JP3868243B2 - Chromate-free treated hot dip zinc-aluminum alloy plated steel sheet with excellent weldability and corrosion resistance - Google Patents

Chromate-free treated hot dip zinc-aluminum alloy plated steel sheet with excellent weldability and corrosion resistance Download PDF

Info

Publication number
JP3868243B2
JP3868243B2 JP2001278562A JP2001278562A JP3868243B2 JP 3868243 B2 JP3868243 B2 JP 3868243B2 JP 2001278562 A JP2001278562 A JP 2001278562A JP 2001278562 A JP2001278562 A JP 2001278562A JP 3868243 B2 JP3868243 B2 JP 3868243B2
Authority
JP
Japan
Prior art keywords
mass
chromate
steel sheet
aluminum alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001278562A
Other languages
Japanese (ja)
Other versions
JP2003055777A (en
Inventor
俊之 勝見
俊和 雨宮
暁 田中
敦司 森下
義広 末宗
高橋  彰
良輔 迫
竜 長谷川
圭一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Nippon Steel Corp
Original Assignee
Nihon Parkerizing Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd, Nippon Steel Corp filed Critical Nihon Parkerizing Co Ltd
Priority to JP2001278562A priority Critical patent/JP3868243B2/en
Publication of JP2003055777A publication Critical patent/JP2003055777A/en
Application granted granted Critical
Publication of JP3868243B2 publication Critical patent/JP3868243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接性、耐食性に優れたクロメートフリー処理溶融亜鉛−アルミニウム系合金めっき鋼板に関するものである。
【0002】
【従来の技術】
溶融亜鉛−アルミニウムめっき鋼板は溶融亜鉛めっき鋼板と比較し耐食性に優れることから、建材、自動車、家電製品等の広い用途への適用が検討されている。中でもMgとSiを含有するZn−Al−Mg−Si合金めっきは非常に優れた耐食性を持つことから次世代のめっき鋼板として様々の用途への展開が期待されている。しかし優れた耐食性を持つ反面、Alを含有することにより、溶接性が劣るという欠点がある。これは通常の亜鉛の融点が約419℃であるのに対し、Alを含有することで融点が400℃以下に降下し溶接時にめっき層が容易に溶解、電極との接触面積が広くなり溶接電流密度が低下し、形成するナゲットが小さくなるとともに、電極表面にCu−Zn合金が生成し易く電極の損耗が激しくなる為である。
【0003】
こうした合金化溶融亜鉛めっきにおける溶接性の改善方法としてZnOを主成分とする酸化皮膜をめっき表面に形成させる技術(特開平2-004983号公報)、Zn−5%AlめっきへのTi添加によるFe合金化の促進による溶接性の改善技術(特開平5-263210号公報)、亜鉛−アルミニウム系溶融めっき表面にシリカ皮膜を形成し溶接性を改善する技術(特開平6-336664号公報)等が提示されているが、いずれも実用に際しては設備的な制約やコスト、性能バランス等の問題を抱えている。
【0004】
また、耐食性に優れる溶融亜鉛−アルミニウム系合金めっきではあるが、海水等の塩分を含む環境や高温多湿環境下においては通常の溶融亜鉛めっきと同様にめっき表層に白錆が発生し外観や表面の導電性といった表面特性を著しく損なう問題を有している。
【0005】
この白錆発生を防ぐ手段として、従来よりクロメート処理と称する化成処理が用いられてきた。このクロメート処理としては、電解型クロメート、塗布型クロメート、反応型クロメート等が挙げられる。
【0006】
これらの処理によって得られるクロメート皮膜の内、電解処理等によって形成されたクロメート皮膜は3価クロム主体であり6価クロムの溶出性は少ないものの防食性は十分とは言えず、特に加工時などの皮膜損傷が大きい場合、その耐食性は低下する。一方、塗布型クロメート処理等により形成された6価クロムを多く含有する皮膜の耐食性は高く、特に加工部耐食性に優れているが、クロメート皮膜からの6価クロムの溶出が大きいという問題を有している。このため、6価クロムを含有するクロメート処理は処理工程での廃液処理や作業者への安全性について問題があるだけではなく、6価クロムの溶出による環境への影響が問題とされている。
【0007】
【発明が解決しようとする課題】
本発明は、こうした状況に鑑み、従来の亜鉛−アルミニウム系合金めっきの溶接性を改善するとともに耐食性についても優れた性能を有するクロメートフリー処理溶融亜鉛−アルミニウム合金めっき鋼板を提供するものである。
【0008】
【課題を解決するための手段】
溶接性の劣化はめっき合金の融点降下による通電面積の拡大と電極上でのCu−Zn合金生成による電極の損耗による。そのため、これらの不良要因の抑制が可能で、且つ耐食性も優れるクロメートフリーな皮膜をめっき表層に付与することで解決することを指向した。種々の皮膜について鋭意検討を行った結果、ジルコニウム化合物、バナジル化合物を含有する皮膜を付与することにより目的の溶接性と耐食性が得られることを確認した。
【0009】
溶接性、耐食性の発現メカニズムは明らかではないが、炭酸ジルコニウム錯イオンと、バナジルイオンを含有する処理液をAlを含有するめっき鋼板上に塗布、乾燥することにより、ジルコニウム化合物及びバナジル化合物による緻密な3次元構造の皮膜を形成する。この緻密な皮膜が溶接性に対しては、鋼板表面の電気抵抗を上げることで発熱量を増加させ溶接ナゲットの形成を促進するとともに、緻密な皮膜の存在により電極とめっき金属の直接接触を防ぎCu−Zn合金の形成を抑制、電極の損耗が抑制されているものと考えられる。
【0010】
また、耐食性については、皮膜の緻密な構造が、優れたバリヤー性を発揮し、腐食因子をめっき金属から遮蔽することにより、優れた耐食性が得られるものと考えられる。尚、皮膜中のバナジル化合物は湿潤環境下において、層欠陥部のめっき金属と反応し保護層を形成する、いわゆる自己補修作用が期待でき、これも優れた耐食性の発現に寄与しているものと考えられる。
【0011】
つまり、本発明の要旨とするところは、以下に示すとおりである。
(1)鋼板の表面に、
Mg:1〜10質量%、
Al:2〜19質量%、
Si:0.01〜2質量%含有し、
かつ、MgとAlが下式
Mg(質量%)+Al(質量%)≦20質量%
を満たし、残部がZn及び不可避的不純物よりなるZn合金めっき層を有し、更にその表層に、
ジルコニウム化合物をジルコニウムとして10〜30質量%、
バナジルイオン(VO 2+ )の塩として供給されるバナジル化合物をバナジウムとして5〜20質量%
含有している皮膜を付着量として少なくとも片面に200〜1200mg/m2有することを特徴とする、溶接性及び耐食性に優れるクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。
(2)皮膜中に有機酸を固形分として20〜50質量%含有することを特徴とする前記(1)に記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。
(3)皮膜中にリン酸化合物をPO4として10〜30質量%含有することを特徴とする前記(1)〜(2)の何れかに記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。
(4)皮膜中にシリカ化合物をSiO2として10〜30質量%含有することを特徴とする前記(1)〜(3)の何れかに記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。
(5)皮膜中にフッ素化合物をFとして5〜20質量%含有することを特徴とする前記(1)〜(4)の何れかに記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。
(6)皮膜中に潤滑成分を0.1〜15質量%含有することを特徴とする前記(1)〜(5)の何れかに記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
まずめっき成分について述べる。
めっき層中のAlは耐食性向上のために添加される。2質量%未満では充分な耐食性の向上が得られず、19質量%を超えると耐食性向上効果が飽和するとともに溶接性が大幅に低下するため、Al含有量は2〜19質量%とした。
Mgの添加の目的も耐食性の向上である。1質量%未満では耐食性向上効果が不充分であり、10質量%を超えるとめっき層が脆くなり密着性を低下させてしまうため、Mg含有量は1〜10質量%とした。
【0013】
Siの添加目的は耐食性の向上とめっき層中のAlとFeの反応の抑制によるめっき密着性の向上である。0.01質量%未満ではその添加効果が不充分であり、2質量%を超えるとめっき密着性向上効果が認められなくなるためである。
【0014】
尚、MgとAlの含有量を式 Mg(質量%)+Al(質量%)≦20(質量%)に限定した理由であるが、めっき層中のZn含有量が低くなると犠牲防食効果が低下し耐食性が低下するためである
【0015】
また、めっき層中には上記の組成以外にFe、Ti、Ni、Sb、Pb等の元素を単独あるいは複合で1質量%以内含有しても良い。
めっき付着量については特に限定するものではないが、耐食性の観点から10g/m2以上、また溶接性、加工性の観点からは350 g/m2以下であることが望ましい。
【0016】
尚、溶融めっきの製造方法としては フラックス法、ゼンジミア法やNi等のプレめっきを施して濡れ性を確保する方法等があるが、いずれでも構わない。また、めっき後の外観を変化させる目的で、水スプレー、気水スプレーを噴霧したり、リン酸ソーダ水溶液やZn粉末、さらにはリン酸Zn粉末、リン酸水素Mg粉末もしくはそれらの水溶液を噴霧しても良い。まためっき後、本発明の皮膜を形成する前にめっきの変色防止等のため硫酸Co溶液や硫酸Ni溶液等による表面調整を施しても良い。
【0017】
皮膜の形成方法としては炭酸ジルコニウム錯イオン:[Zr(CO3)2(OH)22-、若しくは[Zr(CO3)3(OH)]3-と、バナジルイオン:VO2+を含有する処理液を鋼板表面に塗布、加熱によって水分を除去し乾燥させることで、優れたバリヤー性を有する緻密な3次元構造の皮膜を形成する。
【0018】
ここで、炭酸ジルコニウム錯イオンは[Zr(CO3)2(OH)22- 又は[Zr(CO3)3(OH)]3-のアンモニウム塩、カリウム塩、ナトリウム塩などから供給される。
バナジルイオン(VO2+)は、塩酸、硝酸、リン酸、硫酸などの無機酸、若しくは蟻酸、酢酸、プロピオン酸、酪酸、蓚酸等の有機酸アニオンとの塩によって供給されるオキソバナジウムカチオンである。
【0019】
皮膜中に含まれるジルコニウム化合物はジルコニウムとして10〜30質量%、バナジル化合物はバナジウムとして5〜20質量%が好ましい。ジルコニウムの含有量が10質量%未満もしくはバナジウムの含有量が5質量%未満の場合には、目標とする耐食性を得ることができず、一方、ジルコニウムの含有量が30質量%を超えるもしくはバナジウムの含有量が20質量%を超える場合には、耐食性向上効果が飽和するため経済的でない。
【0020】
皮膜中に有機酸を添加することにより、更なる耐食性の向上を図ることができる。有機酸としては、例えば、グリコール酸、リンゴ酸、酒石酸、クエン酸、アスコルビン酸、乳酸、デヒドロ酢酸、デヒドロ安息香酸、デヒドロアスコルビン酸、没食子酸、タンニン酸、若しくはこれらのアンモニウム塩が挙げられる。処理液中において、これらの有機酸はバナジルイオンと安定なキレート錯体を形成している。
【0021】
バナジルイオンの供給源として、グリコール酸バナジル、酒石酸バナジル、デヒドロアスコルビン酸バナジルのように、既に有機酸を配位子としてバナジルイオンに錯形成させた化合物を用いることができるが、この場合は、有機酸を改めて添加する必要はない。
【0022】
皮膜中に含まれる有機酸の含有量としては、固形分として20〜50質量%が好ましい。有機酸の含有量が20質量%未満の場合は、バナジルイオンとのキレート錯体の形成力が弱いため耐食性の向上効果が乏しく、一方、50質量%を超える場合はバナジルイオンとのキレート形成力が飽和するので経済的でない。
【0023】
また、皮膜中にリン酸化合物、シリカ化合物、フッ素化合物を添加することにより、更なる耐食性の向上を図ることができる。リン酸化合物としては、リン酸アンモニウム塩、リン酸カリウム塩、リン酸ナトリウム塩等が挙げられる。シリカ化合物としては、気相シリカ、シリカゾル等が挙げられる。フッ素化合物としては、フッ化水素酸塩、錯フッ化物塩等が挙げられる。
【0024】
皮膜中に含まれる含有量としては、リン酸化合物の場合はPO4として10〜30質量%が好ましい。PO4の含有量を10質量%以上とすることで、更なる耐食性向上効果が得られる。一方、30質量%を超えると耐食性向上効果は飽和するので、これ以上の添加は経済的でない。
シリカ化合物の場合は、SiO2として10〜30質量%が好ましい。SiO2の含有量を10質量%以上とすることで、更なる耐食性向上効果が得られる。一方、30質量%を超えると耐食性向上効果は飽和するので、これ以上の添加は経済的ではない。
フッ素化合物の場合は、Fとして5〜20質量%が好ましい。Fの含有量が5質量%未満の場合には耐食性向上効果が乏しく、20質量%を超える場合には耐食性向上効果が飽和するため経済的でない。
【0025】
尚、本発明においては皮膜中に潤滑成分として、二硫化モリブデン、グラファイト、二硫化タングステン、窒化ホウ素、フッ化黒鉛、フッ化セリウム、メラミンシアヌレート、フッ素樹脂系ワックス、ポリオレフィン系ワックス等を添加することにより、加工性、耐傷付き性などを改善することができる。皮膜中に含まれる潤滑成分の含有量としては、0.1〜15質量%が好ましい。潤滑成分の含有量が0.1質量%未満では、加工性、耐傷付き性の向上効果が乏しく、15質量%を超える場合には加工性、対傷付き性の向上効果が飽和するので経済的でない。
【0026】
また、本来の性能を損なわない範囲内で消泡剤やレベリング剤を皮膜中に添加してもさしつかえない。
【0027】
皮膜の付着量は200〜1,200mg/m2が好ましい。付着量が200mg/m2未満においては十分な耐食性を得ることができない。また付着量が1,200mg/m2を超えたとしてもそれ以上の耐食性の向上は期待できず、むしろ密着性の低下や加工部におけるダメージの増加等による耐食性の劣化が懸念されることから、付着量は1,200mg/m2以下が望ましい。
【0028】
本発明での皮膜の形成方法については特に限定するものでは無く、スプレー法、浸漬法、コーターロール法、リンガーロール法、エア−ナイフ法等いずれの方法によっても可能である。
【0029】
また、上記方法によって形成した後に加熱乾燥が必要であるが、加熱乾燥方法については特に規定するものではなく、熱風、直火、誘導加熱等、いずれの方法においても可能である。また、乾燥時の到達板温については処理設備、処理条件等によるが、50℃〜200℃の間で皮膜の乾燥が可能な任意の温度とする。
【0030】
【実施例】
次に本発明について実施例を用いて具体的に説明するが、本発明は以下の具体例に限定されるものではない。
【0031】
めっき原板としては板厚0.8mmのSPCCを使用した。めっきはゼンジミアタイプの連続溶融亜鉛めっきラインを使用し、加熱、焼鈍、めっきを行った。焼鈍雰囲気は10%水素、残90%窒素ガス雰囲気であり、露点を−30度とした。焼鈍温度は730℃、焼鈍時間は3分である。めっき組成は Al:11質量%、Mg:3質量%、Si:0.2質量%、残部がZn及び不可避的不純物からなり、めっき浴温度460℃でめっきを行った。めっき浴への漬浸後は窒素ガスワイピングによりめっき付着量を片面当たり90g/m2とした。めっき後、調質圧延を伸び率1%で行った。
【0032】
めっき付着量及びめっき層成分%の確認は蛍光X線装置による亜鉛の測定及び、めっき層を酸で溶解剥離しその溶液をICPにて分析、Zn、Al、Mg、Siについての定量を行った。
【0033】
めっき後の皮膜の形成については、実験室にて表1に示す条件に調整した処理液をバーコーターにて塗布、到達板温80℃で乾燥した。付着量の調整は処理液の濃度調整(水希釈)とバーコーターの番手によって実施した。付着量の確認は蛍光X線装置により皮膜中のZrを測定しその指標とした。
【0034】
比較材として、表2に示す条件の供試材を以下に示す手順にて作成、同じ手順で評価した。付着量の確認は蛍光X線装置により各々皮膜中のSi、Zr、Crを測定しその指標とした。
【0035】
鋼板処理条件
・水準 1〜100:
表1に示す条件に調整した処理液をバーコーターにて塗布、到達板温80℃で乾燥した。付着量の調整は処理液の濃度調整(水希釈)とバーコーターの番手によって実施した(付着量の条件は表3, 4に示す)。なお、ポリエチレンワックスはケミパールW950(三井化学製)を用いた。
・水準 102:
ジルコニウム化合物としてジルコゾールAC−7(松本製薬工業製)を用いバーコーターにて乾燥質量で0.5 g/m2となる様塗布、到達板温80℃で乾燥した。付着量の調整は処理液の濃度調整(水希釈)とバーコーターの番手によって実施した。
・水準 103:
シリカ化合物としてスノーテックス−O(日産化学製)を用いバーコーターにて乾燥質量0.5g/m2となるよう塗布、到達板温80℃で乾燥した。付着量の調整は処理液の濃度調整(水希釈)とバーコーターの番手によって実施した。
・水準 104、105:
市販のアクリル樹脂系エマルション(三井化学製)に、コロイダルシリカ(スノーテックス−O:日産化学製)を乾燥質量で樹脂:シリカ=75:25となるように加え、バーコーターを用いて供試材に塗布し、200℃の乾燥炉で10秒乾燥した。付着量の調整は処理液の濃度調整(水希釈)とバーコーターの番手によって実施した。
供試材の付着量は水準104:0.5g/m2、水準105:1.0g/m2とした。
・水準 106、107:
部分還元クロム酸(クロム還元率40%)とコロイダルシリカの混合物(CrO3:SiO2=1:3)を水希釈してバーコーターにて供試板に塗布し、板温60℃で乾燥した。
Cr付着量は水準106:Cr:20mg/m2、水準107:Cr:40mg/m2とした。
【0036】
溶接性試験は同条件で作製したサンプル鋼板を2枚重ね合わせてスポット溶接の連続打点性試験を実施した。
試験条件としては、電極形状:ドーム状、先端径:12mmφ、加圧力:220kgf、溶接時間は12サイクル(AC 50サイクル)、溶接電流は12KAとし、溶接済みサンプルを剪断引っ張り試験のナゲット径が4.5mm以下となった回数を電極寿命とした。
【0037】
連続打点の評価は、この電極寿命が2,000点以上を○、1,000以上2,000未満を△、1,000点未満を×とした。
溶接安定性の評価は、連続打点性が○(2,000点以上)のものを対象に、2,000〜2,010点までのナゲット径のばらつきで評価、最大ナゲット径と最小ナゲット径の差が0.5mm以下を合格とし○で表した。
【0038】
耐食性試験は、試験に供する鋼鈑を150mm×70mmに切り出し、高さ8mmのエリクセン加工を施し、さらに端面をテープシールした後、JIS Z 2371の塩水噴霧試験を実施し、試験時間72時間における平板部及びエリクセン加工部の白錆発生状況を評価した。
平板部、加工部の評価指標は以下の通り。
平板部 ◎:白錆0%、○:白錆0%超5%以下、△:白錆5%超30%以下、×:白錆30%超
加工部 ◎:白錆0%、○:白錆0%超30%以下、△:白錆30%超50%以下、×:白錆50%超
【0039】
加工性試験は、試験に供する鋼板を150mm×70mmに切り出し、バウデン試験(荷重500g、圧子10mmφSUJ−2、摺動距離50mm、摺動速度50mm/秒)を行い、摺動回数10回目の摩擦係数で評価した。
加工性の評価指標は以下の通り。
加工性 ○:摩擦係数0.2未満、△:摩擦係数0.2〜0.4、×:摩擦係数0.4超
【0040】
各試験の評価結果は表3〜5に示した通りである。本発明に記載の皮膜を有するめっき鋼板は優れた溶接性、耐食性を示しており、更に潤滑成分を添加した水準は加工性も優れていることが分かる。
【0041】
【表1】

Figure 0003868243
【0042】
【表2】
Figure 0003868243
【0043】
【表3】
Figure 0003868243
【0044】
【表4】
Figure 0003868243
【0045】
【表5】
Figure 0003868243
【0046】
【表6】
Figure 0003868243
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chromate-free treated hot dip zinc-aluminum alloy-plated steel sheet excellent in weldability and corrosion resistance.
[0002]
[Prior art]
Since the hot dip galvanized steel sheet is superior in corrosion resistance as compared with the hot dip galvanized steel sheet, application to a wide range of applications such as building materials, automobiles, and home appliances has been studied. Among them, Zn-Al-Mg-Si alloy plating containing Mg and Si has a very excellent corrosion resistance, and is expected to be used in various applications as a next-generation plated steel sheet. However, although it has excellent corrosion resistance, it has a drawback of poor weldability by containing Al. This is because the melting point of normal zinc is about 419 ° C, but when Al is contained, the melting point drops below 400 ° C, the plating layer dissolves easily during welding, and the contact area with the electrode widens, resulting in a welding current. This is because the density is reduced, the nugget to be formed is small, and a Cu—Zn alloy is likely to be formed on the electrode surface, and the electrode wear becomes severe.
[0003]
As a method for improving weldability in such alloyed hot dip galvanizing, a technique for forming an oxide film mainly composed of ZnO on the plating surface (Japanese Patent Laid-Open No. 2-004983), Fe by adding Ti to Zn-5% Al plating Technology for improving weldability by promoting alloying (Japanese Patent Laid-Open No. 5-632210), technology for improving weldability by forming a silica film on the surface of zinc-aluminum-based hot dipped plating (Japanese Patent Laid-Open No. 6-336664), etc. Although they are presented, all have problems such as equipment limitations, cost, and performance balance in practical use.
[0004]
In addition, although it is hot-dip zinc-aluminum alloy plating with excellent corrosion resistance, white rust is generated on the plating surface layer in the environment containing salt such as seawater and high-temperature and high-humidity environment in the same manner as normal hot-dip galvanization, and the appearance and surface There is a problem that the surface characteristics such as conductivity are remarkably impaired.
[0005]
Conventionally, chemical conversion treatment called chromate treatment has been used as means for preventing the occurrence of white rust. Examples of the chromate treatment include electrolytic chromate, coating chromate, and reactive chromate.
[0006]
Among the chromate films obtained by these treatments, the chromate film formed by electrolytic treatment, etc. is mainly trivalent chromium and has little elution of hexavalent chromium, but it cannot be said to have sufficient anticorrosion properties, especially during processing. When the film damage is large, its corrosion resistance decreases. On the other hand, a film containing a large amount of hexavalent chromium formed by coating-type chromate treatment has high corrosion resistance, and particularly excellent in corrosion resistance of the processed part, but has a problem that elution of hexavalent chromium from the chromate film is large. ing. For this reason, the chromate treatment containing hexavalent chromium is not only problematic in terms of waste liquid treatment in the treatment process and safety for workers, but also the environmental impact due to elution of hexavalent chromium.
[0007]
[Problems to be solved by the invention]
In view of such circumstances, the present invention provides a chromate-free treated hot dip zinc-aluminum alloy-plated steel sheet that improves the weldability of conventional zinc-aluminum alloy plating and has excellent performance in corrosion resistance.
[0008]
[Means for Solving the Problems]
The deterioration of weldability is due to the expansion of the current-carrying area due to the melting point drop of the plating alloy and the wear of the electrode due to the formation of Cu-Zn alloy on the electrode. Therefore, it has been aimed to solve the problem by applying a chromate-free film that can suppress these defective factors and has excellent corrosion resistance to the plating surface layer. As a result of intensive studies on various coatings, it was confirmed that the intended weldability and corrosion resistance can be obtained by applying coatings containing zirconium compounds and vanadyl compounds.
[0009]
The manifestation mechanism of weldability and corrosion resistance is not clear, but by applying a treatment solution containing zirconium carbonate complex ions and vanadyl ions on a plated steel sheet containing Al, and drying, the denseness of the zirconium compound and vanadyl compound is increased. A film having a three-dimensional structure is formed. This dense film improves weldability by increasing the electrical resistance of the steel sheet surface to increase the heat generation and promote the formation of the weld nugget, and the presence of the dense film prevents direct contact between the electrode and the plated metal. It is considered that the formation of Cu—Zn alloy is suppressed and the wear of the electrode is suppressed.
[0010]
Regarding the corrosion resistance, the dense structure of the film exhibits excellent barrier properties, and it is considered that excellent corrosion resistance can be obtained by shielding the corrosion factor from the plated metal. In addition, the vanadyl compound in the film reacts with the plating metal in the layer defect portion in a wet environment to form a protective layer, so-called self-repairing action can be expected, which also contributes to the development of excellent corrosion resistance. Conceivable.
[0011]
That is, the gist of the present invention is as follows.
(1) On the surface of the steel plate,
Mg: 1 to 10% by mass,
Al: 2 to 19% by mass,
Si: 0.01 to 2% by mass,
And Mg and Al are the following formula Mg (mass%) + Al (mass%) ≦ 20 mass%
And the balance has a Zn alloy plating layer consisting of Zn and inevitable impurities, and further on its surface layer,
10 to 30% by mass of zirconium compound as zirconium,
The vanadyl compound supplied as a salt of vanadyl ion (VO 2+ ) is 5 to 20% by mass as vanadium.
A chromate-free treated zinc-aluminum alloy-plated steel sheet excellent in weldability and corrosion resistance, characterized in that the coating film contains 200 to 1200 mg / m 2 on at least one surface as an adhesion amount.
(2) The chromate-free treated zinc-aluminum alloy-plated steel sheet according to (1) above, wherein the film contains an organic acid in a solid content of 20 to 50% by mass.
(3) The chromate-free treated zinc-aluminum alloy-plated steel sheet according to any one of (1) to (2) above, wherein the coating contains 10 to 30% by mass of a phosphoric acid compound as PO 4 .
(4) chromate-free treatment of zinc according to any one of (1) to (3) a silica compound in the coating, characterized in that it contains 10 to 30 wt% as SiO 2 - aluminum alloy coated steel sheet.
(5) The chromate-free treated zinc-aluminum alloy plated steel sheet according to any one of (1) to (4) above, wherein the film contains 5 to 20% by mass of a fluorine compound as F.
(6) The chromate-free treated zinc-aluminum alloy plated steel sheet according to any one of (1) to (5) above, wherein the coating contains 0.1 to 15% by mass of a lubricating component.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the plating components will be described.
Al in the plating layer is added to improve the corrosion resistance. If it is less than 2% by mass, sufficient corrosion resistance cannot be improved. If it exceeds 19% by mass, the effect of improving corrosion resistance is saturated and weldability is greatly reduced. Therefore, the Al content is set to 2 to 19% by mass.
The purpose of adding Mg is also to improve corrosion resistance. If the amount is less than 1% by mass, the effect of improving the corrosion resistance is insufficient. If the amount exceeds 10% by mass, the plating layer becomes brittle and decreases the adhesion, so the Mg content is set to 1 to 10% by mass.
[0013]
The purpose of adding Si is to improve corrosion resistance and to improve plating adhesion by suppressing the reaction between Al and Fe in the plating layer. If the amount is less than 0.01% by mass, the effect of addition is insufficient, and if it exceeds 2% by mass, the effect of improving the plating adhesion cannot be recognized.
[0014]
This is the reason why the contents of Mg and Al are limited to the formula Mg (mass%) + Al (mass%) ≦ 20 (mass%), but the sacrificial anticorrosive effect is lowered when the Zn content in the plating layer is lowered. This is because the corrosion resistance is reduced.
In addition to the above composition, the plating layer may contain elements such as Fe, Ti, Ni, Sb, and Pb alone or in combination within 1% by mass.
The plating adhesion amount is not particularly limited, but is preferably 10 g / m 2 or more from the viewpoint of corrosion resistance and 350 g / m 2 or less from the viewpoint of weldability and workability.
[0016]
In addition, as a manufacturing method of hot dipping, there are a flux method, a Sendzimir method, a method of ensuring wettability by pre-plating with Ni or the like, and any method may be used. For the purpose of changing the appearance after plating, spray with water spray or air-water spray, spray with sodium phosphate aqueous solution or Zn powder, further Zn phosphate powder, Mg hydrogen phosphate powder or their aqueous solution. May be. Further, after the plating, before the coating of the present invention is formed, the surface may be adjusted with a Co sulfate solution, a Ni sulfate solution, or the like to prevent discoloration of the plating.
[0017]
The film formation method includes zirconium carbonate complex ion: [Zr (CO 3 ) 2 (OH) 2 ] 2- or [Zr (CO 3 ) 3 (OH)] 3- and vanadyl ion: VO 2+ By applying the treatment liquid to the steel sheet surface and removing the moisture by heating and drying, a dense three-dimensional film having excellent barrier properties is formed.
[0018]
Here, the zirconium carbonate complex ion is supplied from ammonium salt, potassium salt, sodium salt, etc. of [Zr (CO 3 ) 2 (OH) 2 ] 2- or [Zr (CO 3 ) 3 (OH)] 3- .
Vanadyl ion (VO 2+ ) is an oxovanadium cation supplied by salts with inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, or organic acid anions such as formic acid, acetic acid, propionic acid, butyric acid, and succinic acid. .
[0019]
The zirconium compound contained in the film is preferably 10 to 30% by mass as zirconium, and the vanadyl compound is preferably 5 to 20% by mass as vanadium. If the zirconium content is less than 10% by mass or the vanadium content is less than 5% by mass, the target corrosion resistance cannot be obtained, while the zirconium content exceeds 30% by mass or vanadium When the content exceeds 20% by mass, the effect of improving corrosion resistance is saturated, which is not economical.
[0020]
By adding an organic acid to the film, the corrosion resistance can be further improved. Examples of the organic acid include glycolic acid, malic acid, tartaric acid, citric acid, ascorbic acid, lactic acid, dehydroacetic acid, dehydrobenzoic acid, dehydroascorbic acid, gallic acid, tannic acid, and ammonium salts thereof. In the treatment liquid, these organic acids form a stable chelate complex with vanadyl ions.
[0021]
As a source of vanadyl ions, a compound that is already complexed with vanadyl ions using an organic acid as a ligand, such as vanadyl glycolate, vanadyl tartrate, and vanadyl dehydroascorbate, can be used. There is no need to add the acid again.
[0022]
As content of the organic acid contained in a film | membrane, 20-50 mass% is preferable as solid content. When the organic acid content is less than 20% by mass, the ability to form a chelate complex with vanadyl ions is weak, so the effect of improving corrosion resistance is poor. On the other hand, when it exceeds 50% by mass, the chelate forming ability with vanadyl ions is poor. It is not economical because it saturates.
[0023]
Moreover, the corrosion resistance can be further improved by adding a phosphoric acid compound, a silica compound, or a fluorine compound to the film. Examples of the phosphoric acid compound include ammonium phosphate, potassium phosphate, and sodium phosphate. Examples of the silica compound include vapor phase silica and silica sol. Examples of the fluorine compound include hydrofluoric acid salts and complex fluoride salts.
[0024]
The content contained in the film, 10 to 30 mass% as PO 4 in the case of phosphoric acid compounds are preferable. When the content of PO 4 is 10% by mass or more, a further effect of improving corrosion resistance can be obtained. On the other hand, if it exceeds 30% by mass, the effect of improving corrosion resistance is saturated, so addition beyond this is not economical.
For silica compound, 10 to 30 mass% as SiO 2 is preferred. By setting the content of SiO 2 to 10% by mass or more, a further effect of improving corrosion resistance can be obtained. On the other hand, if it exceeds 30% by mass, the effect of improving corrosion resistance is saturated, so addition beyond this is not economical.
In the case of a fluorine compound, F is preferably 5 to 20% by mass. When the F content is less than 5% by mass, the effect of improving corrosion resistance is poor, and when it exceeds 20% by mass, the effect of improving corrosion resistance is saturated, which is not economical.
[0025]
In the present invention, molybdenum disulfide, graphite, tungsten disulfide, boron nitride, graphite fluoride, cerium fluoride, melamine cyanurate, fluororesin wax, polyolefin wax and the like are added as lubricating components in the coating. As a result, processability, scratch resistance and the like can be improved. The content of the lubricating component contained in the film is preferably 0.1 to 15% by mass. If the content of the lubricating component is less than 0.1% by mass, the effect of improving workability and scratch resistance is poor, and if it exceeds 15% by mass, the effect of improving processability and scratch resistance is saturated, which is not economical.
[0026]
Further, an antifoaming agent or a leveling agent may be added to the film within a range not impairing the original performance.
[0027]
The coating amount is preferably 200 to 1,200 mg / m 2 . When the adhesion amount is less than 200 mg / m 2 , sufficient corrosion resistance cannot be obtained. In addition, even if the adhesion amount exceeds 1,200 mg / m 2 , no further improvement in corrosion resistance can be expected, but rather there is concern about deterioration of corrosion resistance due to reduced adhesion or increased damage in the processed part. The amount is preferably 1,200 mg / m 2 or less.
[0028]
The method for forming a film in the present invention is not particularly limited, and any method such as a spray method, a dipping method, a coater roll method, a ringer roll method, or an air-knife method can be used.
[0029]
Moreover, although heat drying is required after forming by the said method, it does not prescribe | regulate especially about a heat drying method, Any method, such as a hot air, a direct fire, induction heating, is possible. Further, the ultimate plate temperature at the time of drying depends on the processing equipment, processing conditions, and the like, but is set to an arbitrary temperature between 50 ° C. and 200 ° C. at which the film can be dried.
[0030]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following specific examples.
[0031]
SPCC having a thickness of 0.8 mm was used as the plating original plate. For plating, a Sendzimir type continuous hot dip galvanizing line was used, and heating, annealing, and plating were performed. The annealing atmosphere was 10% hydrogen and the remaining 90% nitrogen gas atmosphere, and the dew point was −30 degrees. The annealing temperature is 730 ° C and the annealing time is 3 minutes. The plating composition was Al: 11% by mass, Mg: 3% by mass, Si: 0.2% by mass, the balance consisting of Zn and inevitable impurities, and plating was performed at a plating bath temperature of 460 ° C. After immersion in the plating bath, the amount of plating was 90g / m 2 per side by nitrogen gas wiping. After plating, temper rolling was performed at an elongation of 1%.
[0032]
The amount of plating adhesion and the plating layer component% were confirmed by measuring zinc with a fluorescent X-ray apparatus, dissolving and peeling the plating layer with acid, analyzing the solution with ICP, and quantifying Zn, Al, Mg, and Si. .
[0033]
For the formation of the film after plating, a treatment liquid adjusted to the conditions shown in Table 1 in a laboratory was applied with a bar coater and dried at a final plate temperature of 80 ° C. The amount of adhesion was adjusted by adjusting the concentration of the processing solution (water dilution) and the bar coater. The amount of adhesion was confirmed by measuring Zr in the film with a fluorescent X-ray apparatus and using it as an index.
[0034]
As comparative materials, test materials having the conditions shown in Table 2 were prepared by the following procedure and evaluated by the same procedure. The amount of adhesion was confirmed by measuring Si, Zr, and Cr in the film with a fluorescent X-ray apparatus.
[0035]
Steel plate treatment conditions and levels 1 to 100:
The treatment liquid adjusted to the conditions shown in Table 1 was applied with a bar coater and dried at a final plate temperature of 80 ° C. The amount of adhesion was adjusted by adjusting the concentration of the processing solution (water dilution) and the number of the bar coater (the conditions for the amount of adhesion are shown in Tables 3 and 4). The polyethylene wax used was Chemipearl W950 (Mitsui Chemicals).
・ Level 102:
Zircozol AC-7 (manufactured by Matsumoto Pharmaceutical Co., Ltd.) was used as a zirconium compound, and was applied with a bar coater so that the dry mass was 0.5 g / m 2 and dried at a final plate temperature of 80 ° C. The amount of adhesion was adjusted by adjusting the concentration of the processing solution (water dilution) and the bar coater.
・ Level 103:
Snowtex-O (manufactured by Nissan Chemical Co., Ltd.) was used as a silica compound, and was applied with a bar coater to a dry mass of 0.5 g / m 2 and dried at a final plate temperature of 80 ° C. The amount of adhesion was adjusted by adjusting the concentration of the processing solution (water dilution) and the bar coater.
・ Level 104, 105:
To a commercially available acrylic resin emulsion (Mitsui Chemicals), colloidal silica (Snowtex-O: manufactured by Nissan Chemical Co., Ltd.) is added in a dry mass so that the resin: silica = 75: 25, and a test material using a bar coater And dried for 10 seconds in a drying oven at 200 ° C. The amount of adhesion was adjusted by adjusting the concentration of the processing solution (water dilution) and the bar coater.
Adhesion amount of test material is level 104: 0.5g / m 2, level 105: was 1.0 g / m 2.
・ Level 106, 107:
A mixture of partially reduced chromic acid (chromium reduction rate 40%) and colloidal silica (CrO 3 : SiO 2 = 1: 3) was diluted with water, applied to a test plate with a bar coater, and dried at a plate temperature of 60 ° C. .
The amount of Cr deposited was set at level 106: Cr: 20 mg / m 2 and level 107: Cr: 40 mg / m 2 .
[0036]
For the weldability test, two spot steel plates prepared under the same conditions were overlapped, and a spot spot test for spot welding was performed.
The test conditions are: electrode shape: dome shape, tip diameter: 12 mmφ, applied pressure: 220 kgf, welding time is 12 cycles (AC 50 cycles), welding current is 12 KA, and the welded sample has a nugget diameter of 4.5 for the shear tensile test. The number of times of becoming mm or less was defined as the electrode life.
[0037]
In the evaluation of continuous hit points, this electrode life was evaluated as ◯ when the electrode life was 2,000 points or more, Δ when it was 1,000 or more and less than 2,000, and × when it was less than 1,000 points.
Welding stability is evaluated by evaluating the variation of nugget diameters from 2,000 to 2,010 points for those with continuous spot performance of ○ (2,000 points or more), and the difference between the maximum nugget diameter and the minimum nugget diameter is 0.5 mm or less. Passed and represented by ○.
[0038]
In the corrosion resistance test, a steel plate to be used for the test was cut out to 150 mm x 70 mm, subjected to Erichsen processing with a height of 8 mm, and the end face was tape-sealed, followed by a salt spray test of JIS Z 2371, and a flat plate at a test time of 72 hours. The white rust generation situation of the part and the Erichsen processed part was evaluated.
The evaluation indices of the flat plate and processed parts are as follows.
Flat plate ◎: White rust 0%, ○: White rust 0% to 5% or less, △: White rust 5% to 30% or less, ×: White rust 30% or more, ◎: White rust 0%, ○: White Rust>0%> 30%, △: White rust>30%> 50%, ×: White rust> 50% [0039]
For the workability test, a steel plate to be used for the test was cut out to 150 mm x 70 mm, a Bowden test (load 500 g, indenter 10 mmφSUJ-2, sliding distance 50 mm, sliding speed 50 mm / sec) was performed, and the coefficient of friction for the 10th sliding operation It was evaluated with.
The processability evaluation indices are as follows.
Workability ○: Friction coefficient less than 0.2, △: Friction coefficient 0.2 to 0.4, ×: Friction coefficient more than 0.4
The evaluation results of each test are as shown in Tables 3-5. It can be seen that the plated steel sheet having the coating according to the present invention exhibits excellent weldability and corrosion resistance, and that the level to which a lubricating component is added is excellent in workability.
[0041]
[Table 1]
Figure 0003868243
[0042]
[Table 2]
Figure 0003868243
[0043]
[Table 3]
Figure 0003868243
[0044]
[Table 4]
Figure 0003868243
[0045]
[Table 5]
Figure 0003868243
[0046]
[Table 6]
Figure 0003868243

Claims (6)

鋼板の表面に、
Mg:1〜10質量%、
Al:2〜19質量%、
Si:0.01〜2質量%含有し、
かつ、MgとAlが下式
Mg(質量%)+Al(質量%)≦20質量%
を満たし、残部がZn及び不可避的不純物よりなるZn合金めっき層を有し、更にその表層に、
ジルコニウム化合物をジルコニウムとして10〜30質量%、
バナジルイオン(VO 2+ )の塩として供給されるバナジル化合物をバナジウムとして5〜20質量%
含有している皮膜を付着量として少なくとも片面に200〜1200mg/m2有することを特徴とする、溶接性及び耐食性に優れるクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。
On the surface of the steel plate,
Mg: 1 to 10% by mass,
Al: 2 to 19% by mass,
Si: 0.01 to 2% by mass,
And Mg and Al are the following formula Mg (mass%) + Al (mass%) ≦ 20 mass%
And the balance has a Zn alloy plating layer consisting of Zn and inevitable impurities, and further on its surface layer,
10 to 30% by mass of zirconium compound as zirconium,
The vanadyl compound supplied as a salt of vanadyl ion (VO 2+ ) is 5 to 20% by mass as vanadium.
A chromate-free treated zinc-aluminum alloy-plated steel sheet excellent in weldability and corrosion resistance, characterized in that the coating film contains 200 to 1200 mg / m 2 on at least one surface as an adhesion amount.
皮膜中に有機酸を固形分として20〜50質量%含有することを特徴とする請求項1に記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。  The chromate-free treated zinc-aluminum alloy-plated steel sheet according to claim 1, wherein the film contains an organic acid in a solid content of 20 to 50% by mass. 皮膜中にリン酸化合物をPO4として10〜30質量%含有することを特徴とする請求項1〜2の何れかに記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。Chromate-free treatment of zinc according phosphoric acid compound in the coating in any one of claims 1-2, characterized in that it contains 10 to 30 mass% as PO 4 - aluminum alloy coated steel sheet. 皮膜中にシリカ化合物をSiO2として10〜30質量%含有することを特徴とする請求項1〜3の何れかに記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。Chromate-free treatment of zinc according to claim 1, characterized in that it contains 10 to 30 wt% of silica compounds as SiO 2 in the film - aluminum alloy coated steel sheet. 皮膜中にフッ素化合物をFとして5〜20質量%含有することを特徴とする請求項1〜4の何れかに記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。  The chromate-free treated zinc-aluminum alloy plated steel sheet according to any one of claims 1 to 4, wherein the film contains 5 to 20% by mass of a fluorine compound as F. 皮膜中に潤滑成分を0.1〜15質量%含有することを特徴とする請求項1〜5の何れかに記載のクロメートフリー処理亜鉛−アルミニウム合金めっき鋼板。  The chromate-free treated zinc-aluminum alloy plated steel sheet according to any one of claims 1 to 5, wherein the coating contains 0.1 to 15% by mass of a lubricating component.
JP2001278562A 2001-06-04 2001-09-13 Chromate-free treated hot dip zinc-aluminum alloy plated steel sheet with excellent weldability and corrosion resistance Expired - Lifetime JP3868243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278562A JP3868243B2 (en) 2001-06-04 2001-09-13 Chromate-free treated hot dip zinc-aluminum alloy plated steel sheet with excellent weldability and corrosion resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001168692 2001-06-04
JP2001-168692 2001-06-04
JP2001278562A JP3868243B2 (en) 2001-06-04 2001-09-13 Chromate-free treated hot dip zinc-aluminum alloy plated steel sheet with excellent weldability and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2003055777A JP2003055777A (en) 2003-02-26
JP3868243B2 true JP3868243B2 (en) 2007-01-17

Family

ID=26616314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278562A Expired - Lifetime JP3868243B2 (en) 2001-06-04 2001-09-13 Chromate-free treated hot dip zinc-aluminum alloy plated steel sheet with excellent weldability and corrosion resistance

Country Status (1)

Country Link
JP (1) JP3868243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762450A (en) * 2015-03-13 2015-07-08 内蒙古包钢钢联股份有限公司 Annealing process of producing SPCC continuous-annealing board with silicon steel annealing furnace

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060032212A (en) * 2003-07-29 2006-04-14 제이에프이 스틸 가부시키가이샤 Surface-treated steel sheet and method for producing same
JP2005305539A (en) * 2004-04-26 2005-11-04 Nippon Steel Corp Method for producing high strength automobile member
JP4654089B2 (en) 2004-12-03 2011-03-16 新日本製鐵株式会社 Chromate-free resin composite vibration damping material with excellent durability adhesion
JP5088095B2 (en) * 2006-12-13 2012-12-05 Jfeスチール株式会社 Surface treated galvanized steel sheet with excellent corrosion resistance, blackening resistance, appearance and corrosion resistance after press molding, and aqueous surface treatment liquid for galvanized steel sheet
JP2008174807A (en) * 2007-01-19 2008-07-31 Nippon Hyomen Kagaku Kk Chromium-free metal surface treatment liquid
JP5087760B2 (en) * 2007-11-07 2012-12-05 Jfe鋼板株式会社 Method for producing surface-treated steel sheet and surface-treated steel sheet
JP5359916B2 (en) * 2010-02-15 2013-12-04 新日鐵住金株式会社 Painted metal plate with low environmental impact
JP5751093B2 (en) * 2011-08-24 2015-07-22 新日鐵住金株式会社 Surface-treated hot-dip galvanized steel
SG10201900594UA (en) 2013-11-14 2019-02-27 Nisshin Steel Co Ltd Chemical conversion treatment solution and chemically converted steel sheet
JP6641699B2 (en) * 2015-02-09 2020-02-05 日本製鉄株式会社 Welded H-section steel
US11091839B2 (en) 2016-03-09 2021-08-17 Nippon Steel Corporation Surface-treated steel sheet and method for producing surface-treated steel sheet
WO2018092244A1 (en) 2016-11-17 2018-05-24 新日鐵住金株式会社 Surface-treated steel sheet and coated member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762450A (en) * 2015-03-13 2015-07-08 内蒙古包钢钢联股份有限公司 Annealing process of producing SPCC continuous-annealing board with silicon steel annealing furnace

Also Published As

Publication number Publication date
JP2003055777A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
US7153348B2 (en) Hexavalent chromium-free surface-treating agent for Sn or Al-based coated steel sheet, and surface treated steel sheet
KR101622681B1 (en) Aluminum-zinc plated steel sheet and method for producing the same
JP3868243B2 (en) Chromate-free treated hot dip zinc-aluminum alloy plated steel sheet with excellent weldability and corrosion resistance
CN113631743B (en) Surface-treated metal material
KR20090048495A (en) Aqueous treatment liquid for sn-plated steel sheet having excellent corrosion resistance and coating adhesion, and method for producing surface-treated steel sheet
KR101249583B1 (en) Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance
US20220371049A1 (en) Ternary hot-dip galvannealed steel sheet surface treatment solution composition for providing excellent blackening resistance and alkali resistance, ternary hot-dip galvannealed steel sheet surface-treated using same, and manufacturing method therefor
JP3801463B2 (en) Method for producing a plated steel material having a corrosion resistant coating film having no chromate
JPH0488196A (en) Galvanized steel sheet excellent in press workability and chemical conversion treating property
JP3346338B2 (en) Galvanized steel sheet and method for producing the same
JP4267184B2 (en) Hot-dip aluminized steel sheet with excellent corrosion resistance and appearance and manufacturing method thereof
JP3302680B2 (en) Steel plate with excellent corrosion resistance
JPH0488176A (en) Galvanized steel sheet excellent in weldability, workability in pressing and chemical convertibility
JP2007023309A (en) Hot-dip zinc alloy plated steel sheet having excellent corrosion resistance
JP4555491B2 (en) Hot-dip zinc-aluminum alloy-plated steel sheet with excellent chemical conversion and its manufacturing method
JP3992561B2 (en) Chromate-free metal plate with excellent corrosion resistance and alkali resistance
JP3219453B2 (en) Manufacturing method of galvanized steel sheet with excellent blackening resistance
JP3302676B2 (en) Chemical treated steel sheet with excellent corrosion resistance
JP3153098B2 (en) Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability
JP3425268B2 (en) Method for producing galvanized steel sheet with excellent pressability, chemical conversion property, and degreasing solution contamination resistance
JP3425270B2 (en) Method for producing galvanized steel sheet with excellent pressability, chemical conversion property, and degreasing solution contamination resistance
JP3106635B2 (en) Method for producing galvannealed steel sheet with excellent press formability and spot weldability
JP2952835B2 (en) Manufacturing method of galvanized steel sheet with excellent weldability, pressability and chemical conversion treatment
JP3111904B2 (en) Manufacturing method of galvanized steel sheet
WO2022102710A1 (en) Surface-treated metal sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R151 Written notification of patent or utility model registration

Ref document number: 3868243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term