撮像素子13の取得画像を示す。赤外線を照射している状態にあるペン3のペン先が透明導光板1に接触していないとき、撮像素子13の取得画像には何も現れない。一方、発光部から赤外線を照射している状態にあるペン3のペン先が透明導光板1に接触して赤外光が透明導光板1に結合すると、図2に示すように、その光束のうちの一部の光束4aが撮像素子13に導かれ、撮像素子13の撮像面に線状の像が形成され、取得画像上に線状の像15が現れる。 FIG. 4B shows an acquired image of the image sensor 13. When the pen tip of the pen 3 in the state of irradiating infrared rays is not in contact with the transparent light guide plate 1, nothing appears in the acquired image of the image sensor 13. On the other hand, when the pen tip of the pen 3 in the state of irradiating infrared rays from the light emitting unit comes into contact with the transparent light guide plate 1 and the infrared light is coupled to the transparent light guide plate 1, as shown in FIG. A part of the light beam 4a is guided to the imaging device 13, a linear image is formed on the imaging surface of the imaging device 13, and the linear image 15 appears on the acquired image.
 図4に示す線状の像15の位置は、ペン3のペン先の接触点の位置に依存して変化し、ペン先の接触点の位置を変えると、線状像は破線で示した線状像17のように変化する。その線状像の軌跡は一点鎖線で示した扇形状16になる。その扇形の中心と線状像を結ぶ線分の回転角度α’(円弧の中心を回転中心とする)は、ペン3と撮像素子13を結ぶ線分と透明導光板1の上記或る一辺とがなす角度αと同じ角度になる。撮像素子の取得画像からα’が求められ、α’からαが求められる。同様にペンが3bの位置に移動すると、線状像17が形成され、その線状像17の傾きα‘を求めることにより、αが求められる。 The position of the linear image 15 shown in FIG. 4 changes depending on the position of the contact point of the pen tip of the pen 3, and when the position of the contact point of the pen tip is changed, the linear image is a line indicated by a broken line. It changes like the image 17. The locus of the linear image is a fan shape 16 indicated by a one-dot chain line. The rotation angle α 1 ′ of the line segment connecting the fan-shaped center and the line image (with the center of the arc as the rotation center) is the line segment connecting the pen 3 and the image sensor 13 and the certain side of the transparent light guide plate 1. The angle is the same as the angle α 1 formed by. Alpha 1 'is found, alpha 1' from the acquired image of the imaging element alpha 1 is obtained from. Similarly, when the pen is moved to the position of the 3b, formed a line-shaped image 17, by obtaining the inclination alpha 2 'of the line-shaped image 17, alpha 2 is calculated.
 撮像素子23についても同様に取得画像の分析から発光点の位置が特定され、ペン3と撮像素子23とを結ぶ線分と透明導光板1の上記或る一辺とがなす角度βが求められる。 Similarly, for the image sensor 23, the position of the light emitting point is specified from the analysis of the acquired image, and the angle β formed by the line segment connecting the pen 3 and the image sensor 23 and the certain side of the transparent light guide plate 1 is obtained.
 そして、撮像素子間の間隔をL、撮像素子13からの画像を読み取り求めた輝点の変位角度をα、撮像素子23からの取得画像を読み取り求めた輝点の変位角度をβとしたとき、輝点の座標(X、Y)は下記の関係式(1)および(2);
Y=tanα・X  …(1)
Y=tanβ・(L-X)  …(2)
を満足する。これを解くと、輝点の座標(X、Y)は、
X=tanβ・L/(tanα+tanβ)  …(3)
Y=(tanα・tanβ)・L/(tanα+tanβ)  …(4)
と表され、上述のように求めたα、βと、予め求めることができるLにより、ペン先が接触した地点の座標X、Yが求められる。このうちLは撮像素子13と撮像素子23の間の間隔であり固定の値である。α、βを求めることにより、ペン入力座標X、Y(位置座標)を求めることができる。
Then, when the interval between the image sensors is L, the displacement angle of the bright spot obtained by reading the image from the image sensor 13 is α, and the displacement angle of the bright spot obtained by reading the acquired image from the image sensor 23 is β, The coordinates (X, Y) of the bright spot are the following relational expressions (1) and (2);
Y = tan α · X (1)
Y = tan β · (L−X) (2)
Satisfied. Solving this, the coordinates (X, Y) of the bright spot are
X = tan β · L / (tan α + tan β) (3)
Y = (tan α · tan β) · L / (tan α + tan β) (4)
The coordinates X and Y of the point where the pen tip contacts are obtained by α and β obtained as described above and L that can be obtained in advance. Among these, L is an interval between the image sensor 13 and the image sensor 23 and is a fixed value. By obtaining α and β, pen input coordinates X and Y (position coordinates) can be obtained.
 なお、撮像素子間の間隔Lとは、レンズ11の光軸中心とレンズ21の光軸中心との間の距離である。 Note that the interval L between the image pickup elements is a distance between the optical axis center of the lens 11 and the optical axis center of the lens 21.
 ペン3の位置座標を以上の方法で求めるために、入力システム50には、図示しない位置座標検出部を設けている。位置座標検出部はペン入力装置40に設けることができる。 In order to obtain the position coordinates of the pen 3 by the above method, the input system 50 is provided with a position coordinate detector (not shown). The position coordinate detection unit can be provided in the pen input device 40.
 また、以上の方法で求められたペン3の位置座標に基づいて、液晶表示パネル2の当該位置座標に対応する位置にある画素を駆動して、ユーザが、ペン3のタッチ位置を視認することができるようにすることが可能である。そのためには、液晶表示パネル2の駆動を制御する制御部(不図示)が、位置座標検出部で求めた位置座標の情報を取得して、当該情報に基づいて液晶表示パネル2を駆動すればよい。 Further, based on the position coordinates of the pen 3 obtained by the above method, the pixel at the position corresponding to the position coordinates of the liquid crystal display panel 2 is driven, and the user visually recognizes the touch position of the pen 3. Is possible. For this purpose, if a control unit (not shown) that controls the driving of the liquid crystal display panel 2 acquires information on the position coordinates obtained by the position coordinate detection unit and drives the liquid crystal display panel 2 based on the information. Good.
