JP2009221539A - High-strength steel having excellent delayed cracking resistance - Google Patents

High-strength steel having excellent delayed cracking resistance Download PDF

Info

Publication number
JP2009221539A
JP2009221539A JP2008067400A JP2008067400A JP2009221539A JP 2009221539 A JP2009221539 A JP 2009221539A JP 2008067400 A JP2008067400 A JP 2008067400A JP 2008067400 A JP2008067400 A JP 2008067400A JP 2009221539 A JP2009221539 A JP 2009221539A
Authority
JP
Japan
Prior art keywords
less
delayed fracture
steel
strength steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008067400A
Other languages
Japanese (ja)
Other versions
JP5369458B2 (en
Inventor
Yasuhiro Murota
康宏 室田
Shinichi Suzuki
伸一 鈴木
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008067400A priority Critical patent/JP5369458B2/en
Publication of JP2009221539A publication Critical patent/JP2009221539A/en
Application granted granted Critical
Publication of JP5369458B2 publication Critical patent/JP5369458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide high-strength steel having a delayed cracking resistance used for the part at which delayed cracking becomes a problem in the fields of building, civil engineering, construction industry machines, line pipes, marine structures, energy plants or the like, and suitable as wear resistant steel with a TS of ≥1,200 MPa particularly used in a construction industrial machine field. <P>SOLUTION: The high-strength steel having the delayed cracking resistance has a composition comprising, by mass, 0.20 to 0.40% C, 0.05 to 0.50% Si, ≤0.05% (including 0%) Mn, ≤0.030% P, ≤0.005% S, 0.005 to 0.05% Nb, 0.005 to 0.05% Ti, 0.0003 to 0.0030% B, ≤0.1% Al and ≤0.0060% N, and, if required, containing one or more selected from among Cu, Ni, Cr, Mo, W, V, Ca and REM, and the balance Fe with inevitable impurities, and has a martensitic structure or a tempered martensitic structure in which the average grain size of prior austenite grains is ≤30 μm as the main structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、建築、土木、建設産業機械、ラインパイプ、海洋構造物、エネルギープラント分野などで遅れ破壊が問題となる部位に使用される高強度鋼に関し、特に建設産業機械分野で用いられるTS1200MPa以上の耐磨耗鋼として好適なものに関する。   The present invention relates to high-strength steel used in construction, civil engineering, construction industrial machinery, line pipes, offshore structures, energy plant fields where delayed fracture is a problem, and particularly TS1200 MPa or more used in the construction industrial machinery field. It is related with what is suitable as wear-resistant steel.

遅れ破壊は、静荷重下におかれた鋼板がある時間経過後に突然破壊する現象で、高強度鋼ほど発生しやすく、1200MPa以上の高強度鋼で問題となることが多い。遅れ破壊は、鋼中に存在する水素と残留応力が関与していることが明らかとされている。   Delayed fracture is a phenomenon in which a steel plate placed under static load suddenly breaks after a lapse of time, and is more likely to occur with higher strength steels and often becomes a problem with high strength steels of 1200 MPa or more. It has been clarified that delayed fracture involves hydrogen present in steel and residual stress.

高強度鋼の遅れ破壊を抑制する方法は、種々提案され、特許文献1〜4では、Mnを低減することによって、耐遅れ破壊特性を改善する技術が提案されている。特許文献4には、遅れ破壊特性に優れたボルト用鋼に関し、Mnが、セメンタイト中に固溶して、析出したセメンタイトの成長を促進するため、遅れ破壊特性を低下させることが記載されている。   Various methods for suppressing delayed fracture of high-strength steel have been proposed, and Patent Documents 1 to 4 propose techniques for improving delayed fracture resistance by reducing Mn. Patent Document 4 describes a steel for bolts having excellent delayed fracture characteristics, in which Mn is dissolved in cementite and promotes the growth of precipitated cementite, and therefore the delayed fracture characteristics are reduced. .

特許文献5は、耐遅れ破壊性に優れた高強度鋼に関し、結晶粒径を微細化し、更に成分組成にZrを添加して、鋼中に水素の集積場所となる炭化物を微細分散させることにより、遅れ破壊特性を改善することが記載されている。オーステナイト粒度をASTM No.で8.5以上、およそ20μm以下と規制している。   Patent Document 5 relates to high-strength steel excellent in delayed fracture resistance, by refining the crystal grain size, and further adding Zr to the component composition to finely disperse carbides that become hydrogen accumulation sites in the steel. It describes the improvement of delayed fracture characteristics. The austenite grain size is determined according to ASTM No. Is regulated to 8.5 or more and about 20 μm or less.

また、特許文献6では、未再結晶温度域で十分な圧下を取ることによるオースフォーム効果によって、組織を微細化し、耐遅れ破壊特性を改善している。
特開昭60−59019 特開平5−51691号公報 特開昭63−317623号公報 特開平5−148580号公報 特開昭61−223168号公報 特開2002−115024号公報
Moreover, in patent document 6, the structure | tissue is refined | miniaturized and the delayed fracture-proof characteristic is improved by the ausfoam effect by taking sufficient reduction in the non-recrystallization temperature range.
JP-A-60-59019 JP-A-5-51691 Japanese Unexamined Patent Publication No. Sho 63-317623 Japanese Patent Laid-Open No. 5-148580 JP-A 61-223168 Japanese Patent Application Laid-Open No. 2002-115024

しかしながら、特許文献3では、200〜500℃の低温焼戻し熱処理が必要で、低温焼戻し脆性による延性、靭性の劣化防止が課題とされ、特許文献1も、焼戻し処理を行う場合は、300〜500℃のため、同様の課題が生じる。   However, in Patent Document 3, low temperature tempering heat treatment at 200 to 500 ° C. is required, and it is a problem to prevent deterioration of ductility and toughness due to low temperature tempering brittleness. Therefore, the same problem arises.

また、特許文献5では、600℃以上の高温焼戻しを実施するため、焼入れたままの状態に比較して強度、硬度が低下し、焼入れままの状態と同様の強度レベルを得ようとする場合には、合金元素を増量させる必要があり合金コストの上昇が課題とされる。   Moreover, in patent document 5, since high temperature tempering of 600 degreeC or more is implemented, compared with the state as-quenched, intensity | strength and hardness fall and it is going to obtain the same strength level as the state as-quenched. However, it is necessary to increase the amount of alloying elements, and an increase in alloy costs is a problem.

さらに、特許文献1,2,5では、Pをそれぞれ、0.018%以下、0.010%以下、0.020%以下としており、脱燐工程での負荷が増大する。特許文献6では、オースフォームを活用し、直接焼入れによって組織を微細化しているが、遅れ破壊を抑制するための圧延組織の微細化には、圧延中の厳密な温度管理が必要とされる。   Further, in Patent Documents 1, 2, and 5, P is set to 0.018% or less, 0.010% or less, and 0.020% or less, respectively, and the load in the dephosphorization process increases. In Patent Document 6, austen foam is utilized and the structure is refined by direct quenching. However, strict temperature control during rolling is required for refinement of the rolled structure to suppress delayed fracture.

本発明は、かかる従来技術の問題を鑑みてなされたものであって、耐遅れ破壊特性に優れた高強度鋼を提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a high-strength steel excellent in delayed fracture resistance.

発明者等は、上記課題を達成するため、種々の成分組成の鋼でSSRT試験を行い、マルテンサイト鋼の遅れ破壊特性について鋭意研究を重ねた。その結果、P量が0.020%を超える化学成分を有する鋼においても、Mn量を0.05%以下とし、かつ、Nb、Ti、Bなどを適量添加し、旧オーステナイト粒径を30μm以下のマルテンサイト組織とした場合、遅れ破壊特性が改善されることを見出した。   In order to achieve the above-mentioned problems, the inventors conducted an SSRT test on steels having various compositional compositions, and conducted extensive research on delayed fracture characteristics of martensitic steels. As a result, even in a steel having a chemical component with a P content exceeding 0.020%, the Mn content is 0.05% or less, and an appropriate amount of Nb, Ti, B, etc. is added, and the prior austenite grain size is 30 μm or less. It was found that the delayed fracture characteristics were improved when the martensitic structure was used.

表1はSSRT試験に用いた供試鋼No.1〜3の化学成分を示し、12mmtの鋼板を900℃にて再加熱後、水焼入れを実施したものを試験材とした。   Table 1 shows the test steel No. used in the SSRT test. 1 to 3 chemical components were shown, and a 12 mm steel plate was reheated at 900 ° C. and then subjected to water quenching as a test material.

SSRT試験は、上記試験材から採取した3.4mmΦ×25mmLの平行部を持つ丸棒引張試験片を、3%塩化ナトリウム−0.3g/Lチオシアン酸アンモニウム水溶液中で陰極電流密度0.04mA/cmにて24時間の陰極水素チャージを行い、亜鉛めっきを行った後に、24時間保持し、室温にて、歪速度3.3×10−6/sの速度で引張荷重を与えて行った。 In the SSRT test, a round bar tensile test piece having a parallel part of 3.4 mmΦ × 25 mmL collected from the above test material was used in a 3% sodium chloride-0.3 g / L ammonium thiocyanate aqueous solution with a cathode current density of 0.04 mA / After performing cathode hydrogen charging at cm 2 for 24 hours and galvanizing, holding for 24 hours and applying a tensile load at a strain rate of 3.3 × 10 −6 / s at room temperature .

Figure 2009221539
Figure 2009221539

表2に試験材(供試鋼No.1〜3)の室温強度とSSRT試験結果を示す。Mn量が0.45%以上、P量を0.020%以下まで低減した試験材(供試鋼No.2,3)より、P量が0.020%超えであってもMn量を0.05%以下まで低減した試験材(供試鋼No.1)が、破断までの時間、破断強度および絞り値が優れており、遅れ破壊特性が改善されていることが確認できる。尚、試験材の室温強度はほぼ同等である。   Table 2 shows the room temperature strength and SSRT test results of the test materials (test steels Nos. 1 to 3). From the test material (sample Nos. 2 and 3) in which the Mn content was 0.45% or more and the P content was reduced to 0.020% or less, the Mn content was reduced to 0 even if the P content exceeded 0.020%. It can be confirmed that the test material (test steel No. 1) reduced to 0.05% or less has excellent time to break, break strength and drawing value, and improved delayed fracture characteristics. The room temperature strength of the test materials is almost the same.

