JP2010204424A - Blank for reflective photomask and reflective photomask - Google Patents

Blank for reflective photomask and reflective photomask Download PDF

Info

Publication number
JP2010204424A
JP2010204424A JP2009050423A JP2009050423A JP2010204424A JP 2010204424 A JP2010204424 A JP 2010204424A JP 2009050423 A JP2009050423 A JP 2009050423A JP 2009050423 A JP2009050423 A JP 2009050423A JP 2010204424 A JP2010204424 A JP 2010204424A
Authority
JP
Japan
Prior art keywords
film
reflective
reflective photomask
protective film
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009050423A
Other languages
Japanese (ja)
Other versions
JP5381167B2 (en
Inventor
Takako Sakai
香子 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009050423A priority Critical patent/JP5381167B2/en
Publication of JP2010204424A publication Critical patent/JP2010204424A/en
Application granted granted Critical
Publication of JP5381167B2 publication Critical patent/JP5381167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blank for a reflective photomask, which is clean against outgas components existing in a mask case made of resin and in clean room environment and can form minute patterns without contaminating inside an exposing device; and to provide the reflective photomask. <P>SOLUTION: The blank for a reflective photomask is clean to outgas components existing in a mask case made of resin and in clean room environment and can form minute patterns without contaminating inside an exposing device by including a protective film coated so that the outgas components may not adhere to the whole surface of the surroundings. The reflective photomask is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反射型フォトマスク用ブランク及び反射型フォトマスクに関する。   The present invention relates to a reflective photomask blank and a reflective photomask.

LSIなどの回路パターン等ナノレベルの微細加工にはリソグラフィ技術が用いられている。近年高集積化に伴い、より微細なパターンを作製するための技術が要求されており、露光光源の短波長化が進められている。例えば、露光光源は、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)へと移行されている。また、さらに短波長の軟X線(波長13.5nm)を露光光源とする開発も行われている。   Lithography technology is used for nano-level microfabrication of circuit patterns such as LSI. In recent years, with higher integration, a technique for producing a finer pattern is required, and the wavelength of an exposure light source is being shortened. For example, the exposure light source has been shifted to a KrF excimer laser (wavelength 248 nm) and an ArF excimer laser (wavelength 193 nm). In addition, developments have been made in which soft X-rays having a shorter wavelength (wavelength: 13.5 nm) are used as an exposure light source.

軟X線を露光光源とするリソグラフィをEUV(Extreme Ultra Violet)リソグラフィと呼ぶ。EUVリソグラフィでは、その露光光源の波長領域における物質の屈折率が1よりわずかに小さい程度であることから従来用いられている屈折光学系が使用できず、反射光学系を使用することによりパターン転写を実施する。また、EUV光は窒素や水分によっても吸収されてしまい、従来の透過型のフォトマスクは使用できないため、反射型のフォトマスクが用いられる。   Lithography using soft X-rays as an exposure light source is called EUV (Extreme Ultra Violet) lithography. In EUV lithography, since the refractive index of a substance in the wavelength region of the exposure light source is slightly smaller than 1, a conventionally used refractive optical system cannot be used, and pattern transfer can be performed by using a reflective optical system. carry out. Further, since EUV light is absorbed by nitrogen and moisture, and a conventional transmission type photomask cannot be used, a reflection type photomask is used.

反射型のフォトマスクは、熱膨張率の小さい基板上にEUV光を反射可能な多層反射層を構成し、さらにEUV光に対する吸収率が高い材料で吸収層を形成されたブランクを用い、吸収層を所望のパターンに加工することによって得られる。パターン欠陥修正や酸化による反射率の低下を防ぐために多層反射層と吸収層との間にバッファー層やキャッピング層と呼ばれる層を設ける場合も多い。   A reflection type photomask uses a blank in which a multilayer reflection layer capable of reflecting EUV light is formed on a substrate having a low coefficient of thermal expansion, and an absorption layer is formed of a material having a high absorption rate for EUV light. Can be obtained by processing into a desired pattern. In many cases, a layer called a buffer layer or a capping layer is provided between the multilayer reflective layer and the absorbing layer in order to prevent a reduction in reflectance due to pattern defect correction or oxidation.

以上のようにEUVリソグラフィは、今までのリソグラフィ技術とは顕著に異なる部分が多く、周辺技術の早急な対応が求められている。   As described above, EUV lithography has many parts that are remarkably different from the conventional lithography techniques, and immediate support for peripheral techniques is required.

EUVリソグラフィ用の露光装置は、ほとんどの物質がEUV光を吸収してしまうために内部を高真空に保つ必要がある。そのため、微量なアウトガス成分についてもカーボン汚染の原因となる可能性があり、光学系ミラー等の汚染対象として問題視されている。露光装置内へ設置されるEUV用フォトマスクに対しても高い清浄度が要求される。   In an exposure apparatus for EUV lithography, since most substances absorb EUV light, the inside needs to be kept at a high vacuum. For this reason, even a very small amount of outgas components may cause carbon contamination, and is regarded as a problem for contamination of optical mirrors and the like. A high cleanliness is also required for the EUV photomask installed in the exposure apparatus.

例えば、特許文献1では、フォトマスクのパターン面のみに保護層としてルテニウム膜を被覆して、EUV光照射による表面の酸化やカーボン汚染を防止する反射型フォトマスクが提案されている。しかし、実際には露光工程中だけでなく、露光装置内へ設置する前段階でフォトマスクに付着するアウトガス成分、例えば、フォトマスクの保管及び運搬に使用される樹脂製マスクケースから発生するアウトガス成分やクリーンルーム雰囲気中に存在するアウトガス成分に対して清浄な状態にする必要がある。   For example, Patent Document 1 proposes a reflective photomask in which only a pattern surface of a photomask is covered with a ruthenium film as a protective layer to prevent surface oxidation and carbon contamination due to EUV light irradiation. However, in actuality, the outgas component attached to the photomask not only during the exposure process but also before the installation in the exposure apparatus, for example, the outgas component generated from the resin mask case used for storing and transporting the photomask. It is also necessary to clean the outgas components present in the clean room atmosphere.