 (本実施形態の作用効果)
 以上のように本実施形態の入力システム50は、透明導光板1の端部における互いに離れた少なくとも二箇所において、伝搬した光を捕らえることによって、ペン3の位置座標を求めることができる。すなわち、撮像素子の総数は図1に示すように撮像素子13および撮像素子23の計2つでよい。よって、特許文献1のように各導光領域に撮像素子を配置する必要がなく、装置を複雑化・大型化することなく、コストもかからない。
(Operational effect of this embodiment)
As described above, the input system 50 according to the present embodiment can obtain the position coordinates of the pen 3 by capturing the propagated light at at least two positions apart from each other at the end of the transparent light guide plate 1. That is, the total number of image sensors may be two, that is, the image sensor 13 and the image sensor 23 as shown in FIG. Therefore, it is not necessary to arrange an image sensor in each light guide region as in Patent Document 1, and the apparatus is not complicated and large, and the cost is not increased.
 また上記の構成によれば、透明導光板は一枚の単純な板であり、特許文献1のような複雑な導光体コストがかからない。 Further, according to the above configuration, the transparent light guide plate is a single simple plate, and the complicated light guide cost as in Patent Document 1 is not required.
 また本実施形態のペン入力装置40の構成によれば、透明導光板1のタッチ面よりも上方に突出しない位置に撮像素子13、23が設けられているので、透明導光板1のタッチ面がペン入力装置40の最上面となり、タッチ面よりも上方に撮像素子が出っ張らない。よって、本実施形態の入力システム50のペン入力装置40をテーブル型端末に適用した場合であっても、周囲が土手のように盛り上がることなく、テーブル面を完全にフラットにすることができる。 Further, according to the configuration of the pen input device 40 of the present embodiment, since the imaging elements 13 and 23 are provided at positions that do not protrude upward from the touch surface of the transparent light guide plate 1, the touch surface of the transparent light guide plate 1 is It becomes the uppermost surface of the pen input device 40, and the image sensor does not protrude above the touch surface. Therefore, even when the pen input device 40 of the input system 50 of this embodiment is applied to a table type terminal, the table surface can be made completely flat without the surroundings rising like a bank.
 また本実施形態の入力システム50は、遮光方式ではなく、導光板の内部を伝搬した光が撮像素子によって受光される構成となっているので、太陽光を含む迷光によって誤認識が生じる虞がなく正確な位置検出を実現することができ、故に、屋外や窓際に装置を置くことも可能である。 In addition, the input system 50 according to the present embodiment is not a light shielding method, but has a configuration in which light that has propagated inside the light guide plate is received by the imaging device, so that there is no possibility of erroneous recognition due to stray light including sunlight. Accurate position detection can be realized, and therefore it is possible to place the device outdoors or near a window.
 また、本実施形態の入力システム50のペン入力装置40は、ペン3先からの放射光を受光する撮像ユニット10、20が透明導光板1に接続されていて、透明導光板1を伝搬しない光は撮像素子13、23に結合しない構造になっている。よって、透明導光板1のタッチ面の法線方向から照明光が当てられても、その光は透明導光板1に結合しないため、迷光が撮像素子13、23に導かれることはない。このため、ペン入力装置40は外光の影響を受けにくく、屋外や窓際に配置することが可能である。 Further, the pen input device 40 of the input system 50 according to the present embodiment includes light that does not propagate through the transparent light guide plate 1 because the imaging units 10 and 20 that receive the light emitted from the tip of the pen 3 are connected to the transparent light guide plate 1. Has a structure that is not coupled to the imaging elements 13 and 23. Therefore, even if illumination light is applied from the normal direction of the touch surface of the transparent light guide plate 1, since the light is not coupled to the transparent light guide plate 1, stray light is not guided to the imaging elements 13 and 23. For this reason, the pen input device 40 is not easily affected by external light, and can be disposed outdoors or near a window.
 また上記の構成によれば、各画像から二次元の位置座標を求めることができるので、特許文献1のように二次元の位置座標を求めるために複数枚の導光板を準備する必要がなく、装置の小型化に寄与することができる。 Further, according to the above configuration, since two-dimensional position coordinates can be obtained from each image, it is not necessary to prepare a plurality of light guide plates in order to obtain two-dimensional position coordinates as in Patent Document 1, This can contribute to downsizing of the apparatus.
 以上のことから、上記の構成を具備する本発明は、フルフラットな座標入力装置を実現し、且つ、当該装置表面に手などが接触しても誤認識されない汎用性の高い入力システムを提供することができる。 From the above, the present invention having the above-described configuration provides a highly versatile input system that realizes a full flat coordinate input device and that is not erroneously recognized even if a hand touches the surface of the device. be able to.
 なお、本実施形態では、撮像素子13および撮像素子23の計2つの撮像素子を用いた構成について説明したが、本発明はこれに限定されるものではなく、透明導光板1の端部における各箇所からミラーおよびシャッターを用いて1つの撮像素子に集めてもよい。 In addition, although this embodiment demonstrated the structure using the image pick-up element 13 and the image pick-up element 23 in total, this invention is not limited to this, Each in the edge part of the transparent light-guide plate 1 is not limited to this. You may collect in one image pick-up element using a mirror and a shutter from a part.
 なおまた、本実施形態では、1つのペン3を用いた構成について説明したが、本発明はこれに限定されるものではなく、複数のペンを用いた場合であっても例えば各ペンの発光タイミングを異ならせるなどすれば、透明導光板1のタッチ面に同時に複数のペンが接触していてもそれぞれの位置座標を求めることができる。 In this embodiment, the configuration using one pen 3 has been described. However, the present invention is not limited to this, and even when a plurality of pens are used, for example, the light emission timing of each pen. If a plurality of pens are in contact with the touch surface of the transparent light guide plate 1 at the same time, the respective position coordinates can be obtained.
 なおまた、本実施形態では、透明導光板1の一辺の両端から光を取得する構成について説明したが、本発明はこれに限定されるものではなく、当該一辺上の異なる2箇所から光を取得する構成としてもよい。 In the present embodiment, the configuration in which light is acquired from both ends of one side of the transparent light guide plate 1 has been described. However, the present invention is not limited to this, and the light is acquired from two different locations on the one side. It is good also as composition to do.
