JP2010196866A - Flow rate control valve - Google Patents

Flow rate control valve Download PDF

Info

Publication number
JP2010196866A
JP2010196866A JP2009045275A JP2009045275A JP2010196866A JP 2010196866 A JP2010196866 A JP 2010196866A JP 2009045275 A JP2009045275 A JP 2009045275A JP 2009045275 A JP2009045275 A JP 2009045275A JP 2010196866 A JP2010196866 A JP 2010196866A
Authority
JP
Japan
Prior art keywords
valve
flow rate
control valve
swelling body
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009045275A
Other languages
Japanese (ja)
Inventor
Takayuki Ishihara
孝行 石原
Toyofumi Kanamaru
豊文 金丸
Toshiharu Horino
敏晴 堀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spraying Systems Japan Co
Original Assignee
Spraying Systems Japan Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spraying Systems Japan Co filed Critical Spraying Systems Japan Co
Priority to JP2009045275A priority Critical patent/JP2010196866A/en
Priority to KR1020090070147A priority patent/KR100956803B1/en
Priority to CN200910168683A priority patent/CN101818827A/en
Publication of JP2010196866A publication Critical patent/JP2010196866A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/38Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow rate control valve reduced in costs and easy to be manufactured. <P>SOLUTION: This flow rate control valve includes: a valve element 5 provided between an inlet chamber 2 and an outlet chamber 3 to open/close communication between both the chambers; and a valve spring 7 for bringing the valve element into pressure-contact with a vale seat 6. One end of a swelling body 15 formed from a synthetic resin having a high coefficient of linear expansion is fixed to a swelling body cover 13, and the other end of the swelling body to be displaced by a change of the peripheral temperature is arranged freely to move relative to the swelling body cover, and the valve element is separated from a valve seat, resisting a valve spring, with the movement of the other end of the swelling body, and both the chambers are communicated with each other to control a flow rate to a linear shape in response to a change of the peripheral temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、周囲温度の変化に対して圧縮空気などの流体の流量を線形に制御する流量制御バルブに関するものである。   The present invention relates to a flow rate control valve that linearly controls the flow rate of a fluid such as compressed air with respect to changes in ambient temperature.

工作機械などの制御に用いられる制御盤はさまざまな機器により構成されている。中には、一部の半導体やトランスのように発熱するものがあり、クーリングファンやクーラント液などにより制御盤内を冷却するのが一般的である。   A control panel used for controlling a machine tool or the like is composed of various devices. Some of them generate heat, such as some semiconductors and transformers, and the inside of the control panel is generally cooled by a cooling fan or a coolant.

この方法では下記のようないくつかの問題点がある。   This method has some problems as follows.

1.クーリングファンは電源投入と同時に作動するので、盤内の温度が低くても作動している。したがって、不必要な電気(エネルギー)を使っている。一部、温度センサなどが使われているが、温度センサや制御回路を必要とするので、コストアップになる。よって、クーリングファンは電源投入と同時に作動するのが一般的である。   1. Since the cooling fan operates at the same time as the power is turned on, it operates even when the temperature in the panel is low. Therefore, unnecessary electricity (energy) is used. Some use temperature sensors, but they require a temperature sensor and control circuit, which increases costs. Therefore, the cooling fan generally operates at the same time as turning on the power.

2.クーリングファンは盤内の空気を盤外に排出するので、排出された分どこからか空気を盤内に補充しなければならない。空気は、盤の隙間より盤内に入り込むことになるが、盤の近傍(工作機械の近く)より取り入れられる。そのため、盤内に取り入れられる空気は、塵、金属粉、ミストなどを含んでおり、制御盤内の機器類に誤動作をさせたり、損傷を与えたりし、工作機械の稼動を止めることがしばしば発生している。   2. Since the cooling fan exhausts the air inside the panel to the outside of the panel, the air must be replenished into the panel from somewhere. Air enters the board through the gap between the boards, but is taken in from the vicinity of the board (near the machine tool). For this reason, the air taken into the panel contains dust, metal powder, mist, etc., often causing malfunctions or damage to the equipment in the control panel and stopping the operation of machine tools. is doing.

3.盤に空気流入口がある場合には、粉塵が入らないようにフィルタが装着されているが、環境の悪い条件では、フィルタが詰まって冷却効果が落ちないように、マンパワーによって点検、清掃、交換が定期的に行われている。そのため、コストアップの要因となる。   3. If there is an air inlet in the panel, a filter is installed to prevent dust from entering, but in poor conditions, the filter is clogged and the cooling effect is not reduced, so manpower checks, cleans, and replaces Is done regularly. Therefore, it becomes a factor of cost increase.

