JP2010197536A - Microscope objective lens - Google Patents

Microscope objective lens Download PDF

Info

Publication number
JP2010197536A
JP2010197536A JP2009040281A JP2009040281A JP2010197536A JP 2010197536 A JP2010197536 A JP 2010197536A JP 2009040281 A JP2009040281 A JP 2009040281A JP 2009040281 A JP2009040281 A JP 2009040281A JP 2010197536 A JP2010197536 A JP 2010197536A
Authority
JP
Japan
Prior art keywords
lens
lens group
line
diffractive optical
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009040281A
Other languages
Japanese (ja)
Other versions
JP5434130B2 (en
Inventor
Taeko Watashi
妙子 渡士
Akiko Miyagawa
晶子 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009040281A priority Critical patent/JP5434130B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to EP09729761.8A priority patent/EP2264506B1/en
Priority to PCT/JP2009/057161 priority patent/WO2009125778A1/en
Priority to CN201310088645.0A priority patent/CN103235405B/en
Priority to EP16186957.3A priority patent/EP3128355B1/en
Priority to CN200980112811.8A priority patent/CN101999090B/en
Priority to CN201310088382.3A priority patent/CN103235404B/en
Publication of JP2010197536A publication Critical patent/JP2010197536A/en
Priority to US12/889,783 priority patent/US8958154B2/en
Application granted granted Critical
Publication of JP5434130B2 publication Critical patent/JP5434130B2/en
Priority to US14/586,004 priority patent/US9158102B2/en
Priority to US14/585,976 priority patent/US9134520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microscope objective lens where chromatic aberration is sufficiently corrected, which has a sufficient visual range, and where various aberrations in the visual range are satisfactorily corrected. <P>SOLUTION: The microscope objective lens OL includes, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 and a third lens group G3 having negative refractive power, wherein the first lens group G1 includes a positive lens component L1 located nearest to the object side, with a lens surface having negative refractive power, the second lens group G2 includes a diffraction optical element GD with a diffractive optical surface D in which two diffraction elements of different optical materials are cemented and a diffractive grating groove is formed on the cemented interface thereof, and the third lens group G3 includes at least one or more color correction lens components CL31 having negative refractive power. The lens surface nearest to the image side in the third lens group G3 is a concave surface directed to the image side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、顕微鏡対物レンズに関する。   The present invention relates to a microscope objective lens.

従来の顕微鏡対物レンズは、諸収差の中でも色収差を良好に補正するために多数の接合レンズを必要とし、また、2次スペクトルを補正するのに異常分散ガラスを用いる必要があったため、高価にならざるを得なかった。近年、高倍率・高開口数で、接合レンズや異常分散ガラスを多用することなく諸収差、特に2次スペクトルまで含めた色収差を補正できる回折光学素子(DOE)を用いたレンズ系が提案されている(例えば、特許文献1参照)。   Conventional microscope objective lenses require a large number of cemented lenses to satisfactorily correct chromatic aberration among various aberrations, and it is necessary to use anomalous dispersion glass to correct the secondary spectrum. I had to. In recent years, a lens system using a diffractive optical element (DOE) has been proposed that can correct various aberrations, particularly chromatic aberration including the secondary spectrum, without using a cemented lens or anomalous dispersion glass with a high magnification and a high numerical aperture. (For example, refer to Patent Document 1).

特開平6−331898号公報JP-A-6-331898

しかしながら、このような回折光学素子を用いたレンズ系では、回折光学素子で色収差を補正できても、高画角でのコマ収差の補正が困難となり、視野周辺部での像性能が低いという課題があった。   However, in such a lens system using a diffractive optical element, even if chromatic aberration can be corrected by the diffractive optical element, it is difficult to correct coma at a high angle of view, and the image performance at the periphery of the field of view is low. was there.

本発明は、このような課題に鑑みてなされたものであり、十分な色収差の補正がされ、且つ、視野範囲が十分で、その視野範囲において諸収差が良好に補正された顕微鏡対物レンズを提供することを目的とする。   The present invention has been made in view of such problems, and provides a microscope objective lens that is sufficiently corrected for chromatic aberration, has a sufficient field of view, and has various aberrations corrected well in the field of view. The purpose is to do.

前記課題を解決するために、本発明に係る顕微鏡対物レンズは、物体側から順に、正の屈折力を有する第1レンズ群と、第2レンズ群と、負の屈折力を有する第3レンズ群と、を有し、第1レンズ群は、最も物体側に位置し、負の屈折力を有するレンズ面を含む正レンズ成分を有し、第2レンズ群は、異なる光学材料からなる2つの回折素子要素を接合し、当該接合面に回折格子溝が形成された回折光学面を有する回折光学素子を有し、第3レンズ群は、少なくとも1つ以上の、負の屈折力を有する色補正レンズ成分を有し、且つ、当該第3レンズ群の最も像側のレンズ面が、像側に凹面を向けて配置されている。そして、第1レンズ群に設けられた正レンズ成分に含まれる負の屈折力を有するレンズ面のうち、最も物体側に配置された負の屈折力を有するレンズ面の曲率半径をRとし、この負の屈折力を有するレンズ面の物体側の媒質のd線に対する屈折率をn1、像側の媒質のd線に対する屈折率をn2とし、この負の屈折力を有するレンズ面の頂点から物体までの光軸上の距離をd0としたとき、次式
|(n2−n1)/(R・d0)| ≦ 0.1
の条件を満足し、全系の焦点距離をfとし、回折光学面を通る最大画角に対応する光束の主光線の光軸からの高さをhとしたとき、次式
0.01 ≦ |h/f| ≦ 0.04
の条件を満足する。但し、軸外物点から発する光束の主光線は、軸外物点から射出される光束の中、最も光軸から離れた方向に射出される光線を、軸上物点から射出される最大開口数(NA)の光線と第1レンズ群内の適宜の面との交点で制限し、最も光軸に近い方向に射出される光線を、軸上物点から射出される最大開口数の光線と第3レンズ群内の適宜の面との交点で制限したとき、当該光束の中心光線とする。
In order to solve the above problems, a microscope objective lens according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group, and a third lens group having a negative refractive power. The first lens group has a positive lens component that includes a lens surface that is located closest to the object side and has a negative refractive power, and the second lens group has two diffractions made of different optical materials. A color correction lens having a diffractive optical element having a diffractive optical surface having a diffractive optical surface formed by bonding element elements and having a diffraction grating groove formed on the bonded surface, and having at least one negative refracting power The lens surface having the component and the most image side of the third lens group is disposed with the concave surface facing the image side. Of the lens surfaces having negative refractive power included in the positive lens component provided in the first lens group, the radius of curvature of the lens surface having negative refractive power arranged closest to the object side is defined as R. The refractive index for the d-line of the medium on the object side of the lens surface having negative refractive power is n1, and the refractive index for the d-line of the medium on the image side is n2, from the apex of the lens surface having negative refractive power to the object. Where d0 is the distance on the optical axis, the following formula | (n2-n1) / (R · d0) | ≦ 0.1
When the focal length of the entire system is f and the height from the optical axis of the principal ray of the light beam corresponding to the maximum angle of view passing through the diffractive optical surface is h, the following expression 0.01 ≦ | h / f | ≦ 0.04
Satisfy the conditions. However, the chief ray of the light beam emitted from the off-axis object point is the maximum light beam emitted from the on-axis object point, the light beam emitted from the off-axis object point in the direction farthest from the optical axis. The light beam emitted in the direction closest to the optical axis is defined as the light beam with the maximum numerical aperture emitted from the on-axis object point. When restricted at the intersection with an appropriate surface in the third lens group, it is set as the central ray of the luminous flux.

このような顕微鏡対物レンズは、第1レンズ群と第2レンズ群との合成焦点距離をf12としたとき、次式
1 ≦ |f12/f| ≦ 1.5
の条件を満足することが好ましい。
In such a microscope objective lens, when the combined focal length of the first lens group and the second lens group is f12, the following expression 1 ≦ | f12 / f | ≦ 1.5
It is preferable to satisfy the following conditions.

また、このような顕微鏡対物レンズは、第2レンズ群の焦点距離をf2としたとき、次式
10 ≦ |f2/f|
の条件を満足することが好ましい。
Further, in such a microscope objective lens, when the focal length of the second lens group is f2, the following expression 10 ≦ | f2 / f |
It is preferable to satisfy the following conditions.

また、このような顕微鏡対物レンズは、回折光学素子における回折光学面の回折格子溝の数をNとし、当該回折光学面の有効半径をHとしたとき、次式
2 ≦ N/H ≦ 5
の条件を満足することが好ましい。但し、有効半径Hは、軸上物点から射出される最大開口数の光線及び、軸外物点から射出される光束の中、最も光軸から離れた方向に射出される光線を、軸上物点から射出される最大開口数の光線と第1レンズ群内の適宜の面との交点で制限し、最も光軸に近い方向に射出される光線を、軸上物点から射出される最大開口数の光線と第3レンズ群内の適宜の面との交点で制限したときに決まる当該光束の最外側の光線で決定される。
Further, in such a microscope objective lens, when the number of diffraction grating grooves of the diffractive optical surface in the diffractive optical element is N and the effective radius of the diffractive optical surface is H, the following formula 2 ≦ N / H ≦ 5
It is preferable to satisfy the following conditions. However, the effective radius H is defined as the light beam having the maximum numerical aperture emitted from the on-axis object point and the light beam emitted from the off-axis object point in the direction farthest from the optical axis. The maximum ray emitted from the object point on the axis is limited by the intersection of the ray with the maximum numerical aperture emitted from the object point and an appropriate surface in the first lens group, and the ray emitted in the direction closest to the optical axis is emitted from the object point on the axis. It is determined by the outermost ray of the luminous flux determined when the beam is limited by the intersection of the ray having the numerical aperture and an appropriate surface in the third lens group.

さらに、このような顕微鏡対物レンズは、回折光学素子中の2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の回折素子要素の材料のd線に対する屈折率をnd1、F線に対する屈折率をnF1、C線に対する屈折率をnC1とし、回折光学素子中の2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の回折素子要素の材料のd線に対する屈折率をnd2、F線に対する屈折率をnF2、C線に対する屈折率をnC2としたとき、次式
nd1 ≦ 1.54
0.0145 ≦ nF1−nC1
1.55 ≦ nd2
nF2−nC2 ≦ 0.013
の条件を満足することが好ましい。
Further, such a microscope objective lens has a refractive index with respect to the d-line of the material of the diffractive element having the lower refractive index and the smaller Abbe number of the two diffractive element elements in the diffractive optical element. The refractive index is nF1, the refractive index with respect to the C-line is nC1, and the refractive index with respect to the d-line of the material of the diffractive element element having the higher refractive index and the larger Abbe number among the two diffractive element elements in the diffractive optical element is nd2. When the refractive index for the F line is nF2, and the refractive index for the C line is nC2, the following formula nd1 ≦ 1.54
0.0145 ≦ nF1-nC1
1.55 ≤ nd2
nF2-nC2 ≦ 0.013
It is preferable to satisfy the following conditions.

本発明に係る顕微鏡対物レンズを以上のように構成すると、十分な色収差の補正がされ、且つ、視野範囲が十分で、その視野範囲における諸収差が良好に補正された顕微鏡対物レンズを提供することができる。   When the microscope objective lens according to the present invention is configured as described above, it is possible to provide a microscope objective lens that is sufficiently corrected for chromatic aberration, has a sufficient field of view, and is well corrected for various aberrations in the field of view. Can do.

第1実施例に係る顕微鏡対物レンズのレンズ構成図である。It is a lens block diagram of the microscope objective lens which concerns on 1st Example. 上記第1実施例に係る顕微鏡対物レンズの諸収差図である。FIG. 6 is a diagram illustrating various aberrations of the microscope objective lens according to the first example. 第2実施例に係る顕微鏡対物レンズのレンズ構成図である。It is a lens block diagram of the microscope objective lens which concerns on 2nd Example. 上記第2実施例に係る顕微鏡対物レンズの諸収差図である。FIG. 5 is an aberration diagram of the microscope objective lens according to the second example. 第3実施例に係る顕微鏡対物レンズのレンズ構成図である。It is a lens block diagram of the microscope objective lens which concerns on 3rd Example. 上記第3実施例に係る顕微鏡対物レンズの諸収差図である。FIG. 10 is a diagram illustrating all aberrations of the microscope objective lens according to the third example. 上記顕微鏡対物レンズとともに用いられる結像レンズのレンズ構成図である。It is a lens block diagram of the imaging lens used with the said microscope objective lens.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて、本実施の形態に係る顕微鏡対物レンズの構成について説明する。この顕微鏡対物レンズOLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とを有して構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the microscope objective lens according to the present embodiment will be described with reference to FIG. The microscope objective lens OL includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2, and a third lens group G3 having a negative refractive power. The

このような顕微鏡対物レンズOLにおいて、第1レンズ群G1は、物体からの発散光束を平行光束へと近づけるためのレンズ群であり、そのため、最も物体側に位置し、負の屈折力を有するレンズ面を含む正レンズ成分(例えば、図1における正メニスカスレンズL1)を有して構成される。なお、正レンズ成分は、単レンズで構成しても良いし、接合レンズで構成しても良い。ここで、この正レンズ成分に含まれる負の屈折力を有するレンズ面のうち、最も物体側に配置された負の屈折力を有するレンズ面(例えば、図1における第1面)の曲率半径をRとし、当該レンズ面の物体側の媒質のd線に対する屈折率をn1、像側の媒質のd線に対する屈折率をn2とし、物体から当該レンズ面の頂点までの光軸上の距離をd0としたとき、次の条件式(1)を満足する。   In such a microscope objective lens OL, the first lens group G1 is a lens group for bringing a divergent light beam from an object close to a parallel light beam, and is therefore located closest to the object side and has a negative refractive power. A positive lens component including a surface (for example, a positive meniscus lens L1 in FIG. 1) is configured. The positive lens component may be composed of a single lens or a cemented lens. Here, among the lens surfaces having negative refractive power included in the positive lens component, the radius of curvature of the lens surface having negative refractive power arranged closest to the object side (for example, the first surface in FIG. 1) is set. Let R be the refractive index with respect to the d-line of the medium on the object side of the lens surface, n2, the refractive index with respect to the d-line of the medium on the image side is n2, and the distance on the optical axis from the object to the apex of the lens surface is d0. The following conditional expression (1) is satisfied.

|(n2−n1)/(R・d0)| ≦ 0.1 (1) | (N2−n1) / (R · d0) | ≦ 0.1 (1)

この条件式(1)は、第1レンズ群G1に設けられた上述の正レンズ成分に含まれる負の屈折力を有するレンズ面の屈折力を規定するものであり、この条件式(1)の上限値を上回ると、ペッツバール和の補正が困難となり、高画角までの像面平坦性を確保することが困難になる。   This conditional expression (1) defines the refractive power of the lens surface having negative refractive power included in the above-mentioned positive lens component provided in the first lens group G1, and the conditional expression (1) When the upper limit is exceeded, it is difficult to correct the Petzval sum, and it becomes difficult to ensure image surface flatness up to a high angle of view.

また、第2レンズ群G2は、第1レンズ群G1から出射した略平行光束を受けて、色収差を補正するためのレンズ群であり、この色収差を補正するために回折光学素子GDが設けられている。回折光学素子GDは、1mmあたり数本から数百本の細かい溝状またはスリット状の格子構造が同心円状に形成された回折光学面Dを備え、この回折光学面Dに入射した光を格子ピッチ(回折格子溝の間隔)と入射光の波長とによって定まる方向へ回折する性質を有している。また、回折光学素子GD(回折光学面D)は、負の分散値(後述する実施例ではアッベ数=−3.453)を有し、分散が大きく、また異常分散性(後述する実施例では部分分散比(ng−nF)/(nF−nC)=0.2956)が強いため、強力な色収差補正能力を有している。光学ガラスのアッベ数は、通常30〜80程度であるが、上述のように回折光学素子のアッベ数は負の値を持っている。換言すると、回折光学素子GDの回折光学面Dは分散特性が通常のガラス(屈折光学素子)とは逆で光の波長が短くなるに伴い屈折率が小さくなり、長い波長の光ほど大きく曲がる性質を有している。そのため、通常の屈折光学素子と組み合わせることにより、大きな色消し効果が得られる。したがって回折光学素子GDを利用することで、通常の光学ガラスでは達し得ない良好な色収差の補正が可能になる。   The second lens group G2 is a lens group for receiving a substantially parallel light beam emitted from the first lens group G1 and correcting chromatic aberration. A diffractive optical element GD is provided to correct the chromatic aberration. Yes. The diffractive optical element GD includes a diffractive optical surface D in which several to hundreds of fine groove-shaped or slit-shaped grating structures are formed concentrically per 1 mm, and the light incident on the diffractive optical surface D is grating pitch It has the property of diffracting in a direction determined by the (grating groove interval) and the wavelength of incident light. The diffractive optical element GD (diffractive optical surface D) has a negative dispersion value (Abbe number = −3.453 in the examples described later), a large dispersion, and anomalous dispersion (in the examples described later). Since the partial dispersion ratio (ng−nF) / (nF−nC) = 0.2956) is strong, it has a strong ability to correct chromatic aberration. The Abbe number of the optical glass is usually about 30 to 80, but the Abbe number of the diffractive optical element has a negative value as described above. In other words, the diffractive optical surface D of the diffractive optical element GD has a dispersion characteristic that is opposite to that of normal glass (refractive optical element), and the refractive index decreases as the wavelength of light becomes shorter. have. Therefore, a large achromatic effect can be obtained by combining with an ordinary refractive optical element. Therefore, by using the diffractive optical element GD, it becomes possible to correct chromatic aberration that cannot be achieved with ordinary optical glass.

本実施の形態における回折光学素子GDは、異なる光学材料からなる2つの回折素子要素(例えば、図1の場合、光学部材L7,L8)を接合し、その接合面に回折格子溝を設けて回折光学面Dを構成している、いわゆる「密着複層型回折光学素子」である。そのため、この回折光学素子は、g線からC線を含む広波長域において回折効率を高くすることができる。したがって、本実施の形態に係る顕微鏡対物レンズOLは広波長域において利用することが可能となる。なお、回折効率は、透過型の回折光学素子において1次回折光を利用する場合、入射強度I0と一次回折光の強度I1との割合η(=I1/I0×100[%])を示す。   The diffractive optical element GD in the present embodiment joins two diffractive element elements (for example, optical members L7 and L8 in the case of FIG. 1) made of different optical materials, and diffracts by providing a diffraction grating groove on the joint surface. This is a so-called “contact multilayer diffractive optical element” constituting the optical surface D. Therefore, this diffractive optical element can increase the diffraction efficiency in a wide wavelength region including g-line to C-line. Therefore, the microscope objective lens OL according to the present embodiment can be used in a wide wavelength range. The diffraction efficiency indicates the ratio η (= I1 / I0 × 100 [%]) between the incident intensity I0 and the intensity I1 of the first-order diffracted light when the first-order diffracted light is used in the transmission type diffractive optical element.

また、密着複層型回折光学素子は、回折格子溝が形成された2つの回折素子要素をこの回折格子溝同士が対向するように近接配置してなるいわゆる分離複層型回折光学素子に比べて製造工程を簡素化することができるため、量産効率がよく、また光線の入射角に対する回折効率が良いという長所を備えている。したがって、密着複層型回折光学素子を利用した本実施の形態に係る顕微鏡対物レンズOLでは、製造が容易となり、また回折効率も良くなる。   In addition, the contact multilayer diffractive optical element is compared to a so-called separated multilayer diffractive optical element in which two diffraction element elements formed with diffraction grating grooves are arranged close to each other so that the diffraction grating grooves face each other. Since the manufacturing process can be simplified, it has the advantages of high mass production efficiency and good diffraction efficiency with respect to the incident angle of light. Therefore, the microscope objective lens OL according to the present embodiment using the multi-contact diffractive optical element is easy to manufacture and improves the diffraction efficiency.

ここで、この顕微鏡対物レンズOLの全系の焦点距離をfとし、回折光学面D(図1における第12面)を通る最大画角に対応する光束の主光線の光軸からの高さをhとしたとき、この回折光学素子GDは、次の条件式(2)を満足する位置に配置される。   Here, let f be the focal length of the entire system of the microscope objective lens OL, and the height from the optical axis of the principal ray of the light beam corresponding to the maximum field angle passing through the diffractive optical surface D (the twelfth surface in FIG. 1). When h, the diffractive optical element GD is disposed at a position that satisfies the following conditional expression (2).

0.01 ≦ |h/f| ≦ 0.04 (2) 0.01 ≦ | h / f | ≦ 0.04 (2)

但し、この図1の顕微鏡レンズOLにおいて、軸外物点から発する光束の主光線を、軸外物点から射出される光束の中、最も光軸から離れた方向に射出される光線を、軸上物点から射出される最大開口数の光線と第1レンズ群G1内のレンズL3の物体側の面との交点で制限し、最も光軸に近い方向に射出される光線を、軸上物点から射出される最大開口数の光線と第3レンズ群G3内のレンズL11の物体側の面との交点で制限し、軸外光束を決め、当該軸外光束の中心光線として決めている。   However, in the microscope lens OL of FIG. 1, the principal ray of the light beam emitted from the off-axis object point is changed to the light ray emitted in the direction farthest from the optical axis among the light beams emitted from the off-axis object point. The light beam having the maximum numerical aperture emitted from the upper object point is limited by the intersection of the object side surface of the lens L3 in the first lens group G1, and the light beam emitted in the direction closest to the optical axis is The light beam having the maximum numerical aperture emitted from the point is limited by the intersection point between the object side surface of the lens L11 in the third lens group G3, the off-axis light beam is determined, and the center light beam of the off-axis light beam is determined.

回折光学素子GDを、この条件式(2)を満足する位置に配置することにより、この回折光学素子GDの色収差補正能力を、軸上色収差の補正だけでなく倍率色収差の補正にも効果を持たせることができる。ただし、低倍では倍率色収差の補正は困難ではないため、より軸上色収差の補正に効果的で、ほどよく倍率色収差の補正も助けられるようなバランスを取ることが重要であり、条件式(2)はそれらを考慮した範囲を表している。   By disposing the diffractive optical element GD at a position that satisfies the conditional expression (2), the chromatic aberration correcting ability of the diffractive optical element GD is effective not only for correcting axial chromatic aberration but also for correcting lateral chromatic aberration. Can be made. However, since it is not difficult to correct lateral chromatic aberration at low magnification, it is important to achieve a balance that is more effective in correcting axial chromatic aberration and moderately helps to correct lateral chromatic aberration. ) Represents a range that takes them into account.

第3レンズ群G3は、第2レンズ群G2を出射した収斂光束を略平行光束にするレンズ群である。この第3レンズ群G3は、負の屈折力を有する色補正レンズ成分(例えば、図1における両凸レンズL11及び両凹レンズL12からなる接合レンズ成分CL31)を少なくとも1つ有して構成されている。さらに、この第3レンズ群G3の最も像側に配置されるレンズの像側の面(例えば、図1における第18面)は、像側に凹形状に形成されている。第3レンズ群G3へ入射する光束は、第1レンズ群G1及び第2レンズ群G2の合成で正の屈折力を持っているため収斂光束となっている。第3レンズ群G3は、かかる収斂光束を受け、球面収差やコマ収差の発生を抑えつつ平行光束に変換することが大切である。第3レンズ群G3の最も像側の面は、第3レンズ群G3の負の屈折力の多くの部分を担う面であり、この面を像側に凹の面で構成することにより、収斂光線の当該最終面に対する入射角を小さく構成でき、特に高次のコマ収差等の発生を的確に抑えることが可能となる。なお、この色補正レンズ成分は、接合レンズとしてだけでなく、色収差補正能力を大きく低下させない程度の空気間隔を空けて配置した複数のレンズで構成しても良い。   The third lens group G3 is a lens group that converts the convergent light beam emitted from the second lens group G2 into a substantially parallel light beam. The third lens group G3 includes at least one color correction lens component having a negative refractive power (for example, a cemented lens component CL31 including the biconvex lens L11 and the biconcave lens L12 in FIG. 1). Further, the image side surface (for example, the 18th surface in FIG. 1) of the lens disposed closest to the image side in the third lens group G3 is formed in a concave shape on the image side. The light beam incident on the third lens group G3 is a convergent light beam because it has a positive refractive power by the combination of the first lens group G1 and the second lens group G2. It is important that the third lens group G3 receives the convergent light beam and converts it into a parallel light beam while suppressing the occurrence of spherical aberration and coma aberration. The most image-side surface of the third lens group G3 is a surface that bears a large part of the negative refractive power of the third lens group G3. By constructing this surface as a concave surface on the image side, convergent light rays The incident angle with respect to the final surface can be made small, and in particular, the occurrence of higher-order coma and the like can be suppressed accurately. In addition, this color correction lens component may be constituted not only as a cemented lens but also by a plurality of lenses arranged with an air interval so as not to greatly reduce the chromatic aberration correction capability.

さらに、この顕微鏡対物レンズOLは、全系の焦点距離をfとし、第1レンズ群G1と第2レンズ群G2との合成焦点距離をf12としたとき、次の条件式(3)を満足することが望ましい。   Furthermore, this microscope objective lens OL satisfies the following conditional expression (3), where f is the focal length of the entire system and f12 is the combined focal length of the first lens group G1 and the second lens group G2. It is desirable.

1 ≦ |f12/f| ≦ 1.5 (3) 1 ≦ | f12 / f | ≦ 1.5 (3)

条件式(3)は、十分な作動距離を確保しながら十分な開口数(NA)を確保するための条件である。この条件式(3)の下限値を下回ると、全系の焦点距離fに比べ、第1及び第2レンズ群G1,G2の合成焦点距離f12が短くなり、十分な開口数の確保が困難になるとともに、球面収差の補正が困難になる。反対に、条件式(3)の上限値を上回ると、全系の焦点距離fに比べ、第1及び第2レンズ群G1,G2の合成焦点距離f12が長くなり、光線の収束が十分でなくなることで全長が長くなる傾向になるとともに、高画角での諸収差や、色収差の二次スペクトルの補正が困難となる。   Conditional expression (3) is a condition for securing a sufficient numerical aperture (NA) while ensuring a sufficient working distance. If the lower limit of conditional expression (3) is not reached, the combined focal length f12 of the first and second lens groups G1 and G2 becomes shorter than the focal length f of the entire system, and it is difficult to ensure a sufficient numerical aperture. At the same time, it becomes difficult to correct spherical aberration. On the contrary, if the upper limit value of conditional expression (3) is exceeded, the combined focal length f12 of the first and second lens groups G1 and G2 becomes longer than the focal length f of the entire system, and the convergence of the light beam becomes insufficient. As a result, the overall length tends to be long, and it becomes difficult to correct various aberrations at high angles of view and the secondary spectrum of chromatic aberration.

ところで、回折光学素子GDは、回折格子溝の厚さを持っているため、わずかな入射角の変化でも回折効率が大きく変化する。すなわち、回折光学面Dに対する入射角が大きくなると、回折効率が著しく低下し、ブレ−ズされていない次数の光線がフレアとなって表れてしまう。そこで、この顕微鏡対物レンズOLは、全系の焦点距離をfとし、第2レンズ群G2の焦点距離をf2としたとき、次の条件式(4)を満足することが望ましい。   By the way, since the diffractive optical element GD has the thickness of the diffraction grating groove, the diffraction efficiency changes greatly even with a slight change in incident angle. That is, when the incident angle with respect to the diffractive optical surface D is increased, the diffraction efficiency is remarkably lowered, and the light beam of the order that is not blazed appears as flare. Therefore, it is desirable that this microscope objective lens OL satisfies the following conditional expression (4), where f is the focal length of the entire system and f2 is the focal length of the second lens group G2.

10 ≦ |f2/f| (4) 10 ≦ | f2 / f | (4)

条件式(4)は、パワー配分を使って回折光学素子GDへの入射角を制御するための条件である。この条件式(4)の下限値を下回ると、全系の焦点距離fに比べ、第2レンズ群G2の焦点距離f2が短くなり、この第2レンズ群G2内での光線の屈折角が大きくなり、回折光学素子GDへの入射角が大きくなってしまう。また、上述の条件式(3)で、全系の焦点距離fに対する第1及び第2レンズ群G1,G2の合成焦点距離f12の範囲を規定しているため、この条件式(4)の下限値を下回ると、第1レンズ群G1のパワーが弱くなって第1レンズ群G1から発生する収差が減り、第2レンズ群G2での収差、特に球面収差の発生が大きくなり、第1レンズ群G1と第2レンズ群G2との収差のバランスをとるのが困難となる。   Conditional expression (4) is a condition for controlling the incident angle to the diffractive optical element GD using power distribution. If the lower limit of conditional expression (4) is not reached, the focal length f2 of the second lens group G2 is shorter than the focal length f of the entire system, and the refraction angle of the light beam in the second lens group G2 is large. Thus, the incident angle to the diffractive optical element GD is increased. In addition, since the conditional expression (3) defines the range of the combined focal length f12 of the first and second lens groups G1 and G2 with respect to the focal length f of the entire system, the lower limit of the conditional expression (4) If the value is below the value, the power of the first lens group G1 becomes weak, the aberration generated from the first lens group G1 decreases, the aberration in the second lens group G2, particularly the generation of spherical aberration, increases, and the first lens group It becomes difficult to balance the aberration between G1 and the second lens group G2.

また、この顕微鏡対物レンズOLは、回折光学素子GDにおける回折光学面Dの回折格子溝の数をNとし、この回折光学面Dの有効半径をHとしたとき、次の条件式(5)を満足することが望ましい。   Further, in this microscope objective lens OL, when the number of diffraction grating grooves of the diffractive optical surface D in the diffractive optical element GD is N and the effective radius of the diffractive optical surface D is H, the following conditional expression (5) is satisfied. It is desirable to be satisfied.

2 ≦ N/H ≦ 5 (5) 2 ≦ N / H ≦ 5 (5)

但し、この図1の顕微鏡対物レンズOLにおいて、有効半径Hは、軸上物点から射出される最大開口数の光線及び、軸外物点から射出される光束の中、最も光軸から離れた方向に射出される光線を、軸上物点から射出される最大開口数の光線と第1レンズ群G1内のレンズL3の物体側の面との交点で制限し、最も光軸に近い方向に射出される光線を、軸上物点から射出される最大開口数の光線と第3レンズ群G3内のレンズL11の物体側の面との交点で制限したときに決まる当該光束の最外側の光線で決定される。   However, in the microscope objective lens OL of FIG. 1, the effective radius H is farthest from the optical axis among the light beams having the maximum numerical aperture emitted from the on-axis object point and the light beams emitted from the off-axis object point. The light beam emitted in the direction is limited by the intersection of the light beam having the maximum numerical aperture emitted from the on-axis object point and the object-side surface of the lens L3 in the first lens group G1, and in the direction closest to the optical axis. The outermost ray of the luminous flux determined when the emitted ray is limited by the intersection of the ray with the maximum numerical aperture emitted from the on-axis object point and the object side surface of the lens L11 in the third lens group G3. Determined by

条件式(5)は、回折光学面Dの回折格子溝の数Nと有効半径Hとの適切な範囲を規定する条件式である。この条件式(5)の下限値を下回ると、軸上色収差はd線とg線を色消しした際に、C線とF線で色消し不足となる(二次スペクトル)。一方、条件式(5)の上限値を上回ると、軸上色収差はd線とg線を色消しした際に、C線とF線で色消し過剰となる(二次スペクトル)。また、回折光学素子GDに形成された回折格子溝の最小ピッチ幅が小さくなり、製造上の精度を確保するのが困難となる。   Conditional expression (5) is a conditional expression that defines an appropriate range between the number N of diffraction grating grooves on the diffractive optical surface D and the effective radius H. If the lower limit of conditional expression (5) is not reached, axial chromatic aberration will be insufficiently achromatic in the C-line and F-line when the d-line and g-line are achromatic (secondary spectrum). On the other hand, if the upper limit of conditional expression (5) is exceeded, axial chromatic aberration will be excessively achromatic in the C-line and F-line when the d-line and g-line are achromatic (secondary spectrum). Further, the minimum pitch width of the diffraction grating grooves formed in the diffractive optical element GD becomes small, and it becomes difficult to ensure manufacturing accuracy.

さらに、この顕微鏡対物レンズOLは、回折光学素子GD中の2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の回折素子要素の材料のd線に対する屈折率をnd1、F線に対する屈折率をnF1、C線に対する屈折率をnC1とし、回折光学素子中の2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の回折素子要素の材料のd線に対する屈折率をnd2、F線に対する屈折率をnF2、C線に対する屈折率をnC2としたとき、次の条件式(6)〜(9)を満足することが望ましい。   Further, this microscope objective lens OL has a refractive index with respect to the d-line of the material of the diffractive element having the lower refractive index and the smaller Abbe number of the two diffractive element elements in the diffractive optical element GD. The refractive index is nF1, the refractive index with respect to the C-line is nC1, and the refractive index with respect to the d-line of the material of the diffractive element element having the higher refractive index and the larger Abbe number is nd2 When the refractive index for the F-line is nF2 and the refractive index for the C-line is nC2, it is desirable that the following conditional expressions (6) to (9) are satisfied.

nd1 ≦ 1.54 (6)
0.0145 ≦ nF1−nC1 (7)
1.55 ≦ nd2 (8)
nF2−nC2 ≦ 0.013 (9)
nd1 ≦ 1.54 (6)
0.0145 ≦ nF1-nC1 (7)
1.55 ≦ nd2 (8)
nF2-nC2 ≦ 0.013 (9)

条件式(6)〜(9)は、回折光学素子GDを構成する2つの回折素子要素の材質、すなわち2つの異なる紫外線硬化樹脂の屈折率と、F線及びC線に対する分散(nF−nC)をそれぞれ規定するものである。これらの条件式を満足することで、より良い性能で異なる2つの回折素子要素を密着接合させて回折光学面Dを形成することができ、これにより、g線からC線までの広波長域において90%以上の回折効率を実現することができる。なお、このような光学材料としての樹脂の例としては、例えば特願2004−367607号公報、特願2005−237573号公報等に記載されている。各条件式(6)〜(9)の上限値または下限値を超えると、本実施の形態に係る色消しレンズ系における回折光学素子GDは、広波長域において90%以上の回折効率を得ることが困難になり、密着複層型回折光学素子の利点を維持することが困難になってしまう。   Conditional expressions (6) to (9) are based on the materials of the two diffractive element elements constituting the diffractive optical element GD, that is, the refractive indexes of two different ultraviolet curable resins, and the dispersion with respect to the F line and C line (nF-nC) Respectively. By satisfying these conditional expressions, it is possible to form a diffractive optical surface D by tightly bonding two different diffractive element elements with better performance, and thereby in a wide wavelength range from g-line to C-line. A diffraction efficiency of 90% or more can be realized. In addition, as an example of resin as such an optical material, it describes in Japanese Patent Application No. 2004-367607, Japanese Patent Application No. 2005-237573, etc., for example. When the upper limit value or lower limit value of each conditional expression (6) to (9) is exceeded, the diffractive optical element GD in the achromatic lens system according to the present embodiment obtains a diffraction efficiency of 90% or more in a wide wavelength region. It becomes difficult to maintain the advantages of the contact multilayer diffractive optical element.

以下に、本実施の形態に係る顕微鏡対物レンズOLの3つの実施例を示すが、各実施例において、回折光学素子GDに形成された回折光学面Dの位相差は、通常の屈折率と後述する非球面式(10)とを用いて行う超高屈折率法により計算した。超高屈折率法とは、非球面形状と回折光学面の格子ピッチとの間の一定の等価関係を利用するものであり、本実施例においては、回折光学面Dを超高屈折率法のデータとして、すなわち、後述する非球面式(10)及びその係数により示している。なお、本実施例では収差特性の算出対象として、d線、C線、F線及びg線を選んでいる。本実施例において用いられたこれらd線、C線、F線及びg線の波長と、各スペクトル線に対して設定した超高屈折率法の計算に用いるための屈折率の値を次の表1に示す。   In the following, three examples of the microscope objective lens OL according to the present embodiment will be shown. In each example, the phase difference of the diffractive optical surface D formed on the diffractive optical element GD is the normal refractive index and will be described later. It calculated by the ultrahigh refractive index method performed using the aspherical surface formula (10). The ultrahigh refractive index method uses a certain equivalent relationship between the aspherical shape and the grating pitch of the diffractive optical surface. In this embodiment, the diffractive optical surface D is replaced by the ultrahigh refractive index method. As data, that is, an aspherical expression (10) described later and its coefficient. In this embodiment, d-line, C-line, F-line and g-line are selected as the calculation target of the aberration characteristics. The wavelengths of these d-line, C-line, F-line and g-line used in this example and the refractive index values used for calculation of the ultrahigh refractive index method set for each spectral line are shown in the following table. It is shown in 1.

(表1)
波長 屈折率(超高屈折率法による)
d線 587.562nm 10001.0000
C線 656.273nm 11170.4255
F線 486.133nm 8274.7311
g線 435.835nm 7418.6853
(Table 1)
Wavelength Refractive index (by ultra-high refractive index method)
d-line 587.562nm 10001.0000
C line 656.273nm 11170.4255
F line 486.133nm 8274.7311
g-line 435.835nm 7418.6853

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(頂点曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(10)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (vertex radius of curvature), κ is the conic constant, and An is the nth-order aspheric coefficient, and is expressed by the following equation (10). In the following examples, “E−n” indicates “× 10 −n ”.

S(y)=(y2/r)/{1+(1−κ×y2/r21/2
+A2×y2+A4×y4+A6×y6+A8×y8+A10×y10 (10)
S (y) = (y 2 / r) / {1+ (1−κ × y 2 / r 2 ) 1/2 }
+ A2 × y 2 + A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 (10)

なお、各実施例において、回折光学面が形成されたレンズ面には、表中の面番号の右側に*印を付しており、非球面式(10)は、この回折光学面の性能の諸元を示している。   In each example, the lens surface on which the diffractive optical surface is formed is marked with an asterisk (*) on the right side of the surface number in the table, and the aspherical expression (10) indicates the performance of this diffractive optical surface. The specifications are shown.

また、以下の各実施例における顕微鏡対物レンズOL1〜OL3は、無限遠補正型のものであり、図7に示す構成であって、表2に示す諸元を有する結像レンズILとともに使用される。なお、この表2において、第1欄mは物体側からの各光学面の番号を、第2欄rは各光学面の曲率半径を、第3欄dは各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄ndはd線に対する屈折率を、そして、第5欄νdはアッベ数をそれぞれ示している。ここで、空気の屈折率1.00000は省略してある。この諸元表の説明は以降の実施例においても同様である。   In addition, the microscope objective lenses OL1 to OL3 in each of the following examples are of the infinity correction type, have the configuration shown in FIG. 7, and are used together with the imaging lens IL having the specifications shown in Table 2. . In Table 2, the first column m is the number of each optical surface from the object side, the second column r is the radius of curvature of each optical surface, and the third column d is from each optical surface to the next optical surface. , The fourth column nd indicates the refractive index with respect to the d-line, and the fifth column νd indicates the Abbe number. Here, the refractive index of air of 1.0000 is omitted. The description of the specification table is the same in the following embodiments.

(表2)
m r d nd νd
1 75.043 5.10 1.62280 57.0
2 -75.043 2.00 1.74950 35.2
3 1600.580 7.50
4 50.256 5.10 1.66755 42.0
5 -84.541 1.80 1.61266 44.4
6 36.911
(Table 2)
m r d nd νd
1 75.043 5.10 1.62280 57.0
2 -75.043 2.00 1.74950 35.2
3 1600.580 7.50
4 50.256 5.10 1.66755 42.0
5 -84.541 1.80 1.61266 44.4
6 36.911

なお、この結像レンズILは、物体側から順に、両凸レンズL21と両凹レンズL22とを接合した接合レンズ、及び、両凸レンズL23と両凹レンズL24とを接合した接合レンズから構成される。   The imaging lens IL includes a cemented lens in which a biconvex lens L21 and a biconcave lens L22 are cemented in order from the object side, and a cemented lens in which a biconvex lens L23 and a biconcave lens L24 are cemented.

[第1実施例]
上述の説明で用いた図1は、第1実施例に係る顕微鏡対物レンズOL1を示している。この顕微鏡対物レンズOL1は、乾燥系の対物レンズであって、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側より順に、物体側に凹面を向けた正メニスカスレンズ(正レンズ成分)L1、物体側に凹面を向けた正メニスカスレンズL2、及び、両凸レンズL3と両凹レンズL4と両凸レンズL5とを接合した接合レンズ成分CL11から構成される。また、第2レンズ群G2は、物体側から順に、両凸レンズ形状の回折光学素子GDと両凹レンズL10とを接合した接合レンズ成分CL21から構成される。さらに、第3レンズ群G3は、物体側から順に、両凸レンズL11と両凹レンズL12とを接合した接合レンズ成分(色補正レンズ成分)CL31から構成される。ここで、この第1実施例においては、第1レンズ群G1の最も物体側に位置する正レンズ成分(正メニスカスレンズL1)は、1つの負の屈折力を有するレンズ面(第1面)を有し、また、第3レンズ群G3の最も像側のレンズ面(第18面)は、像側に凹面を向けて配置されている。
[First embodiment]
FIG. 1 used in the above description shows a microscope objective lens OL1 according to the first embodiment. The microscope objective lens OL1 is a dry objective lens, and in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a negative refraction. And a third lens group G3 having power. The first lens group G1 includes, in order from the object side, a positive meniscus lens (positive lens component) L1 having a concave surface directed toward the object side, a positive meniscus lens L2 having a concave surface directed toward the object side, and a biconvex lens L3 and a biconcave lens L4. And a biconvex lens L5 are cemented lens component CL11. The second lens group G2 includes a cemented lens component CL21 in which a biconvex lens-shaped diffractive optical element GD and a biconcave lens L10 are cemented in order from the object side. Further, the third lens group G3 includes a cemented lens component (color correction lens component) CL31 in which a biconvex lens L11 and a biconcave lens L12 are cemented in order from the object side. Here, in the first embodiment, the positive lens component (positive meniscus lens L1) located closest to the object side of the first lens group G1 has one lens surface (first surface) having negative refractive power. In addition, the most image side lens surface (18th surface) of the third lens group G3 is disposed with the concave surface facing the image side.

また、回折光学素子GDは、物体側に凸面を向けた平凸レンズL6、それぞれ異なる樹脂材料から形成された2個の光学部材L7,L8、及び、像側に凸面を向けた平凸レンズL9がこの順で接合され、光学部材L7,L8の接合面に回折格子溝(回折光学面D)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。   The diffractive optical element GD includes a plano-convex lens L6 having a convex surface facing the object side, two optical members L7 and L8 formed from different resin materials, and a plano-convex lens L9 having a convex surface facing the image side. The diffraction grating grooves (diffractive optical surfaces D) are formed on the bonded surfaces of the optical members L7 and L8. That is, the diffractive optical element GD is a contact multilayer diffractive optical element.

このように図1に示した第1実施例に係る顕微鏡対物レンズOL1の諸元を表3に示す。なお、この表3において、fは顕微鏡対物レンズOL1の全系の焦点距離を、NAは開口数を、βは倍率をそれぞれ示している。また、d0は標本(物体)から最も物体側にある正レンズ成分(正メニスカスレンズL1)に含まれる負の屈折力を有するレンズ面のうち、最も物体側に位置する負の屈折力を有するレンズ面(第1面)の頂点までの光軸上の距離を示している。なお、この第1実施例では、厚さ0.170mm、d線に対する屈折率1.52216、アッベ数58.8のカバーガラスを用いて物体(標本)を観察するように構成されている。そのため、上述のd0は、このカバーガラスの厚さが除かれている。   Table 3 shows the specifications of the microscope objective lens OL1 according to the first example shown in FIG. In Table 3, f represents the focal length of the entire microscope objective lens OL1, NA represents the numerical aperture, and β represents the magnification. D0 is a lens having a negative refractive power located closest to the object among the lens surfaces having a negative refractive power included in the positive lens component (positive meniscus lens L1) closest to the object from the specimen (object). The distance on the optical axis to the top of the surface (first surface) is shown. In the first embodiment, an object (specimen) is observed using a cover glass having a thickness of 0.170 mm, a refractive index of 1.52216 with respect to d-line, and an Abbe number of 58.8. Therefore, the thickness of this cover glass is excluded from d0 described above.

また、表3において、hは回折光学面Dを通る最大画角に対応する光束の主光線の光軸からの高さを示し、f1は第1レンズ群G1の焦点距離を示し、f2は第2レンズ群G2の焦点距離を示し、f12は第1及び第2レンズ群G1,G2の合成焦点距離を示し、f3は第3レンズ群G3の焦点距離を示し、Nは回折光学素子GDにおける回折光学面Dの回折格子溝の数を示し、Hはこの回折光学面の有効半径を示す。また、前述の如く、本第1実施例における軸外主光線及び有効径を決める軸外光束を制限するレンズ面は、両凸レンズL3の物体側の面(第5面)と両凸レンズL11の物体側の面(第16面)である。   In Table 3, h indicates the height from the optical axis of the principal ray of the light beam corresponding to the maximum field angle passing through the diffractive optical surface D, f1 indicates the focal length of the first lens group G1, and f2 indicates the first 2 indicates the focal length of the second lens group G2, f12 indicates the combined focal length of the first and second lens groups G1 and G2, f3 indicates the focal length of the third lens group G3, and N indicates the diffraction in the diffractive optical element GD. The number of diffraction grating grooves on the optical surface D is indicated, and H indicates the effective radius of the diffractive optical surface. As described above, the lens surface for limiting the off-axis principal ray and the off-axis light beam that determines the effective diameter in the first embodiment is the object-side surface (fifth surface) of the biconvex lens L3 and the object of the biconvex lens L11. This is the side surface (the 16th surface).

また、表3において、第1欄mに示す各光学面の番号(右の*は回折光学面として形成されているレンズ面を示す)は、図1に示した面番号1〜18に対応している。また、第2欄rにおいて、曲率半径0.000は平面を示している。また、回折光学面の場合は、第2欄rにベースとなる非球面の基準となる球面の曲率半径を示し、超高屈折率法に用いるデータは非球面データとして諸元表内に示している。さらに、この表3には、上記条件式(1)〜(9)に対応する値、すなわち、条件対応値も示している。以上の諸元表の説明は、以降の実施例においても同様である。   In Table 3, the numbers of the optical surfaces shown in the first column m (* on the right indicate lens surfaces formed as diffractive optical surfaces) correspond to the surface numbers 1 to 18 shown in FIG. ing. In the second column r, the curvature radius 0.000 indicates a plane. In the case of a diffractive optical surface, the second column r indicates the radius of curvature of the spherical surface that serves as a reference for the base aspherical surface, and the data used for the ultrahigh refractive index method is indicated in the specification table as aspherical data. Yes. Further, Table 3 also shows values corresponding to the conditional expressions (1) to (9), that is, condition corresponding values. The description of the above specification table is the same in the following embodiments.

なお、以下の全ての諸元において掲載される曲率半径r、面間隔d、全系の焦点距離fその他長さの単位は、特記の無い場合、一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることはなく、他の適当な単位を用いることもできる。   Unless otherwise specified, “mm” is generally used as the unit of the radius of curvature r, the surface interval d, the focal length f of the entire system, and other lengths that are listed in all the following specifications. Since the same optical performance can be obtained even when proportional expansion or reduction is performed, the unit is not limited to “mm”, and other appropriate units may be used.

(表3)
f=10.030
NA=0.75
β=20x
d0=1.426
h=0.234
f1=11.913
f2=-2083.794
f12=11.339
f3=-842.747
N=25
H=9.43

m r d nd νd
1 -5.203 10.00 1.72916 54.7
2 -8.542 0.15
3 -494.981 5.40 1.49782 82.5
4 -15.368 0.15
5 93.917 5.30 1.49782 82.5
6 -21.131 1.50 1.61340 44.3
7 17.138 7.65 1.49782 82.5
8 -24.188 0.15
9 57.175 4.00 1.51680 64.1
10 0.000 0.20 1.55690 50.2
11 0.000 0.00 10001.00000 -3.5
12* 0.000 0.20 1.52760 34.7
13 0.000 3.80 1.60300 65.5
14 -26.099 1.20 1.75520 27.5
15 166.877 14.80
16 24.623 4.60 1.71736 29.5
17 -41.588 1.15 1.51742 52.3
18 13.348

回折光学面データ
第12面 κ=1.0000 A2=-1.6667E-08 A4=3.83938E-14
A6=-1.86752E-16 A8=-6.20047E-19 A10=0.00000E+00

条件対応値
(1)|(n2−n1)/(R・d0)|=0.098
(2)|h/f|=0.02
(3)|f12/f|=1.1
(4)|f2/f|=207.7
(5)N/H=2.7
(6)nd1=1.528
(7)nF1−nC1=0.0152
(8)nd2=1.557
(9)nF2−nC2=0.0111
(Table 3)
f = 10.030
NA = 0.75
β = 20x
d0 = 1.426
h = 0.234
f1 = 11.913
f2 = -2083.794
f12 = 11.339
f3 = -842.747
N = 25
H = 9.43

m r d nd νd
1 -5.203 10.00 1.72916 54.7
2 -8.542 0.15
3 -494.981 5.40 1.49782 82.5
4 -15.368 0.15
5 93.917 5.30 1.49782 82.5
6 -21.131 1.50 1.61340 44.3
7 17.138 7.65 1.49782 82.5
8 -24.188 0.15
9 57.175 4.00 1.51680 64.1
10 0.000 0.20 1.55690 50.2
11 0.000 0.00 10001.00000 -3.5
12 * 0.000 0.20 1.52760 34.7
13 0.000 3.80 1.60 300 65.5
14 -26.099 1.20 1.75520 27.5
15 166.877 14.80
16 24.623 4.60 1.71736 29.5
17 -41.588 1.15 1.51742 52.3
18 13.348

Diffraction optical surface data 12th surface κ = 1.0000 A2 = -1.6667E-08 A4 = 3.83938E-14
A6 = -1.86752E-16 A8 = -6.20047E-19 A10 = 0.000000 + 00

Condition corresponding value (1) | (n2-n1) / (R · d0) | = 0.098
(2) | h / f | = 0.02
(3) | f12 / f | = 1.1
(4) | f2 / f | = 207.7
(5) N / H = 2.7
(6) nd1 = 1.528
(7) nF1-nC1 = 0.0152
(8) nd2 = 1.557
(9) nF2-nC2 = 0.0111

なお、表3に示した条件対応値のうち、条件式(1)は、第1面の曲率半径R、その前後の媒質のd線に対する屈折率n1,n2及び物体から第1面までの光軸上の距離d0から算出された値である。また、条件式(6),(7)は第12面の値に相当し、条件式(8),(9)は第10面の値に相当する。このように、第1実施例では上記条件式(1)〜(9)は全て満たされていることが分かる。図2に、この第1実施例におけるd線、C線、F線及びg線の光線に対する球面収差、非点収差、倍率色収差、及び、コマ収差の諸収差図を示す。これらの収差図のうち、球面収差図は開口数NAに対する収差量を示し、非点収差図及び倍率色収差は像高Yに対する収差量を示し、コマ収差図は、像高Yが12.5mmのとき、9.0mmのとき、6.0mmのとき、及び、0mmのときの収差量を示している。また、球面収差図、倍率色収差図及びコマ収差図において、実線はd線を示し、点線はC線を示し、一点鎖線はF線を示し、二点鎖線はg線を示している。さらに、非点収差図において、実線は各波長の光線に対するサジタル像面を示し、破線は各波長の光線に対するメリジオナル像面を示している。これらの諸収差図の説明は以降の実施例においても同様である。この図2に示す各収差図から明らかなように、第1実施例では諸収差が良好に補正され、優れた結像性能が確保されていることがわかる。   Of the values corresponding to the conditions shown in Table 3, the conditional expression (1) indicates that the radius of curvature R of the first surface, the refractive indexes n1 and n2 with respect to the d-line of the medium before and after that, and the light from the object to the first surface. It is a value calculated from the distance d0 on the axis. Conditional expressions (6) and (7) correspond to values on the twelfth surface, and conditional expressions (8) and (9) correspond to values on the tenth surface. Thus, it can be seen that all the conditional expressions (1) to (9) are satisfied in the first embodiment. FIG. 2 shows various aberration diagrams of spherical aberration, astigmatism, lateral chromatic aberration, and coma aberration for the d-line, C-line, F-line, and g-line rays in the first embodiment. Among these aberration diagrams, the spherical aberration diagram shows the aberration amount with respect to the numerical aperture NA, the astigmatism diagram and the lateral chromatic aberration show the aberration amount with respect to the image height Y, and the coma aberration diagram shows that the image height Y is 12.5 mm. In this case, the aberration amount is shown at 9.0 mm, 6.0 mm, and 0 mm. In the spherical aberration diagram, the lateral chromatic aberration diagram, and the coma aberration diagram, the solid line indicates the d line, the dotted line indicates the C line, the alternate long and short dash line indicates the F line, and the alternate long and two short dashes line indicates the g line. Further, in the astigmatism diagram, the solid line indicates the sagittal image plane for the light beams of each wavelength, and the broken line indicates the meridional image plane for the light beams of each wavelength. The explanation of these aberration diagrams is the same in the following examples. As is apparent from the respective aberration diagrams shown in FIG. 2, it is understood that various aberrations are corrected well and excellent imaging performance is secured in the first embodiment.

[第2実施例]
次に、第2実施例として、図3に示す顕微鏡対物レンズOL2について説明する。この図3に示す顕微鏡対物レンズOL2も、乾燥系の対物レンズであって、物体側より順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側より順に、物体側に凹面を向けた負メニスカスレンズL1と物体側に凹面を向けた正メニスカスレンズL2とを接合した接合レンズ成分(正レンズ成分)CL11、両凸レンズL3、及び、物体側に凸面を向けた負メニスカスレンズL4と両凸レンズL5とを接合した接合レンズ成分CL12から構成される。また、第2レンズ群G2は、物体側から順に、回折光学面Dを含む平板形状の回折光学素子GD、及び、両凸レンズL10と物体側に凹面を向けた負メニスカスレンズL11とを接合した接合レンズ成分CL21で構成される。さらに、第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL12と両凹レンズL13とを接合した接合レンズ成分(色補正レンズ成分)CL31から構成される。ここで、この第2実施例においては、第1レンズ群G1の最も物体側に位置する正レンズ成分(接合レンズ成分CL11)は、2つの負の屈折力を有するレンズ面(第1面及び第2面)を有し、また、第3レンズ群G3の最も像側のレンズ面(第20面)は、像側に凹面を向けて配置されている。また、本第2実施例における軸外主光線及び有効径を決める軸外光束を制限するレンズ面は、正メニスカスレンズL2の像側の面(第3面)と正メニスカスレンズL12の物体側の面(第18面)である。
[Second Embodiment]
Next, as a second embodiment, a microscope objective lens OL2 shown in FIG. 3 will be described. The microscope objective lens OL2 shown in FIG. 3 is also a dry objective lens, and in order from the object side, a first lens group G1 having a positive refractive power, and a second lens group G2 having a positive refractive power. And a third lens group G3 having negative refractive power. The first lens group G1, in order from the object side, is a cemented lens component (positive lens component) CL11 obtained by cementing a negative meniscus lens L1 having a concave surface toward the object side and a positive meniscus lens L2 having a concave surface toward the object side. The lens includes a convex lens L3, and a cemented lens component CL12 in which a negative meniscus lens L4 having a convex surface facing the object side and a biconvex lens L5 are cemented. The second lens group G2 is a cemented structure in which, from the object side, a flat diffractive optical element GD including the diffractive optical surface D, and a biconvex lens L10 and a negative meniscus lens L11 having a concave surface facing the object side are cemented. Consists of a lens component CL21. Further, the third lens group G3 includes, in order from the object side, a cemented lens component (color correction lens component) CL31 in which a positive meniscus lens L12 having a concave surface facing the object side and a biconcave lens L13 are cemented. Here, in the second example, the positive lens component (junction lens component CL11) located closest to the object side of the first lens group G1 has two lens surfaces (first surface and first lens) having negative refractive power. The lens surface (20th surface) closest to the image side of the third lens group G3 is disposed with the concave surface facing the image side. The lens surfaces for limiting the off-axis principal ray and the off-axis light beam that determines the effective diameter in the second embodiment are the image side surface (third surface) of the positive meniscus lens L2 and the object side of the positive meniscus lens L12. This is the surface (18th surface).

また、この第2実施例に係る回折光学素子GDも密着複層型の回折光学素子であって、平板状の光学ガラスL6、それぞれ異なる樹脂材料から形成された2個の光学部材L7,L8、及び、平板状の光学ガラスL9がこの順で接合され、光学部材L7,L8の接合面に回折格子溝(回折光学面D)が形成されている。   Further, the diffractive optical element GD according to the second embodiment is also a multi-layered diffractive optical element, which is a flat optical glass L6, two optical members L7, L8 each formed of a different resin material, And the flat optical glass L9 is joined in this order, and the diffraction grating groove | channel (diffractive optical surface D) is formed in the joint surface of the optical members L7 and L8.

この図3に示した第2実施例に係る顕微鏡対物レンズOL2の諸元を表4に示す。なお、表4に示す面番号は図3に示した面番号1〜20と一致している。また、d0は標本(物体)から最も物体側にある正レンズ成分(接合レンズ成分CL11)に含まれる負の屈折力を有するレンズ面のうち、最も物体側に位置する負の屈折力を有するレンズ面(第1面)の頂点までの光軸上の距離を示している。   Table 4 shows the specifications of the microscope objective lens OL2 according to the second example shown in FIG. In addition, the surface number shown in Table 4 corresponds with the surface numbers 1-20 shown in FIG. D0 is a lens having a negative refractive power located closest to the object among the lens surfaces having a negative refractive power included in the positive lens component (junction lens component CL11) closest to the object from the specimen (object). The distance on the optical axis to the top of the surface (first surface) is shown.

(表4)
f=9.962
NA=0.45
β=20x
d0=5.561
h=0.336
f1=15.459
f2=116.019
f12=13.404
f3=-36.215
N=26
H=7.89

m r d nd νd
1 -13.200 8.80 1.59270 35.3
2 -89.546 5.46 1.65160 58.5
3 -12.975 0.20
4 1362.063 3.65 1.49782 82.6
5 -24.083 0.30
6 51.899 1.00 1.64769 33.8
7 18.663 4.50 1.49782 82.6
8 -93.183 0.20
9 0.000 1.50 1.51680 64.1
10 0.000 0.20 1.55690 50.2
11 0.000 0.00 10001.00000 -3.5
12* 0.000 0.20 1.52760 34.7
13 0.000 1.50 1.51680 64.1
14 0.000 0.20
15 30.634 5.10 1.49782 82.6
16 -18.485 1.00 1.66755 42.0
17 -1177.040 15.83
18 -550.436 3.70 1.74077 27.8
19 -14.581 2.80 1.51742 52.3
20 12.143

回折光学面データ
第12面 κ=1.0000 A2=-2.50000E-08 A4=1.32542E-13
A6=-2.23241E-16 A8=-1.44998E-18 A10=0.00000E+00

条件対応値
(1)|(n2−n1)/(R・d0)|=0.008
(2)|h/f|=0.03
(3)|f12/f|=1.3
(4)|f2/f|=11.6
(5)N/H=3.3
(6)nd1=1.528
(7)nF1−nC1=0.0152
(8)nd2=1.557
(9)nF2−nC2=0.0111
(Table 4)
f = 9.962
NA = 0.45
β = 20x
d0 = 5.561
h = 0.336
f1 = 15.459
f2 = 116.019
f12 = 13.404
f3 = −36.215
N = 26
H = 7.89

m r d nd νd
1 -13.200 8.80 1.59270 35.3
2 -89.546 5.46 1.65160 58.5
3 -12.975 0.20
4 1362.063 3.65 1.49782 82.6
5 -24.083 0.30
6 51.899 1.00 1.64769 33.8
7 18.663 4.50 1.49782 82.6
8 -93.183 0.20
9 0.000 1.50 1.51680 64.1
10 0.000 0.20 1.55690 50.2
11 0.000 0.00 10001.00000 -3.5
12 * 0.000 0.20 1.52760 34.7
13 0.000 1.50 1.51680 64.1
14 0.000 0.20
15 30.634 5.10 1.49782 82.6
16 -18.485 1.00 1.66755 42.0
17 -1177.040 15.83
18 -550.436 3.70 1.74077 27.8
19 -14.581 2.80 1.51742 52.3
20 12.143

Diffraction optical surface data 12th surface κ = 1.0000 A2 = -2.50000E-08 A4 = 1.254542E-13
A6 = -2.23241E-16 A8 = -1.44998E-18 A10 = 0.000000 + 00

Condition corresponding value (1) | (n2−n1) / (R · d0) | = 0.008
(2) | h / f | = 0.03
(3) | f12 / f | = 1.3
(4) | f2 / f | = 11.6
(5) N / H = 3.3
(6) nd1 = 1.528
(7) nF1-nC1 = 0.0152
(8) nd2 = 1.557
(9) nF2-nC2 = 0.0111

なお、表4に示した条件対応値のうち、条件式(1)は、第1面の曲率半径R、その前後の媒質のd線に対する屈折率n1,n2及び物体から第1面までの光軸上の距離d0から算出された値である。また、条件式(6),(7)は第12面の値に相当し、条件式(8),(9)は第10面の値に相当する。このように、第2実施例では上記条件式(1)〜(9)は全て満たされていることが分かる。図4にこの第2実施例に係る顕微鏡対物レンズOL2の球面収差、非点収差、倍率色収差及びコマ収差の諸収差図を示す。この各収差図から明らかなように、この第2実施例でも、収差が良好に補正され、優れた結像性能が確保されていることが分かる。   Of the values corresponding to the conditions shown in Table 4, the conditional expression (1) indicates that the curvature radius R of the first surface, the refractive indexes n1 and n2 with respect to the d-line of the medium before and after that, and the light from the object to the first surface It is a value calculated from the distance d0 on the axis. Conditional expressions (6) and (7) correspond to values on the twelfth surface, and conditional expressions (8) and (9) correspond to values on the tenth surface. Thus, it can be seen that all the conditional expressions (1) to (9) are satisfied in the second embodiment. FIG. 4 shows various aberration diagrams of spherical aberration, astigmatism, lateral chromatic aberration, and coma aberration of the microscope objective lens OL2 according to the second example. As is apparent from the respective aberration diagrams, it is understood that the aberration is corrected well and excellent imaging performance is ensured also in the second embodiment.

[第3実施例]
次に、第3実施例として、図5に示す顕微鏡対物レンズOL3について説明する。この図5に示す顕微鏡対物レンズOL3も、乾燥系の対物レンズであって、物体側より順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側より順に、両凹レンズL1と両凸レンズL2とを接合した接合レンズ成分(正レンズ成分)CL11、及び、両凸レンズL3から構成される。また、第2レンズ群G2は、平板形状の回折光学素子GDから構成される。さらに、第3レンズ群G3は、物体側から順に、両凸レンズL8と両凹レンズL9とを接合した接合レンズ成分(色補正レンズ成分)CL31から構成される。ここで、この第3実施例においても、第1レンズ群G1の最も物体側に位置する正レンズ成分(接合レンズ成分CL11)は、2つの負の屈折力を有するレンズ面(第1面及び第2面)を有し、また、第3レンズ群G3の最も像側のレンズ面(第14面)は、像側に凹面を向けて配置されている。また、本第3実施例における軸外主光線及び有効径を決める軸外光束を制限するレンズ面は、両凸レンズL2の像側の面(第3面)と両凹レンズL9の像側の面(第14面)である。
[Third embodiment]
Next, a microscope objective lens OL3 shown in FIG. 5 will be described as a third embodiment. The microscope objective lens OL3 shown in FIG. 5 is also a dry objective lens, and in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power. And a third lens group G3 having negative refractive power. The first lens group G1 includes, in order from the object side, a cemented lens component (positive lens component) CL11 obtained by cementing a biconcave lens L1 and a biconvex lens L2, and a biconvex lens L3. The second lens group G2 is composed of a plate-shaped diffractive optical element GD. Further, the third lens group G3 includes a cemented lens component (color correction lens component) CL31 in which a biconvex lens L8 and a biconcave lens L9 are cemented in order from the object side. Here, also in the third embodiment, the positive lens component (junction lens component CL11) positioned closest to the object side of the first lens group G1 has two lens surfaces (first surface and first lens) having negative refractive power. The lens surface (14th surface) closest to the image side of the third lens group G3 is disposed with the concave surface facing the image side. Further, the lens surfaces for limiting the off-axis principal ray and the off-axis light beam that determines the effective diameter in the third embodiment are the image side surface (third surface) of the biconvex lens L2 and the image side surface of the biconcave lens L9 ( 14th surface).

また、この第3実施例に係る回折光学素子GDも密着複層型の回折光学素子であって、平板状の光学ガラスL4、それぞれ異なる樹脂材料から形成された2個の光学部材L5,L6、及び、平板状の光学ガラスL7がこの順で接合され、光学部材L5,L6の接合面に回折格子溝(回折光学面D)が形成されている。   Further, the diffractive optical element GD according to the third embodiment is also a close-contact multilayer diffractive optical element, which is a flat optical glass L4, two optical members L5, L6 each formed of a different resin material, And the flat optical glass L7 is joined in this order, and the diffraction grating groove | channel (diffractive optical surface D) is formed in the joint surface of the optical members L5 and L6.

この図5に示した第3実施例に係る顕微鏡対物レンズOL3の諸元を表5に示す。なお、表5に示す面番号は図5に示した面番号1〜14と一致している。また、d0は標本(物体)から最も物体側にある正レンズ成分(接合レンズ成分CL11)に含まれる負の屈折力を有するレンズ面のうち、最も物体側に位置する負の屈折力を有するレンズ面(第1面)の頂点までの光軸上の距離を示している。   Table 5 shows the specifications of the microscope objective lens OL3 according to the third example shown in FIG. In addition, the surface number shown in Table 5 corresponds with the surface numbers 1-14 shown in FIG. D0 is a lens having a negative refractive power located closest to the object among the lens surfaces having a negative refractive power included in the positive lens component (junction lens component CL11) closest to the object from the specimen (object). The distance on the optical axis to the top of the surface (first surface) is shown.

(表5)
f=20.015
NA=0.25
β=10x
d0=11.600
h=0.381
f1=24.397
f2=1200.063
f12=23.824
f3=-2110.168
N=27
H=6.15

m r d nd νd
1 -20.000 9.70 1.80384 33.9
2 36.020 3.05 1.60300 65.5
3 -15.779 0.75
4 40.984 4.50 1.60311 60.7
5 -39.626 0.30
6 0.000 1.50 1.51680 64.1
7 0.000 0.20 1.55690 50.2
8 0.000 0.00 10001.00000 -3.5
9* 0.000 0.20 1.52760 34.7
10 0.000 1.50 1.51680 64.1
11 0.000 14.90
12 13.519 3.30 1.56883 56.3
13 -180.667 2.65 1.51823 58.9
14 10.140

回折光学面データ
第9面 κ=1.0000 A2=-4.16667E-08 A4=1.32746E-13
A6=-2.17799E-16 A8=-1.31199E-18 A10=0.00000E+00

条件対応値
(1)|(n2−n1)/(R・d0)|=0.003
(2)|h/f|=0.02
(3)|f12/f|=1.2
(4)|f2/f|=60.0
(5)N/H=4.4
(6)nd1=1.528
(7)nF1−nC1=0.0152
(8)nd2=1.557
(9)nF2−nC2=0.0111
(Table 5)
f = 20.015
NA = 0.25
β = 10x
d0 = 11.600
h = 0.382
f1 = 24.397
f2 = 1200.063
f12 = 23.824
f3 = -2110.168
N = 27
H = 6.15

m r d nd νd
1 -20.000 9.70 1.80384 33.9
2 36.020 3.05 1.60 300 65.5
3 -15.779 0.75
4 40.984 4.50 1.60311 60.7
5 -39.626 0.30
6 0.000 1.50 1.51680 64.1
7 0.000 0.20 1.55690 50.2
8 0.000 0.00 10001.00000 -3.5
9 * 0.000 0.20 1.52760 34.7
10 0.000 1.50 1.51680 64.1
11 0.000 14.90
12 13.519 3.30 1.56883 56.3
13 -180.667 2.65 1.51823 58.9
14 10.140

Diffraction optical surface data 9th surface κ = 1.0000 A2 = -4.16667E-08 A4 = 1.32746E-13
A6 = -2.17799E-16 A8 = -1.31199E-18 A10 = 0.000000 + 00

Condition-corresponding value (1) | (n2-n1) / (R · d0) | = 0.003
(2) | h / f | = 0.02
(3) | f12 / f | = 1.2
(4) | f2 / f | = 60.0
(5) N / H = 4.4
(6) nd1 = 1.528
(7) nF1-nC1 = 0.0152
(8) nd2 = 1.557
(9) nF2-nC2 = 0.0111

なお、表5に示した条件対応値のうち、条件式(1)は、第1面の曲率半径R、その前後の媒質のd線に対する屈折率n1,n2及び物体から第1面までの光軸上の距離d0から算出された値である。また、条件式(6),(7)は第9面の値に相当し、条件式(8),(9)は第7面の値に相当する。このように、第3実施例では上記条件式(1)〜(9)は全て満たされていることが分かる。図6にこの第3実施例に係る顕微鏡対物レンズOL3の球面収差、非点収差、倍率色収差及びコマ収差の諸収差図を示す。この各収差図から明らかなように、この第3実施例でも、収差が良好に補正され、優れた結像性能が確保されていることが分かる。   Of the condition corresponding values shown in Table 5, the conditional expression (1) indicates that the radius of curvature R of the first surface, the refractive indices n1 and n2 with respect to the d-line of the medium before and after the light, and the light from the object to the first surface It is a value calculated from the distance d0 on the axis. Conditional expressions (6) and (7) correspond to the value of the ninth surface, and conditional expressions (8) and (9) correspond to the value of the seventh surface. Thus, it can be seen that all the conditional expressions (1) to (9) are satisfied in the third embodiment. FIG. 6 is a diagram showing various aberrations of spherical aberration, astigmatism, lateral chromatic aberration, and coma aberration of the microscope objective lens OL3 according to the third example. As is apparent from the respective aberration diagrams, it is understood that aberrations are corrected well and excellent imaging performance is secured in this third embodiment.

OL(OL1〜OL3) 顕微鏡対物レンズ G1 第1レンズ群
G2 第2レンズ群 G3 第3レンズ群
GD 回折光学素子 CL31 色補正レンズ成分
OL (OL1 to OL3) Microscope objective lens G1 First lens group G2 Second lens group G3 Third lens group GD Diffractive optical element CL31 Color correction lens component

Claims (5)

物体側から順に、
正の屈折力を有する第1レンズ群と、
第2レンズ群と、
負の屈折力を有する第3レンズ群と、を有し、
前記第1レンズ群は、最も物体側に位置し、負の屈折力を有するレンズ面を含む正レンズ成分を有し、
前記第2レンズ群は、異なる光学材料からなる2つの回折素子要素を接合し、当該接合面に回折格子溝が形成された回折光学面を有する回折光学素子を有し、
前記第3レンズ群は、少なくとも1つ以上の、負の屈折力を有する色補正レンズ成分を有し、且つ、当該第3レンズ群の最も像側のレンズ面が、像側に凹面を向けて配置されており、
前記第1レンズ群に設けられた前記正レンズ成分に含まれる前記負の屈折力を有するレンズ面のうち、最も物体側に配置された負の屈折力を有するレンズ面の曲率半径をRとし、当該負の屈折力を有するレンズ面の物体側の媒質のd線に対する屈折率をn1、像側の媒質のd線に対する屈折率をn2とし、当該負の屈折力を有するレンズ面の頂点から物体までの光軸上の距離をd0としたとき、次式
|(n2−n1)/(R・d0)| ≦ 0.1
の条件を満足し、
全系の焦点距離をfとし、前記回折光学面を通る最大画角に対応する光束の主光線の光軸からの高さをhとしたとき、次式
0.01 ≦ |h/f| ≦ 0.04
の条件を満足する顕微鏡対物レンズ。
From the object side,
A first lens group having a positive refractive power;
A second lens group;
A third lens group having negative refractive power,
The first lens group has a positive lens component including a lens surface that is located closest to the object side and has a negative refractive power;
The second lens group includes a diffractive optical element having a diffractive optical surface formed by bonding two diffractive element elements made of different optical materials and having a diffraction grating groove formed on the bonded surface.
The third lens group includes at least one color correction lens component having negative refractive power, and the lens surface closest to the image side of the third lens group faces a concave surface toward the image side. Has been placed,
Of the lens surfaces having negative refractive power included in the positive lens component provided in the first lens group, the radius of curvature of the lens surface having negative refractive power arranged closest to the object side is R, The refractive index for the d-line of the medium on the object side of the lens surface having the negative refractive power is n1, the refractive index for the d-line of the medium on the image side is n2, and the object from the apex of the lens surface having the negative refractive power When the distance on the optical axis up to d0 is d0, the following formula | (n2-n1) / (R · d0) | ≦ 0.1
Satisfy the conditions of
When the focal length of the entire system is f and the height from the optical axis of the principal ray of the light beam corresponding to the maximum angle of view passing through the diffractive optical surface is h, the following expression 0.01 ≦ | h / f | ≦ 0.04
Microscope objective lens that satisfies the above conditions.
前記第1レンズ群と前記第2レンズ群との合成焦点距離をf12としたとき、次式
1 ≦ |f12/f| ≦ 1.5
の条件を満足する請求項1に記載の顕微鏡対物レンズ。
When the combined focal length of the first lens group and the second lens group is f12, the following expression 1 ≦ | f12 / f | ≦ 1.5
The microscope objective lens according to claim 1, which satisfies the following condition.
前記第2レンズ群の焦点距離をf2としたとき、次式
10 ≦ |f2/f|
の条件を満足する請求項1または2に記載の顕微鏡対物レンズ。
When the focal length of the second lens group is f2, the following expression 10 ≦ | f2 / f |
The microscope objective lens according to claim 1 or 2, which satisfies the following condition.
前記回折光学素子における前記回折光学面の回折格子溝の数をNとし、当該回折光学面の有効半径をHとしたとき、次式
2 ≦ N/H ≦ 5
の条件を満足する請求項1〜3いずれか一項に記載の顕微鏡対物レンズ。
When the number of diffraction grating grooves of the diffractive optical surface in the diffractive optical element is N and the effective radius of the diffractive optical surface is H, the following formula 2 ≦ N / H ≦ 5
The microscope objective lens as described in any one of Claims 1-3 which satisfy | fills these conditions.
前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の前記回折素子要素の材料のd線に対する屈折率をnd1、F線に対する屈折率をnF1、C線に対する屈折率をnC1とし、前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の前記回折素子要素の材料のd線に対する屈折率をnd2、F線に対する屈折率をnF2、C線に対する屈折率をnC2としたとき、次式
nd1 ≦ 1.54
0.0145 ≦ nF1−nC1
1.55 ≦ nd2
nF2−nC2 ≦ 0.013
の条件を満足する請求項1〜4いずれか一項に記載の顕微鏡対物レンズ。
Of the two diffractive element elements in the diffractive optical element, the refractive index for the d-line of the material of the diffractive element element having the lower refractive index and the smaller Abbe number is nd1, the refractive index for the F line is nF1, and the C line. The refractive index with respect to the d-line of the material of the diffractive element element having the higher refractive index and the larger Abbe number among the two diffractive element elements in the diffractive optical element with respect to nd2 and F-line is nC1. When the refractive index is nF2 and the refractive index for the C-line is nC2, the following formula nd1 ≦ 1.54
0.0145 ≦ nF1-nC1
1.55 ≤ nd2
nF2-nC2 ≦ 0.013
The microscope objective lens as described in any one of Claims 1-4 which satisfies these conditions.
JP2009040281A 2008-04-11 2009-02-24 Microscope objective lens Active JP5434130B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2009040281A JP5434130B2 (en) 2009-02-24 2009-02-24 Microscope objective lens
PCT/JP2009/057161 WO2009125778A1 (en) 2008-04-11 2009-04-08 Microscope objective lens
CN201310088645.0A CN103235405B (en) 2008-04-11 2009-04-08 Microscope objective lens
EP16186957.3A EP3128355B1 (en) 2008-04-11 2009-04-08 Microscope objective lens
CN200980112811.8A CN101999090B (en) 2008-04-11 2009-04-08 Microscope objective lens
CN201310088382.3A CN103235404B (en) 2008-04-11 2009-04-08 Micro objective
EP09729761.8A EP2264506B1 (en) 2008-04-11 2009-04-08 Microscope objective lens
US12/889,783 US8958154B2 (en) 2008-04-11 2010-09-24 Microscope objective lens including a diffractive optical element
US14/586,004 US9158102B2 (en) 2008-04-11 2014-12-30 Microscope objective lens including a first lens group with a positive refractive power, a second lens group, and a third lens group having a negative refractive power
US14/585,976 US9134520B2 (en) 2008-04-11 2014-12-30 Microscope objective lens including a first lens group with a positive refractive power, a second lens group with a positive refractive power, and a third lens group having a negative refractive power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040281A JP5434130B2 (en) 2009-02-24 2009-02-24 Microscope objective lens

Publications (2)

Publication Number Publication Date
JP2010197536A true JP2010197536A (en) 2010-09-09
JP5434130B2 JP5434130B2 (en) 2014-03-05

Family

ID=42822340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040281A Active JP5434130B2 (en) 2008-04-11 2009-02-24 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP5434130B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815134A (en) * 2021-01-20 2022-07-29 长春长光华大智造测序设备有限公司 Achromatic microscope objective and optical system
CN116880053A (en) * 2023-06-30 2023-10-13 中国科学院生物物理研究所 Microscope objective and mechanical structure
CN114815134B (en) * 2021-01-20 2024-05-28 长春长光华大智造测序设备有限公司 Flat field apochromatic microscope objective lens and optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286113A (en) * 1995-04-17 1996-11-01 Olympus Optical Co Ltd Objective lens
JP2007011066A (en) * 2005-06-30 2007-01-18 Nikon Corp Illumination optical system
JP2007334120A (en) * 2006-06-16 2007-12-27 Nikon Corp Diffraction optical element, optical system using the same, and method for manufacturing diffraction optical element
JP2008083096A (en) * 2006-09-25 2008-04-10 Nikon Vision Co Ltd Achromatic lens system and optical equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286113A (en) * 1995-04-17 1996-11-01 Olympus Optical Co Ltd Objective lens
JP2007011066A (en) * 2005-06-30 2007-01-18 Nikon Corp Illumination optical system
JP2007334120A (en) * 2006-06-16 2007-12-27 Nikon Corp Diffraction optical element, optical system using the same, and method for manufacturing diffraction optical element
JP2008083096A (en) * 2006-09-25 2008-04-10 Nikon Vision Co Ltd Achromatic lens system and optical equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815134A (en) * 2021-01-20 2022-07-29 长春长光华大智造测序设备有限公司 Achromatic microscope objective and optical system
CN114815134B (en) * 2021-01-20 2024-05-28 长春长光华大智造测序设备有限公司 Flat field apochromatic microscope objective lens and optical system
CN116880053A (en) * 2023-06-30 2023-10-13 中国科学院生物物理研究所 Microscope objective and mechanical structure

Also Published As

Publication number Publication date
JP5434130B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US10890746B2 (en) Microscope objective lens
WO2009125778A1 (en) Microscope objective lens
US9030750B2 (en) Objective lens
US10281703B2 (en) Microscope objective lens
JP6354170B2 (en) Objective lens
JP4860500B2 (en) Achromatic lens system, optical device
JP5206085B2 (en) Microscope objective lens
JP5190691B2 (en) Microscope objective lens
JP2008122592A (en) Microscope objective lens
JP5434130B2 (en) Microscope objective lens
JPH11326772A (en) Objective lens
JP2012189983A (en) Diffraction optical element and optical system including the same
WO2015107881A1 (en) Objective lens and microscope
JP2008122640A (en) Microscope objective lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250