JP2010197360A - Method for treating spent oxide fuel and method and device for treating metal oxide - Google Patents

Method for treating spent oxide fuel and method and device for treating metal oxide Download PDF

Info

Publication number
JP2010197360A
JP2010197360A JP2009046065A JP2009046065A JP2010197360A JP 2010197360 A JP2010197360 A JP 2010197360A JP 2009046065 A JP2009046065 A JP 2009046065A JP 2009046065 A JP2009046065 A JP 2009046065A JP 2010197360 A JP2010197360 A JP 2010197360A
Authority
JP
Japan
Prior art keywords
metal
molten
oxide
electrolytic
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009046065A
Other languages
Japanese (ja)
Other versions
JP5238546B2 (en
Inventor
Hitoshi Nakamura
等 中村
Koji Mizuguchi
浩司 水口
Yukimoto Fuse
行基 布施
Shohei Kanemura
祥平 金村
Takashi Omori
孝 大森
Reiko Fujita
玲子 藤田
Kazuhiro Utsunomiya
一博 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009046065A priority Critical patent/JP5238546B2/en
Publication of JP2010197360A publication Critical patent/JP2010197360A/en
Application granted granted Critical
Publication of JP5238546B2 publication Critical patent/JP5238546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating spent oxide fuel and a method and a device for treating metal oxide which efficiently treat metal oxide such as spent oxide fuel and recover metal without loss. <P>SOLUTION: The methods and the device include an electrolytic reduction process for electrochemically reducing the spent oxide fuel to uranium metal and transuranic elements and dissolving them in molten metal by holding the spent oxide fuel on the boundary surface between molten salt and the molten metal by the difference in specific gravity and using the latter as a counter electrode to an anode and an electrolytic refining process for electrochemically recovering the uranium metal and the transuranic elements from the molten metal where they are dissolved in the electrolytic reduction process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、使用済み酸化物燃料の処理方法、処理装置及び酸化物の処理方法に係り、特に、軽水炉から発生する使用済み酸化物燃料を金属に還元し精製することで、FBR燃料として再利用可能な使用済み酸化物燃料の処理方法、金属酸化物の処理方法及び処理装置に関する。   The present invention relates to a spent oxide fuel processing method, a processing apparatus, and an oxide processing method, and more particularly, reused as FBR fuel by reducing and purifying spent oxide fuel generated from a light water reactor to metal. The present invention relates to a method for treating a used spent oxide fuel, a method for treating a metal oxide, and a treatment apparatus.

軽水炉から発生する酸化物燃料を金属燃料に転換しFBR(Fast Breeder Reactor)燃料として再利用する場合、使用済み酸化物燃料は、脱被覆により被覆管から分離され再処理されることになる。このとき脱被覆された酸化物燃料は粉砕され顆粒または粉末状で回収される。顆粒または粉末状の状態の酸化物燃料を陰極容器に保持し電解還元に供する場合、陰極容器は開口率を大きくとった方が還元効率がよく、一方粉末を保持し収率を向上させるためには細かいメッシュ構造とすることが必要になる。この矛盾を解消するために、一度粉砕した酸化物燃料を再度ペレット化して還元に供する等の対策が講じられているが、この場合、工程の増加による効率の低下は否めない。また、電解還元槽に持ち込まれた酸化物燃料の一部が陰極容器から拡散してしまうという課題もある。   When the oxide fuel generated from the light water reactor is converted into a metal fuel and reused as an FBR (Fast Breeder Reactor) fuel, the spent oxide fuel is separated from the cladding tube by decoating and reprocessed. At this time, the decoated oxide fuel is pulverized and recovered in the form of granules or powder. When holding the oxide fuel in the granular or powder state in the cathode container and subjecting it to electrolytic reduction, the cathode container is better in reducing efficiency when the aperture ratio is larger, while holding the powder and improving the yield. Need to have a fine mesh structure. In order to eliminate this contradiction, measures have been taken such as once pelletized oxide fuel is again pelletized and subjected to reduction. However, in this case, efficiency reduction due to an increase in the process cannot be denied. There is also a problem that part of the oxide fuel brought into the electrolytic reduction tank diffuses from the cathode container.

なお、使用済み金属燃料からウラン、プルトニウムを回収する溶融塩電解精製装置として、使用済み金属燃料を陽極バスケットに収容して溶融カドミウム中に浸漬し溶解させ、この溶融カドミウムを陽極として作用させて陰極にウラン、プルトニウムを析出させる装置が知られている(例えば、特許文献1参照)。しかし、この方法でも使用済み金属燃料を陽極バスケットに収容するため、工数が多いという課題がある。   In addition, as a molten salt electrorefining device for recovering uranium and plutonium from spent metal fuel, the spent metal fuel is accommodated in an anode basket, immersed in molten cadmium and dissolved, and this molten cadmium acts as an anode to serve as a cathode. An apparatus for depositing uranium and plutonium is known (for example, see Patent Document 1). However, even in this method, the spent metal fuel is accommodated in the anode basket, so that there is a problem that the number of processes is large.

特開平11−148995号公報Japanese Patent Application Laid-Open No. 11-148995

上記したとおり、従来の使用済み酸化物燃料の処理においては、工程数の増加による効率の低下が生じるという課題があり、また、電解還元槽に持ち込まれた酸化物燃料の一部が陰極容器から拡散してしまい、再処理プロセスの計量管理において一つの課題となっている。   As described above, in the conventional spent oxide fuel processing, there is a problem that the efficiency decreases due to an increase in the number of steps, and a part of the oxide fuel brought into the electrolytic reduction tank is removed from the cathode container. It has spread and has become a challenge in the metrology management of the reprocessing process.

本発明は、上記従来の事情に対処してなされたもので、使用済み酸化物燃料等の金属酸化物を効率よく処理することができるとともに、金属を損失することなく回収することのできる使用済み酸化物燃料の処理方法、金属酸化物の処理方法及び処理装置を提供することを目的とする。   The present invention has been made in response to the above-described conventional circumstances, and can be used to efficiently process metal oxides such as spent oxide fuel and can be recovered without loss of metal. It is an object of the present invention to provide an oxide fuel treatment method, a metal oxide treatment method, and a treatment apparatus.