 なおまた、本実施形態では、透明導光板1の一辺の両端から光を取得する構成について説明したが、本発明はこれに限定されるものではなく、透明導光板1の隣り合う二辺にそれぞれ光を取得する箇所を設けて、当該箇所の間の距離と、各当該箇所から得られる画像から、ペン3の位置座標を求めてもよい。 In addition, in the present embodiment, the configuration in which light is acquired from both ends of one side of the transparent light guide plate 1 has been described. However, the present invention is not limited to this, and each of the two adjacent sides of the transparent light guide plate 1 is provided. Locations for acquiring light may be provided, and the position coordinates of the pen 3 may be obtained from the distance between the locations and an image obtained from each location.
 また、本実施形態では、ペン3先から出射される光が、ペン3先に設けた光拡散部材36によって拡散する構成となっている。これにより、ペン3の傾斜角度によることなく、十分な光量を透明導光板1にカップリングさせることができる。したがって、正確な位置検出を実現することができる。 In the present embodiment, the light emitted from the tip of the pen 3 is configured to diffuse by the light diffusion member 36 provided at the tip of the pen 3. Thereby, a sufficient amount of light can be coupled to the transparent light guide plate 1 without depending on the inclination angle of the pen 3. Therefore, accurate position detection can be realized.
 〔実施形態2〕
 本発明の他の実施形態について説明する。なお、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described. In addition, in this embodiment, in order to demonstrate a difference from the said Embodiment 1, for convenience of explanation, the same member number is attached | subjected to the member which has the same function as the member demonstrated in Embodiment 1, and the description Is omitted.
 図5を用いて本発明の入力システムの他の実施形態について説明する。図5は、本実施形態の入力システムの構成を示す斜視図である。本実施形態と、上述の実施形態1との相違点は、透明導光板1の或る一辺の両端部の構成にある。 Another embodiment of the input system of the present invention will be described with reference to FIG. FIG. 5 is a perspective view showing the configuration of the input system of this embodiment. The difference between this embodiment and the above-mentioned Embodiment 1 exists in the structure of the both ends of a certain side of the transparent light-guide plate 1. FIG.
 具体的には、実施形態1では、透明導光板1の切り欠き1aの円錐面にミラーコーティング6が施されている。これに対して、本実施形態の入力システムでは、ペン入力装置40´(座標入力装置)の透明導光板1の切り欠き1a´は透明導光板1の背面と垂直またはほぼ垂直の角度をなした円柱面を構成しており、この切り欠き1a´の円柱面にはミラーコーティングが施されておらず、その代わりに、切り欠き1a´に隣接して、ミラー素子14、24が配設されている点で異なる。 Specifically, in Embodiment 1, the mirror coating 6 is applied to the conical surface of the cutout 1a of the transparent light guide plate 1. On the other hand, in the input system of the present embodiment, the notch 1a ′ of the transparent light guide plate 1 of the pen input device 40 ′ (coordinate input device) forms an angle perpendicular or substantially perpendicular to the back surface of the transparent light guide plate 1. A cylindrical surface is formed, and the cylindrical surface of the notch 1a 'is not mirror-coated. Instead, mirror elements 14 and 24 are disposed adjacent to the notch 1a'. Is different.
 すなわち、透明導光板1の端面は、実施形態1と同様に円弧状の切り欠きを設けられるように加工されているが、実施形態1とは異なり垂直な面をもつ。 That is, the end surface of the transparent light guide plate 1 is processed so as to be provided with an arc-shaped notch as in the first embodiment, but unlike the first embodiment, it has a vertical surface.
 そして、撮像ユニット10´は、ミラー素子14、レンズ11、可視光カットフィルタ12、撮像素子13を有している。また、撮像ユニット20´は、ミラー素子24、レンズ21、可視光カットフィルタ22、撮像素子23を有している。 The imaging unit 10 ′ includes a mirror element 14, a lens 11, a visible light cut filter 12, and an imaging element 13. The imaging unit 20 ′ has a mirror element 24, a lens 21, a visible light cut filter 22, and an imaging element 23.
 ミラー素子14、24は、円筒面14b、24bと円錐面14a、24aとを含み、円錐面14a、24aにはミラーコーティングが施されている。 The mirror elements 14 and 24 include cylindrical surfaces 14b and 24b and conical surfaces 14a and 24a, and the conical surfaces 14a and 24a are mirror-coated.
 透明導光板1内を伝搬し、導光板の四隅に導かれた光束は、透明導光板1の凹型円筒面を有した切り欠き1a´を透過して透明導光板1から出射し、ミラー素子14、24の円錐面14a、24aに導かれ、円錐面14a、24aで反射された光束は透明導光板1の背面の方向に導かれる。その後、レンズ11、12にて集光され、可視光カットフィルタ12、22を経て、撮像素子13、23で受光され、撮影像の線状像の傾斜角から、上述の実施形態1と同じ手法で光束の方位角α、βが求められる。 The light beam propagating through the transparent light guide plate 1 and guided to the four corners of the light guide plate is transmitted through the notch 1 a ′ having the concave cylindrical surface of the transparent light guide plate 1 and emitted from the transparent light guide plate 1. , 24 are guided to the conical surfaces 14 a, 24 a and reflected by the conical surfaces 14 a, 24 a are guided toward the back surface of the transparent light guide plate 1. Thereafter, the light is condensed by the lenses 11 and 12, passed through the visible light cut filters 12 and 22, received by the image sensors 13 and 23, and the same method as that of the first embodiment described above from the inclination angle of the linear image of the photographed image. Thus, the azimuth angles α and β of the luminous flux are obtained.
 透明導光板1のサイズが約1m角と大きい場合が想定される。この場合、実施形態1のように、透明導光板1の四隅の円錐面にミラーコーティングを行うのは、工程上困難であり、高コストとなる。一方、本実施形態のように、ミラー素子14、24を別途設けることによって、透明導光板1と比べれば遥かに小型なミラー素子14、24の円錐面にミラーコーティングを施せばよく、作業が容易であり、また多数の光学素子に一度にミラーコーティングできるため、ミラー素子のコストも安価にすることができる。また、円錐面をミラーにしたミラー素子を用いることにより、円錐面を屈折して導光板外部に出射される光も反射させて、撮像ユニット側に導くことにより光利用効率を高めることができる。 It is assumed that the size of the transparent light guide plate 1 is as large as about 1 m square. In this case, as in the first embodiment, it is difficult to perform mirror coating on the conical surfaces at the four corners of the transparent light guide plate 1 in terms of the process, resulting in high cost. On the other hand, by providing the mirror elements 14 and 24 separately as in the present embodiment, it is only necessary to apply a mirror coating to the conical surfaces of the mirror elements 14 and 24 that are much smaller than the transparent light guide plate 1, and the work is easy. In addition, since a large number of optical elements can be mirror-coated at the same time, the cost of the mirror element can be reduced. In addition, by using a mirror element having a conical surface as a mirror, light utilization efficiency can be improved by reflecting light that is refracted on the conical surface and emitted to the outside of the light guide plate and guiding it to the imaging unit side.
 〔実施形態3〕
 本発明の他の実施形態について説明する。なお、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
[Embodiment 3]
Another embodiment of the present invention will be described. In addition, in this embodiment, in order to demonstrate a difference from the said Embodiment 1, for convenience of explanation, the same member number is attached | subjected to the member which has the same function as the member demonstrated in Embodiment 1, and the description Is omitted.
 本発明の入力システムの他の実施形態について、図6および図7に基づいて説明する。 Another embodiment of the input system of the present invention will be described with reference to FIGS.
 図6は、本実施形態の入力システムに具備されるペン入力装置40に設けられた透明導光板1の別形態を示す図である。また図7は、当該ペン入力装置40に設けられた透明導光板1と撮像ユニット10の配置を概略的に示した斜視図である。 FIG. 6 is a diagram showing another form of the transparent light guide plate 1 provided in the pen input device 40 provided in the input system of the present embodiment. FIG. 7 is a perspective view schematically showing the arrangement of the transparent light guide plate 1 and the imaging unit 10 provided in the pen input device 40.
 本実施形態の透明導光板1は、切り欠き1a´´が、透明導光板1の端部よりも内側に入った位置に設けられている。図6に示すように、この切り欠き1a´´は、透明導光板1に形成された漏斗のような構造となっている。そして、切り欠き1a´´は円錐状の先端に、透明導光板1の背面に貫通した穴1bを形成している。 The transparent light guide plate 1 of the present embodiment is provided with a notch 1a ″ at a position inside the end portion of the transparent light guide plate 1. As shown in FIG. 6, the notch 1 a ″ has a funnel-like structure formed in the transparent light guide plate 1. The notch 1a ″ forms a hole 1b penetrating the back surface of the transparent light guide plate 1 at the conical tip.
 さらに、この切り欠き1a´´には、図7に示すように、円錐状で、且つ、その先端に穴が設けられた遮光用部材60が嵌め合わされており、切り欠き1a´´に外光が侵入しないように構成されている。また、この遮光用部材60における切り欠き1a´´との対向面は、光を反射させる構成となっている。 Further, as shown in FIG. 7, the notch 1a ″ is fitted with a light shielding member 60 having a conical shape and having a hole at the tip thereof, and external light is provided in the notch 1a ″. Is configured to prevent intrusion. In addition, the surface of the light shielding member 60 facing the notch 1a ″ is configured to reflect light.
 そして、透明導光板1内部を伝搬した光は、切り欠き1a´´に至って、光路を変換し、穴1bの近傍から透明導光板1の背面よりも下方に導かれ、撮像ユニット10に入射する構成となっている。なお、本実施形態では、説明の便宜上、実施形態1で説明したもう1つの撮像ユニット20については説明を省略しているが、撮像ユニット20についても、本実施形態と同じ態様で光が入射する構成にすることができる。 Then, the light propagating through the transparent light guide plate 1 reaches the notch 1 a ″, converts the optical path, is guided below the back surface of the transparent light guide plate 1 from the vicinity of the hole 1 b, and enters the imaging unit 10. It has a configuration. In the present embodiment, for convenience of explanation, the description of the other imaging unit 20 described in the first embodiment is omitted, but light also enters the imaging unit 20 in the same manner as in the present embodiment. Can be configured.
 〔実施形態4〕
 本発明の他の実施形態について説明する。なお、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
[Embodiment 4]
Another embodiment of the present invention will be described. In addition, in this embodiment, in order to demonstrate a difference from the said Embodiment 1, for convenience of explanation, the same member number is attached | subjected to the member which has the same function as the member demonstrated in Embodiment 1, and the description Is omitted.
 本発明の他の実施形態について図8および図9に基づいて説明すれば、以下のとおりである。 Referring to FIGS. 8 and 9, another embodiment of the present invention will be described as follows.
 上記実施形態1の入力システムに具備されるペン入力装置40は、検知手段としての2つの撮像ユニット10・20が設けられているのに対して、本実施形態では、図8に示すように、3つの撮像ユニット10・20・70(検知手段)が設けられている点で相違する。 The pen input device 40 provided in the input system of the first embodiment is provided with two imaging units 10 and 20 as detection means, whereas in this embodiment, as shown in FIG. The difference is that three imaging units 10, 20, and 70 (detecting means) are provided.
 この構成を具備することにより、図8に示すように、被検出体としてのペン3A・3B(操作部材)が2つである場合であっても、各ペンの座標位置を検出することができる。 By providing this configuration, as shown in FIG. 8, even if there are two pens 3A and 3B (operation members) as detection objects, the coordinate position of each pen can be detected. .
 例えば、仮に、撮像ユニットを2つのみ具備し、2本のペン3A・3Bのうちの一方のペンの伝播光の進行方向(撮像ユニットに向かう伝播光の光路)と他方のペンの伝播光の進行方向が重なる場合には、線状の像も重なるので、2本のペン3A・3Bのうちのいずれが手前に存在するかを特定することができない。しかし、本実施形態では、図8に示すように、受光手段としての撮像ユニット10・20・70が3つ存在していれば、各ペン3A・3Bについて、重ならない2つの光路による撮像ユニット10・20・70を用いて各ペン3A・3Bの接触位置を求めることが可能となる。なお、撮像ユニット70は、撮像ユニット10・20と同一で、ユニットレンズ71、可視光カットフィルタ72、撮像素子73から構成されている。 For example, suppose that only two imaging units are provided, the traveling direction of the propagation light of one of the two pens 3A and 3B (the optical path of the propagation light toward the imaging unit) and the propagation light of the other pen When the traveling directions overlap, the linear images also overlap, so it is not possible to specify which of the two pens 3A and 3B is in front. However, in this embodiment, as shown in FIG. 8, if there are three imaging units 10, 20, and 70 as light receiving means, the imaging unit 10 with two optical paths that do not overlap each pen 3 A and 3 B. It becomes possible to obtain the contact positions of the pens 3A and 3B using 20 and 70. The imaging unit 70 is the same as the imaging units 10 and 20 and includes a unit lens 71, a visible light cut filter 72, and an imaging element 73.
 詳細には、例えば、図8において、ペン3Bが点P3 に存在する場合、撮像ユニット10へのペン3Aの光路とペン3Bの光路とが重なる。この場合、ペン3Aの検出には、撮像ユニット20・70の2つを用いる一方、ペン3Bの検出には、撮像ユニット10・70を用いる。これにより、光路が重なることはない。 Specifically, for example, in FIG. 8, if the pen 3B is present at point P 3, overlaps the optical path of the pen 3B pen 3A to the imaging unit 10. In this case, two imaging units 20 and 70 are used to detect the pen 3A, while the imaging units 10 and 70 are used to detect the pen 3B. As a result, the optical paths do not overlap.
 したがって、2つのペン3A・3Bが透明導光板1のいずれの場所に接触されても、ペン3A・3Bの接触点の位置座標を確実に特定することが可能となる。 Therefore, regardless of the location of the two pens 3A and 3B on the transparent light guide plate 1, the position coordinates of the contact points of the pens 3A and 3B can be reliably specified.
 尚、一般的に、被検出体としてのペン3がM個存在する場合には、必要な検知手段の数Nは、
 N=M+1
となる。
In general, when there are M pens 3 as objects to be detected, the number N of necessary detection means is:
N = M + 1
It becomes.
 また、検知手段としての撮像ユニット10・20・70を少なくとも3つ設けた場合には、以下に示すメリットも存在する。 Further, when at least three image pickup units 10, 20, and 70 are provided as detection means, there are the following merits.
 すなわち、撮像ユニットが2つである場合、2つの撮像ユニットが設けられた透明導光板1の辺の近傍にペンが接触されると死角になって、2つの撮像ユニットでは検知されない虞がある。この場合、撮像ユニットが3つ存在していれば、それを例えば三角形の頂点に配設しておけば、死角を発生することなく、ペンが透明導光板1のいずれの場所に接触されても、当該ペンの接触点の位置座標を確実に特定することが可能となる。 That is, when there are two imaging units, there is a possibility that when the pen is brought into contact with the vicinity of the side of the transparent light guide plate 1 provided with the two imaging units, it becomes a blind spot and cannot be detected by the two imaging units. In this case, if there are three imaging units, for example, if they are arranged at the vertices of a triangle, the pen can be touched anywhere on the transparent light guide plate 1 without generating a blind spot. The position coordinates of the contact point of the pen can be reliably specified.
 このように、本実施形態では、撮像ユニットが3つ設けられている。これにより、2本のペンのそれぞれについて、重ならない2つの光路による撮像ユニット20・撮像ユニット70の組み合わせ、および、撮像ユニット10・撮像ユニット70の組み合わせを用いて各ペンの接触位置を求めることが可能となる。また、3つの撮像ユニットを三角形の頂点に配設してくことにより、死角を発生することなく、透明導光板1のいずれの場所にペンが接触しても、ペンの接触点の位置座標を確実に特定することが可能となる。 Thus, in the present embodiment, three imaging units are provided. Thus, for each of the two pens, the contact position of each pen can be obtained using the combination of the imaging unit 20 and the imaging unit 70 by the two optical paths that do not overlap and the combination of the imaging unit 10 and the imaging unit 70. It becomes possible. In addition, by arranging three imaging units at the apexes of the triangle, the position coordinates of the contact point of the pen can be ensured regardless of where the pen touches the transparent light guide plate 1 without generating a blind spot. It becomes possible to specify.
 (変形例)
 本実施形態では、3つの撮像ユニットを具備した構成を説明したが、本発明は、4つ以上の撮像ユニットを具備したものであってもよい。
(Modification)
In the present embodiment, the configuration including three imaging units has been described, but the present invention may include four or more imaging units.
 4つの撮像ユニットを設けた場合には、例えば、図9に示すように、透明導光板1の四隅に配設することが考えられる。4つの撮像ユニットを具備する場合も、本実施形態と同様に、2本のペンからの入力を正確に検出することができる。 When four image pickup units are provided, for example, as shown in FIG. 9, it may be arranged at the four corners of the transparent light guide plate 1. Even when four imaging units are provided, the input from the two pens can be accurately detected as in the present embodiment.
 そして、本変形例では、例えば1本のペンの検出に際しては4つの撮像ユニット10・20・70・80のうちのいずれか2つの撮像ユニットを使用することができる。これは、例えば、透明導光板1の一辺に沿って2つの撮像ユニットを配置しただけの場合、ペンの接触点がこれら撮像ユニットから遠い場合には、信号品質が劣化することも考えられるためである。そのため、本変形例のように透明導光板1の四隅に撮像ユニットを配設することで、ペン3の接触点が撮像ユニット10・20から遠い場合には、ペン3に近接する撮像ユニット70・80にて検出することにより、信号品質の劣化を招くことなく検出することができる。 In this modification, for example, when detecting one pen, any two of the four imaging units 10, 20, 70, and 80 can be used. This is because, for example, when only two imaging units are arranged along one side of the transparent light guide plate 1, the signal quality may be degraded when the pen contact point is far from these imaging units. is there. Therefore, by disposing the imaging units at the four corners of the transparent light guide plate 1 as in this modification, when the contact point of the pen 3 is far from the imaging units 10 and 20, the imaging units 70 and By detecting at 80, the signal quality can be detected without causing deterioration.
 なお、近接しているかの判断は、信号減衰量が大きいか又は小さいかによって判断できる。すなわち、信号減衰量が大きい程、近接しているといえる。 Note that it is possible to determine whether they are close to each other based on whether the signal attenuation is large or small. In other words, it can be said that the closer the signal attenuation, the closer.
 〔実施形態5〕
 本発明の他の実施形態について説明する。なお、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
[Embodiment 5]
Another embodiment of the present invention will be described. In addition, in this embodiment, in order to demonstrate a difference from the said Embodiment 1, for convenience of explanation, the same member number is attached | subjected to the member which has the same function as the member demonstrated in Embodiment 1, and the description Is omitted.
 本発明の他の実施形態について図10から図12に基づいて説明すれば、以下のとおりである。 Another embodiment of the present invention will be described below with reference to FIGS.