また、EUVリソグラフィ用のフォトマスクに要求される寸法精度は年々厳しくなってきており、ITRS(The international technology roadmap for semiconductors:2007)によると2010年にはCD mean to targetを3.6nmで制御しなければならない状況となっている。そのため、特許文献1に記載されているようなパターン部形成後に保護層を成膜する方法でEUVリソグラフィ用のフォトマスクを作製することは寸法制御の観点から困難であると考えられる。   In addition, the dimensional accuracy required for a photomask for EUV lithography is becoming stricter year by year. According to ITRS (The International Technology for Semiconductors: 2007), the CD mean to target is controlled at 3.6 nm in 2010. The situation has to be. For this reason, it is considered difficult to produce a photomask for EUV lithography by a method of forming a protective layer after forming a pattern portion as described in Patent Document 1, from the viewpoint of dimensional control.

特開2003−318104号公報JP 2003-318104 A

本発明は、樹脂製マスクケースやクリーンルーム環境中に存在するアウトガス成分に対して清浄で露光装置内部を汚染することのなく、微細なパターン形成ができる、反射型フォトマスク用ブランク及び反射型フォトマスクを提供することを目的とする。   The present invention relates to a blank for a reflective photomask and a reflective photomask capable of forming a fine pattern that is clean with respect to an outgas component present in a resin mask case or a clean room environment and does not contaminate the inside of the exposure apparatus. The purpose is to provide.

請求項1に記載の本発明は、基板と、前記基板に積層された多層反射膜と、前記多層反射膜に積層されたキャッピング膜と、前記キャッピング膜に積層された吸収膜と、を有する構造体と、前記構造体の周囲全面に被覆された保護膜と、を備え、前記保護膜は、(1)キャッピング膜で被覆した多層反射膜面のEUV光反射率(Rm)と、保護膜を形成した吸収膜上の反射率(Ra)との光学濃度(−log(Ra/Rm))が2.1を超える保護膜の膜厚が存在し、(2)欠陥検査波長光に対するキャッピング膜面と保護膜面とのコントラスト((Rm−Ra)/(Ra+Rm)×100%)が47%以上である保護膜の膜厚が存在する、材料よりなることを特徴とする反射型フォトマスク用ブランクである。   The present invention according to claim 1 includes a substrate, a multilayer reflective film laminated on the substrate, a capping film laminated on the multilayer reflective film, and an absorption film laminated on the capping film. And a protective film coated on the entire periphery of the structure, the protective film comprising: (1) the EUV light reflectance (Rm) of the multilayer reflective film surface coated with a capping film, and a protective film; There is a film thickness of the protective film having an optical density (-log (Ra / Rm)) with a reflectance (Ra) on the formed absorption film exceeding 2.1, and (2) a capping film surface for the defect inspection wavelength light A blank for a reflective photomask, comprising a material having a film thickness of a protective film having a contrast ((Rm−Ra) / (Ra + Rm) × 100%) of 47% or more between the surface and the protective film surface It is.

請求項2に記載の本発明は、請求項1に記載の反射型フォトマスク用ブランクであって、吸収膜は、上層吸収膜と下層吸収膜よりなる多層膜であることを特徴とする反射型フォトマスク用ブランクである。   The present invention according to claim 2 is the reflective photomask blank according to claim 1, wherein the absorption film is a multilayer film composed of an upper absorption film and a lower absorption film. This is a photomask blank.

請求項3に記載の本発明は、請求項1または2のいずれかに記載の反射型フォトマスク用ブランクであって、多層反射膜は、モリブデンとシリコンとが複数回積層された多層反射膜であり、キャッピング膜は、ルテニウムを含む材料よりなり、吸収膜は、タンタルを含む材料よりなり、保護膜は、ルテニウムを含み、前記保護膜の膜厚は1.5nm〜2.5nmの範囲内にあることを特徴とする反射型フォトマスク用ブランクである。   A third aspect of the present invention is the reflective photomask blank according to the first or second aspect, wherein the multilayer reflective film is a multilayer reflective film in which molybdenum and silicon are laminated a plurality of times. The capping film is made of a material containing ruthenium, the absorption film is made of a material containing tantalum, the protective film contains ruthenium, and the thickness of the protective film is in the range of 1.5 nm to 2.5 nm. It is a blank for a reflective photomask characterized by being.

請求項4に記載の本発明は、請求項1から3のいずれかに記載の反射型フォトマスク用ブランクを用いて作製された反射型フォトマスクである。   The present invention described in claim 4 is a reflective photomask manufactured using the reflective photomask blank according to any one of claims 1 to 3.

本発明によれば、構造体の周囲全面を保護膜により被覆することから、樹脂製マスクケースやクリーンルーム環境中に存在するアウトガス成分に対して清浄で露光装置内部を汚染することのなく、微細なパターン形成ができる、反射型フォトマスク用ブランク及び反射型フォトマスクを提供することができる。   According to the present invention, since the entire surface of the structure is covered with the protective film, it is clean with respect to the outgas component present in the resin mask case and the clean room environment, and does not contaminate the inside of the exposure apparatus. A blank for a reflective photomask and a reflective photomask that can be patterned can be provided.