本発明の使用済み酸化物燃料の処理方法の一態様は、溶融塩電解法を用いた使用済み酸化物燃料の処理方法において、溶融塩と、金属ウラン及び超ウラン元素を溶解する溶融金属とを二層にして収容し前記溶融塩中に固体陽極を保持した電解槽を用意する工程と、使用済み酸化物燃料を、前記電解槽の溶融塩と前記溶融金属との界面に比重差により保持し、前記溶融金属を前記陽極の対極として用いて、前記使用済み酸化物燃料を電気化学的に金属ウラン及び超ウラン元素に還元し前記溶融金属中に溶解させる電解還元工程と、前記電解還元工程で前記金属ウラン及び超ウラン元素を溶解した前記溶融金属から前記金属ウラン及び超ウラン元素を電気化学的に回収する電解精製工程とを備えることを特徴とする。   One aspect of a method for treating a spent oxide fuel according to the present invention is a treatment method of a spent oxide fuel using a molten salt electrolysis method. A step of preparing an electrolytic cell containing two layers and holding a solid anode in the molten salt, and a used oxide fuel are held at the interface between the molten salt of the electrolytic cell and the molten metal by a specific gravity difference. Using the molten metal as a counter electrode of the anode, and electrochemically reducing the spent oxide fuel to metal uranium and transuranium elements and dissolving them in the molten metal; and the electrolytic reduction step And an electrolytic purification step of electrochemically recovering the metal uranium and the transuranium element from the molten metal in which the metal uranium and the transuranium element are dissolved.

本発明の使用済み酸化物燃料の処理方法の他の一態様は、溶融塩電解法を用いた使用済み酸化物燃料の処理方法において、溶融塩と、金属ウラン及び超ウラン元素を溶解する溶融金属とを二層にして収容し前記溶融塩中に固体陽極を保持した電解槽と、溶融塩を収容し前記溶融塩中に固体または液体金属からなる陰極を設置した電解精製槽とを用意する工程と、使用済み酸化物燃料を、前記電解槽の溶融塩と前記溶融金属との界面に比重差により保持し、前記溶融金属を前記陽極の対極として用いて、前記使用済み酸化物燃料を電気化学的に金属ウラン及び超ウラン元素に還元し前記溶融金属中に溶解させる電解還元工程と、前記金属ウラン及び超ウラン元素を溶解した前記溶融金属を前記電解精製槽に移送する移送工程と、前記電解精製槽に移送された前記金属ウラン及び超ウラン元素を溶解した前記溶融金属を陽極とし前記陰極との間に通電して、前記金属ウラン及び超ウラン元素を前記陰極に回収する工程とを備えることを特徴とする。   Another aspect of the method for treating spent oxide fuel according to the present invention is a molten metal that dissolves molten salt, metal uranium, and transuranium element in the spent oxide fuel treatment method using a molten salt electrolysis method. And preparing an electrolytic refining tank containing a molten salt and having a cathode made of a solid or liquid metal in the molten salt And holding the spent oxide fuel at the interface between the molten salt of the electrolytic cell and the molten metal by a specific gravity difference, and using the molten metal as a counter electrode of the anode, Electroreduction step of reducing to metal uranium and transuranium element and dissolving in the molten metal, transporting step of transferring the molten metal in which the metal uranium and transuranium element are dissolved to the electrolytic purification tank, and the electrolysis Purification tank A step of using the molten metal in which the transferred metal uranium and the transuranium element are dissolved as an anode and energizing between the cathode and recovering the metal uranium and the transuranium element to the cathode. To do.

本発明の金属酸化物の処理方法の一態様は、溶融塩電解法を用いた金属酸化物から有用金属を回収する金属酸化物の処理方法において、溶融塩と前記金属酸化物から前記有用金属を溶解抽出する溶融金属とを二層にして収容する電解槽を用意する工程と、前記金属酸化物を、前記電解槽の溶融金属と前記溶融塩との界面に比重差により保持し、前記溶融金属を前記溶融塩中に保持された陽極の対極として用いて、前記金属酸化物を電気化学的に有用金属に還元する電解還元工程と、前記有用金属を、前記溶融金属と接触させて前記溶融金属中に溶解抽出する抽出工程と、前記有用金属を溶解抽出した前記溶融金属から前記有用金属を電気化学的に回収する電解精製工程とを備えることを特徴とする。   One aspect of the metal oxide treatment method of the present invention is a metal oxide treatment method for recovering a useful metal from a metal oxide using a molten salt electrolysis method, wherein the useful metal is obtained from the molten salt and the metal oxide. A step of preparing an electrolytic cell that accommodates the molten metal to be dissolved and extracted in two layers; and the metal oxide is held at the interface between the molten metal and the molten salt in the electrolytic cell by a specific gravity difference, and the molten metal As a counter electrode of the anode held in the molten salt, and electrochemically reducing the metal oxide to a useful metal electrochemically, and bringing the useful metal into contact with the molten metal to form the molten metal It is characterized by comprising an extraction step of dissolving and extracting the inside and an electrolytic purification step of recovering the useful metal electrochemically from the molten metal obtained by dissolving and extracting the useful metal.

本発明の金属酸化物の処理装置の一態様は、溶融塩電解法を用い、金属酸化物から有用金属を回収する金属酸化物の処理装置において、前記金属酸化物から還元された前記有用金属を溶解する溶融金属及び溶融塩を二層にして収容し前記溶融塩中に固体陽極を保持した電解槽であって、前記金属酸化物を前記溶融塩と前記溶融金属との界面に比重差により保持し、前記溶融金属を前記陽極の対極として用いて、前記金属酸化物を電気化学的に前記有用金属に還元し前記溶融金属中に溶解させる電解槽と、前記溶融金属中の前記金属を電気化学的に回収するための電解精製槽とを具備したことを特徴とする。   One aspect of the metal oxide treatment apparatus of the present invention is a metal oxide treatment apparatus for recovering useful metal from a metal oxide using a molten salt electrolysis method, wherein the useful metal reduced from the metal oxide is used. An electrolytic cell in which a molten metal and a molten salt are contained in two layers and a solid anode is held in the molten salt, and the metal oxide is held at the interface between the molten salt and the molten metal due to a difference in specific gravity. An electrolytic cell for electrochemically reducing the metal oxide to the useful metal by using the molten metal as a counter electrode of the anode and dissolving the metal in the molten metal; and electrochemically processing the metal in the molten metal And an electrolytic refining tank for recovery.

本発明によれば、使用済み酸化物燃料等の金属酸化物を効率よく処理することができるとともに、金属を損失することなく回収することのできる使用済み酸化物燃料の処理方法、金属酸化物の処理方法及び処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to process metal oxides, such as a used oxide fuel efficiently, the processing method of the used oxide fuel which can collect | recover without losing a metal, metal oxide A processing method and a processing apparatus can be provided.