Figure 2009221539
Figure 2009221539

本発明は、得られた知見に基づき、さらに検討を加えて完成されたものである。すなわち、発明の主旨は次のとおりである。
1.質量%で、C:0.20〜0.40%、Si:0.05〜0.50%、Mn:0.05%以下(0%含む)、P:0.030%以下、S:0.005%以下、Nb:0.005〜0.05%、Ti:0.005〜0.05%、B:0.0003〜0.0030%、Al:0.1%以下、N:0.0060%以下を含み、残部Feおよび不可避的不純物からなり、旧オーステナイト粒の平均粒径が30μm以下の、マルテンサイト組織あるいは焼戻しマルテンサイト組織を主組織とする耐遅れ破壊特性に優れた耐遅れ破壊特性に優れた高強度鋼。
2.さらに、質量%で、Cu:0.05〜1.0%、Ni:0.05〜2.0%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、W:0.05〜2.0%、V:0.005〜0.1%の1種または2種以上を含有する組成とすることを特徴とする1に記載の耐遅れ破壊特性に優れた高強度鋼。
3.さらに、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%の1種または2種を含有する組成とすることを特徴とする1または2に記載の耐遅れ破壊特性に優れた高強度鋼。
4.前記マルテンサイト組織あるいは焼戻しマルテンサイト組織が、体積分率で90%以上である1乃至3のいづれか一つに記載の耐遅れ破壊特性に優れた高強度鋼。
The present invention has been completed by further investigation based on the obtained knowledge. That is, the gist of the invention is as follows.
1. In mass%, C: 0.20 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.05% or less (including 0%), P: 0.030% or less, S: 0 0.005% or less, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0030%, Al: 0.1% or less, N: 0.00. Delayed fracture resistance with excellent delayed fracture resistance, mainly composed of martensite structure or tempered martensite structure, including 0060% or less, balance Fe and inevitable impurities, and average austenite grain size of 30 μm or less High strength steel with excellent properties.
2. Furthermore, by mass%, Cu: 0.05-1.0%, Ni: 0.05-2.0%, Cr: 0.05-1.0%, Mo: 0.05-1.0%, W: 0.05 to 2.0%, V: 0.005 to 0.1% One or more compositions are contained, and excellent in delayed fracture resistance according to 1. High strength steel.
3. The delayed fracture resistance according to 1 or 2, further comprising a composition containing one or two of Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050%. Excellent high strength steel.
4). 4. The high strength steel excellent in delayed fracture resistance according to any one of 1 to 3, wherein the martensite structure or tempered martensite structure is 90% or more in volume fraction.

本発明によれば、高価な合金元素を大量に用いることなく、高強度と優れた耐遅れ破壊特性を備えた鋼が得られ、産業上格段の効果を奏する。   According to the present invention, a steel having high strength and excellent delayed fracture resistance can be obtained without using a large amount of expensive alloy elements, and a remarkable industrial effect can be obtained.

以下、本発明を詳細に説明する。
[化学成分]以下の%表示は、いずれも質量%を示す。
C:0.20〜0.40%
Cは、高強度鋼の強度確保、あるいは、耐摩耗鋼の表面硬度確保に有効な元素であり、その効果を発揮するには、0.20%以上必要である。しかし、0.40%を超えると、溶接性が著しく劣化する。したがって、0.20〜0.40%とする。
Hereinafter, the present invention will be described in detail.
[Chemical component] In the following%, all indicate mass%.
C: 0.20 to 0.40%
C is an element effective for ensuring the strength of high-strength steel or the surface hardness of wear-resistant steel, and 0.20% or more is necessary to exert its effect. However, if it exceeds 0.40%, the weldability is remarkably deteriorated. Therefore, it is set to 0.20 to 0.40%.

Si:0.05〜0.50%
Siは脱酸元素であり、かつ、固溶強化として強度確保に有効な元素である。その効果を発揮するためには、0.05%以上必要である。しかし、0.50%を超えると、溶接性が著しく劣化する。したがって、0.05〜0.50%とする。
Si: 0.05 to 0.50%
Si is a deoxidizing element and is an element effective for securing strength as a solid solution strengthening. In order to exhibit the effect, 0.05% or more is necessary. However, if it exceeds 0.50%, the weldability is remarkably deteriorated. Therefore, it is 0.05 to 0.50%.

Mn:0.05%以下
Mnは遅れ破壊特性を著しく劣化させる。そのため0.05%以下(無添加を含む)とする。
Mn: 0.05% or less Mn significantly deteriorates delayed fracture characteristics. Therefore, it is 0.05% or less (including no addition).

P:0.030%以下
Pは粒界に偏析し、粒界強度を弱め、遅れ破壊特性を低下させる。そのため、低いほうが望ましいが、製鋼工程での脱燐作業に負荷がかかる。
P: 0.030% or less P segregates at grain boundaries, weakens grain boundary strength, and deteriorates delayed fracture characteristics. For this reason, a lower value is desirable, but a load is imposed on the dephosphorization work in the steel making process.

本発明では、この負荷を低減するため、Mn量を低減するが、P量が0.030%超えではMn量を低減したとしても粒界強度を低下させ、遅れ破壊特性を劣化させる。そのため、0.030%以下とする。   In the present invention, in order to reduce this load, the amount of Mn is reduced. However, if the amount of P exceeds 0.030%, even if the amount of Mn is reduced, the grain boundary strength is lowered and the delayed fracture characteristics are deteriorated. Therefore, it is 0.030% or less.

S:0.005%以下
SはMnSとして存在して、破壊の起点となり、遅れ破壊特性を劣化させる。本発明で規定する0.05%以下(無添加を含む)の僅かなMn量でもMnSを生成するため、Sの低減は重要である。そのため、0.005%以下とする。
S: 0.005% or less S exists as MnS, becomes a starting point of destruction, and deteriorates delayed fracture characteristics. Reduction of S is important because MnS is generated even with a slight amount of Mn of 0.05% or less (including no addition) specified in the present invention. Therefore, it is made 0.005% or less.

Nb:0.005〜0.05%
Nbは、結晶粒径微細化に有効な元素である。その効果を発揮するためには、0.005%以上必要である。しかし、0.05%を超えて添加すると粗大なNb(CN)などが残存し、母材靭性を劣化させる。したがって、0.005〜0.05%とする。
Nb: 0.005 to 0.05%
Nb is an element effective for refining the crystal grain size. In order to exert the effect, 0.005% or more is necessary. However, if added over 0.05%, coarse Nb (CN) or the like remains and deteriorates the base material toughness. Therefore, it is made 0.005 to 0.05%.

Ti:0.005〜0.05%
Tiは、NをTiNとして固定し、ボロンの焼入れ性改善効果を有効に発揮させる元素であり、その効果を発揮するためには、0.005%以上必要である。しかし、0.05%を超えて添加すると粗大なTiNが生成し、母材靭性が劣化する。したがって、0.005〜0.05%とする。
Ti: 0.005 to 0.05%
Ti is an element that fixes N as TiN and effectively exhibits the effect of improving the hardenability of boron, and 0.005% or more is necessary to exert the effect. However, if added over 0.05%, coarse TiN is generated and the base metal toughness deteriorates. Therefore, it is made 0.005 to 0.05%.

B:0.0003〜0.0030%
Bは、粒界に偏析し、粒界強度を高め、母材靭性および遅れ破壊特性を改善する。さらに、微量添加により、焼入れ性を顕著に向上させる。その効果を発揮するためには、0.0003%以上必要である。しかし、0.0030%を超えて添加することにより、炭ほう化物として析出し、母材靭性を劣化させる。そのため、0.0003〜0.0030%とする。
B: 0.0003 to 0.0030%
B segregates at the grain boundaries, increases the grain boundary strength, and improves the base metal toughness and delayed fracture characteristics. Furthermore, hardenability is remarkably improved by adding a small amount. In order to exhibit the effect, 0.0003% or more is necessary. However, by adding over 0.0030%, it precipitates as a carbon boride and deteriorates the base metal toughness. Therefore, it is set as 0.0003 to 0.0030%.

Al:0.1%以下
Alは、脱酸材であり、かつ、AlNとしてNを固定することにより、結晶粒径を微細化し、母材靭性を向上させる。0.1%を超える多量の含有は、鋼の清浄度を低下させる。このため、Alは、0.1%以下に限定する。Alを脱酸材に用いる場合には、0.0020%以上とすることが望ましい。
Al: 0.1% or less Al is a deoxidizing material, and by fixing N as AlN, the crystal grain size is refined and the base material toughness is improved. Containing a large amount exceeding 0.1% reduces the cleanliness of the steel. For this reason, Al is limited to 0.1% or less. When Al is used for the deoxidizing material, it is desirable that the content be 0.0020% or more.

N:0.0060%以下
Nは、ボロンと結合し、BNとして存在することにより、ボロンの焼入れ性改善効果を阻害する。したがって、0.0060%以下とする。
N: 0.0060% or less N binds to boron and exists as BN, thereby inhibiting the effect of improving the hardenability of boron. Therefore, it is made 0.0060% or less.

以上が本発明の基本成分系であるが、更に特性を向上させる場合、Cu,Ni,Cr,Mo,W,V,Ca、REMの一種または二種以上を含有する。   The above is the basic component system of the present invention, but when further improving the characteristics, one or more of Cu, Ni, Cr, Mo, W, V, Ca, and REM are contained.

Cu:0.05〜1.0%
Cuは、固溶強化に有効な元素である。その効果を発揮するためには、0.05%以上必要である。しかし、1.0%を超えて添加すると、合金コストの上昇を招く。したがって、添加する場合は、0.05〜1.0%とする。
Cu: 0.05 to 1.0%
Cu is an element effective for solid solution strengthening. In order to exhibit the effect, 0.05% or more is necessary. However, addition exceeding 1.0% causes an increase in alloy cost. Therefore, when adding, it is 0.05 to 1.0%.

Ni:0.05〜2.0%
Niは、固溶強化に有効な元素であり、かつ、母材靭性を向上させる効果を有する。その効果を発揮するためには、0.05%以上必要である。しかし、2.0%を超えて添加すると、合金コストの上昇を招く。したがって、添加する場合は0.05〜2.0%とする。
Ni: 0.05-2.0%
Ni is an element effective for solid solution strengthening and has the effect of improving the base material toughness. In order to exhibit the effect, 0.05% or more is necessary. However, addition over 2.0% causes an increase in alloy costs. Therefore, when adding, it is 0.05 to 2.0%.

Cr:0.05〜1.0%
Crは、固溶強化に有効な元素である。その効果を発揮するためには、0.05%以上必要である。しかし、1.0%を超えて添加すると、合金コストの上昇を招く。したがって、添加する場合は、0.05〜1.0%とする。
Cr: 0.05-1.0%
Cr is an element effective for solid solution strengthening. In order to exhibit the effect, 0.05% or more is necessary. However, addition exceeding 1.0% causes an increase in alloy cost. Therefore, when adding, it is 0.05 to 1.0%.

Mo:0.05〜1.0%
Moは、固溶強化に有効な元素である。その効果を発揮するためには、0.05%以上必要である。しかし、1.0%を超えて添加すると、合金コストの上昇を招く。したがって、添加する場合は、0.05〜1.0%とする。
Mo: 0.05-1.0%
Mo is an element effective for solid solution strengthening. In order to exhibit the effect, 0.05% or more is necessary. However, addition exceeding 1.0% causes an increase in alloy cost. Therefore, when adding, it is 0.05 to 1.0%.

W:0.05〜2.0%
Wは、固溶強化に有効な元素である。その効果を発揮するためには、0.05%以上必要である。しかし、2.0%を超えて添加すると、合金コストの上昇を招く。したがって、添加する場合は、0.05〜2.0%とする。
W: 0.05-2.0%
W is an element effective for solid solution strengthening. In order to exhibit the effect, 0.05% or more is necessary. However, addition over 2.0% causes an increase in alloy costs. Therefore, when adding, it is 0.05 to 2.0%.

V:0.005〜0.1%
Vは、固溶強化に有効な元素である。その効果を発揮するためには、0.005%以上必要である。しかし、0.1%を超えて添加すると母材靭性が劣化する。したがって、添加する場合は、0.005〜0.1%とする。
V: 0.005 to 0.1%
V is an element effective for solid solution strengthening. In order to exert the effect, 0.005% or more is necessary. However, if added over 0.1%, the base material toughness deteriorates. Therefore, when adding, it is made 0.005 to 0.1%.

Ca:0.0005〜0.0050%
Caは、Sを固定することにより、破壊起点となりうるMnSを減少させる効果を有する。その効果を発揮するためには、0.0005%以上必要である。一方、0.0050%を超えて添加することにより、鋼の清浄度を低下させる。従って、添加する場合は、0.0005〜0.0050%とする。
Ca: 0.0005 to 0.0050%
Ca has an effect of reducing MnS, which can be a fracture starting point, by fixing S. In order to exhibit the effect, 0.0005% or more is necessary. On the other hand, adding more than 0.0050% reduces the cleanliness of the steel. Therefore, when adding, it is 0.0005 to 0.0050%.

REM:0.0005〜0.0050%
REMは、Sを固定することにより、破壊起点となりうるMnSを減少させる効果を有する。その効果を発揮するためには、0.0005%以上必要である。一方、0.0050%を超えて添加することにより、鋼の清浄度を低下させる。従って、添加する場合は、0.0005〜0.0050%とする。
REM: 0.0005 to 0.0050%
REM has the effect of reducing MnS, which can be a fracture starting point, by fixing S. In order to exhibit the effect, 0.0005% or more is necessary. On the other hand, adding more than 0.0050% reduces the cleanliness of the steel. Therefore, when adding, it is 0.0005 to 0.0050%.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、O:0.040%以下、Pb:0.01%以下、Sn:0.01%以下、Sb:0.01%以下を許容できる。なお、不可避的不純物は少ないほど望ましい。
[ミクロ組織]
ミクロ組織は、旧オーステナイト粒の平均粒径が30μm以下の、マルテンサイト組織または焼戻しマルテンサイト組織を主組織とする。ここで主組織とは、体積分率で80%以上を占める組織とする
ミクロ組織は、微細なほど遅れ破壊特性は改善される。平均粒径が30μmを超えると、急激に遅れ破壊特性が劣化するため、30μm以下とする。優れた母材靭性とするため、母相の主組織はマルテンサイト分率が高いほうが望ましく、マルテンサイトあるいは焼戻しマルテンサイトの体積分率は90%以上とすることが望ましい。
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include O: 0.040% or less, Pb: 0.01% or less, Sn: 0.01% or less, and Sb: 0.01% or less. It should be noted that the smaller the inevitable impurities, the better.
[Microstructure]
The microstructure is mainly a martensite structure or a tempered martensite structure in which the average particle size of the prior austenite grains is 30 μm or less. Here, the main structure is a structure that accounts for 80% or more of the volume fraction, and the finer the microstructure, the delayed fracture characteristics are improved. If the average particle size exceeds 30 μm, the delayed fracture characteristics deteriorate rapidly, so the thickness is made 30 μm or less. In order to obtain excellent base material toughness, it is desirable that the main structure of the matrix has a high martensite fraction, and the volume fraction of martensite or tempered martensite is desirably 90% or more.

残余の組織は特に規定しないが、上部ベイナイトが混在した組織になると母材靭性が劣化するため、極力含まない組織とすることが望ましい。次に、本発明の好ましい製造条件について説明する。   The remaining structure is not particularly defined. However, since the base material toughness deteriorates in a structure in which upper bainite is mixed, it is desirable that the structure does not contain as much as possible. Next, preferable production conditions of the present invention will be described.

製造条件は、通常に鋼板を圧延後、室温まで空冷した後にオーステナイト単相領域まで再加熱後、焼入熱処理を実施することが望ましい。また、圧延直後に冷却する直接焼入れを用いても良い。なお、直接焼入れの場合には、平均粒径30μm以下の旧オーステナイト粒径を得るために、圧延仕上げ温度を950℃以下とすることが望ましい。   As for the production conditions, it is desirable to carry out a quenching heat treatment after rolling the steel sheet, air-cooling to room temperature, reheating to the austenite single phase region. Moreover, you may use the direct hardening which cools immediately after rolling. In the case of direct quenching, in order to obtain a prior austenite grain size having an average grain size of 30 μm or less, it is desirable that the rolling finishing temperature is 950 ° C. or less.

さらに、500〜Ac1点以下の焼戻しを実施しても良い。また、脱水素処理や歪除去のために300℃以下での焼戻しを実施することも許容できる。   Furthermore, you may implement tempering below 500-Ac1 point. It is also acceptable to perform tempering at 300 ° C. or lower for dehydrogenation treatment and distortion removal.

表3に示す組成の溶鋼を、真空溶解炉で溶製し、小型鋼塊(150kg)(鋼素材)とした。これら鋼素材を、12mmに圧延した後に、900℃に再加熱し、焼入れ熱処理を実施した。得られた鋼板について、組織観察、引張試験、SSRT試験を実施した。
[組織観察]得られた鋼板から組織観察用試験片を採取し、研磨し、ナイタールで腐食後、電子顕微鏡で組織を観察し、マルテンサイト分率(体積分率)を求めた。
Molten steel having the composition shown in Table 3 was melted in a vacuum melting furnace to obtain a small steel ingot (150 kg) (steel material). After rolling these steel materials to 12 mm, they were reheated to 900 ° C. and subjected to quenching heat treatment. The obtained steel sheet was subjected to a structure observation, a tensile test, and an SSRT test.
[Structure Observation] A specimen for structure observation was collected from the obtained steel sheet, polished, corroded with nital, and then observed with an electron microscope to obtain a martensite fraction (volume fraction).

さらに、ピクリン酸水溶液により腐食して、板厚1/4t部の位置について、光学顕微鏡を用いて、旧オーステナイト粒径を測定した。旧オーステナイト粒径は、200個程度の旧オーステナイト粒を観察し、各々の粒の円相当粒径を求め、これらの平均値をこの鋼板の平均粒径とした。   Furthermore, it corroded with the picric acid aqueous solution, and the prior austenite particle size was measured using the optical microscope about the position of the board thickness 1 / 4t part. As for the prior austenite grain size, about 200 prior austenite grains were observed, the circle equivalent grain size of each grain was determined, and the average value thereof was taken as the mean grain size of the steel sheet.

[引張試験]得られた鋼板について、1/2t部より6mmΦ×30mmLの平行部を有する丸棒引張試験片を採取し、強度を測定した。   [Tensile test] About the obtained steel plate, a round bar tensile test piece having a parallel part of 6 mmΦ x 30 mmL was taken from 1/2 t part, and the strength was measured.

[SSRT試験]遅れ破壊特性はSSRT試験により評価した。得られた鋼板の1/2t位置より、3.4mmΦ×25mmLの平行部を持つ丸棒引張試験片を、3%塩化ナトリウム−0.3g/Lチオシアン酸アンモニウム水溶液中で陰極電流密度0.04mA/cm2にて24時間の陰極水素チャージを行い、亜鉛めっきを行った後に、24時間保持し、室温にて、歪速度3.3×10−6/sの速度で引張荷重を与えた。 [SSRT test] Delayed fracture characteristics were evaluated by the SSRT test. From the 1 / 2t position of the obtained steel plate, a round bar tensile test piece having a parallel portion of 3.4 mmΦ × 25 mmL was prepared in a 3% sodium chloride-0.3 g / L ammonium thiocyanate aqueous solution with a cathode current density of 0.04 mA. The cathode hydrogen was charged for 24 hours at / cm <2> and galvanized, then held for 24 hours, and a tensile load was applied at room temperature at a strain rate of 3.3 * 10 < -6 > / s.

表4に組織観察、引張試験、SSRT試験の結果を示す。組織観察の結果、全ての供試鋼(記号A〜G)で主組織は体積分率90%以上のマルテンサイトで、旧オーステナイト粒の平均粒径も記号Gを除いて30μm以下であった。   Table 4 shows the results of the structure observation, tensile test, and SSRT test. As a result of the structure observation, the main structure of all the test steels (symbols A to G) was martensite having a volume fraction of 90% or more, and the average grain size of the prior austenite grains was 30 μm or less excluding the symbol G.

本発明鋼(記号A,B,C,D)は、SSRTにおける破断強度とTS(通常引張時の強度)との比が70%以上、さらに、RA値比も25%以上と遅れ破壊特性に優れているのに対し、比較鋼(記号E,F,G)は、SSRTにおける破断強度とTS(通常引張時の強度)との比が70%未満、RA値比も25%未満と遅れ破壊特性が劣っている。   The steel of the present invention (symbols A, B, C, D) has a delayed fracture property with a ratio of fracture strength at SSRT to TS (strength during normal tension) of 70% or more and an RA value ratio of 25% or more. In contrast, the comparative steels (symbols E, F, and G) have a delayed fracture with a ratio of fracture strength in SSRT to TS (normal tensile strength) of less than 70% and RA value ratio of less than 25%. The characteristics are inferior.

比較鋼(記号E,F)は、ミクロ組織は本発明の規定を満足したが成分組成が本発明範囲外で、比較鋼(記号G)は、ミクロ組織と成分組成が本発明範囲外であった。特に、比較鋼(記号E)はMn量が0.42%と高く、P量が0.008%であっても、遅れ破壊特性に劣っていた。   The comparative steels (symbols E and F) satisfy the requirements of the present invention in terms of microstructure, but the component composition is outside the scope of the present invention, and the comparative steel (symbol G) has a microstructure and component composition outside the scope of the present invention. It was. In particular, the comparative steel (symbol E) had a high Mn content of 0.42% and was inferior in delayed fracture characteristics even when the P content was 0.008%.

Figure 2009221539
Figure 2009221539

Figure 2009221539
Figure 2009221539

Claims (4)

質量%で、C:0.20〜0.40%、Si:0.05〜0.50%、Mn:0.05%以下(0%含む)、P:0.030%以下、S:0.005%以下、Nb:0.005〜0.05%、Ti:0.005〜0.05%、B:0.0003〜0.0030%、Al:0.1%以下、N:0.0060%以下を含み、残部Feおよび不可避的不純物からなり、旧オーステナイト粒の平均粒径が30μm以下の、マルテンサイト組織あるいは焼戻しマルテンサイト組織を主組織とする耐遅れ破壊特性に優れた高強度鋼。   In mass%, C: 0.20 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.05% or less (including 0%), P: 0.030% or less, S: 0 0.005% or less, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0030%, Al: 0.1% or less, N: 0.00. High-strength steel excellent in delayed fracture resistance, mainly composed of martensite structure or tempered martensite structure, comprising 0060% or less, the balance being Fe and inevitable impurities, and the average grain size of prior austenite grains being 30 μm or less . 前記組成に加えてさらに、質量%で、Cu:0.05〜1.0%、Ni:0.05〜2.0%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、W:0.05〜2.0%、V:0.005〜0.1%のうち選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の耐遅れ破壊特性に優れた高強度鋼。   In addition to the above composition, Cu: 0.05 to 1.0%, Ni: 0.05 to 2.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to A composition containing one or more selected from 1.0%, W: 0.05 to 2.0%, and V: 0.005 to 0.1%. 1. High strength steel excellent in delayed fracture resistance as described in 1. さらに、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%の1種または2種を含有する組成とすることを特徴とする1または2に記載の耐遅れ破壊特性に優れた高強度鋼。   The delayed fracture resistance according to 1 or 2, further comprising a composition containing one or two of Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050%. Excellent high strength steel. 前記マルテンサイト組織あるいは焼戻しマルテンサイト組織が、体積分率で90%以上である請求項1乃至3のいづれか一つに記載の耐遅れ破壊特性に優れた高強度鋼。   The high-strength steel excellent in delayed fracture resistance according to any one of claims 1 to 3, wherein the martensite structure or tempered martensite structure has a volume fraction of 90% or more.
JP2008067400A 2008-03-17 2008-03-17 High strength steel with excellent delayed fracture resistance Expired - Fee Related JP5369458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067400A JP5369458B2 (en) 2008-03-17 2008-03-17 High strength steel with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067400A JP5369458B2 (en) 2008-03-17 2008-03-17 High strength steel with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2009221539A true JP2009221539A (en) 2009-10-01
JP5369458B2 JP5369458B2 (en) 2013-12-18

Family

ID=41238615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067400A Expired - Fee Related JP5369458B2 (en) 2008-03-17 2008-03-17 High strength steel with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP5369458B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214120A (en) * 2010-04-02 2011-10-27 Jfe Steel Corp Wear-resistant steel plate superior in low-temperature-tempering embrittlement crack properties
CN102560272A (en) * 2011-11-25 2012-07-11 宝山钢铁股份有限公司 Ultrahigh-strength abrasion-resistant steel plate and manufacturing method thereof
JP2022510929A (en) * 2018-11-30 2022-01-28 ポスコ Steel materials for pressure vessels with excellent hydrogen-induced crack resistance and their manufacturing methods
US11401572B2 (en) 2016-12-22 2022-08-02 Posco High-hardness wear-resistant steel and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861957A (en) * 2016-06-02 2016-08-17 芜湖三刀材料科技有限公司 High-strength high-wear resistance alloy steel and preparation method thereof
CN108998615B (en) * 2018-09-13 2020-09-08 武汉钢铁有限公司 600MPa grade ocean engineering structural steel with excellent wear resistance and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164815A (en) * 1984-09-03 1986-04-03 Sumitomo Metal Ind Ltd Manufacture of high strength steel excellent in delay breakdown resistance
JPH05148580A (en) * 1991-11-27 1993-06-15 Aichi Steel Works Ltd Steel for bolt excellent in delayed breakdown characteristic
JPH06271975A (en) * 1993-03-19 1994-09-27 Kobe Steel Ltd High strength steel excellent in hydrogen embrittlement resistance and its production
JPH0978182A (en) * 1995-09-18 1997-03-25 Sumitomo Metal Ind Ltd Steel for machine structural use, excellent in delayed fracture resistance
JP2007302974A (en) * 2006-05-15 2007-11-22 Jfe Steel Kk High strength steel plate having excellent delayed fracture resistance and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164815A (en) * 1984-09-03 1986-04-03 Sumitomo Metal Ind Ltd Manufacture of high strength steel excellent in delay breakdown resistance
JPH05148580A (en) * 1991-11-27 1993-06-15 Aichi Steel Works Ltd Steel for bolt excellent in delayed breakdown characteristic
JPH06271975A (en) * 1993-03-19 1994-09-27 Kobe Steel Ltd High strength steel excellent in hydrogen embrittlement resistance and its production
JPH0978182A (en) * 1995-09-18 1997-03-25 Sumitomo Metal Ind Ltd Steel for machine structural use, excellent in delayed fracture resistance
JP2007302974A (en) * 2006-05-15 2007-11-22 Jfe Steel Kk High strength steel plate having excellent delayed fracture resistance and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214120A (en) * 2010-04-02 2011-10-27 Jfe Steel Corp Wear-resistant steel plate superior in low-temperature-tempering embrittlement crack properties
CN102560272A (en) * 2011-11-25 2012-07-11 宝山钢铁股份有限公司 Ultrahigh-strength abrasion-resistant steel plate and manufacturing method thereof
US11401572B2 (en) 2016-12-22 2022-08-02 Posco High-hardness wear-resistant steel and method for manufacturing same
JP2022510929A (en) * 2018-11-30 2022-01-28 ポスコ Steel materials for pressure vessels with excellent hydrogen-induced crack resistance and their manufacturing methods
JP7265008B2 (en) 2018-11-30 2023-04-25 ポスコ カンパニー リミテッド Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method

Also Published As

Publication number Publication date
JP5369458B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
KR102250916B1 (en) Abrasion-resistant steel plate and method of manufacturing same
KR101699582B1 (en) Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
WO2014020891A1 (en) Abrasion-resistant steel plate and manufacturing process therefor
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5145803B2 (en) Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties
WO2012133910A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
JPWO2014045553A1 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
JPWO2014045552A1 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
KR20070095373A (en) High tensile steel product excellent in delayed fracture resistance and method for production thereof
KR101271888B1 (en) Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same
WO2011078165A1 (en) High-strength spring steel
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP5369458B2 (en) High strength steel with excellent delayed fracture resistance
JPWO2009087990A1 (en) Abrasion-resistant steel plate excellent in high-temperature wear resistance and bending workability and manufacturing method thereof
US11390936B2 (en) Spring steel
JP2011012315A (en) NON-TEMPERED HIGH TENSILE STRENGTH THICK STEEL PLATE HAVING YIELD STRENGTH OF 885 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME
JP2010222682A (en) Wear resistant steel sheet having excellent workability and method for producing the same
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP6394378B2 (en) Abrasion resistant steel plate and method for producing the same
JP4657128B2 (en) High strength structural steel with excellent hydrogen embrittlement resistance and toughness and its manufacturing method
JP6350340B2 (en) Abrasion-resistant steel plate and method for producing the same
CN111511952B (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
KR102115277B1 (en) Steel sheet and its manufacturing method
JP2008214736A (en) Wear resistant steel sheet having excellent workability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees