JP2010198823A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2010198823A
JP2010198823A JP2009040563A JP2009040563A JP2010198823A JP 2010198823 A JP2010198823 A JP 2010198823A JP 2009040563 A JP2009040563 A JP 2009040563A JP 2009040563 A JP2009040563 A JP 2009040563A JP 2010198823 A JP2010198823 A JP 2010198823A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
electrolyte
metal substrate
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009040563A
Other languages
Japanese (ja)
Other versions
JP5422225B2 (en
Inventor
Katsuhiro Doi
克浩 土井
Kenichi Okada
顕一 岡田
Hiroshi Matsui
浩志 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2009040563A priority Critical patent/JP5422225B2/en
Publication of JP2010198823A publication Critical patent/JP2010198823A/en
Application granted granted Critical
Publication of JP5422225B2 publication Critical patent/JP5422225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element capable of sufficiently suppressing decrease in photoelectric conversion efficiency even in use in a place where the change of surrounding environmental temperature is large. <P>SOLUTION: The photoelectric conversion element 100 includes: a first electrode 1 composing a transparent conductive electrode; a second electrode 2 facing the first electrode 1; a sealing portion 4 connecting the first electrode 1 and the second electrode 2; and an electrolyte 3 filled in a cell space surrounded by the first electrode 1, the second electrode 2 and the sealing portion 4. The second electrode 2 includes: a metallic substrate 9 made of at least one metal selected from the group consisting of titanium, platinum and nickel; and a conductive layer 10 arranged on the electrolyte 3 side of the metallic substrate 9. The metallic substrate 9 has a thickness of 5-35 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光電変換素子に関する。   The present invention relates to a photoelectric conversion element.

光電変換素子として、安価で、高い光電変換効率が得られることから色素増感型太陽電池が注目されており、色素増感型太陽電池に関して種々の開発が行われている。   As a photoelectric conversion element, a dye-sensitized solar cell has attracted attention because it is inexpensive and can provide high photoelectric conversion efficiency, and various developments have been made on dye-sensitized solar cells.

色素増感型太陽電池は一般に、作用極と、対極と、作用極に担持される光増感色素と、作用極と対極とを連結する封止部と、作用極、対極及び封止部によって包囲される空間(以下、「セル空間」と呼ぶ)に配置される電解質とを備えている。   In general, a dye-sensitized solar cell includes a working electrode, a counter electrode, a photosensitizing dye supported on the working electrode, a sealing portion that connects the working electrode and the counter electrode, and a working electrode, a counter electrode, and a sealing portion. And an electrolyte disposed in an enclosed space (hereinafter referred to as “cell space”).

このような色素増感太陽電池として、チタンなどの金属基板上に白金などの触媒層を設けてなる対極を用いたものが知られている(下記特許文献1)。   As such a dye-sensitized solar cell, one using a counter electrode in which a catalyst layer such as platinum is provided on a metal substrate such as titanium is known (Patent Document 1 below).

特開2007−265796号公報JP 2007-265796 A

しかし、上述した特許文献1に記載の色素増感太陽電池は、特に周囲の環境温度の変化が大きい場所で使用されると、電解質が漏洩し、光電変換効率が低下するという課題を有していた。   However, the dye-sensitized solar cell described in Patent Document 1 described above has a problem that the electrolyte leaks and the photoelectric conversion efficiency decreases particularly when used in a place where the ambient temperature changes greatly. It was.

本発明は、上記事情に鑑みてなされたものであり、周囲の環境温度の変化が大きい場所で使用されても、光電変換効率の低下を十分に抑制できる光電変換素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photoelectric conversion element that can sufficiently suppress a decrease in photoelectric conversion efficiency even when used in a place where a change in ambient environmental temperature is large. To do.

本発明者らは上記課題が生じる原因について検討した。まず対極に使用される金属基板の厚さに着目した。対極に使用される金属基板の厚さは一般的には100μm〜300μmであるとされている。しかし、このような厚さの金属基板を対極に用いると、金属基板は比較的剛直な構造を有するのではないかと本発明者らは考えた。この場合、周囲の環境温度の変化により電解質中の揮発性溶質及び電解質溶媒が揮発してセル空間の内圧が変化し、電解質の膨張及び収縮が起こる。これにより金属基板に応力が繰り返し加えられると、対極と封止部との間の界面に応力が集中し、対極に対する封止部の封止能が弱まるものと考えられる。その結果、電解質の漏洩が徐々に起こり、光電変換効率が低下していくのではないかと考えられる。   The present inventors examined the cause of the above problem. First, attention was paid to the thickness of the metal substrate used for the counter electrode. The thickness of the metal substrate used for the counter electrode is generally 100 μm to 300 μm. However, the present inventors have thought that when a metal substrate having such a thickness is used as a counter electrode, the metal substrate may have a relatively rigid structure. In this case, the volatile solute and the electrolyte solvent in the electrolyte are volatilized due to a change in the ambient environmental temperature, the internal pressure of the cell space is changed, and the electrolyte expands and contracts. Accordingly, when stress is repeatedly applied to the metal substrate, the stress is concentrated on the interface between the counter electrode and the sealing portion, and the sealing ability of the sealing portion with respect to the counter electrode is considered to be weakened. As a result, it is considered that electrolyte leakage gradually occurs and the photoelectric conversion efficiency decreases.

ここで、金属基板の厚さを薄くすることも考えられるが、一般的には、次の理由により金属基板の厚さを薄くすることは考えにくいとされている。
1.金属基板を薄くすると、金属基板の機械的強度が弱まると考えられる。このため、金属基板に応力が繰り返し加えられると、金属疲労により、金属基板にクラックや破損が生じると考えられる。
2.金属基板を薄くするほど、金属基板におけるピンホール密度が増加するため、一般的には電解質の漏洩が起こりやすくなるものと考えられる。
Here, although it is conceivable to reduce the thickness of the metal substrate, it is generally considered difficult to reduce the thickness of the metal substrate for the following reason.
1. It is considered that when the metal substrate is thinned, the mechanical strength of the metal substrate is weakened. For this reason, when stress is repeatedly applied to the metal substrate, it is considered that the metal substrate is cracked or broken due to metal fatigue.
2. Since the pinhole density in the metal substrate increases as the metal substrate becomes thinner, it is generally considered that electrolyte leakage is likely to occur.

しかし、本発明者らは、所定の範囲の厚さを有する金属基板を対極に用いた色素増感太陽電池について熱サイクル試験を行ってみたところ、意外なことに、電解質の漏洩は極めて少なく、また、光電変換効率の低下も小さいことが判明した。そこで、本発明者らは上記知見に基づいてさらに鋭意研究を重ねた結果、以下の発明により上記課題を解決しうることを見出した。   However, the present inventors have conducted a thermal cycle test on a dye-sensitized solar cell using a metal substrate having a thickness in a predetermined range as a counter electrode, and surprisingly, leakage of the electrolyte is extremely small, Moreover, it turned out that the fall of a photoelectric conversion efficiency is also small. Therefore, as a result of further earnest studies based on the above findings, the present inventors have found that the above-described problems can be solved by the following invention.

即ち本発明は、透明導電電極を構成する第1電極と、前記第1電極に対向して設けられる第2電極と、前記第1電極及び前記第2電極を連結する封止部と、前記第1電極、前記第2電極及び前記封止部によって包囲されるセル空間に充填される電解質とを備え、前記第2電極が、チタン、白金及びニッケルからなる群より選択される少なくとも1種の金属から構成される金属基板と、前記金属基板に対して前記電解質側に設けられる導電層とを有し、前記金属基板の厚さが5〜35μmであることを特徴とする光電変換素子である。   That is, the present invention includes a first electrode that constitutes a transparent conductive electrode, a second electrode provided to face the first electrode, a sealing portion that connects the first electrode and the second electrode, and the first electrode At least one metal selected from the group consisting of titanium, platinum, and nickel, wherein the electrode fills a cell space surrounded by one electrode, the second electrode, and the sealing portion. And a conductive layer provided on the electrolyte side with respect to the metal substrate, wherein the metal substrate has a thickness of 5 to 35 μm.

この光電変換素子によれば、周囲の環境温度変化が大きい場所で使用されても、光電変換効率の低下が十分に抑制される。この理由について、本発明者らは以下のように推測している。即ち光電変換素子の周囲の環境温度が変化して、セル空間の内圧が変化すると、セル空間が膨張または収縮し、それに伴って電解質が膨張または収縮する。このとき、第2電極に応力が繰り返し加えられる。ここで、金属基板の厚さを上記範囲とすることにより金属基板は可とう性を有すると考えられる。そのため、第2電極に応力が加えられても、その応力は第2電極と電解質との界面で吸収され、第2電極と封止部との界面における応力集中が緩和される。このため、第2電極に対する封止部の封止能の低下が抑制される。また金属基板が可とう性を有するため、金属基板にクラックや破損が生じることも防止される。その結果、光電変換素子によれば、周囲の環境温度変化が大きい場所で使用されても、電解質の漏洩が効果的に抑制され、光電変換効率の低下が十分に抑制される。   According to this photoelectric conversion element, even if it is used in a place where the surrounding environmental temperature change is large, a decrease in photoelectric conversion efficiency is sufficiently suppressed. About this reason, the present inventors guess as follows. That is, when the ambient temperature around the photoelectric conversion element changes and the internal pressure of the cell space changes, the cell space expands or contracts, and the electrolyte expands or contracts accordingly. At this time, stress is repeatedly applied to the second electrode. Here, it is considered that the metal substrate has flexibility by setting the thickness of the metal substrate within the above range. Therefore, even if stress is applied to the second electrode, the stress is absorbed at the interface between the second electrode and the electrolyte, and the stress concentration at the interface between the second electrode and the sealing portion is relaxed. For this reason, the fall of the sealing capability of the sealing part with respect to a 2nd electrode is suppressed. Further, since the metal substrate has flexibility, it is possible to prevent the metal substrate from being cracked or damaged. As a result, according to the photoelectric conversion element, even when used in a place where the ambient temperature change is large, leakage of the electrolyte is effectively suppressed, and a decrease in photoelectric conversion efficiency is sufficiently suppressed.

上記光電変換素子においては、前記第1電極が、透明基板と、前記透明基板上に設けられる透明導電膜と、前記透明導電膜上に設けられる多孔質酸化物半導体層とを有する作用極であり、第2電極が対極であることが好ましい。   In the photoelectric conversion element, the first electrode is a working electrode having a transparent substrate, a transparent conductive film provided on the transparent substrate, and a porous oxide semiconductor layer provided on the transparent conductive film. The second electrode is preferably a counter electrode.

この場合、第2電極は、第1電極に含まれる多孔質酸化物半導体層を有しないため、第2電極に応力が加わることにより第2電極が撓んでも、それに伴って多孔質酸化物半導体層にクラック等が生じることを心配する必要がない。   In this case, since the second electrode does not have the porous oxide semiconductor layer included in the first electrode, even if the second electrode bends due to stress applied to the second electrode, the porous oxide semiconductor is accompanied accordingly. There is no need to worry about cracks in the layer.

上記光電変換素子においては、前記第2電極が、前記金属基板に対して前記電解質と反対側に設けられる樹脂層を有することが好ましい。   In the said photoelectric conversion element, it is preferable that a said 2nd electrode has a resin layer provided in the opposite side to the said electrolyte with respect to the said metal substrate.

この場合、金属基板がピンホールを有していても、そのピンホールを通じた電解質の漏洩が樹脂層によって抑制される。このため、樹脂層がない場合に比べて、電解質の漏洩がより効果的に抑制され、光電変換効率の低下をより十分に抑制することができる。   In this case, even if the metal substrate has a pinhole, leakage of the electrolyte through the pinhole is suppressed by the resin layer. For this reason, compared with the case where there is no resin layer, leakage of the electrolyte is more effectively suppressed, and a decrease in photoelectric conversion efficiency can be more sufficiently suppressed.

本発明によれば、周囲の環境温度の変化が大きい場所で使用されても、光電変換効率の低下を十分に抑制できる光電変換素子が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the photoelectric conversion element which can fully suppress the fall of a photoelectric conversion efficiency is provided even if it is used in the place where the surrounding environmental temperature is large.

本発明の光電変換素子の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the photoelectric conversion element of this invention. 図1の光電変換素子が高温下に置かれた場合の光電変換素子を示す断面図である。It is sectional drawing which shows a photoelectric conversion element when the photoelectric conversion element of FIG. 1 is put under high temperature. 図1の光電変換素子が低温下に置かれた場合の光電変換素子を示す断面図である。It is sectional drawing which shows a photoelectric conversion element when the photoelectric conversion element of FIG. 1 is set | placed under low temperature. 本発明の光電変換素子の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the photoelectric conversion element of this invention. 本発明の光電変換素子のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the photoelectric conversion element of this invention.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。なお、全図中、同一又は同等の構成要素には同一符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings, the same or equivalent components are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明に係る色素増感型太陽電池の好適な実施形態を示す断面図である。   FIG. 1 is a cross-sectional view showing a preferred embodiment of a dye-sensitized solar cell according to the present invention.

図1には、光電変換素子としての色素増感型太陽電池100が示されている。図1に示すように、色素増感型太陽電池100は、作用極1と、作用極1に対向するように配置される対極2とを備えている。作用極1には光増感色素が担持されている。作用極1と対極2との間には、作用極1及び対極2を連結する封止部4が設けられている。そして、作用極1と対極2と封止部4とによって包囲されるセル空間内には電解質3が充填されている。   FIG. 1 shows a dye-sensitized solar cell 100 as a photoelectric conversion element. As shown in FIG. 1, the dye-sensitized solar cell 100 includes a working electrode 1 and a counter electrode 2 disposed so as to face the working electrode 1. The working electrode 1 carries a photosensitizing dye. Between the working electrode 1 and the counter electrode 2, a sealing portion 4 that connects the working electrode 1 and the counter electrode 2 is provided. The cell space surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4 is filled with an electrolyte 3.

作用極1は、透明基板6と、透明基板6の対極2側に設けられる透明導電膜7と、透明導電膜7の上に設けられる多孔質酸化物半導体層8とを備えており、透明導電電極を構成している。光増感色素は作用極1のうちの多孔質酸化物半導体層8に担持されている。   The working electrode 1 includes a transparent substrate 6, a transparent conductive film 7 provided on the counter electrode 2 side of the transparent substrate 6, and a porous oxide semiconductor layer 8 provided on the transparent conductive film 7. It constitutes an electrode. The photosensitizing dye is supported on the porous oxide semiconductor layer 8 in the working electrode 1.

透明基板6を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルフォン(PES)などが挙げられる。透明基板6の厚さは、色素増感型太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50μm〜10000μmの範囲にすればよい。   The material which comprises the transparent substrate 6 should just be a transparent material, for example, As such a transparent material, glass, such as borosilicate glass, soda lime glass, white plate glass, quartz glass, polyethylene terephthalate (PET), for example , Polyethylene naphthalate (PEN), polycarbonate (PC), polyethersulfone (PES) and the like. The thickness of the transparent substrate 6 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be in the range of 50 μm to 10000 μm, for example.

透明導電膜7を構成する材料としては、例えばスズ添加酸化インジウム(Indium−Tin−Oxide:ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(Fluorine−doped−Tin−Oxide:FTO)などの導電性金属酸化物が挙げられる。透明導電膜7は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電膜7が単層で構成される場合、透明導電膜7は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。また透明導電膜7として、複数の層で構成される積層体を用いると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOで構成される層と、FTOで構成される層との積層体を用いることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電膜7が実現できる。透明導電膜7の厚さは例えば0.01μm〜2μmの範囲にすればよい。 Examples of the material constituting the transparent conductive film 7 include tin-doped indium oxide (Indium-Tin-Oxide: ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide (Fluorine-doped-Tin-Oxide: FTO). Examples include conductive metal oxides. The transparent conductive film 7 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive film 7 is composed of a single layer, the transparent conductive film 7 is preferably composed of FTO because it has high heat resistance and chemical resistance. Moreover, it is preferable to use a laminated body composed of a plurality of layers as the transparent conductive film 7 because the characteristics of each layer can be reflected. Among these, it is preferable to use a laminate of a layer made of ITO and a layer made of FTO. In this case, the transparent conductive film 7 having high conductivity, heat resistance and chemical resistance can be realized. The thickness of the transparent conductive film 7 may be in the range of 0.01 μm to 2 μm, for example.

多孔質酸化物半導体層8は、多孔質酸化物半導体で構成される。多孔質酸化物半導体は、例えば酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化タングステン(WO3)、酸化ニオブ(Nb25)、チタン酸ストロンチウム(SrTiO3)、酸化スズ(SnO2)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される酸化物半導体粒子で構成される。これら酸化物半導体粒子の平均粒径は1〜1000nmであることが、色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。ここで、多孔質酸化物半導体層8が、粒度分布の異なる酸化物半導体粒子を積層させてなる積層体で構成されることが好ましい。この場合、積層体内で繰り返し光の反射を起こさせることが可能となり、入射光を積層体の外部へ逃がすことなく効率よく光を電子に変換することができる。多孔質酸化物半導体層8の厚さは、例えば0.5〜50μmとすればよい。なお、多孔質酸化物半導体層8は、異なる材料からなる複数の半導体層の積層体で構成することもできる。 The porous oxide semiconductor layer 8 is composed of a porous oxide semiconductor. Examples of the porous oxide semiconductor include titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ), and tin oxide (SnO 2 ). ), Indium oxide (In 3 O 3 ), zirconium oxide (ZrO 2 ), thallium oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O 3 ), yttrium oxide (Y 2 O 3 ), holmium oxide (Ho 2) O 3 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ), aluminum oxide (Al 2 O 3 ), or oxide semiconductor particles composed of two or more thereof. The average particle diameter of these oxide semiconductor particles is 1-1000 nm, the surface area of the oxide semiconductor covered with the dye is increased, that is, the field for photoelectric conversion is increased, and more electrons are generated. Is preferable. Here, it is preferable that the porous oxide semiconductor layer 8 is configured by a stacked body in which oxide semiconductor particles having different particle size distributions are stacked. In this case, it becomes possible to cause reflection of light repeatedly in the laminated body, and light can be efficiently converted into electrons without escaping incident light to the outside of the laminated body. The thickness of the porous oxide semiconductor layer 8 may be, for example, 0.5 to 50 μm. In addition, the porous oxide semiconductor layer 8 can also be comprised with the laminated body of the several semiconductor layer which consists of a different material.

光増感色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素が挙げられる。   Examples of the photosensitizing dye include a ruthenium complex having a ligand containing a bipyridine structure, a terpyridine structure, and the like, and organic dyes such as porphyrin, eosin, rhodamine, and merocyanine.

対極2は、金属基板9と、金属基板9のうち作用極1側に設けられて対極2の表面における還元反応を促進する導電性の触媒膜(導電層)10とを備えている。   The counter electrode 2 includes a metal substrate 9 and a conductive catalyst film (conductive layer) 10 that is provided on the working electrode 1 side of the metal substrate 9 and promotes a reduction reaction on the surface of the counter electrode 2.

金属基板9は、チタン、ニッケル、白金又はこれらの2種以上の合金から構成される。これらは、電解質3の種類に関係なく使用できるが、特にヨウ素に対して耐食性を有することから、電解質3がヨウ素を含むものである場合に特に好適である。これらのうち金属基板9はチタンから構成されることが耐食性、価格及び入手性の点から好ましい。金属基板9の厚さは、5〜35μmであり、好ましくは10〜30μmであり、より好ましくは10〜20μmである。   The metal substrate 9 is made of titanium, nickel, platinum, or an alloy of two or more of these. These can be used regardless of the type of the electrolyte 3, but are particularly suitable when the electrolyte 3 contains iodine because it has corrosion resistance particularly against iodine. Of these, the metal substrate 9 is preferably composed of titanium from the viewpoint of corrosion resistance, cost, and availability. The thickness of the metal substrate 9 is 5-35 micrometers, Preferably it is 10-30 micrometers, More preferably, it is 10-20 micrometers.

触媒膜10は、白金、炭素系材料又は導電性高分子などから構成される。   The catalyst film 10 is made of platinum, a carbon-based material, a conductive polymer, or the like.

電解質3は通常、電解液で構成され、この電解液は例えばI/I などの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどを用いることができる。酸化還元対としては、例えばI/I のほか、臭素/臭化物イオンなどの対が挙げられる。色素増感太陽電池100は、酸化還元対としてI/I のような揮発性溶質及び、高温下で揮発しやすいアセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリルのような有機溶媒を含む電解液を電解質3として用いた場合に特に有効である。この場合、色素増感太陽電池100の周囲の環境温度の変化によりセル空間の内圧の変化が特に大きくなり、封止部20と対極2との界面、および封止部20と作用極1との界面から電解質3が漏洩しやすくなるからである。なお、上記揮発性溶媒にはゲル化剤を加えてもよい。また電解質3は、イオン液体と揮発性成分との混合物からなるイオン液体電解質で構成されてもよい。この場合も、色素増感太陽電池100の周囲の環境温度の変化によりセル空間の内圧の変化が大きくなるためである。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミドが好適に用いられる。また揮発性成分としては、上記の有機溶媒や、1−メチル−3−メチルイミダゾリウムヨーダイド、LiI、I、4−t−ブチルピリジンなどが挙げられる。さらに電解質3としては、上記イオン液体電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットイオンゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化したイオン液体電解質を用いてもよい。 The electrolyte 3 is usually composed of an electrolytic solution, and this electrolytic solution contains a redox couple such as I / I 3 and an organic solvent. As the organic solvent, acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, and the like can be used. Examples of the redox pair include I / I 3 and bromine / bromide ion pairs. The dye-sensitized solar cell 100 is an electrolytic solution that includes a volatile solute such as I / I 3 as an oxidation-reduction pair and an organic solvent such as acetonitrile, methoxyacetonitrile, and methoxypropionitrile that easily volatilizes at a high temperature. This is particularly effective when is used as the electrolyte 3. In this case, the change in the internal pressure of the cell space is particularly large due to the change in the ambient temperature around the dye-sensitized solar cell 100, and the interface between the sealing part 20 and the counter electrode 2 and the sealing part 20 and the working electrode 1 This is because the electrolyte 3 easily leaks from the interface. A gelling agent may be added to the volatile solvent. Moreover, the electrolyte 3 may be comprised with the ionic liquid electrolyte which consists of a mixture of an ionic liquid and a volatile component. Also in this case, the change in the internal pressure of the cell space increases due to the change in the ambient temperature around the dye-sensitized solar cell 100. As the ionic liquid, for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used. As such a room temperature molten salt, for example, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide is preferably used. As the volatile component, the above and an organic solvent, 1-methyl-3-methyl imidazolium iodide, LiI, and the like I 2, 4-t-butylpyridine. Further, as the electrolyte 3, a nanocomposite ionic gel electrolyte which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 and carbon nanotubes with the ionic liquid electrolyte may be used. An ionic liquid electrolyte gelled using an organic gelling agent such as vinylidene chloride, polyethylene oxide derivative, or amino acid derivative may be used.

封止部4を構成する材料としては、例えば非鉛系の透明な低融点ガラスフリットなどの無機絶縁材料や、アイオノマー、エチレン−ビニル酢酸無水物共重合体、エチレン−メタクリル酸共重合体、エチレン−ビニルアルコール共重合体、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。なお、封止部4は樹脂のみで構成されてもよいし、樹脂と無機フィラーとで構成されていてもよい。   Examples of the material constituting the sealing portion 4 include inorganic insulating materials such as lead-free transparent low melting point glass frit, ionomers, ethylene-vinyl acetic anhydride copolymers, ethylene-methacrylic acid copolymers, ethylene -Resins such as vinyl alcohol copolymer, ultraviolet curable resin, and vinyl alcohol polymer. In addition, the sealing part 4 may be comprised only with resin, and may be comprised with resin and an inorganic filler.

上述した色素増感型太陽電池100によれば、周囲の環境温度変化が大きい場所で使用されても、光電変換効率の低下が十分に抑制される。この理由について、本発明者らは以下のように推測している。   According to the dye-sensitized solar cell 100 described above, a decrease in photoelectric conversion efficiency is sufficiently suppressed even when used in a place where the ambient temperature change is large. About this reason, the present inventors guess as follows.

即ち色素増感型太陽電池100の周囲の環境温度変化が大きいと、電解質3中の有機溶媒や電解質成分が揮発し、作用極1と対極2と封止部4とによって囲まれるセル空間の内圧も大きく変化する。すると、セル空間が膨張または収縮し、これに伴って電解質3が膨張したり(図2参照)、収縮したりする(図3参照)。このとき、対極2に応力が繰り返し加えられる。ここで、金属基板9の厚さを上記のように5〜35μmの範囲とすることで金属基板9は可とう性を有すると考えられる。そのため、対極2に応力が加えられても、その応力は対極2と電解質3との界面Aで吸収され、対極2と封止部4との界面Bにおける応力集中が緩和される。このため、対極2に対する封止部4の封止能の低下が抑制される。また金属基板9が可とう性を有するため、金属基板9にクラックや破損が生じることも防止される。その結果、色素増感型太陽電池100によれば、周囲の環境温度変化が大きい場所で使用されても、電解質3の漏洩が効果的に抑制され、光電変換効率の低下が十分に抑制される。   That is, when the environmental temperature change around the dye-sensitized solar cell 100 is large, the organic solvent and the electrolyte component in the electrolyte 3 are volatilized, and the internal pressure of the cell space surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4. Also changes significantly. Then, the cell space expands or contracts, and accordingly, the electrolyte 3 expands (see FIG. 2) or contracts (see FIG. 3). At this time, stress is repeatedly applied to the counter electrode 2. Here, it is considered that the metal substrate 9 has flexibility by setting the thickness of the metal substrate 9 in the range of 5 to 35 μm as described above. Therefore, even if stress is applied to the counter electrode 2, the stress is absorbed at the interface A between the counter electrode 2 and the electrolyte 3, and the stress concentration at the interface B between the counter electrode 2 and the sealing portion 4 is relaxed. For this reason, the fall of the sealing capability of the sealing part 4 with respect to the counter electrode 2 is suppressed. Further, since the metal substrate 9 has flexibility, it is possible to prevent the metal substrate 9 from being cracked or damaged. As a result, according to the dye-sensitized solar cell 100, leakage of the electrolyte 3 is effectively suppressed even when the ambient temperature change is large, and a decrease in photoelectric conversion efficiency is sufficiently suppressed. .

なお、金属基板9の厚さが5μm未満では、金属基板9にクラックや破損が生じ又は金属基板9におけるピンホール密度が増加し、電解質3の漏洩が起こりやすくなる。その結果、光電変換効率の低下を十分に抑制することができなくなる。一方、金属基板9の厚さが35μmを超えると、金属基板9の剛直性が増し、周囲の環境温度変化が大きい場所では、対極2と封止部4との界面から電解質3が漏洩して光電変換効率が低下する。   When the thickness of the metal substrate 9 is less than 5 μm, the metal substrate 9 is cracked or damaged, or the pinhole density in the metal substrate 9 is increased, and the electrolyte 3 is likely to leak. As a result, the decrease in photoelectric conversion efficiency cannot be sufficiently suppressed. On the other hand, when the thickness of the metal substrate 9 exceeds 35 μm, the rigidity of the metal substrate 9 increases, and the electrolyte 3 leaks from the interface between the counter electrode 2 and the sealing portion 4 in a place where the ambient temperature change is large. Photoelectric conversion efficiency decreases.

また色素増感型太陽電池100においては、対極2は、作用極1とは異なり、多孔質酸化物半導体からなる多孔質酸化物半導体層8を有しないため、対極2に応力が加わることにより金属基板9が撓んでも、それに伴って多孔質酸化物半導体層8にクラック等が生じることを心配する必要がない。   In the dye-sensitized solar cell 100, the counter electrode 2 is different from the working electrode 1 and does not have the porous oxide semiconductor layer 8 made of a porous oxide semiconductor. Even if the substrate 9 bends, there is no need to worry about the occurrence of cracks or the like in the porous oxide semiconductor layer 8.

次に、色素増感型太陽電池100の製造方法について説明する。   Next, a method for manufacturing the dye-sensitized solar cell 100 will be described.

まず作用極1を以下のようにして準備する。   First, the working electrode 1 is prepared as follows.

はじめに透明基板6の上に透明導電膜7を形成する。透明導電膜7の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法(SPD:Spray Pyrolysis Deposition)及びCVD法などが用いられる。これらのうちスプレー熱分解法が装置コストの点から好ましい。   First, the transparent conductive film 7 is formed on the transparent substrate 6. As a method for forming the transparent conductive film 7, a sputtering method, a vapor deposition method, a spray pyrolysis (SPD) method, a CVD method, or the like is used. Of these, the spray pyrolysis method is preferable from the viewpoint of apparatus cost.

次に、透明導電膜7上に、多孔質酸化物半導体層形成用ペーストを印刷する。半導体層形成用ペーストは、上述した酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、バーコート法などを用いることができる。   Next, a paste for forming a porous oxide semiconductor layer is printed on the transparent conductive film 7. The semiconductor layer forming paste includes a resin such as polyethylene glycol and a solvent such as terpineol, in addition to the oxide semiconductor particles described above. As a method for printing the semiconductor layer forming paste, for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.

次に、半導体層形成用ペーストを焼成して透明導電膜7上に多孔質酸化物半導体層8を形成する。焼成温度は酸化物半導体粒子により異なるが、通常は350℃〜600℃であり、焼成時間も、酸化物半導体粒子により異なるが、通常は1〜5時間である。   Next, the semiconductor layer forming paste is baked to form the porous oxide semiconductor layer 8 on the transparent conductive film 7. The firing temperature varies depending on the oxide semiconductor particles, but is usually 350 ° C. to 600 ° C., and the firing time also varies depending on the oxide semiconductor particles, but is usually 1 to 5 hours.

次に、作用極1の多孔質酸化物半導体層8に光増感色素を担持させる。このためには、作用極1を、光増感色素を含有する溶液の中に浸漬させ、その色素を多孔質酸化物半導体層8に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させることで、光増感色素を多孔質酸化物半導体層8に吸着させればよい。但し、光増感色素を含有する溶液を多孔質酸化物半導体層8に塗布した後、乾燥させることによって光増感色素を酸化物半導体多孔膜に吸着させても、光増感色素を多孔質酸化物半導体層8に担持させることが可能である。   Next, a photosensitizing dye is supported on the porous oxide semiconductor layer 8 of the working electrode 1. For this purpose, the working electrode 1 is immersed in a solution containing a photosensitizing dye, the dye is adsorbed on the porous oxide semiconductor layer 8, and then the excess dye is washed away with the solvent component of the solution. The photosensitizing dye may be adsorbed on the porous oxide semiconductor layer 8 by drying. However, even if the photosensitizing dye is adsorbed to the porous oxide semiconductor film by applying a solution containing the photosensitizing dye to the porous oxide semiconductor layer 8 and then drying, the photosensitizing dye is porous. It can be supported on the oxide semiconductor layer 8.

一方、以下のようにして対極2を準備する。   On the other hand, the counter electrode 2 is prepared as follows.

まず厚さ5〜35μmの金属基板9を準備する。そして、金属基板9の上に触媒膜10を形成する。触媒膜10の形成方法としては、スパッタ法、蒸着法などが用いられる。これらのうちスパッタ法が膜の均一性の点から好ましい。   First, a metal substrate 9 having a thickness of 5 to 35 μm is prepared. Then, the catalyst film 10 is formed on the metal substrate 9. As a method for forming the catalyst film 10, a sputtering method, a vapor deposition method, or the like is used. Of these, sputtering is preferred from the viewpoint of film uniformity.

次に、例えば熱可塑性樹脂からなるシートを準備し、色素を担持した作用極1と対極2とで上記シートを挟み、シートを加熱溶融させることにより作用極1と対極2とを接着して連結する。こうして作用極1と対極2との間に封止部4を形成する。このとき、作用極1には、電解質3を注入するための貫通孔を予め形成しておく。   Next, for example, a sheet made of a thermoplastic resin is prepared, the sheet is sandwiched between the working electrode 1 carrying the pigment and the counter electrode 2, and the working electrode 1 and the counter electrode 2 are bonded and connected by heating and melting the sheet. To do. Thus, the sealing portion 4 is formed between the working electrode 1 and the counter electrode 2. At this time, a through hole for injecting the electrolyte 3 is formed in the working electrode 1 in advance.

そして、作用極1に形成された貫通孔を通して、作用極1と対極2と封止部4とによって包囲されたセル空間内に電解質3を注入して充填する。   Then, the electrolyte 3 is injected and filled into the cell space surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4 through the through hole formed in the working electrode 1.

電解質3の充填後、その貫通孔を、例えば上記シートと同様のシートで封止する。こうして、色素増感型太陽電池100が得られ、色素増感型太陽電池100の製造が完了する。   After the electrolyte 3 is filled, the through hole is sealed with, for example, a sheet similar to the above sheet. Thus, the dye-sensitized solar cell 100 is obtained, and the manufacture of the dye-sensitized solar cell 100 is completed.

本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、対極2は、金属基板9と触媒層10とで構成されているが、図4に示す色素増感太陽電池200のように、対極202が、触媒層10と、金属基板9と、金属基板9に対して触媒層10及び電解質3と反対側に設けられる樹脂層201とで構成されていてもよい。この場合、金属基板9がピンホールを有していても、そのピンホールを通じた電解質3の漏洩が樹脂層201によって抑制される。このため、樹脂層201がない場合に比べて、電解質3の漏洩がより効果的に抑制され、光電変換効率の低下をより十分に抑制することができる。なお、樹脂層201を構成する樹脂としては、例えばアイオノマーやエチレン−メタクリル酸共重合体などを挙げることができる。なお、対極2は金属基板9のみで構成されてもよい。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the counter electrode 2 includes the metal substrate 9 and the catalyst layer 10, but the counter electrode 202 includes the catalyst layer 10 and the metal substrate as in the dye-sensitized solar cell 200 illustrated in FIG. 9 and a resin layer 201 provided on the side opposite to the catalyst layer 10 and the electrolyte 3 with respect to the metal substrate 9. In this case, even if the metal substrate 9 has a pinhole, leakage of the electrolyte 3 through the pinhole is suppressed by the resin layer 201. For this reason, compared with the case where there is no resin layer 201, the leakage of the electrolyte 3 is suppressed more effectively, and the fall of photoelectric conversion efficiency can be suppressed more fully. In addition, as resin which comprises the resin layer 201, an ionomer, an ethylene-methacrylic acid copolymer, etc. can be mentioned, for example. The counter electrode 2 may be composed of only the metal substrate 9.

さらに上記実施形態では、作用極1によって第1電極が構成され、対極2によって第2電極が構成されているが、図5に示す色素増感太陽電池300のように、対極302によって第1電極が構成され、作用極301によって第2電極が構成されていてもよい。ここで、対極302は、透明基板6と透明な触媒層310とによって構成され、透明導電電極を構成する。触媒層310を構成する材料としては、透明な導電材料が挙げられ、このような透明な導電材料としては、例えば透明導電膜7を構成する材料などが挙げられる。また作用極301は、金属基板9と、金属基板9上に設けられる導電膜(導電層)307と、導電膜307上に設けられる多孔質酸化物半導体層8とによって構成される。導電膜307は、導電材料であればよく、必ずしも透明である必要はない。このような導電材料としては、透明導電膜7を構成する材料や、触媒層10を構成する材料などが挙げられる。   Furthermore, in the said embodiment, although the 1st electrode is comprised by the working electrode 1 and the 2nd electrode is comprised by the counter electrode 2, the 1st electrode is comprised by the counter electrode 302 like the dye-sensitized solar cell 300 shown in FIG. The working electrode 301 may constitute the second electrode. Here, the counter electrode 302 is constituted by the transparent substrate 6 and the transparent catalyst layer 310, and constitutes a transparent conductive electrode. Examples of the material constituting the catalyst layer 310 include a transparent conductive material. Examples of such a transparent conductive material include a material constituting the transparent conductive film 7. The working electrode 301 includes a metal substrate 9, a conductive film (conductive layer) 307 provided on the metal substrate 9, and a porous oxide semiconductor layer 8 provided on the conductive film 307. The conductive film 307 may be any conductive material and is not necessarily transparent. Examples of such a conductive material include a material constituting the transparent conductive film 7 and a material constituting the catalyst layer 10.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
はじめに、10cm×10cm×4mmのFTO基板を準備した。続いて、FTO膜の上に、ドクターブレード法によって酸化チタンペースト(Solaronix社製、Ti nanoixide T/sp)を、その厚さが10μmとなるように塗布した後、熱風循環タイプのオーブンに入れて500℃で3時間焼成し、FTO膜上に多孔質酸化物半導体層を形成し、5cm×5cmの積層体を得た。次に、積層体に2つの貫通孔を形成し、作用極を得た。
Example 1
First, a 10 cm × 10 cm × 4 mm FTO substrate was prepared. Subsequently, a titanium oxide paste (manufactured by Solaronix, Ti nanoixide T / sp) is applied on the FTO film by a doctor blade method so that its thickness becomes 10 μm, and then placed in a hot air circulation type oven. Baking was performed at 500 ° C. for 3 hours, a porous oxide semiconductor layer was formed on the FTO film, and a 5 cm × 5 cm laminate was obtained. Next, two through holes were formed in the laminate to obtain a working electrode.

次に、この作用極を、光増感色素であるN719色素を0.2mM溶かした脱水エタノール液中に一昼夜浸漬して作用極に光増感色素を担持させた。   Next, the working electrode was immersed in a dehydrated ethanol solution in which 0.2 mM of N719 dye, which is a photosensitizing dye, was dissolved for 24 hours to support the photosensitizing dye on the working electrode.

一方、6cm×6cm×35μmのチタン箔からなる金属基板を準備した。そして、金属基板上に、スパッタリング法により、厚さ10nmの白金触媒膜を形成し、対極を得た。   On the other hand, a metal substrate made of a titanium foil of 6 cm × 6 cm × 35 μm was prepared. Then, a platinum catalyst film having a thickness of 10 nm was formed on the metal substrate by sputtering to obtain a counter electrode.

そして、作用極と対極とで、アイオノマーであるハイミラン(商品名、三井・デュポンポリケミカル社製)からなる環状の熱可塑性樹脂シートを挟んだ。このとき、熱可塑性樹脂シートの内側に、多孔質酸化物半導体層が配置されるようにした。そして、熱可塑性樹脂シートを180℃で5分間加熱し溶融させ、作用極と対極とを接着した。   Then, an annular thermoplastic resin sheet made of Himiran (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.), which is an ionomer, was sandwiched between the working electrode and the counter electrode. At this time, the porous oxide semiconductor layer was arranged inside the thermoplastic resin sheet. The thermoplastic resin sheet was heated and melted at 180 ° C. for 5 minutes to bond the working electrode and the counter electrode.

次いで、作用極に形成した貫通孔を通して、メトキシアセトニトリルを主溶媒とし、ヨウ化リチウムを0.1M、ヨウ素を0.05M、4−tert−ブチルピリジンを0.5M含む電解質を、作用極と対極と封止部とによって包囲されるセル空間内に注入して充填させた。そして、作用極に形成した貫通孔を、上記シートと同様の熱可塑性樹脂を用いて封止した。こうして色素増感型太陽電池を得た。   Next, through the through-hole formed in the working electrode, an electrolyte containing methoxyacetonitrile as the main solvent, 0.1M lithium iodide, 0.05M iodine, and 0.5M 4-tert-butylpyridine is used as the working electrode and the counter electrode. And filled in the cell space surrounded by the sealing portion. And the through-hole formed in the working electrode was sealed using the thermoplastic resin similar to the said sheet | seat. Thus, a dye-sensitized solar cell was obtained.

(実施例2〜7及び比較例1〜3)
対極を構成する金属基板の厚さを表1に示す値としたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Examples 2-7 and Comparative Examples 1-3)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the thickness of the metal substrate constituting the counter electrode was set to the value shown in Table 1.

[熱サイクル試験による光電変換効率の変化についての評価:評価1]
実施例1〜7及び比較例1〜3で得られた色素増感太陽電池について、光電変換効率を測定した後、熱サイクル試験を行った。熱サイクル試験後、色素増感太陽電池について再度光電変換効率を測定し、光電変換効率の低下率を算出した。評価については、光電変換効率の低下率が10%以下である場合には「○」と表示し、光電変換効率の低下率が10%より大きく20%以下である場合には「×」と表示することとした。結果を表1に示す。
[Evaluation of change in photoelectric conversion efficiency by thermal cycle test: Evaluation 1]
About the dye-sensitized solar cell obtained in Examples 1-7 and Comparative Examples 1-3, after measuring photoelectric conversion efficiency, the heat cycle test was done. After the thermal cycle test, the photoelectric conversion efficiency was measured again for the dye-sensitized solar cell, and the decrease rate of the photoelectric conversion efficiency was calculated. Regarding the evaluation, “◯” is displayed when the rate of decrease in photoelectric conversion efficiency is 10% or less, and “X” is displayed when the rate of decrease in photoelectric conversion efficiency is greater than 10% and 20% or less. It was decided to. The results are shown in Table 1.

なお、熱サイクル試験は、−40℃から90℃まで昇温させ、90℃で10分間保持し、その後、90℃から−40℃まで降温させ、−40℃で10分間保持するというサイクルを1サイクルとし、これを100回行った。このとき、昇温速度及び降温速度はいずれも10℃/minとした。   The thermal cycle test is a cycle in which the temperature is raised from −40 ° C. to 90 ° C., held at 90 ° C. for 10 minutes, then lowered from 90 ° C. to −40 ° C., and held at −40 ° C. for 10 minutes. A cycle was performed 100 times. At this time, the rate of temperature increase and the rate of temperature decrease were both 10 ° C./min.

[熱サイクル試験による電解質残存率の評価:評価2]
実施例1〜7及び比較例1〜3で得られた色素増感太陽電池について、上記と同様の熱サイクル試験を行い、その後、色素増感太陽電池(セル)の容積、即ち作用極と対極と封止部とによって囲まれるセル空間の容積、に占める電解質の残存量の割合を測定した。そして、その電解質残存割合が80%以上である場合には「○」とし、80%未満である場合には「×」と表示することとした。結果を表1に示す。

Figure 2010198823
[Evaluation of electrolyte remaining rate by thermal cycle test: Evaluation 2]
The dye-sensitized solar cells obtained in Examples 1 to 7 and Comparative Examples 1 to 3 were subjected to the same thermal cycle test as described above, and then the volume of the dye-sensitized solar cell (cell), that is, the working electrode and the counter electrode. The ratio of the remaining amount of electrolyte in the volume of the cell space surrounded by the sealing portion was measured. When the electrolyte remaining ratio is 80% or more, “◯” is displayed, and when it is less than 80%, “×” is displayed. The results are shown in Table 1.
Figure 2010198823

表1に示す結果より、実施例1〜7の色素増感型太陽電池によれば、熱サイクル試験後による光電変換効率の低下が十分小さいことが分かった。なお、実施例1〜7の色素増感太陽電池を熱サイクル試験後に観察したところ、対極にクラックも破損も観察されなかった。また比較例1,2の色素増感型太陽電池では、熱サイクルの回数が70回に達するまでに急激に性能が低下した。試験後に分解調査した結果、チタン金属基板と封止部との界面で剥離が確認できた。比較例3の色素増感型太陽電池では剥離は確認できなかったものの、性能の低下が見られた。   From the results shown in Table 1, it was found that according to the dye-sensitized solar cells of Examples 1 to 7, the decrease in photoelectric conversion efficiency after the thermal cycle test was sufficiently small. In addition, when the dye-sensitized solar cell of Examples 1-7 was observed after the thermal cycle test, neither a crack nor damage was observed in the counter electrode. In addition, in the dye-sensitized solar cells of Comparative Examples 1 and 2, the performance was abruptly reduced until the number of thermal cycles reached 70. As a result of disassembling after the test, peeling was confirmed at the interface between the titanium metal substrate and the sealing portion. Although peeling was not confirmed in the dye-sensitized solar cell of Comparative Example 3, a decrease in performance was observed.

よって、本発明の光電変換素子によれば、周囲の環境温度の変化が大きい場所で使用されても、光電変換効率の低下を十分に抑制できることが確認された。   Therefore, according to the photoelectric conversion element of this invention, even if it used in the place where the surrounding environmental temperature change is large, it was confirmed that the fall of photoelectric conversion efficiency can fully be suppressed.

1…作用極(第1電極)、2,202…対極(第2電極)、3…電解質、4…封止部、9…金属基板、10…触媒膜(導電層)、201…樹脂層、100,200,300…色素増感型太陽電池(光電変換素子)、301…作用極(第2電極)、302…対極(第1電極)、307…導電膜(導電層)。   DESCRIPTION OF SYMBOLS 1 ... Working electrode (1st electrode), 2,202 ... Counter electrode (2nd electrode), 3 ... Electrolyte, 4 ... Sealing part, 9 ... Metal substrate, 10 ... Catalyst film (conductive layer), 201 ... Resin layer, DESCRIPTION OF SYMBOLS 100,200,300 ... Dye-sensitized solar cell (photoelectric conversion element), 301 ... Working electrode (second electrode), 302 ... Counter electrode (first electrode), 307 ... Conductive film (conductive layer).

Claims (3)

透明導電電極を構成する第1電極と、
前記第1電極に対向して設けられる第2電極と、
前記第1電極及び前記第2電極を連結する封止部と、
前記第1電極、前記第2電極及び前記封止部によって包囲されるセル空間に充填される電解質とを備え、
前記第2電極が、チタン、白金及びニッケルからなる群より選択される少なくとも1種の金属から構成される金属基板と、前記金属基板に対して前記電解質側に設けられる導電層とを有し、
前記金属基板の厚さが5〜35μmであること、
を特徴とする光電変換素子。
A first electrode constituting a transparent conductive electrode;
A second electrode provided opposite to the first electrode;
A sealing portion connecting the first electrode and the second electrode;
An electrolyte filled in a cell space surrounded by the first electrode, the second electrode, and the sealing portion;
The second electrode has a metal substrate made of at least one metal selected from the group consisting of titanium, platinum and nickel, and a conductive layer provided on the electrolyte side with respect to the metal substrate;
The metal substrate has a thickness of 5 to 35 μm;
A photoelectric conversion element characterized by the above.
前記第1電極が、透明基板と、前記透明基板上に設けられる透明導電膜と、前記透明導電膜上に設けられ多孔質酸化物半導体層とを有する作用極であり、
前記第2電極が対極であること、
を特徴とする請求項1に記載の光電変換素子。
The first electrode is a working electrode having a transparent substrate, a transparent conductive film provided on the transparent substrate, and a porous oxide semiconductor layer provided on the transparent conductive film,
The second electrode is a counter electrode;
The photoelectric conversion element according to claim 1.
前記第2電極が、前記金属基板に対して前記電解質と反対側に設けられる樹脂層を有すること、
を特徴とする請求項1又は2に記載の光電変換素子。
The second electrode has a resin layer provided on a side opposite to the electrolyte with respect to the metal substrate;
The photoelectric conversion element according to claim 1 or 2.
JP2009040563A 2009-02-24 2009-02-24 Photoelectric conversion element Active JP5422225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009040563A JP5422225B2 (en) 2009-02-24 2009-02-24 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040563A JP5422225B2 (en) 2009-02-24 2009-02-24 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2010198823A true JP2010198823A (en) 2010-09-09
JP5422225B2 JP5422225B2 (en) 2014-02-19

Family

ID=42823371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040563A Active JP5422225B2 (en) 2009-02-24 2009-02-24 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5422225B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034913A1 (en) * 2012-09-01 2014-03-06 株式会社フジクラ Dye-sensitized solar cell element for low luminance
JP2015037002A (en) * 2013-08-09 2015-02-23 株式会社フジクラ Electrode, and dye-sensitized solar cell element having the same
JP5689190B1 (en) * 2014-01-27 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JP5933013B2 (en) * 2012-09-01 2016-06-08 株式会社フジクラ Dye-sensitized solar cell element for low illumination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288745A (en) * 1998-04-03 1999-10-19 Nikon Corp Flexible wet solar battery and its manufacture
JP2004119306A (en) * 2002-09-27 2004-04-15 Hitachi Maxell Ltd Photoelectric conversion element and its manufacturing method
JP2005520314A (en) * 2001-06-15 2005-07-07 ユニバーシティー オブ マサチューセッツ Photocell
WO2007026927A1 (en) * 2005-09-02 2007-03-08 Kyocera Corporation Photo-electric conversion device, its fabrication method, and photovoltaic generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288745A (en) * 1998-04-03 1999-10-19 Nikon Corp Flexible wet solar battery and its manufacture
JP2005520314A (en) * 2001-06-15 2005-07-07 ユニバーシティー オブ マサチューセッツ Photocell
JP2004119306A (en) * 2002-09-27 2004-04-15 Hitachi Maxell Ltd Photoelectric conversion element and its manufacturing method
WO2007026927A1 (en) * 2005-09-02 2007-03-08 Kyocera Corporation Photo-electric conversion device, its fabrication method, and photovoltaic generation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034913A1 (en) * 2012-09-01 2014-03-06 株式会社フジクラ Dye-sensitized solar cell element for low luminance
JP5933013B2 (en) * 2012-09-01 2016-06-08 株式会社フジクラ Dye-sensitized solar cell element for low illumination
JPWO2014034913A1 (en) * 2012-09-01 2016-08-08 株式会社フジクラ Dye-sensitized solar cell element for low illumination
JP2016167604A (en) * 2012-09-01 2016-09-15 株式会社フジクラ Dye-sensitized solar cell element for low illuminance
CN104380407B (en) * 2012-09-01 2017-09-05 株式会社藤仓 The dye-sensitized solar battery element of low-light (level)
US10096431B2 (en) 2012-09-01 2018-10-09 Fujikura Ltd. Dye-sensitized solar cell element for low illuminance
JP2015037002A (en) * 2013-08-09 2015-02-23 株式会社フジクラ Electrode, and dye-sensitized solar cell element having the same
JP5689190B1 (en) * 2014-01-27 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JP2015141954A (en) * 2014-01-27 2015-08-03 株式会社昭和 Dye-sensitized solar battery provided with light condensing device

Also Published As

Publication number Publication date
JP5422225B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5923064B2 (en) Photoelectric conversion device
JP4504456B1 (en) Method for producing dye-sensitized solar cell
JP5591353B2 (en) Dye-sensitized solar cell
JP5422225B2 (en) Photoelectric conversion element
JP5465783B2 (en) Dye-sensitized solar cell electrode, method for producing the same, and dye-sensitized solar cell
WO2011125843A1 (en) Electronic device and method for manufacturing same
JP5465446B2 (en) Photoelectric conversion element
JP5684916B2 (en) Photoelectric conversion element
JP4793953B1 (en) Dye-sensitized solar cell
JP4793954B1 (en) Dye-sensitized solar cell
JP4759646B1 (en) Electronic device and manufacturing method thereof
JP4759647B1 (en) Electronic device and manufacturing method thereof
WO2012046796A1 (en) Dye-sensitized solar cell
JP5422224B2 (en) Photoelectric conversion element
WO2013031939A1 (en) Electrode for photoelectric conversion element, method for manufacturing electrode for photoelectric conversion element, and photoelectric conversion element
JP5785618B2 (en) Electronics
JP2012186032A (en) Dye-sensitized solar battery
JP2013051143A (en) Electrode for photoelectric conversion element and photoelectric conversion element
JP5689773B2 (en) Photoelectric conversion element electrode, photoelectric conversion element, and silver paste used for manufacturing photoelectric conversion element electrode
JP6076016B2 (en) Dye-sensitized solar cell
JP2013004178A (en) Dye-sensitized solar battery, and method of manufacturing the same
EP3226272A1 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5422225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250