4.クーラント液を用いる場合には、盤内温度とクーラント液の温度に温度差がありすぎて、結露が生じ、盤内の機器類に悪影響を与えている。   4). When the coolant liquid is used, there is an excessive temperature difference between the temperature inside the panel and the temperature of the coolant liquid, resulting in condensation, which adversely affects the equipment in the panel.

従来、制御盤内を冷却するために、温度センサにより盤内温度を検出し、設定温度を越えたときに冷却空気を盤内に供給する工作機械の制御盤の冷却装置が、特開2001−269838号公報(特許文献1)に開示されている。   Conventionally, in order to cool the inside of a control panel, a cooling device for a control panel of a machine tool that detects the temperature in a panel by a temperature sensor and supplies cooling air into the panel when a set temperature is exceeded is disclosed in JP-A-2001-2001. No. 269838 (Patent Document 1).

また、空気調和機の冷温水の流量を調整するために、雰囲気温度の変化に応じて膨張・収縮するパラフィン液などの熱応動部材によって弁棒を動かし、流量を比例的に調整する流量調整弁が、実開昭62−181773号全文公開明細書(特許文献2)に開示されている。   In addition, in order to adjust the flow rate of cold and hot water in the air conditioner, the flow rate adjustment valve adjusts the flow rate proportionally by moving the valve stem with a thermally responsive member such as paraffin liquid that expands and contracts according to changes in the ambient temperature. Is disclosed in Japanese Utility Model Laid-Open Publication No. 62-181773 (Patent Document 2).

特開2001−269838号公報JP 2001-269838 A 実開昭62−181773号全文公開明細書Shokai 62-181773 Full Text Publication Specification

特許文献1に記載のものは、温度センサや制御回路を必要とするので、コストアップになる。   Since the thing of patent document 1 requires a temperature sensor and a control circuit, it becomes a cost increase.

また、特許文献2に記載のものは、雰囲気温度の変化に応じて膨張・収縮するパラフィン液などの熱応動部材によって弁棒を動かすので、パラフィン液をどうやって封じ込めるか、膨張をどこで取り出すか、漏れない構造をどうするか、漏れた場合の対策をどうするか、などの難しい点が多々ある。   Moreover, since the valve rod is moved by a thermally responsive member such as paraffin liquid that expands and contracts according to changes in the ambient temperature, the one described in Patent Document 2 describes how to contain paraffin liquid, where to take out expansion, leakage There are many difficult points such as what to do with a structure that does not exist and what to do in case of leakage.

(本発明の目的)
本発明の目的は、コストを低減し、製造を容易にすることができる流量制御バルブを提供することである。
(Object of the present invention)
An object of the present invention is to provide a flow control valve that can reduce costs and facilitate manufacture.

上記目的を達成するために、本発明の流量制御バルブは、入口室と出口室の間に設けられ、前記両室の連通を開閉するバルブ体と、前記バルブ体をバルブシートに圧接するバルブスプリングとを有する流量制御バルブにおいて、高線膨張係数を持つ合成樹脂により形成された膨張体の一端を膨張体カバーに対して固定し、周囲温度の変化により変位する前記膨張体の他端を前記膨張体カバーに対して移動可能に配置し、前記膨張体の他端の移動により前記バルブ体を前記バルブスプリングに抗して前記バルブシートから離し、前記両室の連通を開通して、流量を周囲温度の変化に対して線形に制御することを特徴とするものである。   In order to achieve the above object, a flow control valve according to the present invention is provided between an inlet chamber and an outlet chamber, and opens and closes the communication between the two chambers, and a valve spring that presses the valve body against a valve seat. The one end of the expansion body formed of a synthetic resin having a high linear expansion coefficient is fixed to the expansion body cover, and the other end of the expansion body that is displaced by a change in the ambient temperature is expanded. The valve body is disposed so as to be movable with respect to the body cover, the valve body is separated from the valve seat against the valve spring by movement of the other end of the expansion body, the communication between the two chambers is opened, and the flow rate is It is characterized by linear control with respect to temperature change.

本発明によれば、コストを低減し、製造を容易にすることができる。   According to the present invention, the cost can be reduced and the manufacturing can be facilitated.

本発明の実施例1である流量制御バルブを示す図である。It is a figure which shows the flow control valve which is Example 1 of this invention. 本発明の実施例1による10リットル/minの流量特性を示す図である。It is a figure which shows the flow volume characteristic of 10 liter / min by Example 1 of this invention. 本発明の実施例1による200リットル/minの流量特性を示す図である。It is a figure which shows the flow volume characteristic of 200 liter / min by Example 1 of this invention. 本発明の実施例2である流量制御バルブを示す図である。It is a figure which shows the flow control valve which is Example 2 of this invention.

本発明を実施するための形態は後述する実施例1及び2に記載の通りである。   The mode for carrying out the present invention is as described in Examples 1 and 2 described later.

図1(a)は、本発明の実施例1である流量制御バルブの平面図、図1(b)は、本発明の実施例1である流量制御バルブの断面図である。   FIG. 1A is a plan view of a flow control valve that is Embodiment 1 of the present invention, and FIG. 1B is a cross-sectional view of the flow control valve that is Embodiment 1 of the present invention.

バルブ本体1には、入口室2と出口室3が設けられる。両室2,3の間には通路4が設けられ、通路4には両室2,3の連通を開閉するボール状のバルブ体5が設けられる。バルブ体5をバルブシート6に圧接するバルブスプリング7は、スプリング押さえ8によりバルブシート6への圧接力が調整される。入口室2は圧縮空気源に接続され、出口室3には配管9によりノズル10が取り付けられる。ノズル10は圧縮空気を制御盤などの冷却対象に圧縮空気を噴出する。   The valve body 1 is provided with an inlet chamber 2 and an outlet chamber 3. A passage 4 is provided between the chambers 2 and 3, and a ball-shaped valve body 5 that opens and closes the communication between the chambers 2 and 3 is provided in the passage 4. The valve spring 7 that presses the valve body 5 against the valve seat 6 is adjusted in pressure contact with the valve seat 6 by the spring retainer 8. The inlet chamber 2 is connected to a compressed air source, and a nozzle 10 is attached to the outlet chamber 3 by a pipe 9. The nozzle 10 ejects the compressed air to a cooling target such as a control panel.

スプリング押さえ8の反対側では、バルブロッド11がバルブ体5に接する。バルブロッド11は、バルブ本体1に設けられたガイド孔12に案内されて上下に移動する。   On the opposite side of the spring retainer 8, the valve rod 11 contacts the valve body 5. The valve rod 11 is guided by a guide hole 12 provided in the valve body 1 and moves up and down.

バルブ本体1の上部には膨張体カバー13がビス14により固定される。膨張体カバー13の内部には膨張体15が収容される。膨張体15は、10.0×10−5/℃以上の高線膨張係数を持ち、機械的強度も大きい合成樹脂、例えばポリエチレン樹脂(線膨張係数20×10−5/℃)、ポリプロピレン樹脂(線膨張係数11×10−5/℃)により形成されたものである。膨張体15の上端は膨張体カバー13に対して固定され、周囲温度の変化により変位する膨張体15の下端は、膨張体カバー13に対して移動可能に配置される。膨張体15の下端はワッシャー16を介してバルブロッド11に接する。膨張体15の上端の固定位置は、ワッシャー16を介して調整ねじ17により調整される。なお、18はロックナットである。 An expansion body cover 13 is fixed to the upper portion of the valve body 1 with screws 14. The expansion body 15 is accommodated in the expansion body cover 13. The expanded body 15 is a synthetic resin having a high linear expansion coefficient of 10.0 × 10 −5 / ° C. or more and high mechanical strength, such as polyethylene resin (linear expansion coefficient 20 × 10 −5 / ° C.), polypropylene resin ( And a linear expansion coefficient of 11 × 10 −5 / ° C.). The upper end of the expansion body 15 is fixed to the expansion body cover 13, and the lower end of the expansion body 15 that is displaced by a change in the ambient temperature is disposed so as to be movable with respect to the expansion body cover 13. The lower end of the expansion body 15 is in contact with the valve rod 11 via a washer 16. The fixing position of the upper end of the expansion body 15 is adjusted by an adjustment screw 17 via a washer 16. Reference numeral 18 denotes a lock nut.

周囲温度の上昇により膨張体15の長さが伸びると、膨張による膨張体15の他端の移動がワッシャー16及びバルブロッド11を介してバルブ体5に伝えられ、バルブ体5をバルブスプリング7に抗してバルブシート6から離す。これにより、入口室2と出口室3の連通は開通され、出口室3から配管9及びノズル10を経て圧縮空気が噴出する。   When the length of the expansion body 15 increases due to an increase in ambient temperature, the movement of the other end of the expansion body 15 due to expansion is transmitted to the valve body 5 via the washer 16 and the valve rod 11, and the valve body 5 is transferred to the valve spring 7. Against the valve seat 6 against it. Thereby, the communication between the inlet chamber 2 and the outlet chamber 3 is opened, and compressed air is ejected from the outlet chamber 3 through the pipe 9 and the nozzle 10.

圧縮空気の流量は周囲温度の変化に対して線形に制御される。図2は10リットル/minの流量特性を示し、図3は200リットル/minの流量特性を示す。図2及び図3から明らかなように、流量は線形に変化している。流量については、圧縮空気の圧力(0.01〜0.51MPa)により任意に設定することができる。   The flow rate of the compressed air is controlled linearly with changes in ambient temperature. FIG. 2 shows a flow rate characteristic of 10 liter / min, and FIG. 3 shows a flow rate characteristic of 200 liter / min. As is apparent from FIGS. 2 and 3, the flow rate changes linearly. About a flow volume, it can set arbitrarily by the pressure (0.01-0.51 MPa) of compressed air.

本発明の実施例1によれば、以下の効果を得ることができる。   According to the first embodiment of the present invention, the following effects can be obtained.

1.膨張体が固体なので、膨張体からバルブ体への変位の伝達構造の設計・製造が容易となり、コストダウンを図ることができる。また、センサや制御回路、アクチュエータなどが不要であり、この面でもコストダウンを図り、省エネルギーとすることができる。   1. Since the expansion body is solid, it is easy to design and manufacture a displacement transmission structure from the expansion body to the valve body, and the cost can be reduced. In addition, a sensor, a control circuit, an actuator, and the like are unnecessary, and in this respect, cost can be reduced and energy can be saved.

2.クーリングファンに比べて制御盤内に汚れた空気が外部から入らない。つまり、作動時には、クリーンな圧縮空気を制御盤内に吹き込むため、制御盤の内圧が上り、外部から空気が入り込むことはない。   2. Dirty air does not enter the control panel from outside compared to cooling fans. That is, during operation, clean compressed air is blown into the control panel, so that the internal pressure of the control panel increases and air does not enter from the outside.

3.制御盤近傍の空気を圧縮して流すため、結露を生じない。   3. Condensation does not occur because the air near the control panel is compressed and flowed.

4.小型なので、制御盤上部に簡単に取り付けることができる。出口室側からは熱源付近にノズルを配管するだけでよい。   4). Because it is small, it can be easily mounted on the top of the control panel. From the outlet chamber side, it is only necessary to pipe a nozzle near the heat source.

図4(a)は、本発明の実施例2である流量制御バルブの平面図、図4(b)は、本発明の実施例2である流量制御バルブの断面図である。   4A is a plan view of a flow control valve that is Embodiment 2 of the present invention, and FIG. 4B is a cross-sectional view of the flow control valve that is Embodiment 2 of the present invention.

実施例2が実施例1と異なるところは、バルブロッド11と膨張体15を、高線膨張係数を持つ合成樹脂により一体に成形した点である。実施例2は実施例1よりも部品点数が減るので、一層のコストダウンを図ることができる。   The difference between the second embodiment and the first embodiment is that the valve rod 11 and the expansion body 15 are integrally formed of a synthetic resin having a high linear expansion coefficient. Since the number of parts in the second embodiment is smaller than that in the first embodiment, the cost can be further reduced.

なお、本発明は、気体に限らず、液体の流量を制御するバルブにも適用することができる。   Note that the present invention can be applied not only to gas but also to a valve for controlling the flow rate of liquid.

2 入口室
3 出口室
5 バルブ体
6 バルブシート
7 バルブスプリング
11 バルブロッド
13 膨張体カバー
15 膨張体
2 Inlet chamber 3 Outlet chamber 5 Valve body 6 Valve seat 7 Valve spring 11 Valve rod 13 Expanding body cover 15 Expanding body

Claims (3)