 本実施形態の入力システム50´に設けられたペン入力装置40´´は、図10に示すように、透明導光板1´の背面に密着固定された光学部材90(光路変換部)を備えている点、および、透明導光板1´の形状が異なる点で、実施形態1のペン入力装置40とは異なる。そして、本実施形態のペン入力装置40´´は、撮像ユニット10、20が、光学部材90から光が出射する位置に配設されている。 As shown in FIG. 10, the pen input device 40 ″ provided in the input system 50 ′ of the present embodiment includes an optical member 90 (optical path conversion unit) that is closely fixed to the back surface of the transparent light guide plate 1 ′. And the pen input device 40 of the first embodiment are different in that the shape of the transparent light guide plate 1 ′ is different. In the pen input device 40 ″ of the present embodiment, the imaging units 10 and 20 are disposed at positions where light is emitted from the optical member 90.
 また、本実施形態のペン入力装置40´´は、透明導光板1´を伝播する伝搬光の一部を透明導光板1´の背面から後述する光学部材90によって透明導光板1´の背面よりも下方に取り出す。そのため、実施形態1のように導光板に切り欠きを設ける必要がない。すなわち、透明導光板1´は、内部に光を伝搬させることができる構成(構造)であるだけでよく、その他の加工は必要ない。 Further, the pen input device 40 ″ of the present embodiment allows a part of the propagation light propagating through the transparent light guide plate 1 ′ to be transmitted from the back surface of the transparent light guide plate 1 ′ by the optical member 90 described later from the back surface of the transparent light guide plate 1 ′. Also take down. Therefore, it is not necessary to provide a notch in the light guide plate as in the first embodiment. That is, the transparent light guide plate 1 ′ only needs to have a configuration (structure) capable of propagating light therein, and does not require any other processing.
 光学部材90は、透明導光板1´の背面と、後述する撮像ユニット10、20との間に配設された透光材である。 The optical member 90 is a translucent material disposed between the back surface of the transparent light guide plate 1 ′ and the imaging units 10 and 20 described later.
 図11は、図10に示す切断線A-A´の矢視断面図である。図12は、光学部材90の外形を示す図であり、
 光学部材90は、上面(隣接面)が平坦で、図11に示すように、透明導光板1´の背面に接着固定されている。光学部材90は、透明導光板1´の内部を伝搬している光を透明導光板1´の背面から光を取り出して、取り出した光を自身に入射させて内部にて結合させて内部を伝搬させる構成となっている。光学部材90と透明導光板1´との接着方法は特に限定されるものではないが、上述のように、光学部材90は透明導光板1´から光を取り出して入射させるので、これを妨げない方法あるいは材料を用いて接着固定する。
11 is a cross-sectional view taken along line AA ′ shown in FIG. FIG. 12 is a view showing the outer shape of the optical member 90,
The optical member 90 has a flat upper surface (adjacent surface), and is bonded and fixed to the back surface of the transparent light guide plate 1 'as shown in FIG. The optical member 90 takes out the light propagating through the transparent light guide plate 1 ′ from the back surface of the transparent light guide plate 1 ′, enters the extracted light into itself and couples it inside, and propagates through the inside. It is the composition which makes it. The bonding method between the optical member 90 and the transparent light guide plate 1 ′ is not particularly limited. However, as described above, the optical member 90 takes out light from the transparent light guide plate 1 ′ and makes it incident, so this is not hindered. Adhering and fixing using a method or material.
 光学部材90は、透明導光板1´よりも、屈折率が同じか高い材料から構成されている。これにより、透明導光板1´の内部を伝搬した光が光学部材90と透明導光板1´との境界面で反射して再び透明導光板1´の内部に戻ることを防いで透明導光板1´からの光の取り出し効率を高めることができる。本実施形態では、透明導光板1´がガラスによって構成されているため、光学部材60は、ガラスよりも屈折率の高い高屈折率ガラスやポリカーボネートから構成されている。これにより、透明導光板1´から効率的に光を取り出して、光学部材90内部に入射させることができる。 The optical member 90 is made of a material having the same or higher refractive index than the transparent light guide plate 1 ′. This prevents light propagating through the transparent light guide plate 1 ′ from being reflected at the boundary surface between the optical member 90 and the transparent light guide plate 1 ′ and returning again to the inside of the transparent light guide plate 1 ′. The extraction efficiency of light from ′ can be increased. In this embodiment, since the transparent light guide plate 1 ′ is made of glass, the optical member 60 is made of high refractive index glass or polycarbonate having a higher refractive index than glass. Thereby, it is possible to efficiently extract light from the transparent light guide plate 1 ′ and to enter the optical member 90.
 なお、上述のように、本発明は透明導光板をガラス以外の材料から構成することができるので、例えば透明導光板がアクリルの場合には、同様に光学部材はアクリルや高屈折率ガラス、ポリカーボネートから構成することができる。 In addition, as mentioned above, since this invention can comprise a transparent light-guide plate from materials other than glass, when a transparent light-guide plate is an acrylic, for example, an optical member is acrylic, high refractive index glass, polycarbonate similarly. It can consist of
 なお、本実施形態では、光学部材90は透明導光板1´よりも屈折率の高い材料によって構成されているが、透明導光板1´の内部を伝搬した光が光学部材90と透明導光板1´との境界面で反射して再び透明導光板1´の内部に戻ることがないようにすればよく、光学部材90は透明導光板1´と同じ屈折率を有する材料から構成されてもよい。 In this embodiment, the optical member 90 is made of a material having a refractive index higher than that of the transparent light guide plate 1 ′. However, the light propagating through the transparent light guide plate 1 ′ is the optical member 90 and the transparent light guide plate 1. And the optical member 90 may be made of a material having the same refractive index as that of the transparent light guide plate 1 ′. .
 光学部材90は、図2および図3に示すように、上面に隣接した端面の、透明導光板1´の角部に近い領域に、凹型の円錐面状の切り欠き90aが設けられている。この切り欠き90aの円錐面と光学部材90の背面とがなす角度(図2に示すγ)は、45度以下であり、30度や45度が選ばれる。円錐面状の切り欠き90aにはミラーコーティング(光路変換部)を施してあってもよい。 As shown in FIGS. 2 and 3, the optical member 90 is provided with a concave conical cutout 90a in a region near the corner of the transparent light guide plate 1 ′ on the end surface adjacent to the upper surface. The angle (γ shown in FIG. 2) formed by the conical surface of the notch 90a and the back surface of the optical member 90 is 45 degrees or less, and 30 degrees or 45 degrees is selected. The conical cutout 90a may be provided with a mirror coating (optical path changing portion).
 そして、図11に示すように光学部材90の内部を伝搬して切り欠き90aに至った光は、その光路を切り欠き90aによって光学部材90の下方、すなわち、光学部材90の背面に向けて変化させる。すなわち、透明導光板1´の内部を伝搬した光は、透明導光板1´の下面よりも下方に向かう。 Then, as shown in FIG. 11, the light propagating through the optical member 90 and reaching the notch 90a changes its optical path toward the lower side of the optical member 90, that is, toward the back surface of the optical member 90 by the notch 90a. Let That is, the light propagating through the transparent light guide plate 1 ′ travels downward from the lower surface of the transparent light guide plate 1 ′.
 なお、本実施形態では、切り欠き90aが円錐面状に構成されているが、本発明はこれに限定されるものではなく、双曲面状または多角面状に構成されていてもよい。 In the present embodiment, the cutout 90a is formed in a conical surface shape, but the present invention is not limited to this, and may be formed in a hyperboloid shape or a polygonal surface shape.
 また、本実施形態では、光学部材90の形状が、上面側からみると図12に示すように扇形に似た形状となっているが、これに限定されるものではない。 In this embodiment, the shape of the optical member 90 is similar to a fan shape as shown in FIG. 12 when viewed from the upper surface side, but is not limited to this.
 また光学部材90の製造方法は特に限定されるものではないが、プラスチック成型やガラス成型を行うと安価に製造できる。 The manufacturing method of the optical member 90 is not particularly limited, but can be manufactured at low cost by plastic molding or glass molding.
 光学部材90は、図10に示すように矩形の透明導光板1´の四隅のうちの隣り合う二隅近傍の背面に配設されている。光学部材90の配設位置は、これに限定されるものではない。後述する検出方法を実現するために2つの撮像ユニット10、20を互いに離して配設するので、その撮像ユニット10、20の配設位置に対応させて、透明導光板1´の内部を伝播した光が、最終的に撮像ユニットのそれぞれに入射する光の経路の途中に光学部材90を配すればよい。 The optical member 90 is disposed on the back surface in the vicinity of two adjacent corners of the four corners of the rectangular transparent light guide plate 1 ′ as shown in FIG. The arrangement position of the optical member 90 is not limited to this. Since the two imaging units 10 and 20 are arranged apart from each other in order to realize a detection method described later, the light is propagated through the transparent light guide plate 1 ′ corresponding to the arrangement position of the imaging units 10 and 20. The optical member 90 may be arranged in the middle of the light path where light finally enters each imaging unit.
 撮像ユニット10、20は、光学部材90の円錐面状の切り欠き90aの直下に配置され、透明導光板1´の端部における互いに離れた二箇所に配設されている。また、撮像ユニット10、20は、透明導光板1´のタッチ面よりも上方には突出していない。撮像ユニット10、20は、透明導光板1´を伝搬しない光は撮像素子13、23に結合しない構造になっている。 The imaging units 10 and 20 are disposed immediately below the conical surface notch 90a of the optical member 90, and are disposed at two positions apart from each other at the end of the transparent light guide plate 1 ′. Further, the imaging units 10 and 20 do not protrude above the touch surface of the transparent light guide plate 1 ′. The imaging units 10 and 20 have a structure in which light that does not propagate through the transparent light guide plate 1 ′ is not coupled to the imaging elements 13 and 23.
 以上、本発明に係る実施形態について説明したが、本発明は上記の実施形態に限定されるものではない。本請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 As mentioned above, although embodiment which concerns on this invention was described, this invention is not limited to said embodiment. Various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention.
 本発明は、発光ペンを用いてペンの座標位置を求めるあらゆる種類の入力システムに提供することができる。 The present invention can be provided for any type of input system that uses a light emitting pen to determine the coordinate position of the pen.
1、1´ 透明導光板(導光部材)
1a、1a´、1a´´ 切り欠き(光路変換部)
1b 穴
2 液晶表示パネル(画像表示パネル)
3、3A、3B ペン(発光部)
4a、4b 光束
6 ミラーコーティング(光路変換部)
10、20、10´、20´、70、80 撮像ユニット(検知手段)
11、21 レンズ
12、22 可視光カットフィルタ
13、23 撮像素子
14、24 ミラー素子
14a、24a 円錐面
14b、24b 円筒面
15 線状の像
16 扇形状
17 線状の像
30 発光部
31 発光素子
32 導光部材
33 電源装置
34 制御装置
35 筐体
36 光拡散部材
40、40´、40´´ ペン入力装置(入力装置)
50 入力システム
60 遮光用部材
90 光学部材
90a 切り欠き
1, 1 'transparent light guide plate (light guide member)
1a, 1a ′, 1a ″ Notch (optical path conversion unit)
1b Hole 2 LCD panel (image display panel)
3, 3A, 3B pen (light emitting part)
4a, 4b Luminous flux 6 Mirror coating (optical path conversion unit)
10, 20, 10 ', 20', 70, 80 Imaging unit (detection means)
DESCRIPTION OF SYMBOLS 11, 21 Lens 12, 22 Visible light cut filter 13, 23 Imaging element 14, 24 Mirror element 14a, 24a Conical surface 14b, 24b Cylindrical surface 15 Linear image 16 Fan shape 17 Linear image 30 Light emission part 31 Light emitting element 32 Light guide member 33 Power supply device 34 Control device 35 Housing 36 Light diffusing member 40, 40 ', 40 "Pen input device (input device)
50 Input system 60 Light shielding member 90 Optical member 90a Notch

Claims (5)

  1.  導光部材と、
     上記導光部材に接触することによって当該導光部材に光を入射させる発光部を有する操作部材と、
     上記導光部材の上面よりも上方に突出しない位置に在って、且つ、互いに離れた箇所に在る少なくとも2つの検知手段であって、上記発光部から上記導光部材に入射して当該導光部材の内部を伝搬する伝搬光を検知する当該少なくとも2つの検知手段と、を具備し、
     上記検知手段は、上記検知した伝搬光から当該伝搬光の進行方向を、上記発光部が上記導光部材に接触した点の位置座標を検知することを特徴とする入力システム。
    A light guide member;
    An operation member having a light emitting portion for making light incident on the light guide member by contacting the light guide member;
    At least two detection means that are located at positions that do not protrude above the upper surface of the light guide member and that are separated from each other. The at least two detecting means for detecting propagating light propagating through the inside of the optical member,
    The input system is characterized in that the detection means detects a traveling direction of the propagation light from the detected propagation light, and a position coordinate of a point where the light emitting unit contacts the light guide member.
  2.  上記発光部が上記導光部材に接触することにより、光が上記導光部材に拡散放射されることを特徴とする請求項1記載の入力システム。 2. The input system according to claim 1, wherein the light is diffused and radiated to the light guide member when the light emitting unit comes into contact with the light guide member.
  3.  上記導光部材は一辺を有し、
     上記検知手段は、少なくとも上記導光部材の上記一辺の両端に設けられていることを特徴とする請求項1または2に記載の入力システム。
    The light guide member has one side;
    The input system according to claim 1, wherein the detection unit is provided at least at both ends of the one side of the light guide member.
  4.  上記導光部材の端部に、上記検知手段へ上記伝搬光を導く円錐形の光路変換部を設けていることを特徴とする請求項1から3までの何れか1項に記載の入力システム。 The input system according to any one of claims 1 to 3, wherein a conical optical path conversion unit that guides the propagation light to the detection means is provided at an end of the light guide member.
  5.  複数の画素を有する画像表示パネルをさらに具備し、
     上記検知手段によって検知された上記位置座標に基づいて、上記画像表示パネルの上記画素を駆動することを特徴とする請求項1から4までの何れか1項に記載の入力システム。
    An image display panel having a plurality of pixels;
    5. The input system according to claim 1, wherein the pixel of the image display panel is driven based on the position coordinates detected by the detection unit.
PCT/JP2012/080847 2011-12-20 2012-11-29 Input system WO2013094376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280058289.1A CN103959213A (en) 2011-12-20 2012-11-29 Input system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011279041 2011-12-20
JP2011-279041 2011-12-20
JP2012-112792 2012-05-16
JP2012112792A JP2013149231A (en) 2011-12-20 2012-05-16 Input system

Publications (1)

Publication Number Publication Date
WO2013094376A1 true WO2013094376A1 (en) 2013-06-27

Family

ID=48668275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080847 WO2013094376A1 (en) 2011-12-20 2012-11-29 Input system

Country Status (3)

Country Link
JP (1) JP2013149231A (en)
CN (1) CN103959213A (en)
WO (1) WO2013094376A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10496226B2 (en) * 2015-01-08 2019-12-03 Sharp Kabushiki Kaisha Optical sensing unit and touch panel device including the same
JP6422781B2 (en) * 2015-01-08 2018-11-14 シャープ株式会社 Touch panel device
JP6422782B2 (en) * 2015-01-08 2018-11-14 シャープ株式会社 Touch panel device
KR102446916B1 (en) * 2022-06-03 2022-09-23 주식회사 보나 optical digital pen by use of light scattering having fusion-spliced optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545056A (en) * 2006-08-10 2009-12-17 エルジー ケム. エルティーディ. Non-contact type coordinate input system light guide plate, system including the same, and non-contact type coordinate input method using the same
JP2010191961A (en) * 2009-02-13 2010-09-02 Arima Lasers Corp Detection module and optical detection system including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8702302D0 (en) * 1987-02-02 1987-03-11 Parks J R Capturing information in drawing & writing
JPS6421520A (en) * 1987-07-17 1989-01-24 Fujitsu Ltd Coordinate input device
AU2003227021A1 (en) * 2002-03-13 2003-09-22 Jonas Ove Philip Eliasson A touch pad, a stylus for use with the touch pad, and a method of operating the touch pad
US20060158437A1 (en) * 2005-01-20 2006-07-20 Blythe Michael M Display device
US8013845B2 (en) * 2005-12-30 2011-09-06 Flatfrog Laboratories Ab Optical touch pad with multilayer waveguide
US9063617B2 (en) * 2006-10-16 2015-06-23 Flatfrog Laboratories Ab Interactive display system, tool for use with the system, and tool management apparatus
RU2491606C2 (en) * 2008-08-29 2013-08-27 Шарп Кабушики Каиша Coordinate sensor, electronic device, display device and light-receiving unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545056A (en) * 2006-08-10 2009-12-17 エルジー ケム. エルティーディ. Non-contact type coordinate input system light guide plate, system including the same, and non-contact type coordinate input method using the same
JP2010191961A (en) * 2009-02-13 2010-09-02 Arima Lasers Corp Detection module and optical detection system including the same

Also Published As

Publication number Publication date
CN103959213A (en) 2014-07-30
JP2013149231A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US8395588B2 (en) Touch panel
WO2013111447A1 (en) Coordinate input device and coordinate input system
TWI582661B (en) Contactless input device and method
JP2014021790A (en) Coordinate input device, coordinate detection method and coordinate input system
JP2009295318A (en) Lighting system and electro-optical device
TWI410685B (en) Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module
WO2013094376A1 (en) Input system
JP5886080B2 (en) Input device and input system including the input device
JP5944255B2 (en) Operation member having light emitting unit and coordinate input system having the same
JP2013250815A (en) Coordinate input device and coordinate input system
JP2014099139A (en) Coordinate input device and coordinate input system
WO2013132925A1 (en) Input device and input system provided therewith
JP2016151988A (en) Input system
WO2013094378A1 (en) Light guide member, and input device equipped with same
JP2013250817A (en) Coordinate input device and coordinate input system
JP5823283B2 (en) Operation member having a light emitting unit, and input system including the operation member
JP2013250816A (en) Coordinate input device, and coordinate input system
WO2013114715A1 (en) Input device, and input system comprising input device
JP5813533B2 (en) Input device and input system
JP2014021789A (en) Input device, and input system including the same
JP2013182535A (en) Input device and input system provided therewith
JP2013250812A (en) Coordinate input device, coordinate detection method, and coordinate input system
JP2013210943A (en) Coordinate input device, coordinate input system, and coordinate input method
JP2013250813A (en) Coordinate input device, and coordinate input system
JP2013190980A (en) Coordinate input device, coordinate input system, and coordinate input method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860955

Country of ref document: EP

Kind code of ref document: A1