JP2010199461A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus Download PDF

Info

Publication number
JP2010199461A
JP2010199461A JP2009045046A JP2009045046A JP2010199461A JP 2010199461 A JP2010199461 A JP 2010199461A JP 2009045046 A JP2009045046 A JP 2009045046A JP 2009045046 A JP2009045046 A JP 2009045046A JP 2010199461 A JP2010199461 A JP 2010199461A
Authority
JP
Japan
Prior art keywords
processing chamber
space
plasma
exhaust
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009045046A
Other languages
Japanese (ja)
Other versions
JP2010199461A5 (en
JP5193904B2 (en
Inventor
Ryota Kitani
亮太 木谷
Nobuhide Nunomura
暢英 布村
Yasukiyo Morioka
泰清 森岡
Motohiko Kikkai
元彦 吉開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009045046A priority Critical patent/JP5193904B2/en
Priority to KR1020090026756A priority patent/KR101070414B1/en
Publication of JP2010199461A publication Critical patent/JP2010199461A/en
Publication of JP2010199461A5 publication Critical patent/JP2010199461A5/ja
Application granted granted Critical
Publication of JP5193904B2 publication Critical patent/JP5193904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32871Means for trapping or directing unwanted particles

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide plasma treatment apparatus enhancing the reliability by suppressing the generation of a foreign matter. <P>SOLUTION: This plasma treatment apparatus treats a sample placed on a sample support positioned in a treating chamber in the inside of a vacuum container using a plasma formed in the treating chamber, and includes a space for exhaustion which communicates in a horizontal direction with the treating chamber and allows a gas in the treating chamber to pass, an exhaust outlet which communicates with the space through which the exhausted gas is discharged, a pump positioned so as to communicate with the exhaust outlet for exhausting the gas, and a plate member positioned between a junction with the treating chamber and the exhaust outlet in the inside of the space for exhaustion and extended along a direction connecting the junction with the treating chamber with the exhaust outlet, wherein the plate member is positioned out of the potential angle from the top face of the sample support. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、真空容器内部の処理室内で半導体ウエハ等の基板状の試料を処理室内に形成したプラズマを用いて処理するプラズマ処理装置に係り、特に、真空ポンプ側から被処理物に飛来する微粒子を遮断して被処理物上の異物を低減したものに関する。   The present invention relates to a plasma processing apparatus for processing a substrate-like sample such as a semiconductor wafer in a processing chamber inside a vacuum vessel using plasma formed in the processing chamber, and in particular, fine particles flying from a vacuum pump side to an object to be processed. Is to reduce foreign matter on the object to be processed.

上記のようなプラズマ処理装置では、一般的に、減圧された真空雰囲気で試料を処理が実施される。このような処理装置の中においては、処理に際して処理室内の圧力を高い真空度まで下げる必要があり、これを実現する為にターボ分子ポンプといった同軸周りに回転する複数段の羽根を備えた真空ポンプが用いられることが一般的である。   In the plasma processing apparatus as described above, generally, a sample is processed in a reduced-pressure vacuum atmosphere. In such a processing apparatus, it is necessary to lower the pressure in the processing chamber to a high degree of vacuum at the time of processing, and in order to realize this, a vacuum pump having a plurality of blades rotating around the same axis, such as a turbo molecular pump Is generally used.

一方で、処理室内で試料のプラズマ処理において生成された反応生成物やプラズマによりスパッタされた微粒子が処理室内の壁面に付着して堆積する。このような試料の処理が長期間、あるいは多数の枚数について実施されと、処理室内部の表面に蓄積された付着,堆積物が処理室の圧力の変化や表面の温度の変化,プラズマとの相互作用等によって剥離したり欠損が生じたりして微粒子が発生する。   On the other hand, reaction products generated in the plasma processing of the sample in the processing chamber and fine particles sputtered by the plasma adhere to and deposit on the wall surface in the processing chamber. When such a sample is processed for a long time or for a large number of samples, adhesion accumulated on the surface of the processing chamber, deposits may change in the pressure in the processing chamber, change in the temperature of the surface, and mutual interaction with plasma. Fine particles are generated due to separation or defects due to action or the like.

このようにして発生した微粒子は、一部は真空ポンプまで移送されて処理室外に排出されるが、他の一部は試料の表面に付着して異物となってしまう。また、真空ポンプに到達した微粒子は、羽根車が軸周りに高速で回転しているため真空ポンプの入口の開口から内部に飛来して羽根車と衝突して逆に処理室の側に跳ね飛ばされて処理室内に飛散して試料上面に付着し異物となってしまうことが知られている(以下、反跳異物と称す。)。このような例は、例えば、日本工業出版クリーンテクノロジー、2003年6月号、20ページ、ターボ分子ポンプからの逆流パーティクルの可視化、佐藤信太郎(非特許文献1)に開示されている。   Part of the fine particles generated in this way is transferred to the vacuum pump and discharged out of the processing chamber, but the other part adheres to the surface of the sample and becomes a foreign substance. In addition, since the impeller is rotating at high speed around the axis, the fine particles that have reached the vacuum pump fly into the inside from the opening of the inlet of the vacuum pump, collide with the impeller, and jump to the processing chamber side. It is known that the particles are scattered in the processing chamber and adhere to the upper surface of the sample to become foreign matter (hereinafter referred to as recoil foreign matter). Such an example is disclosed in, for example, Nippon Kogyo Publishing Clean Technology, June 2003, page 20, visualization of backflow particles from a turbo molecular pump, Shintaro Sato (Non-patent Document 1).

このような反跳異物による悪影響を抑制する技術としては、特開2007−170467号公報(特許文献1)に開示のものが知られている。この従来の技術では、排気マニホールド内にターボ分子ポンプに対向するような円板状の微粒子反射部材を設置して、上記反跳異物の課題を解決しようとするものが開示されている。   A technique disclosed in Japanese Patent Application Laid-Open No. 2007-170467 (Patent Document 1) is known as a technique for suppressing such an adverse effect caused by the recoil foreign matter. In this conventional technique, a disk-shaped fine particle reflecting member is provided in the exhaust manifold so as to face the turbo molecular pump to solve the problem of the recoil foreign matter.