本発明の一実施形態に係る酸化物燃料の処理装置の構成を示す縦断面図。1 is a longitudinal sectional view showing a configuration of an oxide fuel processing apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る電解還元槽の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the electrolytic reduction tank which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電解精製槽の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the electrolytic refining tank which concerns on one Embodiment of this invention. 本発明の一実施形態に係る溶融カドミウムの移送を説明するための模式図。The schematic diagram for demonstrating the transfer of the molten cadmium which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る酸化物燃料の処理装置の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the processing apparatus of the oxide fuel which concerns on other embodiment of this invention.

以下、本発明の実施形態を、図面を参照して説明する。図1は、本発明の一実施形態に係る酸化物燃料の処理装置の概略構成を模式的に示す縦断面図であり、図2は図1に示す電解還元槽1を拡大して示す縦断面図であり、図3は図1に示す電解精製槽9を拡大して示す縦断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing a schematic configuration of an oxide fuel processing apparatus according to an embodiment of the present invention, and FIG. 2 is an enlarged longitudinal sectional view showing an electrolytic reduction tank 1 shown in FIG. FIG. 3 is an enlarged longitudinal sectional view of the electrolytic purification tank 9 shown in FIG.

本実施形態は、溶融塩電解法を用い、軽水炉から発生した使用済み酸化物燃料から金属を回収するための使用済み酸化物燃料の処理に関するものであって、次の工程を含んでいる。すなわち、溶融塩電解法によって酸化物燃料を構成する金属酸化物を金属ウラン(U)、超ウラン元素(TRU)などの金属に還元し溶融金属(本実施形態では溶融カドミウム)中に溶解させる電解還元工程、及び溶融金属(本実施形態では溶融カドミウム)中のU、TRUを、電解精製により金属として精製・回収する電解精製工程である。   The present embodiment relates to processing of spent oxide fuel for recovering metal from spent oxide fuel generated from a light water reactor using a molten salt electrolysis method, and includes the following steps. That is, electrolysis in which a metal oxide constituting an oxide fuel is reduced to a metal such as metal uranium (U) or transuranium element (TRU) by a molten salt electrolysis method and dissolved in molten metal (molten cadmium in this embodiment). It is a reduction process and an electrolytic purification process in which U and TRU in molten metal (molten cadmium in the present embodiment) are purified and recovered as metal by electrolytic purification.

図1に示すように、本実施形態に係る使用済み酸化物燃料の処理装置は、電解還元槽1と電解精製槽9とを具備している。   As shown in FIG. 1, the spent oxide fuel treatment apparatus according to this embodiment includes an electrolytic reduction tank 1 and an electrolytic purification tank 9.

図1,2に示すように、電解還元槽1は、電解槽容器2を具備しており、電解槽容器2内には、その下部に溶融カドミウム3が、溶融カドミウム3の上部に溶融塩4が、二層に収容されている。溶融カドミウム3中には、胴部を絶縁管6で絶縁された電流導入用金属棒7が挿入され、溶融塩4中には、固体陽極8が設置されている。固体陽極8は、溶融塩4中に浸漬された部分の表面積が十分大きくなるよう構成されている。なお、電解還元槽1には、電流導入用金属棒7及び固体陽極8を介して通電するための図示しない電源が設けられている。   As shown in FIGS. 1 and 2, the electrolytic reduction tank 1 includes an electrolytic tank container 2. In the electrolytic tank container 2, molten cadmium 3 is provided at the lower portion thereof, and molten salt 4 is provided above the molten cadmium 3. Is housed in two layers. In the molten cadmium 3, a current-introducing metal rod 7 whose body is insulated by an insulating tube 6 is inserted, and in the molten salt 4, a solid anode 8 is installed. The solid anode 8 is configured so that the surface area of the portion immersed in the molten salt 4 is sufficiently large. The electrolytic reduction tank 1 is provided with a power source (not shown) for energizing through the current-introducing metal rod 7 and the solid anode 8.

図1、3に示すように、電解精製槽9は、電解精製容器10を具備している。電解精製容器10内には、その下部に電解還元槽1から移送された溶融カドミウム3が収容され、溶融カドミウム3の上部に電解精製用の溶融塩11が収容されている。   As shown in FIGS. 1 and 3, the electrolytic purification tank 9 includes an electrolytic purification container 10. In the electrolytic purification vessel 10, molten cadmium 3 transferred from the electrolytic reduction tank 1 is accommodated in the lower part, and molten salt 11 for electrolytic purification is accommodated in the upper part of the molten cadmium 3.

溶融カドミウム3中には、胴部を絶縁管12で絶縁された電流導入用金属棒13が挿入されている。電解精製用の溶融塩11中には、陰極として作用する固体陰極14、液体金属陰極15が配設されている。なお、図1において、符号18は絶縁管、19は液体金属陰極15用の電流導入棒、23は液体金属陰極15用の絶縁容器を示している。また、電解精製槽9には、電流導入用金属棒13及び固体陰極14または液体金属陰極15を介して通電するための図示しない電源が設けられている。   In the molten cadmium 3, a current introducing metal rod 13 whose body is insulated by an insulating tube 12 is inserted. In the molten salt 11 for electrolytic purification, a solid cathode 14 and a liquid metal cathode 15 acting as a cathode are disposed. In FIG. 1, reference numeral 18 denotes an insulating tube, 19 denotes a current introducing rod for the liquid metal cathode 15, and 23 denotes an insulating container for the liquid metal cathode 15. The electrolytic purification tank 9 is provided with a power source (not shown) for energizing through the current-introducing metal rod 13 and the solid cathode 14 or the liquid metal cathode 15.

図1に示すように、上記電解還元槽1と電解精製槽9との間には、電解還元槽1から電解精製槽9へ溶融カドミウム3を移送するための第1移送管29と、電解精製槽9から保持容器28を介して電解還元槽1へ溶融カドミウム3を移送するための第2移送管27A,27Bが設けられている。上記保持容器28は、電解精製槽9から電解還元槽1へ移送される溶融カドミウム3を一時的に保持するためのものであり、溶融カドミウム3を加熱可能とされている。   As shown in FIG. 1, a first transfer pipe 29 for transferring molten cadmium 3 from the electrolytic reduction tank 1 to the electrolytic purification tank 9 between the electrolytic reduction tank 1 and the electrolytic purification tank 9, and electrolytic purification Second transfer pipes 27 </ b> A and 27 </ b> B for transferring the molten cadmium 3 from the tank 9 to the electrolytic reduction tank 1 through the holding container 28 are provided. The holding container 28 is for temporarily holding the molten cadmium 3 transferred from the electrolytic purification tank 9 to the electrolytic reduction tank 1 and is capable of heating the molten cadmium 3.

図1、2に示すように、上記構成の使用済み酸化物燃料の処理装置において、電解還元槽1の電解槽容器2内に使用済み酸化物燃料5が投入されると、溶融塩4より比重が重く、溶融カドミウム3より比重の軽い使用済み酸化物燃料5は、溶融塩4と溶融カドミウム3との界面に比重差により保持され、これによって、溶融カドミウム3と接触した状態となる。なお、使用済み酸化物燃料5は、顆粒状であっても、粉末状であっても、どのような形態であってもよい。   As shown in FIGS. 1 and 2, when the spent oxide fuel 5 is introduced into the electrolytic cell container 2 of the electrolytic reduction tank 1 in the spent oxide fuel processing apparatus having the above-described configuration, the specific gravity is increased from the molten salt 4. The spent oxide fuel 5 that is heavy and lighter in specific gravity than the molten cadmium 3 is held at the interface between the molten salt 4 and the molten cadmium 3 due to the difference in specific gravity, and thus comes into contact with the molten cadmium 3. The spent oxide fuel 5 may be in the form of granules, powder, or any form.

この状態で、溶融カドミウム3中に挿入された電流導入用金属棒7と、溶融塩4中に保持された陽極8との間に図示しない電源から電流を供給すると、陰極として作用する溶融カドミウム3と同電位となる使用済み酸化物燃料5から、例えば、UO+4e→U+2O2−等の電気化学的反応により酸素が離脱し、金属へと還元される。 In this state, when a current is supplied from a power source (not shown) between the metal rod 7 for current introduction inserted into the molten cadmium 3 and the anode 8 held in the molten salt 4, the molten cadmium 3 acting as a cathode. From the spent oxide fuel 5 having the same potential as that of oxygen, oxygen is released by an electrochemical reaction such as UO 2 + 4e → U + 2O 2− and is reduced to a metal.

上記のようにして還元された金属ウラン等は、溶融カドミウム3と接触しているため、還元と同時に溶融カドミウム3と反応し、UCd11もしくはPuCd11といった金属間化合物を形成して溶融カドミウム3中に溶解する。 Since the metal uranium or the like reduced as described above is in contact with the molten cadmium 3, it reacts with the molten cadmium 3 simultaneously with the reduction to form an intermetallic compound such as UCd 11 or PuCd 11 to form the molten cadmium 3. Dissolve in

上記電解還元は、必ず溶融カドミウム3との界面で起きるため、使用済み酸化物燃料5を容器に保持する従来型の電解還元のように、容器から脱落した使用済み酸化物燃料5が電解槽の底部に堆積したまま回収不能になるようなことがなく、プロセスの収率を高く保つことができる。   Since the above electrolytic reduction always occurs at the interface with the molten cadmium 3, the used oxide fuel 5 that has fallen out of the container is transferred to the electrolytic cell as in the conventional electrolytic reduction in which the spent oxide fuel 5 is held in the container. The yield of the process can be kept high without being unrecoverable while being deposited on the bottom.

また、溶融カドミウム3の界面に使用済み酸化物燃料5と金属が混在した状態で維持されることがなく、さらに常に使用済み酸化物燃料5の表面が陽極8と対向した状態となっているため、酸素の酸化物組織内への拡散に要する時間等を短縮でき還元速度を向上することができる。また金属に還元された燃料成分は、直ちに溶融カドミウム3中に溶解するため、陰極で発生する酸素による再酸化等の影響も受けにくくなる。   Further, since the spent oxide fuel 5 and the metal are not maintained in a mixed state at the interface of the molten cadmium 3, and the surface of the spent oxide fuel 5 is always facing the anode 8. The time required for diffusion of oxygen into the oxide structure can be shortened, and the reduction rate can be improved. Further, since the fuel component reduced to metal is immediately dissolved in the molten cadmium 3, it is less susceptible to re-oxidation due to oxygen generated at the cathode.

上記のように、電解還元槽1において金属に還元された使用済み酸化物燃料5中のU及びTRU(超ウラン元素:プルトニウム、ネプツニウム、アメリシウム、キュリウム等)が、溶融カドミウム3中に溶解し、溶融カドミウム3中のU及びTRUの濃度が飽和すると、還元されたU及びTRUが溶融カドミウム3中に溶解されなくなる。このため、溶融カドミウム3中のU及びTRUの濃度が飽和又は飽和に近くなった状態で、溶融カドミウム3を第1移送管29により電解精製槽9に移送する。溶融カドミウム3の移送は、例えば、第1移送管29に設けられた移送用ポンプ(図示せず)等により行う。   As described above, U and TRU (transuranium elements: plutonium, neptunium, americium, curium, etc.) in the spent oxide fuel 5 reduced to metal in the electrolytic reduction tank 1 are dissolved in the molten cadmium 3, When the concentration of U and TRU in the molten cadmium 3 is saturated, the reduced U and TRU are not dissolved in the molten cadmium 3. For this reason, the molten cadmium 3 is transferred to the electrolytic purification tank 9 through the first transfer pipe 29 in a state where the concentrations of U and TRU in the molten cadmium 3 are saturated or close to saturation. The molten cadmium 3 is transferred by, for example, a transfer pump (not shown) provided in the first transfer pipe 29.

なお、図4に示すように、電解還元槽1から電解精製槽9への溶融カドミウム3の移送に先立って、U及びTRUを分離した電解精製槽9内の溶融カドミウム3を、第2移送管27Bにて保持容器28に移送しておく。また、電解還元槽1から電解精製槽9へのU及びTRUが溶解した溶融カドミウム3の移送が終了すると、保持容器28内のU及びTRUを含まない溶融カドミウム3の半分を、第2移送管27Aにて電解還元槽1へ移送する。このように溶融カドミウム3の移送を行うことによって、移送時間以外は電解還元・電解精製を継続でき、プロセスの運転効率の向上を図ることができる。   As shown in FIG. 4, prior to the transfer of the molten cadmium 3 from the electrolytic reduction tank 1 to the electrolytic purification tank 9, the molten cadmium 3 in the electrolytic purification tank 9 from which U and TRU have been separated is transferred to the second transfer pipe. It is transferred to the holding container 28 at 27B. When the transfer of the molten cadmium 3 in which U and TRU are dissolved from the electrolytic reduction tank 1 to the electrolytic purification tank 9 is completed, half of the molten cadmium 3 not containing U and TRU in the holding container 28 is transferred to the second transfer pipe. It is transferred to the electrolytic reduction tank 1 at 27A. By transferring the molten cadmium 3 in this way, electrolytic reduction and electrolytic purification can be continued except for the transfer time, and the operation efficiency of the process can be improved.

電解精製槽9では、電解還元槽1から移送された溶融カドミウム3を電解精製により処理する。その際、溶融カドミウム3を陽極とし、固体陰極14または液体金属陰極15を用いて、図示しない電源から陽極と陰極との間に電流を流す。これによって、溶融カドミウム3に含まれるU、TRUを、固体陰極14または液体金属陰極15において金属として回収する。   In the electrolytic purification tank 9, the molten cadmium 3 transferred from the electrolytic reduction tank 1 is processed by electrolytic purification. At that time, the molten cadmium 3 is used as an anode, and a current is passed between the anode and the cathode from a power source (not shown) using the solid cathode 14 or the liquid metal cathode 15. Thereby, U and TRU contained in the molten cadmium 3 are recovered as metal in the solid cathode 14 or the liquid metal cathode 15.

次に、図5を参照して他の実施形態について説明する。図5は、本実施形態に係る使用済み酸化物燃料の処理装置の縦断面概略構成を模式的に示すもので、図1と対応する構成には同一の符号を付し、重複した説明は省略する。この実施形態では、上述した実施形態で説明した電解還元及び電解精製の処理を、仕切り板で仕切った単一の容器内で実現しようとするものである。   Next, another embodiment will be described with reference to FIG. FIG. 5 schematically shows a vertical cross-sectional schematic configuration of the spent oxide fuel processing apparatus according to the present embodiment. The same reference numerals are given to the configurations corresponding to those in FIG. To do. In this embodiment, the electrolytic reduction and electrolytic purification processes described in the above-described embodiments are to be realized in a single container partitioned by a partition plate.

図5に示すように、本実施形態では、電解還元槽1と電解精製槽9は、単一の電解槽容器31を、隔壁(仕切り板)33で仕切って構成され、かつ仕切り板の下部には底板との間に電解還元槽1と電解精製槽9を直接連通する溶融金属移送路39が形成されている。電解槽容器31内には、その下部に位置するよう溶融カドミウム3が収容されており、隔壁33は、この溶融カドミウム3中にまで延在するよう配設されている。溶融カドミウム3は、電解還元槽1側及び電解精製槽9側の双方において元素濃度が一定に保たれる。   As shown in FIG. 5, in this embodiment, the electrolytic reduction tank 1 and the electrolytic purification tank 9 are configured by partitioning a single electrolytic tank container 31 with a partition wall (partition plate) 33, and below the partition plate. A molten metal transfer passage 39 is formed between the bottom plate and the electrolytic reduction tank 1 and the electrolytic purification tank 9 directly. In the electrolytic cell container 31, molten cadmium 3 is accommodated so as to be positioned below, and the partition wall 33 is disposed so as to extend into the molten cadmium 3. Molten cadmium 3 is kept at a constant element concentration on both the electrolytic reduction tank 1 side and the electrolytic purification tank 9 side.

溶融カドミウム3の上部には、隔壁33で仕切られた状態で、電解還元槽1側の溶融塩35と、電解精製槽9側の溶融塩37が収容されている。電解還元側の溶融塩35としては、例えば、塩化リチウム塩+酸化リチウム等を用いることができる。また、電解精製槽9側の溶融塩37としては、例えば、塩化リチウム+塩化カリウム+塩化ウラン等を用いることができる。なお、胴部を絶縁管26で絶縁され溶融カドミウム3中に浸漬された電流導入用金属棒24は、電解還元槽1及び電解精製槽9の双方に用いられ、電解還元の場合には陰極として、電解精製の場合には陽極として用いられる。   In the upper part of the molten cadmium 3, a molten salt 35 on the electrolytic reduction tank 1 side and a molten salt 37 on the electrolytic purification tank 9 side are accommodated in a state of being partitioned by a partition wall 33. As the molten salt 35 on the electrolytic reduction side, for example, lithium chloride salt + lithium oxide can be used. Further, as the molten salt 37 on the electrolytic purification tank 9 side, for example, lithium chloride + potassium chloride + uranium chloride can be used. The metal rod 24 for current introduction, the body of which is insulated by the insulating tube 26 and immersed in the molten cadmium 3, is used in both the electrolytic reduction tank 1 and the electrolytic purification tank 9, and as a cathode in the case of electrolytic reduction. In the case of electrolytic purification, it is used as an anode.

本実施形態では、使用済み酸化物燃料を、電解還元槽1側の溶融塩35と溶融カドミウム3との界面に比重差により保持した状態で、陽極8と溶融カドミウム3との間に電流を流して、電解還元を行う。   In the present embodiment, a current is passed between the anode 8 and the molten cadmium 3 in a state where the spent oxide fuel is held at the interface between the molten salt 35 and the molten cadmium 3 on the electrolytic reduction tank 1 side due to the specific gravity difference. Then, electrolytic reduction is performed.

そして、電解還元によって溶融カドミウム3中のU、TRUの濃度が上昇した後に、溶融カドミウム3の極性を切り替えて陽極とし、電解精製槽9側の固体陰極14または液体金属陰極15を陰極としてこれらの間に電流を流すことによって電解精製を行う。これにより、同一槽で電解還元と電解精製の双方を実施でき、工程のコンパクト化を図ることができるとともに、溶融カドミウム3の移送システムを省略することができる。   Then, after the concentration of U and TRU in the molten cadmium 3 is increased by electrolytic reduction, the polarity of the molten cadmium 3 is switched to the anode, and the solid cathode 14 or the liquid metal cathode 15 on the electrolytic purification tank 9 side is used as the cathode. Electrolytic purification is performed by passing an electric current between them. Thereby, both electrolytic reduction and electrolytic purification can be carried out in the same tank, the process can be made compact, and the transfer system for the molten cadmium 3 can be omitted.

なお、上記の各実施形態では、溶融金属として溶融カドミウム3を用いた場合について説明したが、溶融金属は、回収するU及びTRU等の有用金属を溶解するものであればよく、例えば、Zn−Mg、Cd−Li、Cd−Mg、Cu−Mg等の合金やSb、Pb等の低融点金属を使用することができる。   In each of the above embodiments, the case where molten cadmium 3 is used as the molten metal has been described. However, the molten metal may be any metal that dissolves useful metals such as U and TRU to be recovered. An alloy such as Mg, Cd—Li, Cd—Mg, or Cu—Mg, or a low melting point metal such as Sb or Pb can be used.

また、上記実施形態では、使用済み酸化物燃料5からU及びTRUを回収する場合について説明したが、その他の金属酸化物から有用金属を回収する場合、例えば、酸化ジルコニウム、酸化銅、酸化チタン等の酸化物からこれらの金属を回収する場合についても同様にして適用することができる。   Moreover, although the said embodiment demonstrated the case where U and TRU were collect | recovered from the used oxide fuel 5, when recovering useful metals from other metal oxides, for example, zirconium oxide, copper oxide, titanium oxide, etc. The same applies to the case of recovering these metals from these oxides.

なお、本発明は、上記実施形態に限定されるものではなく、各種の変形が可能であることは勿論である。   In addition, this invention is not limited to the said embodiment, Of course, various deformation | transformation are possible.

1…電解還元槽、2…電解槽容器、3…溶融カドミウム、4…溶融塩、5…使用済み酸化物燃料、6…絶縁管、7…電流導入用金属棒、8…固体陽極、9…電解精製槽、10…電解精製容器、11…溶融塩、12…絶縁管、13…電流導入用金属棒、14…固体陰極、15…液体金属陰極、28…保持容器、27A,27B…第2移送管、29…第1移送管。   DESCRIPTION OF SYMBOLS 1 ... Electrolytic reduction tank, 2 ... Electrolytic tank container, 3 ... Molten cadmium, 4 ... Molten salt, 5 ... Used oxide fuel, 6 ... Insulating tube, 7 ... Metal rod for electric current introduction, 8 ... Solid anode, 9 ... Electrolytic purification tank, 10 ... Electrolytic purification vessel, 11 ... Molten salt, 12 ... Insulating tube, 13 ... Metal rod for current introduction, 14 ... Solid cathode, 15 ... Liquid metal cathode, 28 ... Holding vessel, 27A, 27B ... Second Transfer pipe, 29 ... 1st transfer pipe.

Claims (15)

溶融塩電解法を用いた使用済み酸化物燃料の処理方法において、
溶融塩と、金属ウラン及び超ウラン元素を溶解する溶融金属とを二層にして収容し前記溶融塩中に固体陽極を保持した電解槽を用意する工程と、
使用済み酸化物燃料を、前記電解槽の溶融塩と前記溶融金属との界面に比重差により保持し、前記溶融金属を前記陽極の対極として用いて、前記使用済み酸化物燃料を電気化学的に金属ウラン及び超ウラン元素に還元し前記溶融金属中に溶解させる電解還元工程と、
前記電解還元工程で前記金属ウラン及び超ウラン元素を溶解した前記溶融金属から前記金属ウラン及び超ウラン元素を電気化学的に回収する電解精製工程と
を備えることを特徴とする使用済み酸化物燃料の処理方法。
In a method for treating spent oxide fuel using a molten salt electrolysis method,
Preparing an electrolytic cell containing a molten salt and a molten metal that dissolves metal uranium and a transuranium element in two layers and holding a solid anode in the molten salt;
The spent oxide fuel is held at the interface between the molten salt of the electrolytic cell and the molten metal by a specific gravity difference, and the spent oxide fuel is electrochemically used by using the molten metal as a counter electrode of the anode. An electrolytic reduction step of reducing to metal uranium and transuranium elements and dissolving in the molten metal;
An electrolytic refining step of electrochemically recovering the metal uranium and the transuranium element from the molten metal in which the metal uranium and the transuranium element are dissolved in the electrolytic reduction step. Processing method.
請求項1に記載の使用済み酸化物燃料の処理方法において、
前記電解精製工程では、溶融塩を収容し前記溶融塩中に固体または液体金属からなる陰極を設置した電解精製槽に、前記金属ウラン及び超ウラン元素を溶解した前記溶融金属を収容し、前記金属ウラン及び超ウラン元素を溶解した前記溶融金属を陽極として電解精製が行われることを特徴とする使用済み酸化物燃料の処理方法。
The method for treating spent oxide fuel according to claim 1,
In the electrolytic purification step, the molten metal in which the molten uranium and the transuranium element are dissolved is accommodated in an electrolytic purification tank in which a molten salt is accommodated and a cathode made of solid or liquid metal is installed in the molten salt. A method for treating spent oxide fuel, wherein electrolytic purification is performed using the molten metal in which uranium and transuranium elements are dissolved as an anode.
溶融塩電解法を用いた使用済み酸化物燃料の処理方法において、
溶融塩と、金属ウラン及び超ウラン元素を溶解する溶融金属とを二層にして収容し前記溶融塩中に固体陽極を保持した電解槽と、溶融塩を収容し前記溶融塩中に固体または液体金属からなる陰極を設置した電解精製槽とを用意する工程と、
使用済み酸化物燃料を、前記電解槽の溶融塩と前記溶融金属との界面に比重差により保持し、前記溶融金属を前記陽極の対極として用いて、前記使用済み酸化物燃料を電気化学的に金属ウラン及び超ウラン元素に還元し前記溶融金属中に溶解させる電解還元工程と、
前記金属ウラン及び超ウラン元素を溶解した前記溶融金属を前記電解精製槽に移送する移送工程と、
前記電解精製槽に移送された前記金属ウラン及び超ウラン元素を溶解した前記溶融金属を陽極とし前記陰極との間に通電して、前記金属ウラン及び超ウラン元素を前記陰極に回収する工程と
を備えることを特徴とする使用済み酸化物燃料の処理方法。
In a method for treating spent oxide fuel using a molten salt electrolysis method,
An electrolytic cell in which a molten salt and a molten metal that dissolves metal uranium and a transuranium element are contained in two layers and a solid anode is held in the molten salt; a molten salt that is solid or liquid in the molten salt A step of preparing an electrolytic purification tank provided with a cathode made of metal;
The spent oxide fuel is held at the interface between the molten salt of the electrolytic cell and the molten metal by a specific gravity difference, and the spent oxide fuel is electrochemically used by using the molten metal as a counter electrode of the anode. An electrolytic reduction step of reducing to metal uranium and transuranium elements and dissolving in the molten metal;
A transfer step of transferring the molten metal in which the metal uranium and the transuranium element are dissolved to the electrolytic purification tank;
A step of collecting the metal uranium and the transuranium element at the cathode by energizing between the cathode and the molten metal dissolved in the metal uranium and the transuranium element transferred to the electrolytic purification tank as an anode; A method for treating spent oxide fuel, comprising:
請求項2又は3記載の使用済み酸化物燃料の処理方法において、
前記電解槽の溶融金属貯留部と前記電解精製槽の溶融金属貯留部とは、溶融金属保持容器を介して移送管で連結されていることを特徴とする使用済み酸化物燃料の処理方法。
In the processing method of the spent oxide fuel of Claim 2 or 3,
The method for treating spent oxide fuel, wherein the molten metal storage part of the electrolytic cell and the molten metal storage part of the electrolytic purification tank are connected by a transfer pipe through a molten metal holding container.
請求項2又は3記載の使用済み酸化物燃料の処理方法において、
前記電解槽と前記電解精製槽とは、単一の容器を仕切り板で仕切って構成され、かつ仕切り板の下部には底板との間に両槽を直接連通する溶融金属移送路が形成されていることを特徴とする使用済み酸化物燃料の処理方法。
In the processing method of the spent oxide fuel of Claim 2 or 3,
The electrolytic bath and the electrolytic refining bath are configured by partitioning a single container with a partition plate, and a molten metal transfer path is formed in the lower portion of the partition plate so as to directly communicate both tanks with the bottom plate. A method for treating spent oxide fuel, comprising:
請求項1〜5のいずれか1項記載の使用済み酸化物燃料の処理方法において、
前記溶融金属が、Cd、Zn−Mg、Cd−Li、Cd−Mg、Cu−Mg、Sb及びPbからなる群より選ばれる少なくとも1種からなることを特徴とする使用済み酸化物燃料の処理方法。
In the processing method of the used oxide fuel of any one of Claims 1-5,
The method for treating spent oxide fuel, wherein the molten metal is at least one selected from the group consisting of Cd, Zn-Mg, Cd-Li, Cd-Mg, Cu-Mg, Sb, and Pb. .
溶融塩電解法を用いた金属酸化物から有用金属を回収する金属酸化物の処理方法において、
溶融塩と前記金属酸化物から前記有用金属を溶解抽出する溶融金属とを二層にして収容する電解槽を用意する工程と、
前記金属酸化物を、前記電解槽の溶融金属と前記溶融塩との界面に比重差により保持し、前記溶融金属を前記溶融塩中に保持された陽極の対極として用いて、前記金属酸化物を電気化学的に有用金属に還元する電解還元工程と、
前記有用金属を、前記溶融金属と接触させて前記溶融金属中に溶解抽出する抽出工程と、
前記有用金属を溶解抽出した前記溶融金属から前記有用金属を電気化学的に回収する電解精製工程と
を備えることを特徴とする金属酸化物の処理方法。
In the metal oxide treatment method for recovering useful metals from metal oxides using molten salt electrolysis,
Preparing an electrolytic cell containing a molten salt and a molten metal for dissolving and extracting the useful metal from the metal oxide in two layers;
The metal oxide is held by the specific gravity difference at the interface between the molten metal and the molten salt in the electrolytic cell, and the molten metal is used as a counter electrode of the anode held in the molten salt. An electrolytic reduction process for reducing electrochemically to useful metals;
An extraction step of bringing the useful metal into contact with the molten metal and dissolving and extracting into the molten metal;
And an electrolytic purification step of electrochemically recovering the useful metal from the molten metal obtained by dissolving and extracting the useful metal.
請求項7に記載の金属酸化物の処理方法において、
前記金属酸化物が、酸化ジルコニウム、酸化ハフニウム、酸化銅及び酸化チタンから選ばれた1種または2種以上の金属酸化物からなることを特徴とする金属酸化物の処理方法。
In the processing method of the metal oxide of Claim 7,
A method for treating a metal oxide, wherein the metal oxide comprises one or more metal oxides selected from zirconium oxide, hafnium oxide, copper oxide, and titanium oxide.
請求項7または8に記載の金属酸化物の処理方法において、
前記溶融金属が、Cd、Zn−Mg、Cd−Li、Cd−Mg、Cu−Mg、Sb及びPbからなる群より選ばれる少なくとも1種からなることを特徴とする金属酸化物の処理方法。
In the processing method of the metal oxide of Claim 7 or 8,
The method for treating a metal oxide, wherein the molten metal is at least one selected from the group consisting of Cd, Zn-Mg, Cd-Li, Cd-Mg, Cu-Mg, Sb and Pb.
溶融塩電解法を用い、金属酸化物から有用金属を回収する金属酸化物の処理装置において、
前記金属酸化物から還元された前記有用金属を溶解する溶融金属及び溶融塩を二層にして収容し前記溶融塩中に固体陽極を保持した電解槽であって、前記金属酸化物を前記溶融塩と前記溶融金属との界面に比重差により保持し、前記溶融金属を前記陽極の対極として用いて、前記金属酸化物を電気化学的に前記有用金属に還元し前記溶融金属中に溶解させる電解槽と、
前記溶融金属中の前記金属を電気化学的に回収するための電解精製槽と
を具備したことを特徴とする金属酸化物の処理装置。
In a metal oxide processing apparatus for recovering useful metals from metal oxides using a molten salt electrolysis method,
An electrolytic cell in which a molten metal that dissolves the useful metal reduced from the metal oxide and a molten salt are contained in two layers and a solid anode is held in the molten salt, the metal oxide being the molten salt And an electrolytic cell in which the metal oxide is electrochemically reduced to the useful metal and dissolved in the molten metal using the molten metal as a counter electrode of the anode while maintaining the interface between the molten metal and the molten metal. When,
An apparatus for treating metal oxide, comprising: an electrolytic purification tank for electrochemically recovering the metal in the molten metal.
請求項10記載の金属酸化物の処理装置において、
前記電解精製槽は、溶融塩及び前記有用金属を溶解した前記溶融金属を収容するとともに、前記溶融塩中に設置された固体または液体金属からなる陰極を具備し、前記有用金属を溶解した前記溶融金属を陽極として電解精製を行うよう構成されたことを特徴とする金属酸化物の処理装置。
In the metal oxide processing apparatus according to claim 10,
The electrolytic refining tank contains a molten salt and the molten metal in which the useful metal is dissolved, and includes a cathode made of a solid or liquid metal installed in the molten salt, and the molten metal in which the useful metal is dissolved An apparatus for treating a metal oxide, wherein the apparatus is configured to perform electrolytic purification using a metal as an anode.
請求項11記載の金属酸化物の処理装置において、
前記電解槽の溶融金属貯留部から前記電解精製槽の溶融金属貯留部へ前記溶融金属を移送するための第1移送管と、
前記電解精製槽の溶融金属貯留部から溶融金属保持容器を介して前記電解槽の溶融金属貯留部へ前記溶融金属を移送するための第2移送管と
を具備したことを特徴とする金属酸化物の処理装置。
The metal oxide processing apparatus according to claim 11, wherein
A first transfer pipe for transferring the molten metal from the molten metal reservoir of the electrolytic cell to the molten metal reservoir of the electrolytic purification tank;
A metal oxide comprising: a second transfer pipe for transferring the molten metal from the molten metal reservoir of the electrolytic refining tank to the molten metal reservoir of the electrolytic tank through a molten metal holding container Processing equipment.
請求項11記載の金属酸化物の処理装置において、
前記電解槽と前記電解精製槽が、単一の容器を仕切り板によって仕切ることによって構成され、かつ前記仕切り板の下部には底板との間に両槽を直接連通する溶融金属移送路が形成されている
ことを特徴とする金属酸化物の処理装置。
The metal oxide processing apparatus according to claim 11, wherein
The electrolytic bath and the electrolytic refining bath are configured by partitioning a single container by a partition plate, and a molten metal transfer path is formed at the lower portion of the partition plate to directly connect both the tanks to the bottom plate. A metal oxide processing apparatus characterized by comprising:
請求項10〜13のいずれか1項記載の金属酸化物の処理装置において、
前記金属酸化物が、酸化ジルコニウム、酸化ハフニウム、酸化銅及び酸化チタンから選ばれた1種または2種以上の金属酸化物、又は、使用済み酸化物燃料からなることを特徴とする金属酸化物の処理装置。
In the metal oxide processing apparatus according to any one of claims 10 to 13,
The metal oxide comprises one or more metal oxides selected from zirconium oxide, hafnium oxide, copper oxide, and titanium oxide, or a spent oxide fuel. Processing equipment.
請求項10〜14のいずれか1項記載の金属酸化物の処理装置において、
前記溶融金属が、Cd、Zn−Mg、Cd−Li、Cd−Mg、Cu−Mg、Sb及びPbからなる群より選ばれる少なくとも1種からなることを特徴とする金属酸化物の処理装置。
In the metal oxide processing apparatus of any one of Claims 10-14,
The metal oxide processing apparatus, wherein the molten metal is at least one selected from the group consisting of Cd, Zn-Mg, Cd-Li, Cd-Mg, Cu-Mg, Sb and Pb.
JP2009046065A 2009-02-27 2009-02-27 Spent oxide fuel processing method, metal oxide processing method and processing apparatus Active JP5238546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046065A JP5238546B2 (en) 2009-02-27 2009-02-27 Spent oxide fuel processing method, metal oxide processing method and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046065A JP5238546B2 (en) 2009-02-27 2009-02-27 Spent oxide fuel processing method, metal oxide processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JP2010197360A true JP2010197360A (en) 2010-09-09
JP5238546B2 JP5238546B2 (en) 2013-07-17

Family

ID=42822201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046065A Active JP5238546B2 (en) 2009-02-27 2009-02-27 Spent oxide fuel processing method, metal oxide processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP5238546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082264A (en) * 2015-10-26 2017-05-18 株式会社東芝 Method and device for melting vitrified body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273578A (en) * 1993-03-24 1994-09-30 Central Res Inst Of Electric Power Ind Molten salt electrolyzing purification method
JPH07333389A (en) * 1994-06-07 1995-12-22 Toshiba Corp Reprocessing device for spent nuclear fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273578A (en) * 1993-03-24 1994-09-30 Central Res Inst Of Electric Power Ind Molten salt electrolyzing purification method
JPH07333389A (en) * 1994-06-07 1995-12-22 Toshiba Corp Reprocessing device for spent nuclear fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082264A (en) * 2015-10-26 2017-05-18 株式会社東芝 Method and device for melting vitrified body

Also Published As

Publication number Publication date
JP5238546B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP2641533B2 (en) Method for purifying spent nuclear fuel containing uranium and plutonium
KR101047838B1 (en) Recovery of Residual Actinium Elements from Molten Chloride Salts
Malmbeck et al. Advanced fuel cycle options
Souček et al. Exhaustive electrolysis for recovery of actinides from molten LiCl–KCl using solid aluminium cathodes
EP1481401B1 (en) Electrochemical cell for metal production
Sakamura et al. Electrowinning of U-Pu onto inert solid cathode in LiCl-KCl eutectic melts containing UCl3 and PuCl3
JP3120002B2 (en) Reprocessing of spent fuel
JP3763980B2 (en) Spent oxide fuel reduction device and reduction method thereof
JP3342968B2 (en) Reprocessing of spent fuel
JP5238546B2 (en) Spent oxide fuel processing method, metal oxide processing method and processing apparatus
KR101513652B1 (en) Method of processing composite wastes
JP4679070B2 (en) Method for reprocessing spent oxide fuel
US6056865A (en) Dry chemical reprocessing method and dry chemical reprocessing apparatus for spent nuclear fuel
US6767444B1 (en) Method for processing spent (TRU, Zr)N fuel
JP5017069B2 (en) Reprocessing of spent fuel
JP2000056075A (en) Recycling method for spent oxide fuel
KR101553895B1 (en) Method of processing composite wastes
JP2875819B2 (en) Molten salt electrorefining equipment
JPWO2004036595A1 (en) Light water reactor spent fuel reprocessing method and apparatus
WO2011144937A1 (en) Novel reprocessing method
JP2004028808A (en) Reprocessing method for spent fuel
JPH05188186A (en) Separation and recovery of depleted uranium from spent nuclear fuel
JP2941742B2 (en) Dry reprocessing of spent nuclear fuel
JPWO2003063178A1 (en) Method of electrolytic reduction of spent oxide fuel and simple dry reprocessing method
JPH0755991A (en) Reprocessing method for spent fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5238546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3