JP2010202935A - High strength link chain and method for producing the same - Google Patents

High strength link chain and method for producing the same Download PDF

Info

Publication number
JP2010202935A
JP2010202935A JP2009050750A JP2009050750A JP2010202935A JP 2010202935 A JP2010202935 A JP 2010202935A JP 2009050750 A JP2009050750 A JP 2009050750A JP 2009050750 A JP2009050750 A JP 2009050750A JP 2010202935 A JP2010202935 A JP 2010202935A
Authority
JP
Japan
Prior art keywords
strength
link chain
chain
mpa
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009050750A
Other languages
Japanese (ja)
Other versions
JP5473359B2 (en
Inventor
Hiroshi Higuchi
宏 樋口
Tomoya Ishihara
智也 石原
Koichi Sugimoto
公一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kito KK
Shinshu University NUC
Kito Corp
Original Assignee
Kito KK
Shinshu University NUC
Kito Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kito KK, Shinshu University NUC, Kito Corp filed Critical Kito KK
Priority to JP2009050750A priority Critical patent/JP5473359B2/en
Publication of JP2010202935A publication Critical patent/JP2010202935A/en
Application granted granted Critical
Publication of JP5473359B2 publication Critical patent/JP5473359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength link chain in which tensile strength lies in a high strength region of ≥1,650 MPa (≥1,155 MPa expressed in terms of chain strength) with a round rod test piece, which has an excellent balance in strength-ductility, and has excellent impact resistance and hydrogen embrittlement resistance, and to provide a method for producing the high strength link chain. <P>SOLUTION: The high strength link chain having a tensile strength of ≥1,650 MPa (≥1,155 MPa expressed in terms of chain strength) comprises 0.15 to 0.40% C, 0.5 to 3.0% Si, 0.5 to 3.0% Mn, ≤0.5% Al, ≤0.05% P, ≤0.05% S, ≤0.5% Mo, 0.4 to 2.0% Cr and 0.4 to 2.5% Ni, and the balance Fe with inevitable impurities, and, as its steel structure, includes, in the steel, retained austenite, by volume, of ≥1%, bainitic ferrite of ≥1% and carbon concentration-treated martensite of 80 to 98%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、引張強度が丸棒試験片にて1650MPa以上(チェーン強度換算で1155MPa以上)の高強度域にて、強度−延性バランスに優れ、耐衝撃特性、耐水素脆性特性に優れた高強度リンクチェーンとその製造方法に関する。
In the present invention, the tensile strength is 1650 MPa or more (1155 MPa or more in terms of chain strength) in a round bar test piece, and the strength-ductility balance is excellent, and the high strength excellent in impact resistance and hydrogen brittleness resistance. The present invention relates to a link chain and a manufacturing method thereof.

チェーンブロック、特に手動用チェーンブロック及びレバーブロック(登録商標)に使用されるリンクチェーンに要求される性能として、高荷重の荷の吊り上げ、吊り下げ、荷締め作業を可能とし、かつ組み込まれる手動用チェーンブロック及びレバーブロック(登録商標)本体の小型化を可能にするリンクチェーンの高強度化、特殊環境下或いは屋外環境下における突発的な破壊を防止するリンクチェーンの耐遅れ破壊向上、寒冷地などの低温環境下における脆性破壊を防止するリンクチェーンの高靭性化が挙げられる。また、市場のニーズも高強度で、かつ高靭性を有し耐遅れ破壊特性に優れたリンクチェーンが求められている。

上記要求に対応すべく従来より様々な特性向上のための開発がなされている。一般的には、リンクチェーンの高強度化のためにはリンクチェーンの素材となる鋼材の化学成分、特に炭素量を増加させることが有効な手段とされているが、反面、耐靭性及び耐遅れ破壊は低下し、またリンクチェーンの製造過程において十分な曲げ性或いは溶接性を確保することは困難であった。そのため、低炭素(C:0.24%)の鋼素材を用いてリンクチェーンを製造していたが、丸棒試験片にて一般的な焼入れ・焼戻しの熱処理(920℃×15分→水冷→200℃×60分)により金属組織として焼戻しマルテンサイト組織を得た場合、その材料の機械的特性としては、硬さ(HRC):43〜44、破断応力:1500〜1510N/mm2、破断全伸び10〜11%、シャルピー衝撃値27〜52Jという結果が得られている。このような丸棒試験片での特性が得られる材料と熱処理の組み合わせにおいて、破断応力:1000 N/mm2以上、破断全伸び:20%以上を有するリンクチェーンが製造されているのが一般的技術である。

高強度が要求されるボルト、バネの分野においても、例えば、特許文献1(特開2006−233326号公報)で開示されているように、C:0.20〜0.60%の素材を用いてオーステナイト結晶粒の成長を招かない(Ar3+100℃)以下の温度に急速加熱し、3℃/秒以上の平均冷却速度で(Ms点−50℃)以上、Bs点以下の温度で冷却し、この温度域で1〜60分間加熱保持することで、全組織に対する面積率で残留オーステナイトが1%以上、引張強度が1180 N/mm2以上の特性を有する耐水素脆化特性に優れた高強度ボルトが得られている。

また、同様に、高強度が要求されるバネの分野においても、例えば、特許文献2(特開2007−100209号公報)で開示されているように、C:0.20〜0.60%の素材を用いてオーステナイト結晶粒の成長を招かない(A3+100℃)以下の温度に急速加熱し、3℃/秒以上の平均冷却速度で(Ms点−50℃)以上、Bs点以下の温度で冷却し、この温度域で1〜30分間加熱保持することで、全組織に対する面積率で残留オーステナイトが1%以上、引張強度が1860 N/mm2以上の特性を有する耐水素脆化特性に優れた高強度ボルトが得られている。

上述した従来のリンクチェーン用鋼及び熱処理法では、丸棒試験片強度で1450〜1550 N/mm2 (チェーン強度換算で1000〜1110 N/mm2)が限界であり、更なるチェーンの高強度化、高靭性化、高い耐遅れ破壊特性を実現するためには、上述の従来鋼、熱処理法では不可能である。また、上述した高強度ボルト用鋼の技術を用いて残留オーステナイトを増加させて高い耐遅れ破壊特性を達成することは可能であっても、強度1860 N/mm2 以上の場合、−40℃でのシャルピー衝撃値42Jを実現すること、及びチェーンに加工した場合の溶接性を確保することは、上述した特許文献2,3に記載に鋼成分及び熱処理法をもってしても本発明が目的とするような、引張強度が丸棒試験片にて1650MPa以上(チェーン強度換算で1155MPa以上)の高強度域にて、強度ー延性バランスに優れ、耐衝撃特性、耐水素脆性特性に優れた高強度リンクチェーンを提供することは困難であると考えられる。
The performance required for chain blocks, especially link chains used for manual chain blocks and lever blocks (registered trademark), is capable of lifting, hanging, and tightening heavy loads, and is incorporated for manual use. Increased link chain strength that enables downsizing of the chain block and lever block (registered trademark) body, improved delayed resistance to link chains that prevent sudden breakage in special or outdoor environments, cold regions, etc. The link chain can be made tougher to prevent brittle fracture in a low temperature environment. In addition, there is a demand for a link chain that has high strength, high toughness, and excellent delayed fracture resistance as market needs.

In order to meet the above requirements, various developments for improving the characteristics have been made. In general, increasing the chemical composition of the steel material that forms the link chain, especially the carbon content, is an effective means to increase the strength of the link chain. The fracture was reduced, and it was difficult to ensure sufficient bendability or weldability in the manufacturing process of the link chain. For this reason, link chains were manufactured using low carbon (C: 0.24%) steel material, but general quenching and tempering heat treatment (920 ° C x 15 minutes → water cooling → 200 ° C) with round bar specimens. When a tempered martensite structure is obtained as a metal structure by (60 minutes), the mechanical properties of the material are as follows: hardness (HRC): 43 to 44, breaking stress: 1500 to 1510 N / mm 2 , breaking total elongation 10 The results of ~ 11% and Charpy impact value of 27 ~ 52J are obtained. In general, link chains having a breaking stress of 1000 N / mm 2 or more and a total elongation of breaking of 20% or more are manufactured in a combination of a material and a heat treatment capable of obtaining such characteristics of a round bar test piece. Technology.

Also in the field of bolts and springs that require high strength, for example, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2006-233326), austenite crystal grains using a material of C: 0.20 to 0.60% Rapid heating to a temperature below (Ar 3 + 100 ° C) that does not lead to growth, cooling at an average cooling rate of 3 ° C / second or more (Ms point – 50 ° C) and below the Bs point, this temperature range For 1 to 60 minutes to obtain a high-strength bolt excellent in hydrogen embrittlement resistance with a retained austenite ratio of 1% or more and a tensile strength of 1180 N / mm 2 or more. It has been.

Similarly, in the field of springs requiring high strength, for example, as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2007-100209), a material of C: 0.20 to 0.60% is used. Rapid heating to a temperature of (A 3 + 100 ° C) or less that does not lead to growth of austenite grains, cooling at an average cooling rate of 3 ° C / second or more (Ms point – 50 ° C) and a temperature of Bs point or less, High strength with excellent hydrogen embrittlement resistance by holding for 1 to 30 minutes in this temperature range, with a retained austenite ratio of 1% or more and a tensile strength of 1860 N / mm 2 or more in the area ratio to the entire structure. Bolts are obtained.

The steel conventional link chain described above and heat treatment method, a is a limit (1000~1110 N / mm 2 in the chain strength terms) 1450~1550 N / mm 2 in round specimens strength, high strength further chain It is impossible with the above-described conventional steel and heat treatment method to realize high-temperature, high-toughness and high delayed fracture resistance. Moreover, even if it is possible to increase the retained austenite and achieve high delayed fracture resistance by using the above-described high strength bolt steel technology, at a strength of 1860 N / mm 2 or more, the temperature is −40 ° C. It is an object of the present invention to achieve the Charpy impact value of 42J and to ensure the weldability when processed into a chain even with the steel components and heat treatment described in Patent Documents 2 and 3 described above. High strength links with excellent strength-ductility balance, impact resistance, and hydrogen brittleness resistance in a high strength region with a tensile strength of 1650 MPa or more (1155 MPa or more in terms of chain strength) in a round bar test piece. Providing a chain is considered difficult.

特開2006−233326号公報JP 2006-233326 A 特開2007−100209号公報JP 2007-100209 A

本発明は、上述した従来の課題を解決するためになされたもので、引張強度が丸棒試験片にて1650MPa以上(チェーン強度換算で1155MPa以上)の高強度域にて、強度−延性バランスに優れ、耐衝撃特性、耐水素脆性特性に優れた高強度リンクチェーンとその製造方法を提供するものである。
The present invention has been made in order to solve the above-described conventional problems. In a high strength region where the tensile strength is 1650 MPa or more (1155 MPa or more in terms of chain strength) in a round bar test piece, the strength-ductility balance is achieved. The present invention provides a high-strength link chain excellent in impact resistance and hydrogen embrittlement characteristics and a method for producing the same.

本発明の要旨は次のとおりである。
(1)質量%で、C:0.15〜0.40%,Si:0.5〜3.0%,Mn:0.5〜3.0%,Al:0.5%以下,P:0.05%以下,S:0.05%以下,
Mo:0.5%以下,Cr:0.4〜2.0%,Ni:0.4〜2.5%
を含み、残部Fe及び不可避的不純物からなるリンクチェーンであって、リンクチェーンの鋼組織として鋼中に、体積率で、残留オーステナイトを1%以上、ベイニティックフェライトを1%以上、炭素濃化処理マルテンサイトを80〜98%を含む引張強度1650MPa以上(チェーン強度換算で1155MPa以上)を有することを特徴とする高強度リンクチェーン。

(2)質量%で、C:0.15〜0.40%,Si:0.5〜3.0%,Mn:0.5〜3.0%,Al:0.5%以下,P:0.05%以下,S:0.05%以下,
Mo:0.5%以下,Cr:0.4〜2.0%,Ni:0.4〜2.5%
を含み、残部Fe及び不可避的不純物からなるリンクチェーンを、A+100℃の温度以下に1〜60分間加熱保持後、1℃/秒以上の冷却速度でMf点以下、又は常温まで冷却する焼入れ処理を少なくとも1回以上行った後、Mf点とMs点の間の温度に10〜240分間加熱保持する炭素濃化処理することにより引張強度1650MPa以上(チェーン強度換算で1155MPa以上)を有するリンクチェーンとすることを特徴とする高強度リンクチェーンの製造方法。
The gist of the present invention is as follows.
(1) By mass%, C: 0.15 to 0.40%, Si: 0.5 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.5% or less, P: 0.05% or less, S: 0.05% or less,
Mo: 0.5% or less, Cr: 0.4-2.0%, Ni: 0.4-2.5%
Is a link chain consisting of the remainder Fe and inevitable impurities, and the steel structure of the link chain in steel, with a volume ratio of 1% or more of retained austenite, 1% or more of bainitic ferrite, and carbon enrichment A high-strength link chain characterized by having a tensile strength of 1650 MPa or more including 80 to 98% of treated martensite (1155 MPa or more in terms of chain strength).

(2) By mass%, C: 0.15 to 0.40%, Si: 0.5 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.5% or less, P: 0.05% or less, S: 0.05% or less,
Mo: 0.5% or less, Cr: 0.4-2.0%, Ni: 0.4-2.5%
Quenching the link chain composed of the remainder Fe and unavoidable impurities with a temperature of A 3 + 100 ° C. or lower for 1 to 60 minutes and then cooled to the Mf point or lower or normal temperature at a cooling rate of 1 ° C./second or higher. A link chain having a tensile strength of 1650 MPa or more (1155 MPa or more in terms of chain strength) by performing carbon concentration treatment by heating at a temperature between Mf point and Ms point for 10 to 240 minutes after performing the treatment at least once. A method for producing a high-strength link chain, characterized in that

本発明により引張強度が丸棒試験片にて1650MPa以上(チェーン強度換算で1155MPa以上)の高強度が得られ、水素脆性に有効とされる残留オーステナイトが適度に得られ、更に残留オーステナイト中の炭素の濃化による鋼組織を安定化させることで、強度−延性バランスに優れ、耐衝撃特性、耐水素脆性特性に優れた高強度リンクチェーンを提供することが可能となる。
According to the present invention, a high tensile strength of 1650 MPa or more (1155 MPa or more in terms of chain strength) is obtained with a round bar specimen, moderately obtained retained austenite effective for hydrogen embrittlement, and carbon in the retained austenite. By stabilizing the steel structure by concentrating the steel, it is possible to provide a high-strength link chain that has an excellent balance between strength and ductility, and has excellent impact resistance and hydrogen brittleness resistance.

引張強度が丸棒試験片にて1650MPa以上(チェーン強度換算で1155MPa以上)の高強度域にて、強度−延性バランスに優れ、耐衝撃特性、耐水素脆性特性に優れた高強度リンクチェーンとするためには、リンクチェーンの素材となる鋼の化学成分組成とその鋼組織と、それを得るための製造方法、特に熱処理方法が最も重要である。

先ず、リンクチェーンの素材となる鋼の化学成分組成について説明する。

Cは、1650MPa以上(チェーン強度換算で1155MPa以上)の高強度を確保し、かつ必要量の残留オーステナイトを確保するために必要な元素である。特にオーステナイト相中に十分なC量を含有させて室温で所望のオーステナイト相を残留させるためにはCは0.15%以上必要である。一方、過剰のCの含有は靭性を低下させ、かつ耐水素脆化特性が劣化するので上限を0.40%とする。Cの好ましい範囲は0.20〜0.35%である。

Siは本発明にとって重要な元素であり、従来の低Siのリンクチェーン素材とは異なり高Siとした。その理由は、残留オーステナイトが分解して炭化物が生成するのを効果的に抑制する重要な元素である。これらの効果を有効に発現させるためには0.5%以上含有させることが必要である。しかし過剰なSiの添加は靭性を低下させ、かつ耐水素脆化特性が劣化するので、上限を3.0%とした。Siの好ましい範囲は1.2〜2.5%である。

Mnは、オーステナイトを安定化させ、所望の残留オーステナイトを得るのに必要な元素で、この効果を発揮させるためには0.5%以上必要である。しかし、過剰なMn添加は偏析が顕著となり加工性が劣化するため上限を3.0%とした。Mnの好ましい範囲は1.2〜2.5%である。

Alは脱酸のために必要な元素であり、かつ耐水素脆化特性向上に寄与する元素でもある。この耐水素脆化特性に関しては表面にAlが濃化することで鋼中への水素に侵入を阻止しうることや、鋼中での水素の拡散速度を低下させて水素の移動を遅らせ、水素脆性が起こりにくいと考えられる。また、Al添加によりラス状残留オーステナイトの安定性が向上することも耐水素脆化特性向上に寄与していると考えられる。これらの効果を発現させるためにはAlは0.01%以上必要であり、好ましくは0.02%以上とする。しかし、アルミナ等の介在物の増加、巨大化を抑制して加工性を確保し、微細な残留オーステナイトの生成確保、Al含有介在物を基点とする腐食の抑制や、製造上のコスト増大の抑制を図るには上限を0.5%とすることが好ましい。更に、Al含有量が増加すると、アルミナ等の介在物が増加して遅れ破壊特性が劣化するという問題もあるため、このアルミナ等の介在物を十分抑制して遅れ破壊特性に優れたリンクチェーンとするには上限を0.5%とすることが好ましい。

Pは、粒界偏析による粒界破壊を助長する元素であるため、低い方が好ましく、その上限値を0.05%とする。好ましくは0.01%以下とする。

Sは、腐食環境下で鋼の水素吸収を助長する元素であり、低い方が望ましく、その上限を0.02%とする。好ましくは0.01%以下である。

Moは、オーステナイトを安定化させて残留オーステナイトを確保し、水素侵入を抑制して耐水素脆化特性を向上させ、かつ焼入れ性を高める効果がある。また、粒界を強化して水素脆性の発生を抑制する効果も有する。これらの効果を発揮させるには0.01%以上0.5%以下添加する必要がある。

Crは、変形能を殆ど損なうことなく焼入れ性を高めて高強度を容易に達成できる有用な元素である。この効果を発揮させるためには0.4%以上添加する必要があるが、過剰な添加はセメンタイトの生成を誘発し、残留オーステナイトが残りにくくなるので上限を2.0%とした。好ましくは0.5〜1.5%である。

Niは、靭性特性を向上させるとともに、水素脆化の原因となる水素の発生を抑制し、発生した水素のリンクチェーンへの侵入を抑制しうる。また、Niは、大気中で生成する錆の中でも熱力学的に安定で保護性があるといわれている酸化鉄:α―FeOOHの生成を促進させる効果をも有しており、この錆の生成促進を図ることで発生した水素のリンクチェーンへの侵入を抑制でき、過酷な腐食環境下でも耐水素脆化特性を高めることができる。これらの効果を十分に発揮させるためには0.4%以上2.5%以下の添加が必要である。好ましくは1.5%〜2.5%である。
A high strength link chain with excellent strength-ductility balance, excellent impact resistance and hydrogen brittleness resistance in a high strength region of 1650 MPa or more (1155 MPa or more in terms of chain strength) with a round bar test piece. For this purpose, the chemical component composition of the steel used as the material of the link chain, its steel structure, and the manufacturing method for obtaining it, especially the heat treatment method are the most important.

First, the chemical composition of steel that is the material of the link chain will be described.

C is an element necessary for securing a high strength of 1650 MPa or more (1155 MPa or more in terms of chain strength) and securing a necessary amount of retained austenite. In particular, in order to contain a sufficient amount of C in the austenite phase and leave the desired austenite phase at room temperature, C is required to be 0.15% or more. On the other hand, excessive C content reduces toughness and deteriorates hydrogen embrittlement resistance, so the upper limit is made 0.40%. The preferable range of C is 0.20 to 0.35%.

Si is an important element for the present invention. Unlike conventional low Si link chain materials, Si is high Si. The reason is an important element that effectively suppresses the decomposition of retained austenite and the formation of carbides. In order to effectively express these effects, it is necessary to contain 0.5% or more. However, excessive addition of Si reduces toughness and deteriorates the hydrogen embrittlement resistance, so the upper limit was made 3.0%. A preferable range of Si is 1.2 to 2.5%.

Mn is an element necessary for stabilizing austenite and obtaining desired retained austenite, and 0.5% or more is necessary to exert this effect. However, excessive Mn addition causes remarkable segregation and deteriorates workability, so the upper limit was made 3.0%. A preferable range of Mn is 1.2 to 2.5%.

Al is an element necessary for deoxidation and is an element contributing to improvement of hydrogen embrittlement resistance. With regard to this hydrogen embrittlement resistance, it is possible to prevent the penetration of hydrogen into the steel by concentrating Al on the surface, and to reduce the diffusion rate of hydrogen in the steel to delay the movement of hydrogen. It is thought that brittleness does not occur easily. Further, it is considered that the addition of Al improves the stability of the lath-like retained austenite, which contributes to the improvement of hydrogen embrittlement resistance. In order to exhibit these effects, Al needs to be 0.01% or more, preferably 0.02% or more. However, the increase in inclusions such as alumina and the increase in size are suppressed to ensure workability, the production of fine retained austenite is ensured, the corrosion based on Al-containing inclusions is suppressed, and the increase in manufacturing costs is suppressed. In order to achieve this, the upper limit is preferably set to 0.5%. Furthermore, when the Al content increases, there is a problem that inclusions such as alumina increase and the delayed fracture characteristics deteriorate, and therefore, a link chain excellent in delayed fracture characteristics by sufficiently suppressing inclusions such as alumina. For this purpose, the upper limit is preferably 0.5%.

P is an element that promotes grain boundary fracture due to grain boundary segregation, so a lower value is preferable, and its upper limit is set to 0.05%. Preferably, the content is 0.01% or less.

S is an element that promotes hydrogen absorption of steel in a corrosive environment, and the lower one is desirable, and its upper limit is 0.02%. Preferably it is 0.01% or less.

Mo stabilizes austenite to secure residual austenite, suppresses hydrogen intrusion, improves hydrogen embrittlement resistance, and enhances hardenability. It also has the effect of strengthening the grain boundaries and suppressing the occurrence of hydrogen embrittlement. In order to exert these effects, it is necessary to add 0.01% or more and 0.5% or less.

Cr is a useful element that can easily achieve high strength by enhancing hardenability with almost no loss of deformability. In order to exert this effect, it is necessary to add 0.4% or more. However, excessive addition induces the formation of cementite, and residual austenite becomes difficult to remain, so the upper limit was made 2.0%. Preferably it is 0.5 to 1.5%.

Ni improves toughness characteristics, suppresses the generation of hydrogen that causes hydrogen embrittlement, and can suppress the penetration of the generated hydrogen into the link chain. Ni also has the effect of promoting the formation of iron oxide: α-FeOOH, which is said to be thermodynamically stable and protective among rust generated in the atmosphere. By promoting the penetration of hydrogen into the link chain, the hydrogen embrittlement resistance can be improved even in a severe corrosive environment. In order to fully exhibit these effects, addition of 0.4% or more and 2.5% or less is necessary. Preferably, it is 1.5% to 2.5%.

なお、本発明においては上述した主要元素の他にリンクチェーンの強度上昇及び細粒化の目的からNbを0.1%以下添加することもできる。

次に本発明によるリンクチェーンの鋼組織について説明する。
In the present invention, in addition to the main elements described above, Nb may be added in an amount of 0.1% or less for the purpose of increasing the strength of the link chain and making it finer.

Next, the steel structure of the link chain according to the present invention will be described.

本発明においては、鋼組織として、体積率で、残留オーステナイトを1%以上、ベイニティックフェライトを1%以上、マルテンサイトを80〜98%を含むことが重要である。高強度鋼材として従来より一般的に採用されている焼き戻しマルテンサイト鋼や、マルテンサイト+フェライト鋼の場合、水素に起因する遅れ破壊は、旧オーステナイト粒界などに水素が集積してボイドなどが形成され、この部位が起点となって生じるものと考えられており、この遅れ破壊の感受性を低下させるには、従来技術でも行われていたように、水素のトラップサイトとして炭化物などを均等かつ微細に分散させて、拡散性水素濃度を下げることが一般的な解決手段として採用されてきた。しかし、このような水素のトラップサイトとして炭化物などを多数分散させてもトラップ能には限界があるため、水素を起因とする遅れ破壊を十分に抑制することはできなかった、

そこで、本発明者らは、リンクチェーンの高強度でありながら、耐水素脆化特性(遅れ破壊性)を実現するには鋼組織を最適化する必要があることを見出した。即ち、粒界破壊の起点を減少させ耐水素脆化特性を高めるには、リンクチェーンを構成する鋼の母相をマルテンサイトをベースに、適度な残留オーステナイトを確保し、この組織中に炭素を濃化させ、しかも少量のベイニティックフェライトを存在させることで粒界破壊の起点となる炭化物の生成を防止できることが判明した。本発明においては、鋼組織として後述する熱処理により得られた炭素濃化処理マルテンサイトを体積率で80〜98%に、残留オーステナイトを1%以上、ベイニティックフェライトを1%以上含有するものである。

残留オーステナイトは全伸びの向上に加え、耐水素脆化特性の向上にも寄与する組織であるため1%以上、好ましくは2%以上存在させることが重要である。この残留オーステナイトが多量になると所望の高強度が確保できなくなるため上限を20%とする。また、この残留オーステナイトの安定性の観点から残留オーステナイト中のC濃度を0.3〜1.6%、好ましくは0.35〜1.6%とすることで伸びなどを有効に高めることが可能となる。なお、残留オーステナイト中のC濃度は高い方が望ましいが、操業上調整可能な上限は1.6%である。

本発明で使用する炭素濃度Cγは、
aγ=3.5780+0.0330×(%Cγ)+0.00095×(%Mnγ)−0.0002×(%Niγ)+0.0006×(%Crγ)+0.0220×(%Nγ)+0.0056×(%Alγ)−0.0004×(%Coγ)+0.0015×(%Cuγ)+0.0031×(%Moγ)+0.0051×(%Nbγ)+0.0039×(%Tiγ)+0.0018×(%Vγ)+0.0018×(%Wγ)
上記式より算出する。

ベイニティックフェライトは硬質であり、高強度が得られ易く、母相の転位密度が高く、この転位上に水素が多数トラップされる結果、多量の水素を吸蔵できるという利点があり、体積率で1%以上の含有が必要である。このベイニティックフェライトは板状のフェライトであって転位密度が高い下部組織である。

次に本発明によるリンクチェーンの製造方法について説明する。
In the present invention, it is important that the steel structure contains 1% or more of retained austenite, 1% or more of bainitic ferrite, and 80 to 98% of martensite by volume. In the case of tempered martensite steel or martensite + ferritic steel, which has been generally adopted as a high-strength steel material, delayed fracture caused by hydrogen is caused by accumulation of hydrogen at the prior austenite grain boundaries and other voids. In order to reduce the susceptibility to this delayed fracture, as in the prior art, carbides and the like are equally and finely used as hydrogen trap sites. It has been adopted as a general solution to reduce the concentration of diffusible hydrogen by dispersing it in the water. However, even if a large number of carbides are dispersed as such hydrogen trap sites, there is a limit to the trapping ability, so delayed fracture due to hydrogen could not be sufficiently suppressed.

Therefore, the present inventors have found that it is necessary to optimize the steel structure in order to realize the hydrogen embrittlement resistance (delayed fracture property) while the link chain has high strength. That is, in order to reduce the origin of intergranular fracture and increase the resistance to hydrogen embrittlement, the steel matrix constituting the link chain is based on martensite to ensure adequate retained austenite and carbon in this structure. It has been found that the formation of carbides that are the starting point of grain boundary fracture can be prevented by enriching and the presence of a small amount of bainitic ferrite. In the present invention, the carbon-concentrated martensite obtained by the heat treatment described later as a steel structure contains 80 to 98% by volume, 1% or more of retained austenite, and 1% or more of bainitic ferrite. is there.

Residual austenite is a structure that contributes to the improvement of hydrogen embrittlement resistance in addition to the improvement of the total elongation, so it is important that it is present in an amount of 1% or more, preferably 2% or more. If the amount of retained austenite becomes large, the desired high strength cannot be secured, so the upper limit is made 20%. Further, from the viewpoint of the stability of the retained austenite, the elongation and the like can be effectively increased by setting the C concentration in the retained austenite to 0.3 to 1.6%, preferably 0.35 to 1.6%. It becomes. In addition, although the one where the C density | concentration in a retained austenite is higher is desirable, the upper limit which can be adjusted on the operation is 1.6%.

The carbon concentration Cγ used in the present invention is:
aγ = 3.5780 + 0.0330 × (% Cγ) + 0.00095 × (% Mnγ) −0.0002 × (% Niγ) + 0.0006 × (% Crγ) + 0.0220 × (% Nγ) + 0.0056 × ( % Alγ) −0.0004 × (% Coγ) + 0.0015 × (% Cuγ) + 0.0031 × (% Moγ) + 0.0051 × (% Nbγ) + 0.0039 × (% Tiγ) + 0.0018 × (% Vγ) + 0.0018 × (% Wγ)
Calculated from the above formula.

Bainitic ferrite is hard, easy to obtain high strength, has a high dislocation density in the matrix, and has the advantage that a large amount of hydrogen is trapped on this dislocation, so that a large amount of hydrogen can be occluded. It is necessary to contain 1% or more. This bainitic ferrite is a plate-like ferrite and a substructure having a high dislocation density.

Next, the manufacturing method of the link chain by this invention is demonstrated.

本発明によるリンクチェーンは、上述した鋼線材をリンクチェーンに加工後、オーステナイト粒成長を招かないA+100℃の温度以下に1〜60分間加熱保持後、1℃/秒以上の冷却速度でMf点以下、又は常温まで冷却する焼入れ処理を少なくとも1回以上行った後、残留オーステナイト中の炭素を濃化させるためにMf点とMs点の間の温度に10〜240分間加熱保持する炭素濃化処理することにより得られる。なお、炭素濃化処理時間を長くすることで、炭素濃度が増加する傾向を考慮し、30〜180分間加熱保持する炭素濃化処理を施すことが好ましい。
In the link chain according to the present invention, after the above-described steel wire rod is processed into a link chain, it is heated and held for 1 to 60 minutes below the temperature of A 3 + 100 ° C. that does not cause austenite grain growth, and then Mf at a cooling rate of 1 ° C./second or more After performing at least one quenching treatment that cools below the point or at room temperature, the carbon concentration in the retained austenite is heated and held at a temperature between the Mf point and the Ms point for 10 to 240 minutes in order to concentrate the carbon in the retained austenite. It is obtained by processing. In addition, it is preferable to perform the carbon concentration treatment by heating and holding for 30 to 180 minutes in consideration of the tendency of the carbon concentration to increase by increasing the carbon concentration treatment time.

本発明によるリンクチェーン用鋼として、質量%で、C:0.29%,Si:1.51%,Mn:1.49%,P:0.006%,S:0.001%,Ni:1.81%,Cr:1.0%,Mo:0.20%,Al:0.48%,Nb:0.05%、残部Fe及び不可避的不純物からなる線材(棒鋼)を表1に示す熱処理条件:830〜880℃の温度に加熱後、この温度域に10分間保持し、次いで、1.4℃/秒、21℃/秒の各冷却速度で常温まで冷却する処理を1回または2回実施し、その後200〜300℃に加熱後、この温度域に30〜60分間保持(炭素濃化処理)を施した。その結果を表2に示した。

比較材として従来から用いられている表3に記載のリンクチェーン用鋼の成分組成を用いて、従来の熱処理法(920℃加熱―15分間保持―常温まで水冷―200℃加熱―60分間保持―冷却)にて製造したリンクチェーン用鋼の特性を表4に示した。

表2から分かるように、本発明によるリンクチェーン用鋼は1650MPa以上(チェーン強度換算で1155MPa以上)の高強度を示し、かつ試験温度‐40℃にてシャルピー衝撃値42J以上の高靭性が得られた。また残留オーステナイト量が4vol%以上で、しかもこの残留オーステナイト中の炭素濃化量も0.37%以上となり、濃化が進行していることが分かる。一方、従来の成分組成で従来の熱処理条件で製造した比較材は表4に示すように、破断応力、破断全伸び、シャルピー衝撃値、残留オーステナイト量とも低いレベルにあることが分かる。
As a link chain steel according to the present invention, in mass%, C: 0.29%, Si: 1.51%, Mn: 1.49%, P: 0.006%, S: 0.001%, Ni: Table 1 shows wire rods (bars) made of 1.81%, Cr: 1.0%, Mo: 0.20%, Al: 0.48%, Nb: 0.05%, balance Fe and unavoidable impurities. Heat treatment conditions: after heating to a temperature of 830 to 880 ° C., holding in this temperature range for 10 minutes, then cooling to room temperature at each cooling rate of 1.4 ° C./second and 21 ° C./second once or two After that, after heating to 200 to 300 ° C., this temperature range was maintained (carbon concentration treatment) for 30 to 60 minutes. The results are shown in Table 2.

Using the composition of the link chain steel shown in Table 3 that has been used as a comparative material, the conventional heat treatment method (920 ° C. heating—holding for 15 minutes—water cooling to room temperature—200 ° C. heating—holding for 60 minutes— Table 4 shows the characteristics of the link chain steel manufactured by (cooling).

As can be seen from Table 2, the steel for link chains according to the present invention exhibits a high strength of 1650 MPa or more (1155 MPa or more in terms of chain strength), and a high toughness of Charpy impact value of 42 J or more at a test temperature of −40 ° C. It was. In addition, the amount of retained austenite is 4 vol% or more, and the carbon concentration in the retained austenite is also 0.37% or more, indicating that the concentration is progressing. On the other hand, as shown in Table 4, the comparative material produced under the conventional heat treatment conditions with the conventional component composition has low levels of breaking stress, breaking total elongation, Charpy impact value, and retained austenite amount.

Figure 2010202935
Figure 2010202935

Figure 2010202935
Figure 2010202935

Figure 2010202935
Figure 2010202935

Figure 2010202935
Figure 2010202935

本発明により引張強度が丸棒試験片にて1650MPa以上(チェーン強度換算で1155MPa以上)の高強度が得られ、強度−延性バランスに優れ、耐衝撃特性、耐水素脆性特性に優れた高強度チェーンブロック、特に手動用チェーンブロック及びレバーブロック(登録商標)に使用されるリンクチェーンに使用することができ、高荷重の荷の吊り上げ、吊り下げ、荷締め作業を可能とし、かつ組み込まれる手動用チェーンブロック及びレバーブロック(登録商標)本体の小型化を可能にし、特殊環境下或いは屋外環境下における突発的な破壊を防止するリンクチェーンの耐遅れ破壊向上、寒冷地などの低温環境下における脆性破壊を防止するリンクチェーンとして使用することができる。   According to the present invention, a high strength chain having a tensile strength of 1650 MPa or more (1155 MPa or more in terms of chain strength) obtained from a round bar test piece, an excellent balance between strength and ductility, and excellent impact resistance and hydrogen embrittlement resistance. Can be used in blocks, especially link chains used in manual chain blocks and lever blocks (registered trademark), and can be used to lift, suspend and load heavy loads, and can be incorporated into manual chains Enables downsizing of the block and lever block (registered trademark) body, prevents delayed breakage in special or outdoor environments, improves delayed fracture resistance of link chains, and prevents brittle fracture in low-temperature environments such as cold regions It can be used as a link chain to prevent.

Claims (2)

質量%で、C:0.15〜0.40%,Si:0.5〜3.0%,Mn:0.5〜3.0%,Al:0.5%以下,P:0.05%以下,S:0.05%以下,
Mo:0.5%以下,Cr:0.4〜2.0%,Ni:0.4〜2.5%
を含み、残部Fe及び不可避的不純物からなるリンクチェーンであって、リンクチェーンの鋼組織として鋼中に、体積率で、残留オーステナイトを1%以上、ベイニティックフェライトを1%以上、炭素濃化処理マルテンサイトを80〜98%を含む引張強度1650MPa以上(チェーン強度換算で1155MPa以上)を有することを特徴とする高強度リンクチェーン。
In mass%, C: 0.15 to 0.40%, Si: 0.5 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.5% or less, P: 0.05 % Or less, S: 0.05% or less,
Mo: 0.5% or less, Cr: 0.4-2.0%, Ni: 0.4-2.5%
Is a link chain consisting of the remainder Fe and inevitable impurities, and the steel structure of the link chain in steel, with a volume ratio of 1% or more of retained austenite, 1% or more of bainitic ferrite, and carbon enrichment A high-strength link chain characterized by having a tensile strength of 1650 MPa or more including 80 to 98% of treated martensite (1155 MPa or more in terms of chain strength).
質量%で、C:0.15〜0.40%,Si:0.5〜3.0%,Mn:0.5〜3.0%,Al:0.5%以下,P:0.05%以下,S:0.05%以下,
Mo:0.5%以下,Cr:0.4〜2.0%,Ni:0.4〜2.5%
を含み、残部Fe及び不可避的不純物からなるリンクチェーンを、A+100℃の温度以下に1〜60分間加熱保持後、1℃/秒以上の冷却速度でMf点以下、又は常温まで冷却する焼入れ処理を少なくとも1回以上行った後、Mf点とMs点の間の温度に10〜240分間加熱保持する炭素濃化処理することにより引張強度1650MPa以上(チェーン強度換算で1155MPa以上)を有するリンクチェーンとすることを特徴とする高強度リンクチェーンの製造方法。
In mass%, C: 0.15 to 0.40%, Si: 0.5 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.5% or less, P: 0.05 % Or less, S: 0.05% or less,
Mo: 0.5% or less, Cr: 0.4-2.0%, Ni: 0.4-2.5%
Quenching the link chain composed of the remainder Fe and unavoidable impurities with a temperature of A 3 + 100 ° C. or lower for 1 to 60 minutes and then cooled to the Mf point or lower or normal temperature at a cooling rate of 1 ° C./second or higher. A link chain having a tensile strength of 1650 MPa or more (1155 MPa or more in terms of chain strength) by performing carbon concentration treatment by heating at a temperature between Mf point and Ms point for 10 to 240 minutes after performing the treatment at least once. A method for producing a high-strength link chain, characterized in that
JP2009050750A 2009-03-04 2009-03-04 Manufacturing method of high-strength link chain Active JP5473359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050750A JP5473359B2 (en) 2009-03-04 2009-03-04 Manufacturing method of high-strength link chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050750A JP5473359B2 (en) 2009-03-04 2009-03-04 Manufacturing method of high-strength link chain

Publications (2)

Publication Number Publication Date
JP2010202935A true JP2010202935A (en) 2010-09-16
JP5473359B2 JP5473359B2 (en) 2014-04-16

Family

ID=42964706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050750A Active JP5473359B2 (en) 2009-03-04 2009-03-04 Manufacturing method of high-strength link chain

Country Status (1)

Country Link
JP (1) JP5473359B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532143A (en) * 2014-12-22 2015-04-22 江阴兴澄特种钢铁有限公司 Mining large-specification and high-strength chain steel and preparation method thereof
CN107893194A (en) * 2017-10-27 2018-04-10 宁波市鄞州永佳电机工具有限公司 A kind of high-performance spanner
CN114635081A (en) * 2022-02-11 2022-06-17 包头钢铁(集团)有限责任公司 Production method of high-quality round-link chain wire rod

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276956A (en) * 1985-05-31 1986-12-06 Kito Corp Link chain
JPH11269541A (en) * 1998-03-24 1999-10-05 Nisshin Steel Co Ltd Manufacture of high strength steel excellent in fatigue characteristic
JP2005344195A (en) * 2004-06-07 2005-12-15 Nippon Steel Corp Method for producing high carbon steel sheet having excellent intergranular cracking resistance and toughness
JP2006207018A (en) * 2004-12-28 2006-08-10 Kobe Steel Ltd Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance
JP2006233326A (en) * 2005-01-28 2006-09-07 Kobe Steel Ltd High strength bolt having excellent hydrogen embrittlement resistance
JP2007100209A (en) * 2005-01-28 2007-04-19 Kobe Steel Ltd High-strength spring steel having excellent hydrogen embrittlement resistance
JP2008169475A (en) * 2006-12-11 2008-07-24 Kobe Steel Ltd High-strength steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276956A (en) * 1985-05-31 1986-12-06 Kito Corp Link chain
JPH11269541A (en) * 1998-03-24 1999-10-05 Nisshin Steel Co Ltd Manufacture of high strength steel excellent in fatigue characteristic
JP2005344195A (en) * 2004-06-07 2005-12-15 Nippon Steel Corp Method for producing high carbon steel sheet having excellent intergranular cracking resistance and toughness
JP2006207018A (en) * 2004-12-28 2006-08-10 Kobe Steel Ltd Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance
JP2006233326A (en) * 2005-01-28 2006-09-07 Kobe Steel Ltd High strength bolt having excellent hydrogen embrittlement resistance
JP2007100209A (en) * 2005-01-28 2007-04-19 Kobe Steel Ltd High-strength spring steel having excellent hydrogen embrittlement resistance
JP2008169475A (en) * 2006-12-11 2008-07-24 Kobe Steel Ltd High-strength steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532143A (en) * 2014-12-22 2015-04-22 江阴兴澄特种钢铁有限公司 Mining large-specification and high-strength chain steel and preparation method thereof
CN107893194A (en) * 2017-10-27 2018-04-10 宁波市鄞州永佳电机工具有限公司 A kind of high-performance spanner
CN114635081A (en) * 2022-02-11 2022-06-17 包头钢铁(集团)有限责任公司 Production method of high-quality round-link chain wire rod

Also Published As

Publication number Publication date
JP5473359B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP6064955B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
JP5334769B2 (en) High strength bolt
US8216400B2 (en) High-strength steel plate and producing method therefor
JP4427010B2 (en) High strength tempered steel with excellent delayed fracture resistance and method for producing the same
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP4694537B2 (en) Spring wire with excellent fatigue characteristics
JP5182642B2 (en) High strength thick steel plate with excellent delayed fracture resistance and weldability and method for producing the same
JP6045256B2 (en) High strength, high toughness, high corrosion resistance martensitic stainless steel
JP5521712B2 (en) Ni-containing steel for low temperature excellent in strength, low temperature toughness and brittle crack propagation stopping characteristics, and method for producing the same
JP2010222671A (en) High-strength and high-ductility steel for spring, method for producing same, spring
WO2011118597A1 (en) High-strength steel plate with excellent warm workability
JP5655351B2 (en) Method for producing 9% Ni steel excellent in strength and low temperature toughness
JP2014043612A (en) High strength steel excellent in delayed fracture resistance
JP2016148098A (en) Ultra high strength steel sheet excellent in yield ratio and workability
JP2005179703A (en) High strength steel sheet having excellent elongation and stretch-flange formability
JP6159209B2 (en) High strength steel for bolts with excellent delayed fracture resistance and bolt formability, and method for producing bolts
JP5473359B2 (en) Manufacturing method of high-strength link chain
JP2019002078A (en) Ultra high strength steel sheet excellent in yield ratio and workability
JP2009221539A (en) High-strength steel having excellent delayed cracking resistance
JP5565050B2 (en) 9Ni steel with excellent strength, low temperature toughness and brittle crack propagation stopping properties
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP2012233252A (en) Alloy steel for machine structural use having excellent abrasion resistance
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2010274268A (en) Welding material and welding joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250