特開2007−180467号公報JP 2007-180467 A

クリーンテクノロジー、2003年6月号、20p、日本工業出版Clean Technology, June 2003, 20p, Nihon Kogyo Publishing

プラズマ処理装置の処理室内で処理が繰り返されると、次第に処理室内の壁面に上記微粒子が堆積し、脱落や剥離が発生する可能性が増してくる。その結果、浮遊する微粒子が増加し、試料に付着して異物になるものも多くなってくる。さらに、プラズマ中あるいはプラズマが発生していない単なるガス流れ中に浮遊する微粒子は、真空排気のガス流れに乗ってターボ分子ポンプまで排気され、ほとんどの微粒子は装置外に排出される。しかし、一部の微粒子は、ターボ分子ポンプの高速回転している羽根車と衝突して弾き飛ばされる。弾き飛ばされた微粒子(反跳微粒子と称す)は、他の部材に衝突し再度排気されるものもあるが、一部は試料まで跳ね返り、異物となるものもある。   When the processing is repeated in the processing chamber of the plasma processing apparatus, the above-described fine particles gradually accumulate on the wall surface in the processing chamber, and the possibility of dropping or peeling off increases. As a result, the number of suspended fine particles increases, and more particles adhere to the sample and become foreign matters. Further, the fine particles floating in the plasma or in a simple gas flow where no plasma is generated are exhausted to the turbo molecular pump along the gas flow of the vacuum exhaust, and most of the fine particles are discharged outside the apparatus. However, some of the fine particles collide with the impeller rotating at high speed of the turbo molecular pump and are blown off. Some of the fine particles bounced off (referred to as recoil microparticles) collide with other members and are exhausted again, but some rebound to the sample and become foreign matter.

上記従来技術では次の点について十分に考慮されていないため、問題が生じていた。   In the above-mentioned prior art, since the following points are not fully considered, there is a problem.

すなわち、特許文献1のようにターボ分子ポンプに対向した反射部材では、ガス流れを阻害するため、ウエハ側からの微粒子が堆積しやすく、新たな異物発生源になってしまう。また、真空排気効率が低下してしまうので、エッチング性能に影響が出てしまう。   That is, in the reflection member facing the turbo molecular pump as in Patent Document 1, the gas flow is hindered, so that fine particles from the wafer side are likely to be deposited and become a new foreign matter generation source. Further, since the vacuum exhaust efficiency is lowered, the etching performance is affected.

つまり、上記反射部材により処理室内、試料への反跳異物が低減されるとしても、反射部材への付着物や反跳異物が堆積してしまい、この反射部材上に堆積,付着した生成物が新たな異物の発生源となってしまう虞がある。また、これを抑制するために、この反射部材を定期的な洗浄,交換等の保守作業が必要となりこの作業の間は処理装置による試料の処理を停止して大気開放することが必要となるため、処理装置の稼働率,処理の効率が低下してしまう。   That is, even if the reflection member reduces the recoil foreign matter to the sample in the processing chamber, the deposit or recoil foreign matter accumulates on the reflection member. There is a risk of becoming a new source of foreign matter. In order to suppress this, maintenance work such as periodic cleaning and replacement of the reflecting member is necessary, and during this work, it is necessary to stop the processing of the sample by the processing apparatus and release it to the atmosphere. The operating rate of the processing apparatus and the processing efficiency are reduced.

さらには、ターボ分子ポンプによる排気の効率を考えた場合、上記の反射部材は排気の経路上に設けられた抵抗物として作用するため、ガスの排気の流れの変動や実効的な排気速度を低下させてしまい、結果として処理の効率を損なってしまう虞が有る。上記従来技術では、このような点に付いては十分に考慮されておらず問題が生じていた。   Furthermore, when considering the efficiency of exhaust by the turbo molecular pump, the reflecting member acts as a resistor provided on the exhaust path, thus reducing the fluctuation of the gas exhaust flow and the effective exhaust speed. As a result, the processing efficiency may be impaired. In the above-described prior art, such a point has not been fully considered and a problem has occurred.

本発明の目的は、異物の発生を抑制して信頼性を向上させたプラズマ処理装置を提供することにある。   An object of the present invention is to provide a plasma processing apparatus that improves the reliability by suppressing the generation of foreign substances.

上記目的は、真空容器内部の処理室内に配置された試料台上に載せられた試料をこの処理室内に形成したプラズマを用いて処理するプラズマ処理装置であって、前記処理室と連通して水平方向に接続されこの処理室内のガスが通る排気用の空間と、この空間に連通し前記排気されるガスが排出される排気口と、この排気口と連通して配置され前記ガスを排気するためのポンプと、前記排気用の空間の内部で前記処理室との接続部と前記排気口との間に配置されこれらの間を結ぶ方向に沿って延びる板部材であって、前記試料台の上面からの見込み角外に配置された板部材とを備えたプラズマ処理装置により達成される。   An object of the present invention is a plasma processing apparatus for processing a sample placed on a sample stage disposed in a processing chamber inside a vacuum vessel using plasma formed in the processing chamber. An exhaust space connected in the direction through which the gas in the processing chamber passes, an exhaust port communicating with the space from which the exhausted gas is exhausted, and communicating with the exhaust port for exhausting the gas A plate member disposed between the exhaust port and a connection portion between the pumping chamber and the processing chamber, and extending along a direction connecting the two, and the upper surface of the sample table This is achieved by a plasma processing apparatus provided with a plate member disposed outside the expected angle from the above.

また、前記処理室と連通して水平方向に接続されこの処理室内のガスが通流して排気される排気ダクトと、この空間に連通し前記排気されるガスが排出される排気口と、この排気口と連通して配置され前記ガスを排気するためのポンプと、前記排気ダクトの内部で前記処理室との接続部と前記排気口との間に配置されたこの排気ダクト内のガスの流れに沿って延びる板部材であって、前記試料台の上面からの見込み角外に配置された板部材とを備えたことにより達成される。   An exhaust duct that is connected to the processing chamber in a horizontal direction and is exhausted through the gas in the processing chamber, an exhaust port that communicates with the space and exhausts the exhausted gas, and an exhaust A pump disposed in communication with the port for exhausting the gas, and a gas flow in the exhaust duct disposed between the exhaust port and a connection portion between the processing chamber and the exhaust port. This is achieved by including a plate member extending along the plate member disposed outside the prospective angle from the upper surface of the sample stage.

さらには、前記処理室の前記プラズマが形成される空間が円筒形状し、前記試料台が円筒形を有して前記プラズマが形成される空間と同軸に配置され、前記排気用の空間が前記試料台の下方に配置された前記接続部の開口から水平方向に延在した平面形が多角形の空間であって、前記排気口が前記空間の底面に前記開口から水平方向に距離をあけて配置されたことにより達成される。   Furthermore, the space in which the plasma is formed in the processing chamber has a cylindrical shape, the sample stage has a cylindrical shape and is disposed coaxially with the space in which the plasma is formed, and the exhaust space is the sample. A planar shape extending in the horizontal direction from the opening of the connecting portion arranged below the base is a polygonal space, and the exhaust port is arranged at a distance from the opening in the horizontal direction on the bottom surface of the space Is achieved.

さらにまた、前記板部材の前記処理室側の先端が前記接続部より前記排気口側に位置していることにより達成される。   Furthermore, this is achieved by the tip of the plate member on the processing chamber side being located closer to the exhaust port than the connection portion.

本発明の実施例に係るプラズマ処理装置の処理室の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the process chamber of the plasma processing apparatus which concerns on the Example of this invention. 図1に示す実施例の排気ダクト近傍の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the exhaust duct vicinity of the Example shown in FIG.