本発明の実施の形態に係る反射型フォトマスク用ブランクを示す概略構成図である。It is a schematic block diagram which shows the blank for reflective photomasks which concerns on embodiment of this invention. 本発明の実施の形態に係る反射型フォトマスク用ブランクの最表面と従来のフォトマスク用ブランクの最表面に付着するアウトガス成分量の比較を示すグラフである。It is a graph which shows the comparison of the outgas component amount adhering to the outermost surface of the blank for reflective photomasks concerning embodiment of this invention, and the outermost surface of the conventional photomask blank. 多層反射膜上にキャッピング膜を形成した場合のルテニウムの膜厚に対するEUV光の反射率(Rm)の関係を示すグラフである。It is a graph which shows the relationship of the reflectance (Rm) of EUV light with respect to the film thickness of ruthenium at the time of forming a capping film on a multilayer reflective film. 上層吸収膜上に保護膜を形成した場合のルテニウムの膜厚に対するEUV光の反射率(Ra)の関係を示すグラフである。It is a graph which shows the relationship of the reflectance (Ra) of EUV light with respect to the film thickness of ruthenium at the time of forming a protective film on an upper layer absorption film. 多層反射膜上にキャッピング膜としてのルテニウムを形成した場合のEUV光の反射率(Rm)と、上層吸収膜上に保護膜としてのルテニウムを形成した場合の反射率(Ra)とのルテニウムの膜厚に対する光学濃度を示すグラフである。Ruthenium film with EUV light reflectivity (Rm) when ruthenium is formed as a capping film on the multilayer reflective film and reflectivity (Ra) when ruthenium is formed as a protective film on the upper absorption film It is a graph which shows the optical density with respect to thickness. 上層吸収膜上に保護膜としてのルテニウムを形成した場合の欠陥検査波長光の反射率(Ra)と、反射部と吸収部とのコントラストを保護膜としてのルテニウムの膜厚に対して求めたグラフである。The graph which calculated | required the reflectance (Ra) of the defect inspection wavelength light at the time of forming ruthenium as a protective film on an upper layer absorption film, and the contrast of a reflective part and an absorption part with respect to the film thickness of ruthenium as a protective film It is. 本発明の実施の形態に係る反射型フォトマスクを示す概略構成図である。It is a schematic block diagram which shows the reflection type photomask which concerns on embodiment of this invention.

以下、本発明の実施の形態を、図面を参照しつつ、説明する。実施の形態において、同一構成要素には同一符号を付け、実施の形態の間において重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiments, the same components are denoted by the same reference numerals, and redundant description among the embodiments is omitted.

図1に示すように、本発明の実施の形態に係る反射型フォトマスク用ブランク10は、基板1と、基板1上に形成された多層反射膜2と、多層反射膜2上に形成されたキャッピング膜3と、キャッピング膜3上に形成された下層吸収膜4と、下層吸収膜4上に形成された上層吸収膜5とを有する構造体7と、さらに構造体7の周囲全面を被覆された保護膜6とから構成される。   As shown in FIG. 1, a reflective photomask blank 10 according to an embodiment of the present invention is formed on a substrate 1, a multilayer reflective film 2 formed on the substrate 1, and a multilayer reflective film 2. A structure 7 having a capping film 3, a lower layer absorption film 4 formed on the capping film 3, and an upper layer absorption film 5 formed on the lower layer absorption film 4, and further, the entire periphery of the structure 7 is covered. And a protective film 6.

基板1は、基板1上に多層反射膜2を密着性よく均一に成膜でき、熱膨張率の小さい材料であればいずれでも構わない。例としては、チタンを添加した低熱膨張ガラスが挙げられるが本発明ではこれらに限定されるわけではない。   The substrate 1 may be any material as long as the multilayer reflective film 2 can be uniformly formed on the substrate 1 with good adhesion and has a low coefficient of thermal expansion. Examples include low thermal expansion glass to which titanium is added, but the present invention is not limited thereto.

多層反射膜2は、モリブデン2.8nmとシリコン4.2nmとから構成され、30周期〜50周期で積層して波長13nm〜14nmのEUV光に対して最大の反射率となるようにする。   The multilayer reflective film 2 is composed of molybdenum 2.8 nm and silicon 4.2 nm, and is laminated at 30 to 50 periods so as to have the maximum reflectance with respect to EUV light having a wavelength of 13 to 14 nm.

キャッピング膜3の主な役割は多層反射膜2表面の酸化による反射率低下を防止することであり、反射型フォトマスク20に加工された際にEUV光を反射する部分の最表面となる。そのため、キャッピング膜3はEUV光に対する消衰係数が小さく、キャッピング膜3の屈折率と真空の屈折率との差が大きく、酸化しにくい材料を用いる必要がある。また、アウトガス成分の付着しにくい性質を持つことが求められる。   The main role of the capping film 3 is to prevent a decrease in reflectance due to oxidation of the surface of the multilayer reflective film 2, and it becomes the outermost surface of the part that reflects EUV light when processed into the reflective photomask 20. Therefore, the capping film 3 needs to use a material that has a small extinction coefficient with respect to EUV light, has a large difference between the refractive index of the capping film 3 and the refractive index of vacuum, and is difficult to oxidize. In addition, it is required to have a property that the outgas component hardly adheres.

以下の理由からキャッピング膜3の材料としてルテニウムを選択することができる。ルテニウムは光学ミラーの酸化抑制対策として知られた材料である(Proc.SPIE Vol.5751, pp118−125(2005))。さらにルテニウムは以下の調査によりアウトガス成分が付着しにくい材料であることも確認することができた。アウトガス成分の放出しやすいアクリル系樹脂製マスクケースにルテニウム膜つきのサンプルと上層吸収膜5(この場合はタンタル系酸化膜)つきのサンプルとを20時間保管し、加熱脱離ガスクロマト質量分析装置、「TD−GC/MS」を用いてサンプル表面のアウトガス成分量を調査した。図2に示した結果からルテニウム膜はタンタル系酸化膜より10分の1以下のアウトガス成分量となった。   Ruthenium can be selected as the material of the capping film 3 for the following reasons. Ruthenium is a material known as a measure for suppressing oxidation of optical mirrors (Proc. SPIE Vol. 5751, pp 118-125 (2005)). Furthermore, ruthenium was also confirmed to be a material to which outgas components are difficult to adhere by the following investigation. A sample with a ruthenium film and a sample with an upper absorption film 5 (in this case, a tantalum-based oxide film) are stored for 20 hours in an acrylic resin mask case that easily releases outgas components. TD-GC / MS "was used to investigate the amount of outgas components on the sample surface. From the results shown in FIG. 2, the ruthenium film had an outgas component amount of 1/10 or less than the tantalum oxide film.

キャッピング膜3の膜厚は、EUV光の反射率ができるだけ低下しないように設計する必要がある。多層反射膜2上に形成されたルテニウムの膜厚に対するEUV光の反射率(Rm)を計算により求めた結果を図3に示す。図3の結果からキャッピング膜3としてのルテニウムの膜厚はEUV光の反射率にほとんど影響ない1nm〜2.5nm程度とする。   The film thickness of the capping film 3 needs to be designed so that the reflectance of EUV light does not decrease as much as possible. FIG. 3 shows a result obtained by calculating the reflectance (Rm) of EUV light with respect to the film thickness of ruthenium formed on the multilayer reflective film 2. From the result of FIG. 3, the film thickness of ruthenium as the capping film 3 is set to about 1 nm to 2.5 nm which hardly affects the reflectance of EUV light.

下層吸収膜4はドライエッチングされて所定の露光転写パターンに形成された際に、照射されたEUV光を吸収するものであり、EUV光に対する高吸収性を有する重金属から選択される。このような重金属としては、タンタルを主成分とした合金を用いることが好ましい。下層吸収膜4の膜厚はEUV光や欠陥検査に用いるDUV(Deep Ultra Violet)光に対する光学特性を考慮するため、反射型フォトマスク用ブランク10を構成する膜全体で調整して決定されるが、30nm〜80nm程度である。   The lower absorption film 4 absorbs EUV light irradiated when dry etching is performed to form a predetermined exposure transfer pattern, and is selected from heavy metals having high absorbability with respect to EUV light. As such a heavy metal, an alloy containing tantalum as a main component is preferably used. The film thickness of the lower absorption film 4 is determined by adjusting the entire film constituting the reflective photomask blank 10 in consideration of optical characteristics with respect to EUV light and DUV (Deep Ultra Violet) light used for defect inspection. 30 nm to 80 nm.

下層吸収膜4と上層吸収膜5とのエッチングに対して耐性を有する材料からなるバッファー層をキャッピング膜3と下層吸収膜4との間にエッチングストッパーとして形成しても構わない。   A buffer layer made of a material resistant to the etching of the lower absorption film 4 and the upper absorption film 5 may be formed as an etching stopper between the capping film 3 and the lower absorption film 4.

上層吸収膜5は、欠陥検査に用いるDUV光に対して、反射防止性のある材料であり、エッチングによる加工が可能な材料であればいずれでも構わない。例としては、タンタルを主成分として酸素を含有させた材料が挙げられるが本発明ではこれらに限定されるわけではない。上層吸収膜5の膜厚はEUV光や欠陥検査に用いるDUV光に対する光学特性を考慮するため、反射型フォトマスク用ブランク10を構成する膜全体で調整して決定されるが、10nm〜30nm程度であればよい。   The upper absorption film 5 is a material that is antireflective with respect to DUV light used for defect inspection, and may be any material that can be processed by etching. Examples include materials containing tantalum as a main component and oxygen, but the present invention is not limited thereto. The film thickness of the upper absorption film 5 is determined by adjusting the entire film constituting the reflective photomask blank 10 in order to consider optical characteristics with respect to EUV light and DUV light used for defect inspection, but is about 10 nm to 30 nm. If it is.

保護膜6は、構造体7の周囲全面を被膜するように成膜する。保護膜6は上層吸収膜5よりもアウトガスが付着しにくく、以下の2条件を満たす材料により構成される。
条件1:キャッピング膜で被覆した多層反射膜面のEUV光反射率(Rm)と、保護膜を形成した上層吸収膜上の反射率(Ra)との光学濃度(=−log(Ra/Rm))が2.1を超える保護膜の膜厚が存在すること。
条件2:欠陥検査波長光(波長257nm)に対する反射部(キャッピング膜面)と吸収部(保護膜面)とのコントラスト(=(Rm−Ra)/(Ra+Rm)×100%)が47%以上となる保護膜の膜厚が存在すること。
例としてはルテニウム、クロム、白金などが挙げられる。
The protective film 6 is formed so as to cover the entire surface around the structure 7. The protective film 6 is less likely to adhere outgas than the upper absorption film 5 and is made of a material that satisfies the following two conditions.
Condition 1: The optical density (= −log (Ra / Rm) between the EUV light reflectance (Rm) of the multilayer reflective film surface coated with the capping film and the reflectance (Ra) on the upper absorption film on which the protective film is formed. ) Must be greater than 2.1.
Condition 2: The contrast (= (Rm−Ra) / (Ra + Rm) × 100%) between the reflection part (capping film surface) and the absorption part (protective film surface) with respect to the defect inspection wavelength light (wavelength 257 nm) is 47% or more. There must be a protective film thickness.
Examples include ruthenium, chromium, platinum and the like.

キャッピング膜3の材料としても使用できるルテニウムを保護膜6とした場合について詳細に説明する。図4に示すグラフはモリブデンとシリコンとを40周期で積層させた多層反射膜2と、ルテニウムから構成されるキャッピング膜3の膜厚2.5nmと、タンタルを主成分とした合金からなる下層吸収膜4の膜厚51.5nmと、タンタルを主成分として酸素を含有させた材料からなる上層吸収膜5の膜厚15nmとを有する構造体7の周囲全面に被覆した保護膜6としてのルテニウム膜厚に対するEUV反射率(Ra)を計算した結果である。   The case where ruthenium that can also be used as the material of the capping film 3 is used as the protective film 6 will be described in detail. The graph shown in FIG. 4 shows a multilayer reflection film 2 in which molybdenum and silicon are laminated in 40 cycles, a film thickness of 2.5 nm of a capping film 3 made of ruthenium, and a lower layer absorption made of an alloy mainly composed of tantalum. A ruthenium film as a protective film 6 covering the entire surface of the structure 7 having a film thickness 51.5 nm and a film thickness 15 nm of the upper absorption film 5 made of a material containing tantalum as a main component and containing oxygen. It is the result of calculating the EUV reflectance (Ra) with respect to thickness.

図3と図4とで求めたRmとRaを用いて、光学濃度(以下、「OD」という。)(=−log(Ra/Rm))を算出し、図5に示した。EUV光に対する上層吸収膜上の反射率(Ra)の要求値(SEMI standard P38−1102)は0.5%以下。キャッピング膜で被覆した多層反射膜面のEUV光反射率(Rm)の要求値(ITRS2007: 2010年における要求値)は66%。これらの値を使って計算すると、OD(=−log(Ra/Rm))は2.1以上であればよいとされる。   The optical density (hereinafter referred to as “OD”) (= −log (Ra / Rm)) was calculated using Rm and Ra obtained in FIGS. 3 and 4 and shown in FIG. The required value (SEMI standard P38-1102) of the reflectance (Ra) on the upper absorption film for EUV light is 0.5% or less. The required value of EUV light reflectance (Rm) of the multilayer reflective film surface coated with the capping film (ITRS 2007: required value in 2010) is 66%. When calculated using these values, OD (= −log (Ra / Rm)) should be 2.1 or more.

次に、欠陥検査波長の候補である波長257nmの光における上層吸収膜5上に保護膜6としてのルテニウムを形成した場合の欠陥検査波長光の反射率(Ra)と、反射部8と吸収部9とのコントラスト(=(Rm−Ra)/(Ra+Rm)×100%)をルテニウムの保護膜6の膜厚に対して計算し、図6に示した。検査波長(257nm)に対する上層吸収膜上の反射率(Ra)の要求値(SEMI standard P38−1102)は20%以下。キャッピング膜で被覆した多層反射膜面の検査波長(257nm)に対する反射率(Rm)の要求値(SEMI standard P38−1102)は55%。これらの値を使って計算すると、コントラスト(=(Rm−Ra)/(Ra+Rm)×100%)は47%以上であればよいとされる。   Next, the reflectance (Ra) of the defect inspection wavelength light when ruthenium as the protective film 6 is formed on the upper absorption film 5 in the light of wavelength 257 nm, which is a candidate for the defect inspection wavelength, the reflection portion 8 and the absorption portion The contrast with 9 (= (Rm−Ra) / (Ra + Rm) × 100%) was calculated with respect to the thickness of the protective film 6 of ruthenium and is shown in FIG. The required value (SEMI standard P38-1102) of the reflectance (Ra) on the upper absorption film with respect to the inspection wavelength (257 nm) is 20% or less. The required value (SEMI standard P38-1102) of reflectivity (Rm) for the inspection wavelength (257 nm) of the multilayer reflective film surface coated with the capping film is 55%. When calculated using these values, the contrast (= (Rm−Ra) / (Ra + Rm) × 100%) may be 47% or more.

図5及び図6からODが2.1以上でコントラストが47%以上という条件を満たすルテニウムを用いた保護膜6の膜厚は1.5nm〜2.5nm程度であればよい。ただし、この数値はモリブデンとシリコンとを40周期で積層させた多層反射膜2と、ルテニウムから構成されるキャッピング膜3の膜厚2.5nmと、タンタルを主成分とした合金からなる下層吸収膜4の膜厚51.5nmと、タンタルを主成分として酸素を含有させた材料からなる上層吸収膜5の膜厚15nmとを有する構造体7の場合に適用することができる。   5 and 6, the protective film 6 using ruthenium satisfying the condition that the OD is 2.1 or more and the contrast is 47% or more may be about 1.5 nm to 2.5 nm. However, this numerical value is a multilayer reflective film 2 in which molybdenum and silicon are laminated in 40 cycles, a film thickness of 2.5 nm of a capping film 3 made of ruthenium, and a lower absorption film made of an alloy containing tantalum as a main component. 4 can be applied to the structure 7 having a film thickness 51.5 nm and a film thickness 15 nm of the upper absorption film 5 made of a material containing tantalum as a main component and containing oxygen.

反射型フォトマスク用ブランク10を構成する基板1の上に形成された多層反射膜2、キャッピング膜3、下層吸収膜4、上層吸収膜5を有する構造体6及び全体を覆う保護膜6は、スパッタリング法、化学蒸着法、真空蒸着法などを用いて作製することができる。ターゲット原子の運動エネルギーが大きいため、強くて剥がれにくい膜を作製することができるスパッタリング法を用いることが好ましい。   A structure 6 having a multilayer reflective film 2, a capping film 3, a lower layer absorption film 4, and an upper layer absorption film 5 formed on the substrate 1 constituting the reflective photomask blank 10, and a protective film 6 covering the whole, A sputtering method, a chemical vapor deposition method, a vacuum vapor deposition method, or the like can be used. Since the kinetic energy of the target atom is large, it is preferable to use a sputtering method that can form a strong and difficult-to-peel film.

次に、本発明の反射型フォトマスク20の作製方法について説明する。   Next, a method for manufacturing the reflective photomask 20 of the present invention will be described.

反射型フォトマスク20は反射型フォトマスク用ブランク10を用いて、所望のパターンを形成することによって作製される。   The reflective photomask 20 is produced by forming a desired pattern using the reflective photomask blank 10.

まず、反射型フォトマスク用ブランク10のパターン形成面側にレジストを塗布し、電子線描画装置による描画、現像処理を行い、所望のレジストパターンを形成する。   First, a resist is applied to the pattern forming surface side of the reflective photomask blank 10, and a desired resist pattern is formed by performing drawing and developing processes using an electron beam drawing apparatus.

次に、レジストパターンをマスクとして、保護膜6、上層吸収膜5、下層吸収膜4をドライエッチングにより加工する。その後、レジスト剥離処理とパーティクル除去処理を行い、図7に示すような反射型フォトマスク20が完成する。   Next, using the resist pattern as a mask, the protective film 6, the upper absorption film 5, and the lower absorption film 4 are processed by dry etching. Thereafter, a resist stripping process and a particle removing process are performed to complete a reflective photomask 20 as shown in FIG.

本発明の反射型フォトマスク用ブランク10及び反射型フォトマスク20の一実施例を以下に示す。しかし、本発明は実施例に何ら限定されるものではない。   An example of the reflective photomask blank 10 and the reflective photomask 20 of the present invention is shown below. However, the present invention is not limited to the examples.

<実施例1>
まず、下地とする基板1として6インチ角の低熱膨張ガラスを用意し、その上にモリブデン2.8nmとシリコン4.2nmとを40周期で積層させた膜厚280nmの多層反射膜2を形成した。
<Example 1>
First, a 6-inch square low thermal expansion glass was prepared as a base substrate 1, and a multilayer reflective film 2 having a thickness of 280 nm was formed thereon by laminating molybdenum 2.8 nm and silicon 4.2 nm in 40 cycles. .

次に、多層反射膜2の上にルテニウムからなるキャッピング膜3を膜厚2nmで形成し、続いてタンタルを主成分とした合金からなる下層吸収膜4を膜厚51.5nmで形成し、さらにタンタルを主成分として酸素を含有させた材料からなる上層吸収膜5を膜厚15nmで形成し、構造体7を得た。各膜の形成にはスパッタリング法を用いた。   Next, a capping film 3 made of ruthenium is formed with a film thickness of 2 nm on the multilayer reflective film 2, and then a lower layer absorption film 4 made of an alloy containing tantalum as a main component is formed with a film thickness of 51.5 nm. An upper absorption film 5 made of a material containing tantalum as a main component and containing oxygen was formed to a thickness of 15 nm, whereby a structure 7 was obtained. A sputtering method was used to form each film.

次に、構造体7の周囲全面を覆うようにルテニウムからなる保護膜6を膜厚2.0nmで形成し、反射型フォトマスク用ブランク10を得ることができた。   Next, a protective film 6 made of ruthenium was formed to a thickness of 2.0 nm so as to cover the entire periphery of the structure 7, thereby obtaining a reflective photomask blank 10.

次に、反射型フォトマスク用ブランク10の上にレジストを塗布し、電子線描画によりレジストパターンを形成した。得られたレジストパターンをマスクとして、塩素系ガス及びフッ素系ガスを用いて保護膜6、上層吸収膜5、下層吸収膜4のドライエッチングを行った。   Next, a resist was applied onto the reflective photomask blank 10 and a resist pattern was formed by electron beam drawing. Using the obtained resist pattern as a mask, dry etching of the protective film 6, the upper absorption film 5, and the lower absorption film 4 was performed using chlorine gas and fluorine gas.

次に、NMP系の溶剤、硫酸過水によるレジスト剥離処理、つづいてアンモニア過水を用いたパーティクル除去処理を行い、反射型フォトマスク20を得た。   Next, a resist stripping process using an NMP-based solvent and sulfuric acid / hydrogen peroxide followed by a particle removal process using ammonia / hydrogen peroxide was performed to obtain a reflective photomask 20.

<実施例2>
保護膜6を構造体7の周囲全面に被膜せずに反射型フォトマスク用ブランク10を得た。反射型フォトマスク20を形成する方法は実施例1と同様である。
<Example 2>
A reflective photomask blank 10 was obtained without coating the protective film 6 on the entire surface of the structure 7. The method for forming the reflective photomask 20 is the same as in the first embodiment.

<評価>
アクリル系樹脂製マスクケースに20時間保管し、表面に付着するアウトガス成分量を「TD−GC/MS」を用いて実施例1と実施例2との評価を行った。
<Evaluation>
Example 1 and Example 2 were evaluated using “TD-GC / MS” for the amount of outgas component adhering to the surface after storing in an acrylic resin mask case for 20 hours.

実施例1により得られた反射型フォトマスク20の評価を行うと、ヘキサデカン(C16)換算で2.4ng/cm2 となった。   When the reflective photomask 20 obtained in Example 1 was evaluated, it was 2.4 ng / cm 2 in terms of hexadecane (C16).

一方、実施例2の反射型フォトマスク20を用いて、評価を行うとヘキサデカン(C16)換算で30.2ng/cm2 となった。   On the other hand, when the evaluation was performed using the reflective photomask 20 of Example 2, it was 30.2 ng / cm 2 in terms of hexadecane (C16).

以上より、本発明の反射型フォトマスク20は、周囲全面に被覆された保護膜を備えることにより、アウトガス成分が付着しにくいことを確認できた。   From the above, it has been confirmed that the reflective photomask 20 of the present invention has a protective film coated on the entire surrounding surface, so that the outgas component hardly adheres.

本発明の反射型フォトマスク20は、保護膜6を構造体7の周囲全面にルテニウムを用いて覆うことでアウトガス成分が付着しにくいために高い清浄度を有することができる。そのためEUVリソグラフィ用の反射型フォトマスク20に要求される微細なパターン形成することができ、製品の歩留り向上につながる。   The reflective photomask 20 of the present invention can have high cleanliness because the outgas component is less likely to adhere by covering the protective film 6 with ruthenium all around the structure 7. Therefore, a fine pattern required for the reflective photomask 20 for EUV lithography can be formed, which leads to an improvement in product yield.

本発明は、軟X線領域の極端紫外光すなわちEUV(Extreme Ultra Violet)光を用いた微細加工が求められる広範な分野に利用が期待される。特に、半導体集積回路などの製造工程において求められる超微細な回路パターン転写の際に用いられる反射型フォトマスク用ブランク及び反射型フォトマスクとして利用が期待される。   The present invention is expected to be used in a wide range of fields in which fine processing using extreme ultraviolet light in the soft X-ray region, that is, EUV (Extreme Ultra Violet) light is required. In particular, it is expected to be used as a reflective photomask blank and a reflective photomask used in the transfer of ultrafine circuit patterns required in the manufacturing process of semiconductor integrated circuits and the like.

1……基板
2……多層反射膜
3……キャッピング膜
4……下層吸収膜
5……上層吸収膜
6……保護膜
7……構造体
8……反射部
9……吸収部
10……反射型フォトマスク用ブランク
20……反射型フォトマスク
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Multilayer reflective film 3 ... Capping film 4 ... Lower layer absorption film 5 ... Upper layer absorption film 6 ... Protective film 7 ... Structure 8 ... Reflection part 9 ... Absorption part 10 ... Reflective photomask blank 20 ... Reflective photomask

Claims (4)

基板と、
前記基板に積層された多層反射膜と、
前記多層反射膜に積層されたキャッピング膜と、
前記キャッピング膜に積層された吸収膜と、を有する構造体と、
前記構造体の周囲全面に被覆された保護膜と、を備え、
前記保護膜は、
(1)キャッピング膜で被覆した多層反射膜面のEUV光反射率(Rm)と、保護膜を形成した吸収膜上の反射率(Ra)との光学濃度(−log(Ra/Rm))が2.1を超える保護膜の膜厚が存在し、
(2)欠陥検査波長光に対するキャッピング膜面と保護膜面とのコントラスト((Rm−Ra)/(Ra+Rm)×100%)が47%以上である保護膜の膜厚が存在する、材料よりなること
を特徴とする反射型フォトマスク用ブランク。
A substrate,
A multilayer reflective film laminated on the substrate;
A capping film laminated on the multilayer reflective film;
A structure having an absorption film laminated on the capping film;
A protective film coated on the entire surrounding surface of the structure,
The protective film is
(1) The optical density (−log (Ra / Rm)) between the EUV light reflectance (Rm) of the multilayer reflective film surface coated with the capping film and the reflectance (Ra) on the absorption film on which the protective film is formed is There is a protective film thickness exceeding 2.1,
(2) It is made of a material having a film thickness of a protective film in which the contrast ((Rm−Ra) / (Ra + Rm) × 100%) between the capping film surface and the protective film surface with respect to the defect inspection wavelength light is 47% or more. A blank for a reflective photomask characterized by the above.
請求項1に記載の反射型フォトマスク用ブランクであって、
吸収膜は、上層吸収膜と下層吸収膜よりなる多層膜であること
を特徴とする反射型フォトマスク用ブランク。
The reflective photomask blank according to claim 1,
A reflective photomask blank, wherein the absorption film is a multilayer film comprising an upper absorption film and a lower absorption film.
請求項1または2のいずれかに記載の反射型フォトマスク用ブランクであって、
多層反射膜は、モリブデンとシリコンとが複数回積層された多層反射膜であり、
キャッピング膜は、ルテニウムを含む材料よりなり、
吸収膜は、タンタルを含む材料よりなり、
保護膜は、ルテニウムを含み、
前記保護膜の膜厚は1.5nm〜2.5nmの範囲内にあること
を特徴とする反射型フォトマスク用ブランク。
A blank for a reflective photomask according to claim 1 or 2,
The multilayer reflective film is a multilayer reflective film in which molybdenum and silicon are laminated several times.
The capping film is made of a material containing ruthenium,
The absorption film is made of a material containing tantalum,
The protective film contains ruthenium,
A reflective photomask blank, wherein the protective film has a thickness in a range of 1.5 nm to 2.5 nm.
請求項1から3のいずれかに記載の反射型フォトマスク用ブランクを用いて作製された反射型フォトマスク。   A reflective photomask produced using the reflective photomask blank according to claim 1.
JP2009050423A 2009-03-04 2009-03-04 Reflective photomask blank and reflective photomask Active JP5381167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050423A JP5381167B2 (en) 2009-03-04 2009-03-04 Reflective photomask blank and reflective photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050423A JP5381167B2 (en) 2009-03-04 2009-03-04 Reflective photomask blank and reflective photomask

Publications (2)

Publication Number Publication Date
JP2010204424A true JP2010204424A (en) 2010-09-16
JP5381167B2 JP5381167B2 (en) 2014-01-08

Family

ID=42965971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050423A Active JP5381167B2 (en) 2009-03-04 2009-03-04 Reflective photomask blank and reflective photomask

Country Status (1)

Country Link
JP (1) JP5381167B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045075A (en) * 2012-08-27 2014-03-13 Asahi Glass Co Ltd Reflective mask blank for euv lithography and reflective mask for euv lithography
CN111258179A (en) * 2018-12-03 2020-06-09 信越化学工业株式会社 Dustproof film assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293450A (en) * 1995-04-24 1996-11-05 Nikon Corp X-ray reflective mask
JP2003133205A (en) * 2001-10-24 2003-05-09 Oki Electric Ind Co Ltd Reflex mask, method of manufacturing the same, and method of cleaning the same
JP2003243292A (en) * 2002-02-18 2003-08-29 Nikon Corp Reflecting mask, aligner, and cleaning method therefor
JP2003257824A (en) * 2002-02-28 2003-09-12 Hoya Corp Reflection mask blank for exposure, its manufacturing method, and reflection mask for exposure
JP2003318104A (en) * 2002-04-18 2003-11-07 Samsung Electronics Co Ltd Reflection photomask having capping layer and its manufacturing method
JP2006190900A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Reflective photo mask, blank thereof, and method of manufacturing semiconductor device using the same
JP2007005523A (en) * 2005-06-23 2007-01-11 Toppan Printing Co Ltd Reflective photomask blank, reflective photo mask, and pattern transfer method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293450A (en) * 1995-04-24 1996-11-05 Nikon Corp X-ray reflective mask
JP2003133205A (en) * 2001-10-24 2003-05-09 Oki Electric Ind Co Ltd Reflex mask, method of manufacturing the same, and method of cleaning the same
JP2003243292A (en) * 2002-02-18 2003-08-29 Nikon Corp Reflecting mask, aligner, and cleaning method therefor
JP2003257824A (en) * 2002-02-28 2003-09-12 Hoya Corp Reflection mask blank for exposure, its manufacturing method, and reflection mask for exposure
JP2003318104A (en) * 2002-04-18 2003-11-07 Samsung Electronics Co Ltd Reflection photomask having capping layer and its manufacturing method
JP2006190900A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Reflective photo mask, blank thereof, and method of manufacturing semiconductor device using the same
JP2007005523A (en) * 2005-06-23 2007-01-11 Toppan Printing Co Ltd Reflective photomask blank, reflective photo mask, and pattern transfer method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045075A (en) * 2012-08-27 2014-03-13 Asahi Glass Co Ltd Reflective mask blank for euv lithography and reflective mask for euv lithography
CN111258179A (en) * 2018-12-03 2020-06-09 信越化学工业株式会社 Dustproof film assembly
CN111258179B (en) * 2018-12-03 2023-01-24 信越化学工业株式会社 Dustproof film assembly

Also Published As

Publication number Publication date
JP5381167B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
TWI467318B (en) An optical member for EUV microfilm, and a method for manufacturing a substrate with a reflective layer for EUV microfilm
TWI826587B (en) Reflective blank mask and reflective mask
US7078134B2 (en) Photolithographic mask having a structure region covered by a thin protective coating of only a few atomic layers and methods for the fabrication of the mask including ALCVD to form the thin protective coating
KR20110065439A (en) Reflective mask blank for euv lithography and method for producing the same
JP2022009220A (en) Reflective mask blank, method for producing reflective mask, and method for producing semiconductor device
JP6931729B1 (en) Manufacturing method for substrates with multilayer reflective films, reflective mask blanks, reflective masks, and semiconductor devices
JP2010118520A (en) Reflection type mask, and method of manufacturing reflection type mask
JP2008041740A (en) Reflective photo-mask blank, reflective photo-mask and exposure method for extreme ultraviolet ray
JP5533016B2 (en) Method for manufacturing a reflective mask
JP2009071126A (en) Reflective photomask for extreme-ultraviolet ray and semiconductor device manufacturing method
JP5703841B2 (en) Reflective mask
WO2020256064A1 (en) Reflective mask blank, reflective mask, and methods for manufacturing reflective mask and semiconductor device
JP5532834B2 (en) Reflective projection exposure mask blank and reflective projection exposure mask
JP5381167B2 (en) Reflective photomask blank and reflective photomask
WO2004049063A2 (en) Photomask and method for creating a protective layer on the same
Mangat et al. Extreme ultraviolet lithography mask patterning and printability studies with a Ta-based absorber
US7972751B2 (en) Reflection photolithography mask, and process for fabricating this mask
JP2008085223A (en) Extreme ultraviolet ray exposure mask and manufacturing method of semiconductor integrated circuit employing the same
JP2009070860A (en) Blank for reflective photomask and manufacturing method thereof, and reflective photomask and manufacturing method thereof
JP2011181657A (en) Reflection type mask, and method of repairing the same
JP7002700B2 (en) Reflective mask blank, reflective mask, and method for manufacturing reflective mask and semiconductor device.
JP4910820B2 (en) Extreme ultraviolet exposure mask, extreme ultraviolet exposure mask blank, method for manufacturing extreme ultraviolet exposure mask, and lithography method
JP2015018918A (en) Reflection type mask, exposure method, and method of manufacturing device
US7745070B2 (en) Structure of a lithography mask
KR101921759B1 (en) Method for manufacturing transfer mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250