入口室と出口室の間に設けられ、前記両室の連通を開閉するバルブ体と、
前記バルブ体をバルブシートに圧接するバルブスプリングとを有する流量制御バルブにおいて、
高線膨張係数を持つ合成樹脂により形成された膨張体の一端を膨張体カバーに対して固定し、周囲温度の変化により変位する前記膨張体の他端を前記膨張体カバーに対して移動可能に配置し、
前記膨張体の他端の移動により前記バルブ体を前記バルブスプリングに抗して前記バルブシートから離し、前記両室の連通を開通して、流量を周囲温度の変化に対して線形に制御することを特徴とする流量制御バルブ。
A valve body provided between the inlet chamber and the outlet chamber, for opening and closing the communication between the two chambers;
In a flow control valve having a valve spring that presses the valve body against a valve seat,
One end of the expansion body formed of a synthetic resin having a high linear expansion coefficient is fixed to the expansion body cover, and the other end of the expansion body that is displaced by a change in ambient temperature is movable with respect to the expansion body cover Place and
Movement of the other end of the expansion body separates the valve body from the valve seat against the valve spring, opens communication between the two chambers, and linearly controls the flow rate with respect to changes in ambient temperature. Features a flow control valve.
前記高線膨張係数は、10.0×10−5/℃以上であることを特徴とする請求項1に記載の流量制御バルブ。 The flow control valve according to claim 1, wherein the high linear expansion coefficient is 10.0 × 10 −5 / ° C. or more. 前記高線膨張係数を持つ合成樹脂は、ポリエチレン樹脂又はポリプロピレン樹脂であることを特徴とする請求項1又は2に記載の流量制御バルブ。   The flow control valve according to claim 1 or 2, wherein the synthetic resin having a high linear expansion coefficient is a polyethylene resin or a polypropylene resin.
JP2009045275A 2009-02-27 2009-02-27 Flow rate control valve Pending JP2010196866A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009045275A JP2010196866A (en) 2009-02-27 2009-02-27 Flow rate control valve
KR1020090070147A KR100956803B1 (en) 2009-02-27 2009-07-30 Flow rate control valve
CN200910168683A CN101818827A (en) 2009-02-27 2009-08-28 Flow rate control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045275A JP2010196866A (en) 2009-02-27 2009-02-27 Flow rate control valve

Publications (1)

Publication Number Publication Date
JP2010196866A true JP2010196866A (en) 2010-09-09

Family

ID=42281539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045275A Pending JP2010196866A (en) 2009-02-27 2009-02-27 Flow rate control valve

Country Status (3)

Country Link
JP (1) JP2010196866A (en)
KR (1) KR100956803B1 (en)
CN (1) CN101818827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102777673A (en) * 2012-02-14 2012-11-14 浙江三花股份有限公司 Electric heating temperature control valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110774173A (en) * 2019-10-21 2020-02-11 吴嘉至 Automatic discharging grinding machine for wafer processing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148246A (en) 1982-02-26 1983-09-03 Hitachi Ltd Fuel feeder for internal-combustion engine
JPH0246176U (en) * 1988-09-22 1990-03-29
JP3531334B2 (en) * 1995-05-23 2004-05-31 株式会社デンソー Solenoid valve for fluid control
JP2003269635A (en) 2002-03-13 2003-09-25 Hitachi Metals Ltd Valve for gas flow rate control appliance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102777673A (en) * 2012-02-14 2012-11-14 浙江三花股份有限公司 Electric heating temperature control valve

Also Published As

Publication number Publication date
KR100956803B1 (en) 2010-05-07
CN101818827A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US8601792B2 (en) Oil cooler having adjustable heat transfer effectiveness
JP6194157B2 (en) Motorized valve
JP4664095B2 (en) Expansion valve and its control method
US8794589B2 (en) Actuator having an override apparatus
CN103003116B (en) For being injected into the control cock of the screw compressor of oil
US20150144078A1 (en) Motor vehicle engine cooling system and method
US20090200007A1 (en) Heat exchanger having temperature-actuated valves
EP2444703B1 (en) Thermal valve
US9638094B2 (en) Charge air cooler with integrated adjustable drain mechanism
JP7082209B2 (en) Air conditioning system and its electronic expansion valve
MX2008003804A (en) Engine thermostat having bypass pressure-dampening fluid passage.
EP2565505B1 (en) Fluid control valve assembly
WO2019062592A1 (en) Valve assembly, heat exchange assembly, and oil temperature regulation system for gearbox
JP2006118855A5 (en)
JP2010196866A (en) Flow rate control valve
KR102288080B1 (en) System, heat exchange assembly and valve assembly for regulating the temperature of transmission oil
JP2020505541A5 (en)
CN108087531B (en) Heat exchange assembly
US11913563B2 (en) Temperature actuated valve and methods of use thereof
JP2006261497A5 (en)
CN206835529U (en) The passive temperature difference starts formula spray cooler
JP2007292183A (en) Cooling liquid flow control valve
JP2005156146A (en) Expansion valve
KR20140145533A (en) Expansion valve
JP2017044347A (en) Motor valve