本発明の実施の例を図面を用いて以下説明する。   An embodiment of the present invention will be described below with reference to the drawings.

以下、本発明の実施例を図1及び図2を用いて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は、本発明の実施例に係るプラズマ処理装置の処理室の構成の概略を示す縦断面図である。図2は、図1に示す実施例の排気ダクト近傍の構成の概略を示す縦断面図である。   FIG. 1 is a longitudinal sectional view showing an outline of a configuration of a processing chamber of a plasma processing apparatus according to an embodiment of the present invention. FIG. 2 is a longitudinal sectional view showing an outline of the configuration in the vicinity of the exhaust duct of the embodiment shown in FIG.

これらの図において、プラズマ処理装置1は、内部に試料が処理される処理室が配置された真空容器及び真空容器の上部の外部でこれを囲んで配置される放電手段と真空容器の下部と連結され処理室内部を排気するための排気手段とを備えている。放電手段は、真空容器の円筒形状の部分である処理容器2上部の外周側に配置されてこれを被うように配置された電界供給装置,磁界供給装置とを備えている。また、真空容器は処理容器2内部の処理室と連通して処理容器2と水平方向に接続された排気ダクト29を備えて構成されている。   In these drawings, a plasma processing apparatus 1 is connected to a vacuum vessel in which a processing chamber for processing a sample is arranged, and discharge means arranged to surround the outside of the vacuum vessel and a lower portion of the vacuum vessel. And an exhaust means for exhausting the inside of the processing chamber. The discharge means includes an electric field supply device and a magnetic field supply device which are arranged on the outer peripheral side of the upper portion of the processing vessel 2 which is a cylindrical portion of the vacuum vessel and arranged so as to cover this. Further, the vacuum container is configured to include an exhaust duct 29 that communicates with the processing chamber inside the processing container 2 and is connected to the processing container 2 in the horizontal direction.

上記のように、処理容器2は真空容器の円筒形状を有する部分により構成された容器であって、その内部には円筒計上を有する処理室19とこの処理室19内部でこれと同軸に配置された円筒形状の試料台4とを備えている。また、処理容器2の側壁には試料台4上面と同じ高さで設けられ試料が搬入,搬出する際に内部を通る開口部(ゲート)を備え、このゲートの外側であって処理容器2の側壁外側にはゲートを開放及び気密に封止するゲートバルブ22が配置されている。   As described above, the processing container 2 is a container constituted by a cylindrical part of a vacuum container, and the inside of the processing chamber 19 having a cylindrical shape and the inside of the processing chamber 19 are arranged coaxially therewith. And a cylindrical sample stage 4. Further, the side wall of the processing container 2 is provided at the same height as the upper surface of the sample table 4 and includes an opening (gate) through which the sample is loaded and unloaded. A gate valve 22 that opens and seals the gate hermetically is disposed outside the side wall.

また、処理容器2上部であって処理室19の上方には、その天井を構成する円板状で複数の孔が形成されたシャワープレート6が、その上方の誘電体製の円板上状の蓋部材5との間に微小な隙間を空けて配置されている。この隙間とガス供給管とが連通されており、隙間の内部に試料を処理するための処理用ガスが隙間に供給されて隙間内部に拡散し、シャワープレート6の中央部に配置された複数の貫通孔を通り、隙間から処理室19内に処理用ガスが導入される。   In addition, above the processing chamber 2 and above the processing chamber 19, a shower plate 6 having a plurality of holes formed in a disk shape constituting the ceiling is provided on the upper surface of the dielectric disk. A small gap is provided between the lid member 5 and the lid member 5. The gap and the gas supply pipe communicate with each other, a processing gas for processing the sample is supplied into the gap, diffuses into the gap, and is disposed in the central portion of the shower plate 6. A processing gas is introduced into the processing chamber 19 from the gap through the through hole.

処理容器2の上部には、上記シャワープレート6及び誘電体製の円板状の蓋部材5と、この上方に配置され真空容器を構成して円筒形状の蓋部材8が配置されており、さらに蓋部材8の内側には、電波源11と接続されて高周波の電力が供給され処理室19内部に電界を供給するための電界供給装置である円板状の導体製のアンテナ7と、アンテナ7と蓋部材8との間に配置されリング形状を有する誘電体12とが配置されている。また、蓋部材8及び処理容器2の側壁の上方または側方周囲には処理容器の外周側でこれを取り巻くように配置された磁界発生装置であるソレノイドコイル9が配置され、これにより処理室19内部に磁界が供給される。   Above the processing vessel 2, the shower plate 6 and the disc-like lid member 5 made of a dielectric, and a cylindrical lid member 8 that is disposed above and constitutes a vacuum vessel are further disposed. Inside the lid member 8, an antenna 7 made of a disk-like conductor is connected to the radio wave source 11 and supplied with high-frequency power to supply an electric field to the inside of the processing chamber 19. And a dielectric 12 having a ring shape that is disposed between the cover member 8 and the cover member 8. A solenoid coil 9, which is a magnetic field generator arranged so as to surround the lid member 8 and the side wall of the processing container 2 around the side of the processing container 2, is disposed on the outer peripheral side of the processing container. A magnetic field is supplied inside.

排気ダクト29は、処理容器2の円筒形部分と接続されて内部の処理室19と連通している。本実施例では、排気ダクト29は、真空容器の一部を構成した平面形が多角形状を有し上下方向に側壁が延びる平板で構成されたおよそ多面体と見倣せる形状を備えている。   The exhaust duct 29 is connected to the cylindrical portion of the processing container 2 and communicates with the internal processing chamber 19. In the present embodiment, the exhaust duct 29 has a shape that can be regarded as a polyhedron that is formed of a flat plate having a polygonal shape and a side wall extending in the vertical direction.

その内部は、処理室19内部のガスや生成物等の粒子が処理室19内から流入して底面の排気口30から排出される流路である空間となっている。この流路である空間は、処理室19の円筒形状の部分の上下方向の軸に対して、水平方向に延在しており、処理室19との接続部である開口31において処理室19と連通されている。排気ダクト29の排気の流路は、開口31から排気口30の上方まで延びてこれら(の中心同士)を結ぶ方向に延在している。この開口31からから処理室19内のガスが流入して内部を水平方向に移動した後、上記処理室19の軸に対して水平方向に距離を空けて配置されたターボ分子ポンプ14に流入して外部に排出される。ターボ分子ポンプ14の流入口の上方であって上記処理容器2と水平方向に距離をあけた位置の排気ダクト29の底部には、流入口と連通し処理室19内部のガス,粒子が通る円形の排気口30が配置されている。   The interior is a space that is a flow path through which particles such as gas and products inside the processing chamber 19 flow from the processing chamber 19 and are discharged from the exhaust port 30 on the bottom surface. The space that is the flow path extends in the horizontal direction with respect to the vertical axis of the cylindrical portion of the processing chamber 19, and the processing chamber 19 is connected to the processing chamber 19 at an opening 31 that is a connection portion with the processing chamber 19. It is communicated. The exhaust passage of the exhaust duct 29 extends from the opening 31 to above the exhaust port 30 and extends in a direction connecting these (centers thereof). The gas in the processing chamber 19 flows from the opening 31 and moves in the horizontal direction, and then flows into the turbo molecular pump 14 disposed at a distance in the horizontal direction with respect to the axis of the processing chamber 19. Discharged outside. At the bottom of the exhaust duct 29 above the inlet of the turbo molecular pump 14 and at a distance from the processing vessel 2 in the horizontal direction, a circular shape through which the gas and particles inside the processing chamber 19 communicate with the inlet. The exhaust port 30 is arranged.

