JP2010202960A - Zinc-base-plated steel sheet onto the surface of which molten metal hardly deposits - Google Patents

Zinc-base-plated steel sheet onto the surface of which molten metal hardly deposits Download PDF

Info

Publication number
JP2010202960A
JP2010202960A JP2009052768A JP2009052768A JP2010202960A JP 2010202960 A JP2010202960 A JP 2010202960A JP 2009052768 A JP2009052768 A JP 2009052768A JP 2009052768 A JP2009052768 A JP 2009052768A JP 2010202960 A JP2010202960 A JP 2010202960A
Authority
JP
Japan
Prior art keywords
steel sheet
molten metal
zinc
znso
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009052768A
Other languages
Japanese (ja)
Other versions
JP5396921B2 (en
Inventor
Yoichi Makisui
洋一 牧水
Naoto Yoshimi
直人 吉見
Takahiro Kubota
隆広 窪田
Masahiko Tada
雅彦 多田
Katsuya Hoshino
克弥 星野
Masayasu Nagoshi
正泰 名越
Wataru Tanimoto
亘 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009052768A priority Critical patent/JP5396921B2/en
Publication of JP2010202960A publication Critical patent/JP2010202960A/en
Application granted granted Critical
Publication of JP5396921B2 publication Critical patent/JP5396921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc-base-plated steel sheet onto the surface of which a molten metal scattered by spot welding or arc welding hardly deposits. <P>SOLUTION: The zinc-base-plated steel sheet has an oxide layer existing on at least one side of the surface of the plated layer, which has a bulk height of 100-2,000 nm when measured through observation for the cross section and has 3Zn(OH)<SB>2</SB>-ZnSO<SB>4</SB>-xH<SB>2</SB>O. The oxide layer has 3Zn(OH)<SB>2</SB>-ZnSO<SB>4</SB>-3 to 5H<SB>2</SB>O. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スポット溶接時に発生する散りなど、高速で飛散する溶融金属が鋼板表面に付着し難く、あるいは表面に付着して凝固しても除去し易い亜鉛系めっき鋼板に関するものである。   The present invention relates to a galvanized steel sheet that is difficult to adhere to the surface of a steel sheet, such as splattering that occurs during spot welding, or that is easy to remove even if the molten metal adheres to the surface and solidifies.

亜鉛系めっき鋼板は、冷延鋼板や熱延鋼板に比べ、優れた耐食性を有しているため、防錆鋼板として自動車、建材、家電製品などの用途に広く利用されている。   Zinc-based plated steel sheets have excellent corrosion resistance compared to cold-rolled steel sheets and hot-rolled steel sheets, and are therefore widely used as rust-proof steel sheets in applications such as automobiles, building materials, and home appliances.

亜鉛系めっき鋼板を前記したような用途に使用する場合、耐食性以外の性能を併せ持つことが必要である。   When using a galvanized steel sheet for the above-mentioned use, it is necessary to have performances other than corrosion resistance.

以下に、自動車用途に使用される場合について説明する。自動車車体の組み立ては、スポット溶接によるものが主体である。また、足回り部品の組み立てには、アーク溶接も一部使用されている。   Below, the case where it uses for a motor vehicle use is demonstrated. The assembly of automobile bodies is mainly by spot welding. In addition, arc welding is also used in part for assembling the suspension parts.

ところが、スポット溶接時に溶接部から溶融金属が噴出し(スパッタという)、あるいはアーク溶接時に、溶接部から溶融金属が飛散する。   However, molten metal is ejected from the welded portion during spot welding (referred to as sputtering), or molten metal is scattered from the welded portion during arc welding.

これらの溶融金属が、鋼板表面に付着、凝固して、外観の悪化、塗装性の劣化などの問題を引き起こすので、溶融金属が鋼板表面に付着し難いことが求められている。また、溶融金属が付着、凝固した場合は、その後の工程において除去作業が行われるため、除去しやすいことも求められている。   Since these molten metals adhere to and solidify on the surface of the steel sheet, causing problems such as deterioration in appearance and paintability, it is required that the molten metal is difficult to adhere to the surface of the steel sheet. Further, when the molten metal adheres and solidifies, it is required to be easily removed because a removal operation is performed in a subsequent process.

このような溶接に伴う溶融金属の付着防止剤が市販されているが、自動車車体の組み立て工程のようなラインの中で防止剤の塗布のような工程が増えることは経済的に好ましくなく、抜本的な対策が望まれていた。その対策のひとつとして鋼板側での対策が考えられるが、これまで溶接時に飛散した溶融金属が付着し難い鋼板に関する検討は行われていない状況であった。   Molten metal adhesion prevention agents associated with such welding are commercially available, but it is economically undesirable to increase the number of processes such as application of the inhibitor in a line such as an assembly process of an automobile body. Measures were desired. As one of the countermeasures, a countermeasure on the steel sheet side can be considered, but until now, no investigation has been made on a steel sheet that hardly adheres to the molten metal scattered during welding.

本発明は、スポット溶接やアーク溶接によって飛散する溶融金属が鋼板表面に付着し難い亜鉛系めっき鋼板を提供することを目的とする。   An object of the present invention is to provide a galvanized steel sheet in which molten metal scattered by spot welding or arc welding hardly adheres to the steel sheet surface.

本発明者らは、スポット溶接時に飛散する溶融金属が鋼板表面に付着する現象について、次のような理由によるものと考えた。すなわち、高温で溶融し、高速で飛散してくる溶融金属は、亜鉛系めっき鋼板表面に直接衝突して、飛散してくる溶融金属の持つ高い運動エネルギーによって、めっき層は変形し、凹凸が形成される。もしくは溶融金属の持つ高い熱エネルギーによってめっき層は溶融する。更に、飛散してきた溶融金属は溶融しためっき層と合金反応を起こしながら、急速に冷却されて凝固、付着する。また、亜鉛系めっき鋼板のめっき層の融点はスポット溶接時に飛散する溶融金属の主成分であると推定される鉄の融点よりも低いため、めっき層の溶融が起こりやすいと考えられる。   The present inventors considered that the phenomenon that the molten metal scattered during spot welding adheres to the surface of the steel sheet is as follows. In other words, molten metal that melts at high temperature and scatters at high speed directly collides with the surface of the zinc-based plated steel sheet, and the plated layer is deformed and irregularities are formed by the high kinetic energy of the molten metal that scatters. Is done. Alternatively, the plating layer is melted by the high thermal energy of the molten metal. Furthermore, the scattered molten metal is rapidly cooled and solidified and adhered while causing an alloy reaction with the molten plating layer. Moreover, since the melting point of the plating layer of the galvanized steel sheet is lower than the melting point of iron presumed to be the main component of the molten metal scattered during spot welding, it is considered that the plating layer is likely to melt.

そこで、飛散してくる溶融金属が、直接めっき層に接触することなく、急速に冷却され凝固するような皮膜を、めっき層表面に形成すれば、この皮膜が保護皮膜となり、溶融金属が付着し難くなると考えた。   Therefore, if a coating is formed on the surface of the plating layer so that the molten metal that scatters rapidly cools and solidifies without directly contacting the plating layer, this coating becomes a protective coating, and the molten metal adheres. I thought it would be difficult.

以上の考えに基づいて、鋭意研究を重ねた結果、亜鉛系めっき鋼板の表面に溶融金属が直接めっき層に直接接触しないために、嵩高い皮膜を形成されることで溶融金属の付着を抑制できることを見出した。更に、皮膜の成分としては融点の高い物質が有効であることも明らかになった。   Based on the above idea, as a result of earnest research, the molten metal does not directly contact the plated layer on the surface of the galvanized steel sheet, so that the adhesion of the molten metal can be suppressed by forming a bulky film. I found. Furthermore, it has been clarified that a substance having a high melting point is effective as a component of the film.

本発明は、以上の知見に基づいてなされたものであり、その要旨は、下記の通りである。(1)少なくとも一方の面のめっき層表面に、断面観察から測定される嵩高さが100〜2000nmの酸化物層が存在し、該酸化物が3Zn(OH)・ZnSO・xHOを有することを特徴とする溶融金属が表面に付着し難い亜鉛系めっき鋼板である。
(2) (1)において、酸化物が3Zn(OH)・ZnSO・3〜5HOを有することを特徴とする溶融金属が表面に付着し難い亜鉛系めっき鋼板である。
This invention is made | formed based on the above knowledge, The summary is as follows. (1) An oxide layer having a bulkiness of 100 to 2000 nm measured from cross-sectional observation is present on at least one surface of the plating layer, and the oxide contains 3Zn (OH) 2 · ZnSO 4 · xH 2 O. It is a galvanized steel sheet in which molten metal is difficult to adhere to the surface.
(2) In (1), a zinc-plated steel sheet in which the molten metal hardly adheres to the surface, characterized in that the oxide has 3Zn (OH) 2 · ZnSO 4 · 3 to 5H 2 O.

本発明によれば、スポット溶接時に発生する散りなど、高速で飛散する溶融金属が鋼板表面に付着し難く、あるいは表面に付着して凝固しても除去し易い亜鉛系めっき鋼板を提供することができる。   According to the present invention, it is possible to provide a galvanized steel sheet in which molten metal that scatters at high speed, such as scatter generated during spot welding, is difficult to adhere to the steel sheet surface or is easy to remove even if it adheres to the surface and solidifies. it can.

スポット溶接スパッタ発生試験を説明する図である。It is a figure explaining a spot welding spatter generation test.

本発明は、亜鉛系めっき鋼板の少なくとも一方の面のめっき層表面に、断面観察から測定される嵩高さが100〜2000nmの酸化物層が存在するために、溶融金属が表面に付着し難い。100nmよりも嵩高さが低い場合には、その効果は小さく、溶融金属が冷却、凝固する前にめっき層と接触することになり、めっき層に付着するものと考えられる。また、酸化物は一般に融点が高いために、皮膜そのものも溶融することなく、溶融金属が付着し難い保護皮膜として機能することができる。嵩高さの上限は特に限定するものではないが、2000nm超の場合には化成処理時に表面を均一にエッチングされにくくなり、化成結晶が均一に形成されず、その後の塗装密着性を劣化させる場合があるので、嵩高さは2000nm以下が好ましい。   In the present invention, since an oxide layer having a bulkiness of 100 to 2000 nm measured from cross-sectional observation is present on the surface of the plated layer on at least one surface of the zinc-based plated steel sheet, the molten metal hardly adheres to the surface. When the bulk is lower than 100 nm, the effect is small, and the molten metal comes into contact with the plating layer before cooling and solidifying, and is considered to adhere to the plating layer. In addition, since oxides generally have a high melting point, the coating itself does not melt, and can function as a protective coating to which molten metal is difficult to adhere. The upper limit of the bulkiness is not particularly limited, but if it exceeds 2000 nm, the surface is difficult to be etched uniformly during the chemical conversion treatment, and the chemical conversion crystals are not formed uniformly, which may deteriorate the subsequent coating adhesion. Therefore, the bulkiness is preferably 2000 nm or less.

また、本発明における酸化物層は亜鉛系めっき層の表面に形成されるために、亜鉛を含む酸化物層を形成させることで、比較的に容易に、低コストで実施することができるために経済的に好ましい。   In addition, since the oxide layer in the present invention is formed on the surface of the zinc-based plating layer, it can be carried out relatively easily and at low cost by forming an oxide layer containing zinc. Economically favorable.

亜鉛を含む酸化物のなかでもZn−OH結合を有している場合は、熱エネルギーによってZn−OH結合が分解される。そのため、Zn−OH結合を有している酸化物層がめっき表面に形成されていると、溶融金属がめっき層に衝突した際に、溶融金属が持つ熱エネルギーはZn−OH結合の分解に消費され、めっき層の溶融を起こし難くなる。   In the case of an oxide containing zinc that has a Zn—OH bond, the Zn—OH bond is decomposed by thermal energy. Therefore, when an oxide layer having a Zn—OH bond is formed on the plating surface, when the molten metal collides with the plating layer, the thermal energy of the molten metal is consumed for the decomposition of the Zn—OH bond. This makes it difficult to cause the plating layer to melt.

更に、そのような物質のなかでも3Zn(OH)・ZnSO・xHOは板状の結晶形態を有しているため、めっき層表面に形成させた際に、結晶同士の間に隙間を形成し易い。すなわち、同量の他の物質を密に形成させたときに比較して嵩高さが高くなり、溶融金属のめっき層表面への付着を抑制する効果をより得ることができる。特に3Zn(OH)・ZnSO・3〜5HOは板状の結晶同士の間に隙間を形成し易く非常に有効である。 Furthermore, because such 3Zn (OH) 2 · ZnSO 4 · xH 2 O Among materials have a plate-like crystal form, when having formed on the plating layer surface, a gap between the crystal between Is easy to form. That is, the bulk becomes higher than when the same amount of another substance is densely formed, and the effect of suppressing adhesion of molten metal to the plating layer surface can be further obtained. In particular, 3Zn (OH) 2 .ZnSO 4 .3 to 5H 2 O is very effective because it easily forms a gap between plate-like crystals.

ここで、酸化物層に結晶性の3Zn(OH)・ZnSO・xHOが存在するかどうかは、薄膜X線回折法を用いて酸化物層のX線回折パターンを測定し、ICDDカードの標準パターンと照合して調査した。その結果、回折角度(2θ)が約8°から約12°の間に酸化物に由来するピークが確認され、これらのピークは、3Zn(OH)・ZnSO・0HO(ICDDカード:44−675)、3Zn(OH)・ZnSO・0.5HO(ICDDカード:44−674)、3Zn(OH)・ZnSO・1HO(ICDDカード:39−690)、3Zn(OH)・ZnSO・3HO(ICDDカード:39−689)、3Zn(OH)・ZnSO・4HO(ICDDカード:44−673)、3Zn(OH)・ZnSO・5HO(ICDDカード:39−688)であると同定された。 Here, whether or not crystalline 3Zn (OH) 2 · ZnSO 4 · xH 2 O is present in the oxide layer is determined by measuring the X-ray diffraction pattern of the oxide layer using a thin film X-ray diffraction method, We checked against the standard pattern of the card. As a result, the diffraction angle (2 [Theta]) is a peak derived from the oxide is confirmed between about 8 ° to about 12 °, these peaks, 3Zn (OH) 2 · ZnSO 4 · 0H 2 O (ICDD card: 44-675), 3Zn (OH) 2 .ZnSO 4 .0.5H 2 O (ICDD card: 44-674), 3Zn (OH) 2 .ZnSO 4 .1H 2 O (ICDD card: 39-690), 3Zn (OH) 2 .ZnSO 4 .3H 2 O (ICDD card: 39-689), 3Zn (OH) 2 .ZnSO 4 .4H 2 O (ICDD card: 44-673), 3Zn (OH) 2 .ZnSO 4. 5H 2 O (ICDD card: 39-688) was identified as.

亜鉛系めっき鋼板の表面に結晶性の3Zn(OH)・ZnSO・xHOを有する酸化物層を形成させる方法としては水溶液による反応を利用する方法が最も効果的である。なかでもZnイオンおよび、硫酸イオンまたは硝酸イオンを含有する溶液の液膜を鋼板表面に形成させ、所定時間放置することで、前述した結晶性の3Zn(OH)・ZnSO・xHOを有する酸化物層を表面に形成することができる。Znイオンのみを含有する溶液を用いた場合は結晶性の3Zn(OH)・ZnSO・xHOは形成されないが、Znイオンおよび硫酸イオンを含有する溶液では、硫酸イオン濃度が高くなるにつれて結晶性の3Zn(OH)・ZnSO・xHOの形成が促される傾向にある。また、Znイオンおよび硫酸イオンの濃度が高くなるほど、形成される酸化膜厚も厚くなる傾向にある。ただし、本発明における上層としての酸化物層はその形成方法より限定されるものではなく、置換めっき、酸化剤含有の水溶液への浸漬による方法、酸化剤含有の水溶液中での陰極電解処理および陽極電解処理、所定の水溶液の吹き付け、ロール塗布など、レーザーCVD、光CVD、真空蒸着、ならびにスパッタ蒸着法等の気相めっき法を採用することができる。 Method utilizing the reaction with an aqueous solution as a method for forming an oxide layer on the surface of the galvanized steel sheet having crystalline 3Zn (OH) 2 · ZnSO 4 · xH 2 O is the most effective. Of these Zn ions and, to form the liquid film surface of the steel sheet of a solution containing sulfate ions or nitrate ions, by left for a predetermined time, the crystalline 3Zn (OH) 2 · ZnSO 4 · xH 2 O as described above The oxide layer can be formed on the surface. As in the case of using a solution containing only Zn ions is crystalline 3Zn (OH) 2 · ZnSO 4 · xH 2 O is not formed, the solution containing Zn ions and sulfate ions, a higher sulfate ion concentration formation of crystalline 3Zn (OH) 2 · ZnSO 4 · xH 2 O tends to be prompted. In addition, the higher the concentration of Zn ions and sulfate ions, the thicker the oxide film formed. However, the oxide layer as the upper layer in the present invention is not limited by the formation method thereof, and is replaced by plating, a method by immersion in an oxidizing agent-containing aqueous solution, cathodic electrolytic treatment and an anode in an oxidizing agent-containing aqueous solution. Vapor phase plating methods such as laser CVD, photo CVD, vacuum vapor deposition, and sputtering vapor deposition, such as electrolytic treatment, spraying a predetermined aqueous solution, and roll coating, can be employed.

亜鉛系めっき層の化学成分組成は、純亜鉛の他、Fe、Ni、Co、Mg、Ca、Mn、Cr、Al、Mo、Ti、Si、W、Sn、Pb、Nb及びTa等の金属もしくは酸化物、または有機物等の内、一種または二種以上を所定量含有する単層または複層のめっき層からなるものであれば良い。また、前記めっき層にSiO、Al等の微粒子を含有しても良い。その他、亜鉛系めっき鋼板として、めっき層の成分元素は同じであって組成の異なる複数の層からなる複層めっき鋼板や、めっき層の構成元素は同じであって、めっき層の厚さ方向に組成を連続的に変化させた機能傾斜めっき鋼板を使用することも可能である。 The chemical composition of the zinc-based plating layer includes pure zinc, metals such as Fe, Ni, Co, Mg, Ca, Mn, Cr, Al, Mo, Ti, Si, W, Sn, Pb, Nb and Ta, or What is necessary is just to consist of a single layer or multiple layers of plating layers containing a predetermined amount of one kind or two or more kinds of oxides or organic substances. The plating layer may contain fine particles such as SiO 2 and Al 2 O 3 . In addition, as zinc-plated steel sheets, the component elements of the plating layer are the same, and the multi-layer plating steel sheet consisting of multiple layers with different compositions, and the constituent elements of the plating layer are the same, and in the thickness direction of the plating layer It is also possible to use functionally gradient plated steel sheets whose composition is continuously changed.

断面観察から測定される嵩高さが100〜2000nmの酸化物層を鋼板の一方の面のみに形成する場合、前記の亜鉛系めっき層は、鋼板の両面に形成してもよく、あるいは前記の皮膜を形成する鋼板の片面のみに形成しても良い。   When an oxide layer having a bulkiness of 100 to 2000 nm measured from cross-sectional observation is formed only on one surface of the steel sheet, the zinc-based plating layer may be formed on both surfaces of the steel sheet, or the coating film You may form in only one side of the steel plate which forms.

上述した酸化物層は、亜鉛系めっき鋼板の少なくとも一方の面のめっき層表面に形成されているので、車体製造工程のどのような工程において、どうのような車体部分に使用される鋼板であるかに応じて、その皮膜を一方の面あるいは両面に形成されたものを適宜選択することができる。   Since the oxide layer described above is formed on the surface of the plated layer on at least one surface of the zinc-based plated steel sheet, it is a steel sheet that is used for the vehicle body part in any process of the vehicle body manufacturing process. Depending on the situation, the film formed on one side or both sides can be appropriately selected.

次に、本発明を実施例により更に詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

板厚が0.8mmの下記の合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板および電気亜鉛めっき鋼板を準備した。   The following alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet, and electrogalvanized steel sheet having a thickness of 0.8 mm were prepared.

合金化溶融亜鉛めっき鋼板は、常法の合金化溶融亜鉛めっき法により、めっき付着量60g/m、Fe濃度:10質量%、Al濃度:0.20質量%のめっき皮膜を形成し、更に調質圧延を行った。 The alloyed hot-dip galvanized steel sheet is formed by a conventional alloying hot-dip galvanizing method to form a plating film with a coating amount of 60 g / m 2 , Fe concentration: 10% by mass, and Al concentration: 0.20% by mass. Temper rolling was performed.

溶融亜鉛めっき鋼板は常法の溶融亜鉛めっき方法により、めっき付着量70g/mのめっき皮膜を形成し、更に調質圧延を行なった。 The hot dip galvanized steel sheet was subjected to temper rolling by forming a plating film having a coating adhesion amount of 70 g / m 2 by a conventional hot dip galvanizing method.

電気亜鉛めっき鋼板は常法の電気亜鉛めっき方法により、めっき付着量50g/mのめっき皮膜を形成した。 The electrogalvanized steel sheet was formed with a plating film having a plating adhesion amount of 50 g / m 2 by a conventional electrogalvanizing method.

上記の合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板および電気亜鉛めっき鋼板を、硝酸亜鉛六水和物を200g/L添加し、硫酸ナトリウムでpH5.7に調整した水溶液に浸漬し、ゴム製のロールで表面の液膜量を10g/mに制御した後、大気中でそのまま放置し、水洗・乾燥する酸化処理を実施した。この時の放置時間を調整することで酸化物層の嵩高さを変化させた。また、処理に用いた溶液の温度はすべて35℃とした。 The alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and electrogalvanized steel sheet were immersed in an aqueous solution prepared by adding 200 g / L of zinc nitrate hexahydrate and adjusted to pH 5.7 with sodium sulfate. After controlling the amount of the liquid film on the surface to 10 g / m 2 with a roll, the film was left in the atmosphere, washed with water and dried. The bulkiness of the oxide layer was changed by adjusting the standing time at this time. The temperature of the solution used for the treatment was all set to 35 ° C.

酸化処理しためっき鋼板上に形成された酸化物層の嵩高さは透過電子顕微鏡(TEM:フィリップス社製CM20FEG)の明視野像観察より行った。観察試料は、めっき表面にカーボンコーターで表面保護カーボン層を付与した後、収束イオンビーム加工(FIB)装置日立製FIB−2000により、めっき表面から酸化物層を含むめっき表面の断面試料を作製した。ジャストフォーカス(フォーカスを合わせた状態)と少しずらしたデフォーカス条件で明視野像を観察、写真撮影し、酸化物層に平行に約10μmの長さの断面について、嵩高さを求めた。   The bulkiness of the oxide layer formed on the oxidized plated steel sheet was determined by observation of a bright field image with a transmission electron microscope (TEM: CM20FEG manufactured by Philips). The observation sample was prepared by providing a surface protective carbon layer with a carbon coater on the plating surface, and then using a focused ion beam processing (FIB) apparatus Hitachi FIB-2000 to prepare a cross-sectional sample of the plating surface including the oxide layer from the plating surface. . A bright field image was observed and photographed under defocus conditions slightly shifted from the just focus (in a focused state), and the bulkiness of a cross section having a length of about 10 μm parallel to the oxide layer was determined.

更に、薄膜X線回折法により結晶性の3Zn(OH)・ZnSO・xHOの存在を確認した。Cu−Kα線を用い入射角度を0.5°に設定して薄膜法によりX線回折図形を測定した。回折角度(2θ)が約8°から約12°の間に3Zn(OH)・ZnSO・xHOの各結晶構造のシート間距離に対応する回折ピークが現れる。合金化溶融亜鉛めっき鋼板の場合には、回折角度(2θ)が約8°から約12°の間の回折ピークと約42°に現れる鉄亜鉛合金層の回折ピークとの強度比から結晶性の3Zn(OH)・ZnSO・xHOの存在を確認した。それぞれのバッググランドを引いたピーク強度で、ピーク強度比、(3Zn(OH)・ZnSO・xHOのピーク強度)/(鉄亜鉛合金層のピーク強度)が0.02以上になる場合に、結晶性の3Zn(OH)・ZnSO・xHOを有する皮膜が形成していると判断した。また、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板の場合には、回折角度(2θ)が約8°から約12°の間の回折ピークからバックグラウンドを差し引いた強度が、バックグラウンドの標準偏差の3倍以上であることで結晶性の3Zn(OH)・ZnSO・xHOの存在を確認できたが、結果には合金化溶融メッキ鋼板と同様に約36°に現れるη層の回折ピークとの強度比で整理したものを示した。それぞれのバッググランドを引いたピーク強度で、ピーク強度比、(3Zn(OH)・ZnSO・xHOのピーク強度)/(η層のピーク強度)が0.02以上になる場合に、結晶性の3Zn(OH)・ZnSO・xHOを有する皮膜が形成していると判断した。 Furthermore, to confirm the presence of crystalline 3Zn (OH) 2 · ZnSO 4 · xH 2 O by a thin film X-ray diffraction method. An X-ray diffraction pattern was measured by a thin film method with an incident angle set to 0.5 ° using Cu-Kα rays. A diffraction peak corresponding to the inter-sheet distance of each crystal structure of 3Zn (OH) 2 · ZnSO 4 · xH 2 O appears when the diffraction angle (2θ) is about 8 ° to about 12 °. In the case of alloyed hot-dip galvanized steel sheet, the crystallinity of the crystallinity is determined from the intensity ratio of the diffraction peak (2θ) between about 8 ° to about 12 ° and the diffraction peak of the iron-zinc alloy layer appearing at about 42 ° 3Zn (OH) confirmed the presence of 2 · ZnSO 4 · xH 2 O . When the peak intensity ratio, (3Zn (OH) 2 · ZnSO 4 · xH 2 O peak intensity) / (peak intensity of the iron-zinc alloy layer) is 0.02 or more, with the peak intensity minus each background a, it is determined that the crystalline 3Zn (OH) film having a 2 · ZnSO 4 · xH 2 O is formed. In the case of a hot dip galvanized steel sheet or an electrogalvanized steel sheet, the intensity obtained by subtracting the background from the diffraction peak having a diffraction angle (2θ) of about 8 ° to about 12 ° is 3 as the standard deviation of the background. The presence of crystalline 3Zn (OH) 2 · ZnSO 4 · xH 2 O could be confirmed by confirming that the diffraction peak of the η layer appears at about 36 ° as in the case of the alloyed hot-dip steel sheet. The results are summarized by the intensity ratio. In the peak intensity minus the respective bag ground, when the peak intensity ratio, the (peak intensity of η layer) (3Zn (OH) 2 · ZnSO 4 · xH 2 O peak intensity) / becomes 0.02 or more, determining that crystalline 3Zn (OH) film having a 2 · ZnSO 4 · xH 2 O is formed.

本処理によって調整された各供試材においては、回折角度(2θ)が約8°から約12°の間のピークは、3Zn(OH)・ZnSO・3HO(ICDDカード:39−689)、3Zn(OH)・ZnSO・4HO(ICDDカード:44−673)、3Zn(OH)・ZnSO・5HO(ICDDカード:39−688)に由来するピークであると判断された。 In each specimen prepared by this treatment, the peak of diffraction angle (2θ) between about 8 ° and about 12 ° is 3Zn (OH) 2 .ZnSO 4 .3H 2 O (ICDD card: 39- 689) 3Zn (OH) 2 .ZnSO 4 .4H 2 O (ICDD card: 44-673), 3Zn (OH) 2 .ZnSO 4 .5H 2 O (ICDD card: 39-688). It was judged.

各供試材について下記の評価を実施した。
(1)溶融金属の耐付着性
溶融金属の耐付着性を評価するために、各供試材について下記の条件でスポット溶接スパッタ発生試験を行った。
The following evaluation was carried out for each specimen.
(1) Adhesion resistance of molten metal In order to evaluate the adhesion resistance of molten metal, a spot welding spatter generation test was performed on each specimen under the following conditions.

図1(a)に示すように、2枚重ねた板厚が0.7mmの冷延鋼板2を、電極3の中心がその端部から5mmの場所で下記の条件でスポット溶接を行い、そのときに発生したスパッタ4を電極3の中心から150mm離れた場所に垂直に設置した供試材1に付着させた。スパッタは1枚の供試材に連続14回付着させ、供試材に付着したスパッタ個数を測定し、これを各5枚の供試材について実施してN=5の平均値で耐付着性を評価した。図1(b)は、図1(a)のA−A矢視図であり、供試材の上面から見た場合のスパッタ飛散状況を示す。
・電極:DR形、先端径φ6
・加圧力:200kgf
・通電時間:10cyc/60Hz
・初期加圧時間:35cyc/60Hz
・保持時間:1cyc/60Hz
・電流値:スパッタ発生限界電流+1.0kA
As shown in FIG. 1 (a), two sheets of a cold-rolled steel plate 2 having a thickness of 0.7 mm are spot-welded under the following conditions at a location where the center of the electrode 3 is 5 mm from the end, The spatter 4 that was sometimes generated was adhered to the specimen 1 placed vertically at a location 150 mm away from the center of the electrode 3. Sputtering was continuously applied 14 times to one specimen, and the number of spatters adhered to the specimen was measured. This was carried out for each of the five specimens, and N = 5 on average. Evaluated. FIG.1 (b) is an AA arrow line view of Fig.1 (a), and shows the spatter | spatter scattering condition at the time of seeing from the upper surface of a test material.
・ Electrode: DR type, tip diameter φ6
・ Pressure: 200kgf
-Energizing time: 10 cyc / 60 Hz
-Initial pressurization time: 35 cyc / 60 Hz
-Holding time: 1 cyc / 60 Hz
-Current value: Sputter generation limit current +1.0 kA

(2)化成処理性
供試材を下記市販のリン酸塩化成処理液にて通常の化成処理を施し、リン酸亜鉛皮膜の結晶状態をSEM観察した。
・脱脂液:FC−4460(日本パーカライジング社製)
・表面調整液:PL−4040(日本パーカライジング社製)
・化成処理液:PB−L3060(日本パーカライジング社製)
<リン酸亜鉛皮膜の結晶状態の評価>
・スケなし:○
・スケあり:×
(2) Chemical conversion property The sample material was subjected to normal chemical conversion treatment with the following commercially available phosphate chemical conversion solution, and the crystal state of the zinc phosphate coating was observed by SEM.
・ Degreasing liquid: FC-4460 (manufactured by Nihon Parkerizing Co., Ltd.)
-Surface conditioning liquid: PL-4040 (manufactured by Nihon Parkerizing Co., Ltd.)
・ Chemical conversion treatment liquid: PB-L3060 (manufactured by Nihon Parkerizing Co., Ltd.)
<Evaluation of crystal state of zinc phosphate coating>
・ No scale: ○
-There is a scale: ×

以上より得られた試験結果を条件と併せて表1に示す。   The test results obtained above are shown in Table 1 together with the conditions.

Figure 2010202960
Figure 2010202960

表1に示す試験結果から下記事項が明らかとなった。   From the test results shown in Table 1, the following matters became clear.

No.1は供試材に合金化溶融亜鉛めっき鋼を用いて、酸化処理を行っていない比較例であり、表面に酸化物層は形成されていない。また、スパッタ付着個数も多い。   No. Reference numeral 1 is a comparative example in which an alloyed hot-dip galvanized steel is used as a test material and no oxidation treatment is performed, and no oxide layer is formed on the surface. In addition, the number of spatters is large.

No.2〜8は同様に合金化溶融亜鉛めっき鋼を用いて酸化処理を行ったものであり、水洗までの時間が長くなるにつれて酸化物層の嵩高さは高くなっている。また、ピーク強度比から形成された酸化物層は結晶性の3Zn(OH)・ZnSO・3〜5HOを有していることが分かる。また、スパッタ付着個数は酸化物層の嵩高さが高くなるにつれて、少なくなっていることが分かる。しかし、No.8のように嵩高さが2000nmを超えるとスパッタ付着個数は少ないが化成処理性に劣ることが分かる。 No. Nos. 2 to 8 were similarly oxidized using galvannealed steel, and the bulkiness of the oxide layer increased as the time until water washing increased. It can also be seen that the oxide layer formed from the peak intensity ratio has crystalline 3Zn (OH) 2 .ZnSO 4 .3 to 5H 2 O. It can also be seen that the number of sputtered deposits decreases as the bulk of the oxide layer increases. However, no. As shown in FIG. 8, when the bulk exceeds 2000 nm, the number of sputter deposits is small, but it is found that the chemical conversion treatment property is poor.

No.9〜16は溶融亜鉛めっき鋼板を用いた比較例および本発明例である。合金化溶融亜鉛めっき鋼と同様に、酸化処理によってめっき表面に形成された酸化物層は3Zn(OH)・ZnSO・xHOを有し、その嵩高さが高くなるにつれて、スパッタ付着個数が少なくなっているが、No.16のように嵩高さが2000nmを超えるとスパッタ付着個数は少ないが化成処理性に劣ることが分かる。 No. 9 to 16 are comparative examples using the hot dip galvanized steel sheet and examples of the present invention. Similar to the alloyed hot-dip galvanized steel, the oxide layer formed on the plating surface by oxidation treatment has 3Zn (OH) 2 · ZnSO 4 · xH 2 O, and as the bulk increases, However, no. As shown in FIG. 16, when the bulk exceeds 2000 nm, the number of sputter deposits is small, but it is found that the chemical conversion processability is poor.

No.17〜24は電気亜鉛めっき鋼板を用いた比較例および本発明例である。合金化溶融亜鉛めっき鋼、溶融亜鉛めっき鋼と同様に、酸化処理によってめっき表面に形成された酸化物層は3Zn(OH)・ZnSO・xHOを有し、その嵩高さが高くなるにつれて、スパッタ付着個数が少なくなっているが、No.24のように嵩高さが2000nmを超えるとスパッタ付着個数は少ないが化成処理性に劣ることが分かる。 No. Reference numerals 17 to 24 are comparative examples using the electrogalvanized steel sheet and examples of the present invention. Similar to alloyed hot-dip galvanized steel and hot-dip galvanized steel, the oxide layer formed on the plating surface by oxidation treatment has 3Zn (OH) 2 · ZnSO 4 · xH 2 O, and its bulkiness is increased. As the number of sputters deposited decreased, It can be seen that when the bulkiness exceeds 2000 nm as in No. 24, the number of sputter deposits is small, but the chemical conversion processability is poor.

本発明の亜鉛系めっき鋼板は溶融金属がめっき表面に付着し難いことから、自動車車体用途を中心に広範な分野で適用できる。   The zinc-based plated steel sheet according to the present invention is applicable to a wide range of fields, mainly for automobile body applications, because molten metal hardly adheres to the plating surface.

1 供試材
2 冷延鋼板(被溶接材)
3 電極
4 スパッタ
1 Test material 2 Cold-rolled steel sheet (material to be welded)
3 Electrode 4 Sputter

Claims (2)

少なくとも一方の面のめっき層表面に、断面観察から測定される嵩高さが100〜2000nmの酸化物層が存在し、該酸化物が3Zn(OH)・ZnSO・xHOを有することを特徴とする溶融金属が表面に付着し難い亜鉛系めっき鋼板。 The plating layer surface of at least one surface, there bulkiness measured from cross-sectional observation oxide layer of 100 to 2000 nm, the oxide is that it has a 3Zn (OH) 2 · ZnSO 4 · xH 2 O A galvanized steel sheet that is difficult to adhere to the surface of the molten metal. 前記酸化物が3Zn(OH)・ZnSO・3〜5HOを有することを特徴とする請求項1に記載の溶融金属が表面に付着し難い亜鉛系めっき鋼板。 2. The zinc-based plated steel sheet according to claim 1, wherein the oxide has 3Zn (OH) 2 .ZnSO 4 .3 to 5H 2 O.
JP2009052768A 2009-03-06 2009-03-06 Zinc-coated steel sheet that prevents molten metal from adhering to the surface Active JP5396921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052768A JP5396921B2 (en) 2009-03-06 2009-03-06 Zinc-coated steel sheet that prevents molten metal from adhering to the surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052768A JP5396921B2 (en) 2009-03-06 2009-03-06 Zinc-coated steel sheet that prevents molten metal from adhering to the surface

Publications (2)

Publication Number Publication Date
JP2010202960A true JP2010202960A (en) 2010-09-16
JP5396921B2 JP5396921B2 (en) 2014-01-22

Family

ID=42964728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052768A Active JP5396921B2 (en) 2009-03-06 2009-03-06 Zinc-coated steel sheet that prevents molten metal from adhering to the surface

Country Status (1)

Country Link
JP (1) JP5396921B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221900B2 (en) * 2007-09-04 2012-07-17 Jfe Steel Corporation Zinc-based metal plated steel sheet
JP2014043607A (en) * 2012-08-27 2014-03-13 Jfe Steel Corp Cold-rolled steel sheet, and method for manufacturing the steel sheet
JP2019503434A (en) * 2016-01-19 2019-02-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for producing a steel product having a Zn coating and a tribologically active layer deposited on the coating, and a steel product produced according to this method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517135A (en) * 2003-12-24 2007-06-28 アルセロール・フランス Surface treatment with hydroxysulfate
JP2007231375A (en) * 2006-03-01 2007-09-13 Jfe Steel Kk Galvannealed steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517135A (en) * 2003-12-24 2007-06-28 アルセロール・フランス Surface treatment with hydroxysulfate
JP2007231375A (en) * 2006-03-01 2007-09-13 Jfe Steel Kk Galvannealed steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221900B2 (en) * 2007-09-04 2012-07-17 Jfe Steel Corporation Zinc-based metal plated steel sheet
US8623514B2 (en) 2007-09-04 2014-01-07 Jfe Steel Corporation Zinc-based metal plated steel sheet
USRE45821E1 (en) * 2007-09-04 2015-12-22 Jfe Steel Corporation Zinc-based metal plated steel sheet
JP2014043607A (en) * 2012-08-27 2014-03-13 Jfe Steel Corp Cold-rolled steel sheet, and method for manufacturing the steel sheet
JP2019503434A (en) * 2016-01-19 2019-02-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for producing a steel product having a Zn coating and a tribologically active layer deposited on the coating, and a steel product produced according to this method

Also Published As

Publication number Publication date
JP5396921B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
CN110234780B (en) Plated steel material
EP3561138B1 (en) Zinc alloy plated steel material having excellent weldability
MX2014009731A (en) Plated steel plate for hot pressing and hot pressing method of plated steel plate.
US8852753B2 (en) Galvanized steel sheet
KR20130125796A (en) Steel sheet including a multilayer coating
EP3900866A1 (en) Spot welding member
JP5396921B2 (en) Zinc-coated steel sheet that prevents molten metal from adhering to the surface
JP3868243B2 (en) Chromate-free treated hot dip zinc-aluminum alloy plated steel sheet with excellent weldability and corrosion resistance
JP5359501B2 (en) Alloy hot-dip galvanized steel sheet
JP6443599B1 (en) Galvanized steel sheet and heat treated steel
JP3111903B2 (en) Manufacturing method of galvanized steel sheet
JP2936651B2 (en) Galvanized multi-layer steel sheet with excellent spot weldability
JPH0696783B2 (en) Galvanized steel sheet with excellent press formability, chemical conversion treatment and weldability
JP3111904B2 (en) Manufacturing method of galvanized steel sheet
JP2004002931A (en) Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same
JP3111888B2 (en) Manufacturing method of galvanized steel sheet
JP2952835B2 (en) Manufacturing method of galvanized steel sheet with excellent weldability, pressability and chemical conversion treatment
TWI396773B (en) Hot-dipped galvanized steel sheet
WO2020129473A1 (en) Surface-treated steel sheet
JP3111880B2 (en) Manufacturing method of galvanized steel sheet
JP3111929B2 (en) Galvanized steel sheet
JP4220678B2 (en) Aluminum alloy material with excellent phosphatability
JPH0713308B2 (en) Galvanized steel sheet with excellent press formability, chemical conversion treatment and weldability
JPH101790A (en) Galvanized steel sheet excellent in corrosion resistance
JP2023038245A (en) Surface treated steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5396921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250