また、排気口30の上方にこれを開閉するための円形のフタ16が配置され、駆動手段とともに排気ダクト29の上部に連結されている。また、排気口30の下方でターボ分子ポンプ14の流入口との間は排気流路となっており、この流路上には水平方向の軸周りに回転して排気流路の流路面積を可変に調節する複数の可変バルブ15が配置されている。さらに、ターボ分子ポンプ14の下流側にはこれと流路として連結され処理室19を荒引きしてターボ分子ポンプ14が作動可能な圧力まで減圧するドライポンプ21が配置されている。これらの構成により、シャワープレート6の貫通孔から処理用ガスが供給されつつ試料が処理されてプラズマにより生成物が形成されていても、処理室19内部を高真空を保持することができる構成となっている。なお、本実施例では、排気口30,ターボ分子ポンプ14及びこれらを結ぶ排気流路とは断面が円形を有してこれらの軸が同軸にされている。   A circular lid 16 for opening and closing the exhaust port 30 is disposed above the exhaust port 30 and connected to the upper part of the exhaust duct 29 together with the driving means. In addition, an exhaust passage is formed between the lower part of the exhaust port 30 and the inlet of the turbo molecular pump 14, and the passage area of the exhaust passage is variable by rotating around a horizontal axis on the passage. A plurality of variable valves 15 to be adjusted are arranged. Further, on the downstream side of the turbo molecular pump 14, a dry pump 21 that is connected to the turbo molecular pump 14 as a flow path and roughens the processing chamber 19 to a pressure at which the turbo molecular pump 14 can operate is disposed. With these configurations, even when a sample is processed while a processing gas is supplied from the through hole of the shower plate 6 and a product is formed by plasma, a high vacuum can be maintained in the processing chamber 19. It has become. In the present embodiment, the exhaust port 30, the turbo molecular pump 14 and the exhaust flow passage connecting them have a circular cross section and their axes are coaxial.

また、処理室19の圧力は処理容器2の下部に備えられた圧力計23によって検知されている。圧力計23は、試料台4内部の導電体製の電極に高周波電力を供給する高周波電源13,上記電波源11,マスフローコントローラ10等の動作の調節を行っている制御装置20と通信可能に接続されており、圧力を示す出力信号が圧力計23から制御装置20に送信され、この信号によって検出された圧力の値に基づいて制御装置20が可変バルブ15またはターボ分子ポンプ14、処理用ガスの供給の等の動作を調節する信号をこれらに発信することで圧力を含む試料の処理の条件が、例え処理中であっても、調節される。   The pressure in the processing chamber 19 is detected by a pressure gauge 23 provided at the lower part of the processing container 2. The pressure gauge 23 is communicably connected to the control device 20 that adjusts the operation of the high-frequency power source 13 that supplies high-frequency power to the electrode made of a conductor in the sample stage 4, the radio wave source 11, the mass flow controller 10, and the like. An output signal indicating the pressure is transmitted from the pressure gauge 23 to the control device 20, and the control device 20 controls the variable valve 15 or the turbo molecular pump 14 and the processing gas based on the pressure value detected by this signal. By sending signals for adjusting the operation such as supply to these, the processing conditions of the sample including the pressure are adjusted even during the processing.

さらに、本実施例は、排気ダクト29の排気の流路内部には、上下方向に並行して配置され水平方向に延在する複数の板状の反射部材17が配置されている。特に、これら反射部材17は、排気ダクト29内であって開口31と排気口30とを結ぶの間に位置し、試料台4の上面の外周端(特には、試料台4の上面を構成する試料載置面に載せられた半導体ウエハ等の試料3の外周端)からの開口30を通した見込み角18の外側で、排気の移動方向(流れの方向)に沿って複数枚平行に設置している。これら反射部材17に関する動作は、後述する。   Furthermore, in this embodiment, a plurality of plate-like reflecting members 17 that are arranged in parallel in the vertical direction and extend in the horizontal direction are arranged inside the exhaust flow path of the exhaust duct 29. In particular, these reflecting members 17 are located in the exhaust duct 29 and between the opening 31 and the exhaust port 30, and constitute the outer peripheral end of the upper surface of the sample table 4 (in particular, the upper surface of the sample table 4). A plurality of sheets are installed in parallel along the moving direction (flow direction) of the exhaust gas outside the prospective angle 18 through the opening 30 from the outer peripheral edge of the sample 3 such as a semiconductor wafer placed on the sample mounting surface). ing. Operations related to these reflecting members 17 will be described later.

上記のような構成を備えたプラズマ処理装置1の動作について、以下説明する。まず、試料3の処理に際して、図示しないプラズマ処理装置1が配置されたクリーンルーム等の建屋内での半導体デバイスの製造を制御するホスト制御装置からの指令に基づいて、制御装置20が指定した処理容器2のゲートバルブ22が開き、減圧された処理室19内の試料台4上方に試料3が搬入され載置される。   The operation of the plasma processing apparatus 1 having the above configuration will be described below. First, when processing the sample 3, a processing container designated by the control device 20 based on a command from a host control device that controls the manufacture of a semiconductor device in a building such as a clean room where a plasma processing device 1 (not shown) is arranged. The second gate valve 22 is opened, and the sample 3 is loaded and placed above the sample stage 4 in the decompressed processing chamber 19.

試料3が試料台4上面に図示しない静電吸着装置により吸着,保持されると、試料3と試料載置面との間にHe等の熱伝達ガスが導入される。次に、マスフローコントローラ10で流量調整された処理用ガスが蓋部材5とシャワープレート6の隙間を通り、シャワープレート6に開けられた複数の孔より処理室19へと供給され、アンテナ7に供給された電力によってアンテナ7から放出された電界が蓋部材5及びシャワープレート6を介して処理室19内に導入されるとともに、ソレノイドコイル9により生成された磁界が処理室19内に供給される。これらの相互作用によって、処理用ガスの物質が励起されてプラズマが試料3の上方の処理室19内部の空間に形成される。   When the sample 3 is adsorbed and held on the upper surface of the sample table 4 by an electrostatic adsorption device (not shown), a heat transfer gas such as He is introduced between the sample 3 and the sample mounting surface. Next, the processing gas whose flow rate is adjusted by the mass flow controller 10 passes through the gap between the lid member 5 and the shower plate 6, is supplied to the processing chamber 19 through a plurality of holes formed in the shower plate 6, and is supplied to the antenna 7. The electric field emitted from the antenna 7 by the generated electric power is introduced into the processing chamber 19 through the lid member 5 and the shower plate 6, and the magnetic field generated by the solenoid coil 9 is supplied into the processing chamber 19. By these interactions, the processing gas substance is excited and plasma is formed in the space inside the processing chamber 19 above the sample 3.

さらに、高周波電源13から試料台4内の電極に供給された電力により試料3上方に形成されたバイアス電位によって、試料3方向にプラズマ中の荷電粒子が誘引されて、試料3のエッチング処理が開始される。所定の時間あるいは所定の深さまでエッチングが進行したことが図示しない発光を用いた膜厚さまたは加工深さの判定装置によって判定された時点で、高周波電源13が制御装置20からの指令に基づいて停止される。次に、処理用ガスが停止され、可変バルブ15のコンダクタンスを最大(弁の開度を100%にする)にして処理室19の余分なガスが排気される。   Furthermore, the charged potential in the plasma is attracted in the direction of the sample 3 by the bias potential formed above the sample 3 by the electric power supplied from the high frequency power supply 13 to the electrode in the sample table 4, and the etching process of the sample 3 is started. Is done. When it is determined by a film thickness or processing depth determination device using light emission (not shown) that the etching has progressed to a predetermined time or a predetermined depth, the high frequency power supply 13 is based on a command from the control device 20. Stopped. Next, the processing gas is stopped, the conductance of the variable valve 15 is maximized (the valve opening is set to 100%), and excess gas in the processing chamber 19 is exhausted.

この後、試料3の静電吸着が除かれてゲートバルブ22が開放され、試料3が搬出される。その後、再び新しい試料3を導入して同様な処理が繰り返される。   Thereafter, electrostatic adsorption of the sample 3 is removed, the gate valve 22 is opened, and the sample 3 is carried out. Thereafter, a new sample 3 is again introduced and the same process is repeated.

このような処理が繰り返されると、次第に処理室19の壁面に上記微粒子が堆積し、脱落や剥離が発生する可能性が増してくる。その結果、浮遊する微粒子が増加し、試料に付着して異物になるものも多くなってくる。さらに、プラズマ中あるいはプラズマが発生していない単なるガス流れ中に浮遊する微粒子は、真空排気のガス流れに乗ってターボ分子ポンプ14まで排気され、ほとんどの微粒子は装置外に排出される。しかし、一部の微粒子は、ターボ分子ポンプ14の内部で回転軸28の周りで高速回転している羽根車27の羽根と衝突して弾き飛ばされる。弾き飛ばされた微粒子(反跳微粒子と称す)は、他の部材に衝突し再度排気されるものもあるが、一部は試料まで跳ね返り、異物となるものもある。   When such a process is repeated, the fine particles gradually accumulate on the wall surface of the processing chamber 19, and the possibility of dropping or peeling off increases. As a result, the number of suspended fine particles increases, and more particles adhere to the sample and become foreign matters. Further, fine particles floating in the plasma or in a simple gas flow in which no plasma is generated are exhausted to the turbo molecular pump 14 along with the gas flow of vacuum exhaust, and most of the fine particles are discharged outside the apparatus. However, some of the fine particles collide with the blades of the impeller 27 that rotates at high speed around the rotation shaft 28 inside the turbo molecular pump 14 and are blown off. Some of the fine particles bounced off (referred to as recoil microparticles) collide with other members and are exhausted again, but some rebound to the sample and become foreign matter.

図1,図2には、反跳微粒子の軌跡24を例として破線で示した。反跳微粒子が試料3まで達するか否かは、ターボ分子ポンプ14から試料までのプラズマ処理装置の内部の形状に依存する。真空容器内のガスの流れは、全体としては、試料3上方の処理室19内の空間(上流側)から排気ダクト29のターボ分子ポンプ14上方の排気口30との間に生じている。この粒子の流れ(移動)は、処理室19内の圧力が高く流量が大きくなるほど内部の粒子に働く流体力が増加することから、ターボ分子ポンプ14によって弾き飛ばされる反跳微粒子に起因する異物の発生は低減できる圧力,流量によって試料3を処理することが望ましいといえる。しかしながら、処理の条件によってはこのような条件を実現することが処理の効率を損なってしまう場合が生じる。このような条件で処理が行われる可能性の有るプラズマ処理装置では、反跳微粒子が試料3まで飛来し異物となってしまうことを抑制する必要が生じる。   In FIG. 1 and FIG. 2, the locus 24 of recoil particles is shown by a broken line as an example. Whether or not the recoil particles reach the sample 3 depends on the internal shape of the plasma processing apparatus from the turbo molecular pump 14 to the sample. As a whole, the gas flow in the vacuum vessel is generated between the space (upstream side) in the processing chamber 19 above the sample 3 and the exhaust port 30 above the turbo molecular pump 14 in the exhaust duct 29. The flow (movement) of the particles increases the fluid force acting on the internal particles as the pressure in the processing chamber 19 increases and the flow rate increases, so that foreign particles caused by the recoil particles that are blown off by the turbo molecular pump 14 are generated. It can be said that it is desirable to treat the sample 3 with a pressure and a flow rate that can be reduced. However, depending on the processing conditions, realizing such conditions may impair processing efficiency. In a plasma processing apparatus in which processing may be performed under such conditions, it is necessary to suppress the recoil particles from reaching the sample 3 and becoming foreign matter.

本実施例は、ターボ分子ポンプ14の上流側の排気ダクト29内部に反跳微粒子が処理室19内部に飛散して、試料3上方に移動して異物となってしまうことを低減する構成を備えている。すなわち、排気ダクト29内であって開口31と排気口30との間に位置し上下方向に並行して配置され、水平方向に延在する複数の板状の反射部材17が配置されている。   The present embodiment has a configuration that reduces recoil particles in the exhaust duct 29 on the upstream side of the turbo-molecular pump 14 and moves to the inside of the processing chamber 19 to become foreign matter. ing. That is, a plurality of plate-like reflecting members 17 that are located in the exhaust duct 29 and located between the opening 31 and the exhaust port 30 and are arranged in parallel in the vertical direction and extending in the horizontal direction are arranged.

これらの反射部材17は、排気口30の開口31を通した処理室19内部への見込み角32内に、少なくともその一部が存在するように配置されている。これは、弾き飛ばされた反跳微粒子が排気口30を通り直線的に飛散するため、この飛散の軌道上にこれを遮り、処理室19が開口31及び反射部材17を介して排気口30に曝される領域を低減するためである。   These reflecting members 17 are arranged so that at least a part thereof exists in the prospective angle 32 to the inside of the processing chamber 19 through the opening 31 of the exhaust port 30. This is because the recoiled fine particles bounced off are scattered linearly through the exhaust port 30, and this is blocked on the scattering trajectory, and the processing chamber 19 enters the exhaust port 30 via the opening 31 and the reflecting member 17. This is to reduce the exposed area.

特に、本実施例では試料台4の上面あるいは上部の側壁外周には石英等の誘電体製のカバーが配置されており、プラズマ内の粒子や処理用ガス内の反応性の物質との相互作用から試料台4内部を保護している。このカバーは試料台4上方で形成されるプラズマと面し或いは近接しており高温となり、プラズマ中の生成物等の粒子が、例え付着しても、解離或いは遊離してしまい易い。この本実施例の反射部材17はこのカバーが開口31及び反射部材17を介して排気口30に曝されないように配置されている。つまり、複数の反射部材17は上記カバーから排気口30を遮蔽しており、排気口30から飛来する反跳微粒子がカバーに付着して再度解離して処理室19上部に浮遊し試料3の異物となってしまうことを抑制している。   In particular, in this embodiment, a cover made of a dielectric material such as quartz is disposed on the upper surface of the sample table 4 or on the outer periphery of the upper side wall, and interaction with particles in the plasma or reactive substances in the processing gas. The inside of the sample stage 4 is protected from the above. This cover faces or is close to the plasma formed above the sample stage 4 and becomes high temperature. Even if particles such as products in the plasma adhere, they are likely to be dissociated or released. The reflecting member 17 of this embodiment is disposed so that the cover is not exposed to the exhaust port 30 through the opening 31 and the reflecting member 17. That is, the plurality of reflecting members 17 shield the exhaust port 30 from the cover, and recoil particles flying from the exhaust port 30 adhere to the cover, dissociate again, float on the upper portion of the processing chamber 19, and foreign matter in the sample 3. Is suppressed.

一方、反射部材17を試料台3上面からの見込み角18の内側に設置してしまうことを考える。この場合、反射部材17の先端が処理室19内に突出してしまい、処理室19内にガス流れを阻害してしまう。このことは、さらに、反射部材17上に排気のガス内の生成物や粒子が付着し易くしてしまう。また、このような配置では、排気口30を含む排気ダクト内のガス中の生成物や壁面に付着した付着物から遊離した粒子や切片,ターボ分子ポンプ14や可変バルブ15から反射され反跳した粒子の一部は反射部材17上に付着するものがあり、この付着して堆積した生成物や粒子が処理室19内の試料台4上面に直接的に曝されることになり、新たな異物発生源となってしまう。   On the other hand, it is considered that the reflecting member 17 is installed inside the prospective angle 18 from the upper surface of the sample table 3. In this case, the tip of the reflecting member 17 protrudes into the processing chamber 19, and the gas flow is inhibited in the processing chamber 19. This further makes it easy for products and particles in the exhaust gas to adhere to the reflecting member 17. Further, in such an arrangement, the particles in the gas in the exhaust duct including the exhaust port 30 and the particles and slices released from the deposits attached to the wall surface, reflected from the turbo molecular pump 14 and the variable valve 15 and rebounded. Some of the particles adhere to the reflecting member 17, and the adhered and accumulated products and particles are directly exposed to the upper surface of the sample table 4 in the processing chamber 19, and new foreign substances are present. It becomes a source.

本実施例では、反射部材17が、特に上流側の端部が、試料台4上面、特には試料台4上面の外周端部の見込み角18の外側に配置されており、処理室19内に突出していない。また、排気ダクト29内部で排気の方向に平行に配置され、排気ダクト29内の排気の流れが反射部材17により阻害されることが抑制されている。このような構成により、反射部材17からの異物の生起が低減される。また、ターボ分子ポンプ14或いは可変バルブ15,排気口30からの反跳微粒子は反射部材17に衝突することにより運動エネルギーを消費し、新たな運動エネルギーを獲得すること抑制される。そのため、反跳したとしても入射時の速度以下に減速するので、排気内を試料3まで飛来するのが困難になり、排気のための手段,構成によって跳ね返された反跳異物が低減される。   In the present embodiment, the reflecting member 17 is disposed on the upper surface of the sample table 4, particularly, on the outer peripheral end of the upper surface of the sample table 4, outside the prospective angle 18. It does not protrude. Further, the exhaust duct 29 is arranged in parallel to the direction of exhaust, and the flow of exhaust in the exhaust duct 29 is prevented from being obstructed by the reflecting member 17. With such a configuration, occurrence of foreign matters from the reflecting member 17 is reduced. Further, the recoil particles from the turbo molecular pump 14 or the variable valve 15 and the exhaust port 30 collide with the reflecting member 17 to consume kinetic energy and to suppress the acquisition of new kinetic energy. For this reason, even if it recoils, the speed is reduced below the incident speed, so that it is difficult to fly to the sample 3 in the exhaust gas, and the recoil foreign matter bounced off by the means and configuration for exhaust gas is reduced.

上記のようなプラズマ処理装置1では、処理室19内部の清掃,点検等の保守のために、定期的に真空容器を大気開放して清掃や部品の交換が行われ、排気ダクトの清掃が行われる。反射部材17を取り外しが可能な構造にし、清掃済或いは新品の反射部材17と交換可能に構成してもよい。このような構成とすることで、排気の経路が曲がっており、排気ダクト29内部に配置された反射部材17の保守の作業の効率が向上するとともに、装置の稼働効率が向上する。また、これらの部品は金属でも製作しても良いが、構造が簡単なので、金属汚染の恐れの無い石英やセラミックスにより構成してもよい。この場合、酸による洗浄も可能になるので洗浄が十分に実施できるという効果もある。   In the plasma processing apparatus 1 as described above, for maintenance such as cleaning and inspection inside the processing chamber 19, the vacuum vessel is periodically opened to the atmosphere and the parts are replaced and the exhaust duct is cleaned. Is called. The reflecting member 17 may be configured to be removable, and may be configured to be replaced with a cleaned or new reflecting member 17. By adopting such a configuration, the exhaust path is bent, so that the efficiency of maintenance work of the reflecting member 17 disposed inside the exhaust duct 29 is improved and the operating efficiency of the apparatus is improved. These parts may be made of metal, but they may be made of quartz or ceramics that have no fear of metal contamination since the structure is simple. In this case, cleaning with an acid is possible, so that there is an effect that the cleaning can be sufficiently performed.

以上の通り、本実施例によれば、排気ダクト29内部にターボ分子ポンプ14側からの反跳微粒子を遮蔽,抑制する構成を備え、反跳異物が抑制され、また排気の効率或いはメンテナンスの作業性が向上する。   As described above, according to the present embodiment, the exhaust duct 29 is configured to shield and suppress the recoil particles from the turbo molecular pump 14 side, the recoil foreign matter is suppressed, and the exhaust efficiency or maintenance work is performed. Improves.

1 プラズマ処理装置
2 処理容器
3 試料
4 試料台
5,8 蓋部材
6 シャワープレート
7 アンテナ
9 ソレノイドコイル
10 マスフローコントローラ
11 電波源
12 誘電体
13 高周波電源
14 ターボ分子ポンプ
15 可変バルブ
16 フタ
17 反射部材
18 見込み角
19 処理室
20 制御装置
21 ドライポンプ
22 ゲートバルブ
23 圧力計
24 反跳微粒子の軌跡
25 網
26 固定翼
27 羽根車
28 回転軸
29 排気ダクト
30 排気口
31 開口
DESCRIPTION OF SYMBOLS 1 Plasma processing apparatus 2 Processing container 3 Sample 4 Sample stand 5,8 Cover member 6 Shower plate 7 Antenna 9 Solenoid coil 10 Mass flow controller 11 Radio wave source 12 Dielectric 13 High frequency power supply 14 Turbo molecular pump 15 Variable valve 16 Cover 17 Reflecting member 18 Expected angle 19 Processing chamber 20 Control device 21 Dry pump 22 Gate valve 23 Pressure gauge 24 Trajectory of recoil particulate 25 Net 26 Fixed blade 27 Impeller 28 Rotating shaft 29 Exhaust duct 30 Exhaust port 31 Opening

Claims (5)

真空容器内部の処理室内に配置された試料台上に載せられた試料をこの処理室内に形成したプラズマを用いて処理するプラズマ処理装置であって、
前記処理室と連通して水平方向に接続されこの処理室内のガスが通る排気用の空間と、この空間に連通し前記排気されるガスが排出される排気口と、この排気口と連通して配置され前記ガスを排気するためのポンプと、前記排気用の空間の内部で前記処理室との接続部と前記排気口との間に配置されにこれらの間を結ぶ方向に沿って延びる板部材であって、前記試料台の上面からの見込み角外に配置された板部材とを備えたプラズマ処理装置。
A plasma processing apparatus for processing a sample placed on a sample stage disposed in a processing chamber inside a vacuum vessel using plasma formed in the processing chamber,
An exhaust space that is connected to the processing chamber in a horizontal direction and through which gas in the processing chamber passes, an exhaust port that communicates with the space and exhausts the exhausted gas, and communicates with the exhaust port. A pump disposed and exhausting the gas; and a plate member disposed between the connection portion with the processing chamber and the exhaust port in the exhaust space and extending in a direction connecting the two A plasma processing apparatus comprising: a plate member disposed outside a prospective angle from the upper surface of the sample stage.
真空容器内部の処理室内に配置された試料台上に載せられた試料をこの処理室内に形成したプラズマを用いて処理するプラズマ処理装置であって、
前記処理室と連通して水平方向に接続されこの処理室内のガスが通流して排気される排気ダクトと、この空間に連通し前記排気されるガスが排出される排気口と、この排気口と連通して配置され前記ガスを排気するためのポンプと、前記排気ダクトの内部で前記処理室との接続部と前記排気口との間に配置されたこの排気ダクト内のガスの流れに沿って延びる板部材であって、前記試料台の上面からの見込み角外に配置された板部材とを備えたプラズマ処理装置。
A plasma processing apparatus for processing a sample placed on a sample stage disposed in a processing chamber inside a vacuum vessel using plasma formed in the processing chamber,
An exhaust duct that is connected to the processing chamber in a horizontal direction and is exhausted through the gas in the processing chamber, an exhaust port that communicates with the space and exhausts the exhausted gas, and an exhaust port. A pump arranged in communication and exhausting the gas, and along the flow of gas in the exhaust duct disposed between the exhaust port and a connection portion with the processing chamber inside the exhaust duct. A plasma processing apparatus comprising: an extending plate member, and a plate member disposed outside a prospective angle from the upper surface of the sample stage.
請求項1に記載のプラズマ処理装置であって、
前記処理室の前記プラズマが形成される空間が円筒形状し、前記試料台が円筒形を有して前記プラズマが形成される空間と同軸に配置され、前記排気用の空間が前記試料台の下方に配置された前記接続部の開口から水平方向に延在した平面形が多角形の空間であって、前記排気口が前記空間の底面に前記開口から水平方向に距離をあけて配置されたプラズマ処理装置。
The plasma processing apparatus according to claim 1,
A space in which the plasma is formed in the processing chamber is cylindrical, the sample stage has a cylindrical shape and is arranged coaxially with the space in which the plasma is formed, and the exhaust space is below the sample stage. The planar shape extending in the horizontal direction from the opening of the connecting portion disposed in the space is a polygonal space, and the exhaust port is disposed on the bottom surface of the space at a distance in the horizontal direction from the opening. Processing equipment.
請求項2に記載のプラズマ処理装置であって、
前記処理室の前記プラズマが形成される空間が円筒形状し、前記試料台が円筒形を有して前記プラズマが形成される空間と同軸に配置され、前記排気ダクトが前記試料台の下方に配置された前記接続部の開口から水平方向に延在した空間であって、前記排気口が前記空間の底面に前記開口から水平方向に距離をあけて配置されたプラズマ処理装置。
The plasma processing apparatus according to claim 2,
A space in which the plasma is formed in the processing chamber has a cylindrical shape, the sample stage has a cylindrical shape and is disposed coaxially with the space in which the plasma is formed, and the exhaust duct is disposed below the sample stage. A plasma processing apparatus, which is a space extending in a horizontal direction from the opening of the connecting portion, wherein the exhaust port is disposed at a bottom surface of the space at a distance in the horizontal direction from the opening.
請求項1乃至4のいずれかに記載のプラズマ処理装置であって、
前記板部材の前記処理室側の先端が前記接続部より前記排気口側に位置しているプラズマ処理装置。
The plasma processing apparatus according to any one of claims 1 to 4,
A plasma processing apparatus, wherein a front end of the plate member on the processing chamber side is located closer to the exhaust port than the connection portion.
JP2009045046A 2009-02-27 2009-02-27 Plasma processing equipment Expired - Fee Related JP5193904B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009045046A JP5193904B2 (en) 2009-02-27 2009-02-27 Plasma processing equipment
KR1020090026756A KR101070414B1 (en) 2009-02-27 2009-03-30 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045046A JP5193904B2 (en) 2009-02-27 2009-02-27 Plasma processing equipment

Publications (3)

Publication Number Publication Date
JP2010199461A true JP2010199461A (en) 2010-09-09
JP2010199461A5 JP2010199461A5 (en) 2012-03-15
JP5193904B2 JP5193904B2 (en) 2013-05-08

Family

ID=42823859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045046A Expired - Fee Related JP5193904B2 (en) 2009-02-27 2009-02-27 Plasma processing equipment

Country Status (2)

Country Link
JP (1) JP5193904B2 (en)
KR (1) KR101070414B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079968A (en) * 2010-10-04 2012-04-19 Hitachi High-Technologies Corp Plasma processing apparatus
JP5687397B1 (en) * 2014-03-31 2015-03-18 Sppテクノロジーズ株式会社 Plasma processing apparatus and opening / closing mechanism used therefor
KR101555208B1 (en) 2014-03-31 2015-09-23 에스피피 테크놀로지스 컴퍼니 리미티드 Plasma processing apparatus and opening and closing mechanism used therein
WO2016052200A1 (en) * 2014-09-30 2016-04-07 株式会社日立国際電気 Substrate processing device, semiconductor-device production method, and recording medium
JP2016518275A (en) * 2013-04-24 2016-06-23 オセ−テクノロジーズ・ベー・ヴエーOce’−Nederland Besloten Vennootshap Method and apparatus for surface pretreatment of ink receiving substrate, printing method, and printer
JP2019145600A (en) * 2018-02-19 2019-08-29 サムコ株式会社 Exhaust structure for plasma processing chamber
WO2021045069A1 (en) * 2019-09-06 2021-03-11 キヤノンアネルバ株式会社 Load lock device
CN113745087A (en) * 2020-05-27 2021-12-03 东京毅力科创株式会社 Substrate processing apparatus, method of manufacturing the same, and exhaust structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180467A (en) * 2005-03-02 2007-07-12 Tokyo Electron Ltd Reflecting device, communicating pipe, exhausting pump, exhaust system, method for cleaning the system, storage medium, substrate processing apparatus and particle capturing component
JP2008144630A (en) * 2006-12-07 2008-06-26 Edwards Kk Vacuum pump, vacuum vessel and piping structure body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306844A (en) 1999-04-19 2000-11-02 Canon Inc Treating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180467A (en) * 2005-03-02 2007-07-12 Tokyo Electron Ltd Reflecting device, communicating pipe, exhausting pump, exhaust system, method for cleaning the system, storage medium, substrate processing apparatus and particle capturing component
JP2008144630A (en) * 2006-12-07 2008-06-26 Edwards Kk Vacuum pump, vacuum vessel and piping structure body

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079968A (en) * 2010-10-04 2012-04-19 Hitachi High-Technologies Corp Plasma processing apparatus
JP2016518275A (en) * 2013-04-24 2016-06-23 オセ−テクノロジーズ・ベー・ヴエーOce’−Nederland Besloten Vennootshap Method and apparatus for surface pretreatment of ink receiving substrate, printing method, and printer
JP5687397B1 (en) * 2014-03-31 2015-03-18 Sppテクノロジーズ株式会社 Plasma processing apparatus and opening / closing mechanism used therefor
KR101555208B1 (en) 2014-03-31 2015-09-23 에스피피 테크놀로지스 컴퍼니 리미티드 Plasma processing apparatus and opening and closing mechanism used therein
WO2015151149A1 (en) * 2014-03-31 2015-10-08 Sppテクノロジーズ株式会社 Plasma processing device and opening/closing mechanism used therein
WO2016052200A1 (en) * 2014-09-30 2016-04-07 株式会社日立国際電気 Substrate processing device, semiconductor-device production method, and recording medium
JPWO2016052200A1 (en) * 2014-09-30 2017-08-17 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
CN107078052A (en) * 2014-09-30 2017-08-18 株式会社日立国际电气 The manufacture method and recording medium of lining processor, semiconductor devices
JP2019145600A (en) * 2018-02-19 2019-08-29 サムコ株式会社 Exhaust structure for plasma processing chamber
JP7022982B2 (en) 2018-02-19 2022-02-21 サムコ株式会社 Exhaust structure for plasma processing room
WO2021044622A1 (en) * 2019-09-06 2021-03-11 キヤノンアネルバ株式会社 Load lock device
JP2021044544A (en) * 2019-09-06 2021-03-18 キヤノンアネルバ株式会社 Load lock device
JP2021044550A (en) * 2019-09-06 2021-03-18 キヤノンアネルバ株式会社 Load lock device
TWI754371B (en) * 2019-09-06 2022-02-01 日商佳能安內華股份有限公司 load lock
WO2021045069A1 (en) * 2019-09-06 2021-03-11 キヤノンアネルバ株式会社 Load lock device
CN114127332A (en) * 2019-09-06 2022-03-01 佳能安内华股份有限公司 Load lock device
TWI790094B (en) * 2019-09-06 2023-01-11 日商佳能安內華股份有限公司 The method of transporting the substrate
CN114127332B (en) * 2019-09-06 2024-04-09 佳能安内华股份有限公司 Load lock device
CN113745087A (en) * 2020-05-27 2021-12-03 东京毅力科创株式会社 Substrate processing apparatus, method of manufacturing the same, and exhaust structure
JP2021190514A (en) * 2020-05-27 2021-12-13 東京エレクトロン株式会社 Substrate processing apparatus, manufacturing method thereof, and exhaust structure
JP7418285B2 (en) 2020-05-27 2024-01-19 東京エレクトロン株式会社 Substrate processing equipment, its manufacturing method, and exhaust structure

Also Published As

Publication number Publication date
KR20100098254A (en) 2010-09-06
JP5193904B2 (en) 2013-05-08
KR101070414B1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5193904B2 (en) Plasma processing equipment
JP5350598B2 (en) Exhaust pump, communication pipe, exhaust system, and substrate processing apparatus
US7927066B2 (en) Reflecting device, communicating pipe, exhausting pump, exhaust system, method for cleaning the system, storage medium storing program for implementing the method, substrate processing apparatus, and particle capturing component
JP5944883B2 (en) Particle backflow prevention member and substrate processing apparatus
JP5190214B2 (en) Turbo molecular pump, substrate processing apparatus, and deposit control method for turbo molecular pump
JP2008251764A (en) Plasma treatment equipment
JP2007214512A (en) Substrate processing chamber, cleaning method thereof, and storage medium
JP5460982B2 (en) Valve body, particle intrusion prevention mechanism, exhaust control device, and substrate processing apparatus
JP2007180467A (en) Reflecting device, communicating pipe, exhausting pump, exhaust system, method for cleaning the system, storage medium, substrate processing apparatus and particle capturing component
JP5714686B2 (en) How to clean the exhaust system
US8707899B2 (en) Plasma processing apparatus
JP5005268B2 (en) Plasma processing equipment
JP2009212293A (en) Component for substrate treatment apparatus, and substrate treatment apparatus
JP2009123723A (en) Vacuum treatment apparatus or method for vacuum treatment
JP2012079968A (en) Plasma processing apparatus
JP2009212177A (en) Vacuum processing device
JP5389362B2 (en) Vacuum processing equipment
JP5161694B2 (en) Vacuum processing equipment
JP2022158492A (en) Foreign material fall prevention member and substrate processing device
JP2016225579A (en) Plasma processing device and plasma processing method
JP2014179386A (en) Plasma processing apparatus
CN116469742A (en) Protection window for semiconductor vacuum equipment and semiconductor vacuum equipment
JP2009117562A (en) Plasma processing apparatus
JP2009064863A (en) Plasma processing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees