JP2010195950A - Aqueous composition of graft modified starch, and curable composition using the same - Google Patents

Aqueous composition of graft modified starch, and curable composition using the same Download PDF

Info

Publication number
JP2010195950A
JP2010195950A JP2009043582A JP2009043582A JP2010195950A JP 2010195950 A JP2010195950 A JP 2010195950A JP 2009043582 A JP2009043582 A JP 2009043582A JP 2009043582 A JP2009043582 A JP 2009043582A JP 2010195950 A JP2010195950 A JP 2010195950A
Authority
JP
Japan
Prior art keywords
starch
graft
modified starch
mass
aqueous composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009043582A
Other languages
Japanese (ja)
Other versions
JP5441441B2 (en
JP2010195950A5 (en
Inventor
Motoaki Araki
元章 荒木
Shin Shimazaki
伸 嶋崎
Mitsuru Doi
満 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2009043582A priority Critical patent/JP5441441B2/en
Publication of JP2010195950A publication Critical patent/JP2010195950A/en
Publication of JP2010195950A5 publication Critical patent/JP2010195950A5/ja
Application granted granted Critical
Publication of JP5441441B2 publication Critical patent/JP5441441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous composition of a graft modified starch obtained by a series of processes of gelatinization, addition reaction and graft reaction of a starch without the need of refinement, the aqueous composition obtaining a colorless film with a preferable viscosity stability in an aqueous solution state and a high water resistance even if a composition derived from a starch is included by a large amount. <P>SOLUTION: The aqueous composition of a graft modified starch with the crystallinity derived from the starch remaining is obtained by cutting the starch chain by dropping a monomer-emulsified product made of one or more ethylenically unsaturated monomers and an oxidizing agent in the presence of a starch with its α (gelatinization) degree controlled, and carrying out graft polymerization reaction of the ethylenically unsaturated monomer to the starch at the same time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種の石油原料由来の樹脂の代替として、再生可能な天然資源である澱粉を主原料とし、プラスチック、塗料、接着剤として利用可能なグラフト変性澱粉の水性組成物に関する。   The present invention relates to an aqueous composition of graft-modified starch that can be used as a plastic, paint, or adhesive, using starch, which is a renewable natural resource, as a main raw material as an alternative to various petroleum-derived resins.

現在、プラスチック、塗料、接着剤といった化学合成樹脂製品は生活と産業のあらゆる分野で使用される材料であり、その生産量は莫大な量である。しかし、この様な化学合成樹脂の大半は使用後、焼却、または土中に廃棄処理されており、COや有害性物質の放出により地球環境に悪影響を及すことが近年問題となってきている。また、化学合成樹脂の原料となる石油は有限の資源であり、将来的に枯渇の不安が広がっている。そのため、枯渇資源から再生可能資源への転換による循環型社会の構築が注目を集めるようになってきている。 At present, chemical synthetic resin products such as plastics, paints, and adhesives are materials used in every field of life and industry, and their production is enormous. However, most of these chemical synthetic resins are incinerated or disposed of in the soil after use, and in recent years it has become a problem to adversely affect the global environment due to the release of CO 2 and harmful substances. Yes. In addition, petroleum, which is a raw material for chemically synthesized resins, is a finite resource, and there are growing concerns about depletion in the future. Therefore, building a recycling-oriented society by switching from depleted resources to renewable resources has attracted attention.

よって、廃棄物の処理性の向上やCO放出量の削減等の地球環境に対する影響低減の観点、及び、再生可能資源への転換の観点から、天然由来の資源を積極的に利用することが求められている。 Therefore, it is necessary to actively use natural resources from the viewpoint of reducing the impact on the global environment, such as improving the disposal of waste and reducing CO 2 emissions, and from the viewpoint of switching to renewable resources. It has been demanded.

天然由来の原料としては多糖類の澱粉が挙げられる。澱粉は植物から容易に単離することが可能であり、比較的安価で入手が可能である。また、従来から食用の他に、澱粉糊として、または可塑剤を配合したものが成型加工(キャステング、押し出し成型、金型成型、発泡成形など)され、フィルム、食品容器、包装材、緩衝材等に利用されている。しかしながら、老化現象、フィルム形成性の低さ、耐水性の低さ等の問題により、合成樹脂製品の代替としては利用し難い。   Naturally-occurring raw materials include polysaccharide starch. Starch can be easily isolated from plants and is available at a relatively low cost. In addition to edible materials, starch paste or plasticizer blended is conventionally processed (casting, extrusion molding, mold molding, foam molding, etc.), film, food container, packaging material, cushioning material, etc. Has been used. However, due to problems such as an aging phenomenon, low film formability, and low water resistance, it is difficult to use as a substitute for synthetic resin products.

この問題を解決する方法として、澱粉の水酸基を別種の官能基に置換した化工澱粉が提案されている。例えば、DMSO中で澱粉にエステル化剤により長鎖、短鎖の炭化水素基を付加した熱可塑性変性澱粉が開示されている(特許文献1参照)。化工澱粉は、澱粉の特性を大きく変更させることができるが、十分な耐水性を得るには高い置換度が必要とされる。高い置換度を得るには、大過剰の変性剤、触媒が必要であり、精製のためのコストが大きくなるという問題がある。   As a method for solving this problem, a modified starch in which the hydroxyl group of starch is substituted with another functional group has been proposed. For example, thermoplastic modified starch in which long chain and short chain hydrocarbon groups are added to starch by an esterifying agent in DMSO is disclosed (see Patent Document 1). Modified starch can greatly change the properties of starch, but a high degree of substitution is required to obtain sufficient water resistance. In order to obtain a high degree of substitution, a large excess of a modifier and a catalyst is required, and there is a problem that the cost for purification increases.

一方、別種のポリマーをグラフトさせたグラフト変性澱粉が提案されている。例えば、澱粉等の水溶性高分子物質、水溶性カチオンモノマー、α、β−不飽和ジカルボン酸並びにアクリルアミドおよび/またはメタアクリルアミドを必須成分とする水溶性重合体からなる製紙用添加剤が開示されている(特許文献2参照)。また、デンプンおよび/または化学的に変性されたデンプンの存在下に親水性モノマーをフリーラジカル重合する際に分子当たり3つまたはそれ以上のフリーラジカルサイトを形成するフリーラジカル開始剤を使用して製造した水膨潤性親水性ポリマー組成物が開示されている(特許文献3参照)。その他、多糖類の骨格と、加熱により凝集性を有するセグメントとが結合している温度応答性材料が開示されている(特許文献4参照)。特許文献4では、多糖類と、ビニル基等の重合性基を有するカルボン酸又はその反応性誘導体(無水(メタ)アクリル酸、無水マレイン酸、(メタ)アクリル酸クロライド等)とを、重合開始剤の存在下で反応させ、エステル結合により重合性基を導入し、単量体との重合に供することで、多糖類に凝集性高分子の側鎖を導入できることが記載されている。しかし、高いグラフト率を有するグラフト変性澱粉を得るには、高価なセリウム(IV)触媒や、危険性の高い放射線照射法を用いる必要があるため、いずれの場合も、高いグラフト率を有するグラフト変性澱粉を得ることはできず、得られるフィルムの耐水性などの諸物性が十分ではなかった。   On the other hand, a graft-modified starch obtained by grafting another type of polymer has been proposed. For example, a papermaking additive comprising a water-soluble polymer substance such as starch, a water-soluble cationic monomer, an α, β-unsaturated dicarboxylic acid, and a water-soluble polymer having acrylamide and / or methacrylamide as essential components is disclosed. (See Patent Document 2). Also manufactured using a free radical initiator that forms three or more free radical sites per molecule when free radical polymerizing hydrophilic monomers in the presence of starch and / or chemically modified starch A water-swellable hydrophilic polymer composition is disclosed (see Patent Document 3). In addition, a temperature-responsive material is disclosed in which a polysaccharide skeleton and a segment having cohesiveness are bonded by heating (see Patent Document 4). In Patent Document 4, polymerization of polysaccharide and a carboxylic acid having a polymerizable group such as a vinyl group or a reactive derivative thereof (anhydrous (meth) acrylic acid, maleic anhydride, (meth) acrylic acid chloride, etc.) is started. It is described that a side chain of a cohesive polymer can be introduced into a polysaccharide by reacting in the presence of an agent, introducing a polymerizable group by an ester bond, and subjecting it to polymerization with a monomer. However, in order to obtain a graft-modified starch having a high graft ratio, it is necessary to use an expensive cerium (IV) catalyst or a highly dangerous irradiation method. Starch could not be obtained, and various physical properties such as water resistance of the obtained film were not sufficient.

また、(a)スチレンおよび/またはメチルスチレン、(b)ブタジエン−1,3および/またはイソプレンおよび(c)その他のエチレン性不飽和共重合性モノマーからなるモノマーに対して、少なくとも1種の分解されたデンプン10〜40質量%および水溶性のレドックス触媒の存在下にラジカル開始共重合することにより得られる水性ポリマー分散液が開示されている(特許文献5参照)。しかし、エチレン性不飽和共重合性モノマーに対して澱粉の使用量が40質量%以下であるため、石油原料の代替として再生可能な天然原料を使用するという目的を達成できるものではなかった。   Also, at least one kind of decomposition with respect to a monomer comprising (a) styrene and / or methylstyrene, (b) butadiene-1,3 and / or isoprene and (c) other ethylenically unsaturated copolymerizable monomer An aqueous polymer dispersion obtained by radical-initiated copolymerization in the presence of 10 to 40% by weight of the starch and a water-soluble redox catalyst is disclosed (see Patent Document 5). However, since the amount of starch used is 40% by mass or less based on the ethylenically unsaturated copolymerizable monomer, the object of using a renewable natural raw material as an alternative to a petroleum raw material cannot be achieved.

特開2000−159802号公報JP 2000-159802 A 特開平8−246388号公報JP-A-8-246388 特開平10−330433号公報Japanese Patent Laid-Open No. 10-330433 特開2003−252936号公報JP 2003-252936 A 特開2005−528478号公報JP 2005-528478 A

従って、本発明は、上記のような課題を解決するためになされたものであり、精製を必要とせず、一連の工程で澱粉の糊化、付加反応、グラフト反応を行うことで得ることができ、且つ、水溶液状態で粘度安定性が良好で、澱粉由来の成分が多く含まれていても耐水性が高く、着色の無いフィルムを得られるグラフト変性澱粉の水性組成物を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and does not require purification, and can be obtained by performing starch gelatinization, addition reaction, and graft reaction in a series of steps. An object of the present invention is to provide an aqueous composition of a graft-modified starch that has a good viscosity stability in an aqueous solution state and has a high water resistance even when a large amount of starch-derived components are contained, and a film having no color can be obtained. To do.

本発明者らは、上記課題を解決すべく鋭意研究した結果、α化度をコントロールした澱粉の存在下で、1種以上のエチレン性不飽和モノマーからなるモノマー乳化物、及び、酸化剤を滴下することによる、澱粉鎖の切断、及び、澱粉へのエチレン性不飽和モノマーのグラフト重合反応を同時に行うことによって得られる、澱粉由来の結晶性を残したグラフト変性澱粉の水性組成物が上記課題を解決するのに有用であることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention added dropwise a monomer emulsion composed of one or more ethylenically unsaturated monomers and an oxidizing agent in the presence of starch with a controlled degree of gelatinization. An aqueous composition of graft-modified starch that retains the crystallinity derived from starch, obtained by simultaneously performing starch chain scission and graft polymerization reaction of ethylenically unsaturated monomer onto starch. The present invention has been found to be useful for solving the problems, and the present invention has been completed.

すなわち、本発明は、水性媒体中、炭素数4〜30の直鎖若しくは分岐鎖のアルキル基またはアルケニル基を有する無水ジカルボン酸化合物を付加した澱粉の存在下で、エチレン性不飽和モノマーを乳化重合することによって得られるグラフト変性澱粉の水性組成物であり、グラフト変性澱粉が、エチレン性不飽和モノマーからなるポリマー成分に対して40〜2000質量%の澱粉由来の成分を有し、澱粉由来の成分のα化度が80%以下であるグラフト変性澱粉の水性組成物に関する。   That is, the present invention is an emulsion polymerization of an ethylenically unsaturated monomer in an aqueous medium in the presence of starch to which a dicarboxylic anhydride compound having a linear or branched alkyl group or alkenyl group having 4 to 30 carbon atoms is added. It is an aqueous composition of graft-modified starch obtained by, and the graft-modified starch has 40 to 2000% by mass of a starch-derived component with respect to a polymer component comprising an ethylenically unsaturated monomer, and is a starch-derived component The present invention relates to an aqueous composition of graft-modified starch having a gelatinization degree of 80% or less.

グラフト変性澱粉の水性組成物は、少なくとも1種の(A)α化度が80%以上のα化澱粉に、炭素数4〜30の直鎖若しくは分岐鎖のアルキル基またはアルケニル基を有する無水ジカルボン酸化合物を付加した変性澱粉、及び、少なくとも1種の(B)α化度が20%以下の澱粉の存在下で、エチレン性不飽和モノマーを乳化重合することによって得られることが好ましい。   The aqueous composition of graft-modified starch is an anhydrous dicarboxylic acid having a linear or branched alkyl or alkenyl group having 4 to 30 carbon atoms in at least one (A) pregelatinized starch having a pregelatinization degree of 80% or more. It is preferably obtained by emulsion polymerization of an ethylenically unsaturated monomer in the presence of a modified starch to which an acid compound has been added and at least one (B) starch having a degree of alpha conversion of 20% or less.

(A)α化度が80%以上のα化澱粉と(B)α化度が20%以下の澱粉の比は、10:90〜90:10であることが好ましい。   The ratio of (A) pregelatinized starch having a pregelatinization degree of 80% or more and (B) starch having a pregelatinization degree of 20% or less is preferably 10:90 to 90:10.

エチレン性不飽和モノマーの使用量は、(A)α化度が80%以上のα化澱粉と(B)α化度が20%以下の澱粉の総量に対して5質量%〜250質量%であることが好ましい。   The amount of the ethylenically unsaturated monomer used is 5% by mass to 250% by mass with respect to the total amount of (A) pregelatinized starch having a pregelatinization degree of 80% or more and (B) starch having a pregelatinization degree of 20% or less. Preferably there is.

無水ジカルボン酸化合物の(A)α化度が80%以上のα化澱粉に対する添加量は、0.1質量%〜30質量%であることが好ましい。   The amount of the dicarboxylic anhydride compound (A) added to the pregelatinized starch having a pregelatinization degree of 80% or more is preferably 0.1% by mass to 30% by mass.

無水ジカルボン酸化合物は、無水オクテニルコハク酸であることが好ましい。   The dicarboxylic anhydride compound is preferably octenyl succinic anhydride.

グラフト変性澱粉の水性組成物は、レドックス開始剤を用いて、エチレン性不飽和モノマーを乳化重合することによって得られることが好ましい。   The aqueous composition of graft-modified starch is preferably obtained by emulsion polymerization of an ethylenically unsaturated monomer using a redox initiator.

レドックス開始剤の還元剤は、二酸化チオ尿素または亜ジチオン酸ナトリウムであることが好ましい。   The reducing agent of the redox initiator is preferably thiourea dioxide or sodium dithionite.

エチレン性不飽和モノマーは、澱粉の水酸基と反応可能な反応基を有するエチレン性不飽和モノマーを含むことが好ましい。   The ethylenically unsaturated monomer preferably includes an ethylenically unsaturated monomer having a reactive group capable of reacting with a starch hydroxyl group.

また、本発明はグラフト変性澱粉の水性組成物、及び水酸基またはカルボキシル基と反応可能な官能基を有する硬化剤との混合物であることを特徴とする硬化性組成物に関する。   The present invention also relates to a curable composition characterized in that it is a mixture of an aqueous composition of graft-modified starch and a curing agent having a functional group capable of reacting with a hydroxyl group or a carboxyl group.

本発明によれば、精製を必要とせず、一連の工程で澱粉の変性を行うことで得られ、水分散体の状態で粘度安定性が良好であり、エチレン性不飽和モノマーからなるポリマー成分に対して澱粉由来の成分が40質量%以上含まれていても、着色が無く耐水性の良いフィルムが得られるグラフト変性澱粉の水性組成物を提供することができる。   According to the present invention, purification is not required and starch is modified in a series of steps. The viscosity is good in the state of an aqueous dispersion, and the polymer component is composed of an ethylenically unsaturated monomer. On the other hand, even if the starch-derived component is contained in an amount of 40% by mass or more, it is possible to provide an aqueous composition of graft-modified starch that can be obtained without coloring and having good water resistance.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のグラフト変性澱粉の水性組成物は、(A)α化度が80%以上のα化澱粉(以下、(A)α化澱粉という)に、炭素数4〜30の直鎖若しくは分岐鎖のアルキル基またはアルケニル基を有する無水ジカルボン酸化合物を付加した変性澱粉を得、さらに、(B)α化度が20%以下の澱粉(以下、(B)澱粉という)を添加した後に、これらの澱粉の存在下で、エチレン性不飽和モノマーを乳化重合することによって得られる。このような方法を用いることにより、エチレン性不飽和モノマーからなるポリマー成分の総量に対して、グラフト変性澱粉が40質量%以上の澱粉由来の成分を有していても、耐水性が高いフィルムを得られるグラフト変性澱粉の水性組成物を製造することが可能となる。澱粉由来の成分は、エチレン性不飽和モノマーからなるポリマー成分に対して固形分で40〜2000質量%を有するものであり、40〜1000質量%であることが好ましい。澱粉由来の成分が2000質量%より大きくなると、エチレン性不飽和モノマーのグラフト化による耐水性向上、柔軟性付与の効果が得られない。また、澱粉の老化により粘度安定性が低下する傾向にある。   The aqueous composition of graft-modified starch of the present invention comprises (A) pregelatinized starch having a degree of pregelatinization of 80% or more (hereinafter referred to as (A) pregelatinized starch), linear or branched chain having 4 to 30 carbon atoms. Modified starch having an alkyl group or an alkenyl group added thereto, and (B) starch having a degree of alpha conversion of 20% or less (hereinafter referred to as (B) starch), It is obtained by emulsion polymerization of an ethylenically unsaturated monomer in the presence of starch. By using such a method, even if the graft-modified starch has a starch-derived component of 40% by mass or more based on the total amount of the polymer component composed of the ethylenically unsaturated monomer, a film having high water resistance can be obtained. It is possible to produce an aqueous composition of the resulting graft-modified starch. The starch-derived component has a solid content of 40 to 2000% by mass and preferably 40 to 1000% by mass with respect to the polymer component composed of the ethylenically unsaturated monomer. If the starch-derived component is greater than 2000% by mass, the effects of improving water resistance and imparting flexibility due to grafting of the ethylenically unsaturated monomer cannot be obtained. Further, the viscosity stability tends to decrease due to aging of starch.

本発明で用いられる(A)α化澱粉は、グラフト変性澱粉の水性媒体中での分散安定性に寄与する。(A)α化澱粉の具体例としては、アミロース及び/またはアミロペクチンで構成される天然の炭水化物、及び、その誘導体、より具体的には、トウモロコシ澱粉、馬鈴薯澱粉、タピオカ澱粉、小麦澱粉、甘藷澱粉、米澱粉、ワキシー澱粉、及び、これらを基にした化工澱粉をα化処理し、α化度を80%以上、より好ましくは90%以上としたものであり、水性媒体への溶解により透明な澱粉水溶液を得られるものである。α化度が80%未満となると、グラフト変性澱粉の水性媒体中での分散安定性が低下し、グラフト変性澱粉が沈降する傾向にある。中でも、(A)α化澱粉の重量平均分子量は、500,000以上であることがより好ましい。重量平均分子量が500,000未満であるとグラフト反応中の酸化剤による澱粉鎖の切断により非常に短い澱粉鎖が多量に発生し、耐水性が低下する傾向にある。α化処理の方法としては、特に限定されず、熱水処理、アルカリ処理、湿熱処理等の公知の方法を用いることができる。   The (A) pregelatinized starch used in the present invention contributes to the dispersion stability of the graft-modified starch in an aqueous medium. (A) Specific examples of pregelatinized starch include natural carbohydrates composed of amylose and / or amylopectin and derivatives thereof, more specifically corn starch, potato starch, tapioca starch, wheat starch, sweet potato starch , Rice starch, waxy starch, and modified starch based on these starches are alpha-treated, and the degree of alpha-ization is 80% or more, more preferably 90% or more, and is transparent when dissolved in an aqueous medium. An aqueous starch solution can be obtained. When the degree of pregelatinization is less than 80%, the dispersion stability of the graft-modified starch in an aqueous medium is lowered, and the graft-modified starch tends to settle. Especially, it is more preferable that the weight average molecular weight of (A) pregelatinized starch is 500,000 or more. When the weight average molecular weight is less than 500,000, a very large amount of very short starch chains are generated by the cleavage of starch chains by an oxidizing agent during the grafting reaction, and the water resistance tends to be lowered. The method for the alpha treatment is not particularly limited, and known methods such as hot water treatment, alkali treatment, and wet heat treatment can be used.

本発明で用いられる(B)澱粉はグラフト変性澱粉の耐水性向上に寄与する。(B)澱粉の具体例としては、アミロース及び/またはアミロペクチンで構成される天然の炭水化物、及び、その誘導体、より具体的には、トウモロコシ澱粉、馬鈴薯澱粉、タピオカ澱粉、小麦澱粉、甘藷澱粉、米澱粉、ワキシー澱粉、及び、これらを基にした化工澱粉であり、α化度を20%以下、より好ましくは10%以下としたものである。α化度が20%より大きくなると、得られるグラフト変性澱粉に残る結晶性が低く、耐水性が低下する傾向にある。中でも、(B)澱粉の重量平均分子量は、500,000以上であることがより好ましい。重量平均分子量が500,000未満であるとグラフト反応中の酸化剤による澱粉鎖の切断により非常に短い澱粉鎖が多量に発生し、耐水性が低下する傾向にある。   The starch (B) used in the present invention contributes to improving the water resistance of the graft-modified starch. (B) Specific examples of starch include natural carbohydrates composed of amylose and / or amylopectin, and derivatives thereof, more specifically corn starch, potato starch, tapioca starch, wheat starch, sweet potato starch, rice Starch, waxy starch, and modified starch based on these starches, with a degree of gelatinization of 20% or less, more preferably 10% or less. When the degree of pregelatinization exceeds 20%, the crystallinity remaining in the obtained graft-modified starch is low, and the water resistance tends to be lowered. Especially, it is more preferable that the weight average molecular weight of (B) starch is 500,000 or more. When the weight average molecular weight is less than 500,000, a very large amount of very short starch chains are generated by the cleavage of starch chains by an oxidizing agent during the grafting reaction, and the water resistance tends to be lowered.

なお、本発明のグラフト変性澱粉の水性組成物は、(A)α化澱粉にアルキル基またはアルケニル基を有する無水ジカルボン酸化合物を付加し、さらに、(B)澱粉を添加した後に、これらの澱粉の存在下で、エチレン性不飽和モノマーを乳化重合することによって得られると述べたが、グラフト変性澱粉中の澱粉由来の成分のα化度が80%以下である限りは、α化度が20〜80%の澱粉に、炭素数4〜30の直鎖若しくは分岐鎖のアルキル基またはアルケニル基を有する無水ジカルボン酸化合物を付加した後に、この変性された澱粉の存在下で、エチレン性不飽和モノマーを乳化重合することによって製造することも可能である。   In addition, the aqueous composition of the graft-modified starch of the present invention is obtained by adding (A) a dicarboxylic acid anhydride compound having an alkyl group or an alkenyl group to pregelatinized starch, and (B) adding the starch, and then adding these starches. As described above, it can be obtained by emulsion polymerization of an ethylenically unsaturated monomer. However, as long as the α-degree of the starch-derived component in the graft-modified starch is 80% or less, the α-degree is 20%. After adding a dicarboxylic anhydride compound having a linear or branched alkyl or alkenyl group having 4 to 30 carbon atoms to -80% starch, an ethylenically unsaturated monomer in the presence of the modified starch Can also be produced by emulsion polymerization.

本発明で用いられる(A)α化澱粉を変性する無水ジカルボン酸化合物は澱粉の水酸基に付加反応するもので、澱粉に疎水性のアルキル基またはアルケニル基と親水性のカルボキシル基が導入されて澱粉の乳化力を向上させる。また、直鎖のアルキル基、アルケニル基の場合は、澱粉鎖と複合体を形成して澱粉鎖の二重螺旋構造の形成を阻害することで、澱粉水溶液の粘度を大きく低下させ、さらに老化を防止する効果がある。具体例としては、オクテニル無水コハク酸、デセニル無水コハク酸、ドデセニル無水コハク酸、テトラデセニル無水コハク酸、ヘキサデセニル無水コハク酸、オクタデセニル無水コハク酸等があげられる。無水ジカルボン酸化合物のアルキル基もしくはアルケニル基は炭素数4〜30であることが好ましく、炭素数6〜22の直鎖であることがより好ましい。炭素数が4より小さい場合は、澱粉に付加されるアルキル基もしくはアルケニル基の疎水性が弱いため、澱粉の乳化力が弱く、また、耐水性も低下する。炭素数が30より大きい場合は、無水ジカルボン酸化合物の疎水性が強く、澱粉との親和性が低いため、付加反応の効率が低下してその効果を得られない。中でも、直鎖のオクテニル無水コハク酸、デセニル無水コハク酸が、付加効率、乳化力の点で好ましい。   The dicarboxylic anhydride compound for modifying (A) the pregelatinized starch used in the present invention is an addition reaction with the hydroxyl group of starch, and starch is introduced with a hydrophobic alkyl group or alkenyl group and a hydrophilic carboxyl group. Improves emulsifying power. In the case of a linear alkyl group or an alkenyl group, the viscosity of the starch aqueous solution is greatly reduced by forming a complex with the starch chain and inhibiting the formation of the double helical structure of the starch chain, and further aging. There is an effect to prevent. Specific examples include octenyl succinic anhydride, decenyl succinic anhydride, dodecenyl succinic anhydride, tetradecenyl succinic anhydride, hexadecenyl succinic anhydride, octadecenyl succinic anhydride, and the like. The alkyl group or alkenyl group of the dicarboxylic anhydride compound preferably has 4 to 30 carbon atoms, and more preferably a straight chain having 6 to 22 carbon atoms. When the carbon number is less than 4, the hydrophobicity of the alkyl group or alkenyl group added to the starch is weak, so that the emulsifying power of the starch is weak and the water resistance is also lowered. When the number of carbon atoms is larger than 30, the dicarboxylic anhydride compound has strong hydrophobicity and low affinity with starch, so that the efficiency of the addition reaction is lowered and the effect cannot be obtained. Of these, linear octenyl succinic anhydride and decenyl succinic anhydride are preferable in terms of addition efficiency and emulsifying power.

(A)α化澱粉に対する無水ジカルボン酸化合物の添加量は0.1質量%〜30質量%であることが好ましく、1質量%〜20質量%であることがより好ましい。無水ジカルボン酸の添加量が0.1質量%未満であると、澱粉の乳化力が低く、グラフト反応が不安定となり、また耐老化性も低下する傾向にある。無水ジカルボン酸の添加量が30質量%を超えると、耐アルカリ性が低下する傾向にある。   (A) The addition amount of the dicarboxylic anhydride compound to the pregelatinized starch is preferably 0.1% by mass to 30% by mass, and more preferably 1% by mass to 20% by mass. When the amount of dicarboxylic anhydride added is less than 0.1% by mass, the emulsifying power of starch is low, the graft reaction becomes unstable, and the aging resistance tends to decrease. When the amount of dicarboxylic anhydride added exceeds 30% by mass, the alkali resistance tends to decrease.

なお、本発明の各原料と澱粉の質量比の計算においては、澱粉の質量として、澱粉を110℃で3時間乾燥させた乾燥質量が用いられる。以下、同様である。   In addition, in calculation of the mass ratio of each raw material of this invention and starch, the dry mass which dried starch for 3 hours at 110 degreeC is used as the mass of starch. The same applies hereinafter.

本発明において、無水ジカルボン酸化合物の澱粉への付加反応は、60〜95℃で行うことが好ましく、80〜95℃で行うことがより好ましい。60℃より低くなると、澱粉の糊化が不十分であり、澱粉への無水ジカルボン酸の付加が不均一となる傾向にある。   In the present invention, the addition reaction of the dicarboxylic anhydride compound to starch is preferably performed at 60 to 95 ° C, more preferably 80 to 95 ° C. When the temperature is lower than 60 ° C., starch gelatinization is insufficient, and the addition of dicarboxylic anhydride to starch tends to be uneven.

本発明で用いられる澱粉にグラフト重合するエチレン性不飽和モノマーは、澱粉にグラフトすることで澱粉の耐水性の向上、柔軟性の付与の効果がある。具体例として、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、メタクリル酸シクロヘキシル、アクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、メタクリル酸2−ヒドロキシプロピル、アクリロニトリル、メタクリロニトリル、メトキシエチルアクリレート、メトキシエチルメタクリレート、ブトキシエチルアクリレート、ブトキシエチルメタクリレート、スチレン、酢酸ビニル、プロピオン酸ビニル等が挙げられる。中でも、澱粉へのグラフト効率の点で、アクリル酸ブチル、アクリル酸エチル、メタクリル酸ブチル、メタクリル酸メチルが好ましい。   The ethylenically unsaturated monomer graft-polymerized to starch used in the present invention has the effect of improving the water resistance of starch and imparting flexibility by grafting to starch. Specific examples include methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, cyclohexyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylic acid Examples include 2-hydroxypropyl, 2-hydroxypropyl methacrylate, acrylonitrile, methacrylonitrile, methoxyethyl acrylate, methoxyethyl methacrylate, butoxyethyl acrylate, butoxyethyl methacrylate, styrene, vinyl acetate, and vinyl propionate. Of these, butyl acrylate, ethyl acrylate, butyl methacrylate, and methyl methacrylate are preferred from the viewpoint of grafting efficiency to starch.

エチレン性不飽和モノマーの乳化重合における使用量は、澱粉の総量に対して5質量%〜250質量%であることが好ましく、20質量%〜200質量%であることがより好ましい。5質量%未満の場合は、グラフト化による耐水性向上、柔軟性付与の効果が得られない。250質量%より多い場合は、グラフト重合が不安定化する傾向にある。また、澱粉使用量が低下して、石油原料の代替として再生可能な天然原料を使用するという趣旨に外れる。   The amount of the ethylenically unsaturated monomer used in the emulsion polymerization is preferably 5% by mass to 250% by mass and more preferably 20% by mass to 200% by mass with respect to the total amount of starch. When the amount is less than 5% by mass, the effect of improving water resistance and imparting flexibility by grafting cannot be obtained. When it is more than 250% by mass, the graft polymerization tends to become unstable. In addition, the amount of starch used is reduced, and the use of renewable natural raw materials as an alternative to petroleum raw materials is deviated.

また、本発明で用いられる澱粉にグラフト重合するエチレン性不飽和モノマーとして、澱粉の水酸基と反応可能な反応基を有するエチレン性不飽和モノマーを含むことが好ましい。反応基を有するエチレン性不飽和モノマーは、澱粉へのモノマーのグラフト頻度を向上させ、老化防止、耐水性向上の効果がある。具体例としては、2−イソシアナトエチルメタクリレート、2−イソシアナトエチルアクリレート、トリメトキシシリルプロピルメタクリレート、グリシジルメタクリレートが挙げられる。澱粉の水酸基と反応可能な反応基を有するエチレン性不飽和モノマーの量は、(A)α化澱粉と(B)澱粉の総量に対して0.1質量%〜30質量%であることが好ましく、0.5質量%〜15質量%であることがより好ましい。0.1質量%未満の場合は、老化防止、耐水性向上の効果が得られない。30質量%より多い場合は、グラフト重合が不安定化、貯蔵安定性が低下する傾向にある。   Moreover, it is preferable to contain the ethylenically unsaturated monomer which has a reactive group which can react with the hydroxyl group of starch as an ethylenically unsaturated monomer graft-polymerized to the starch used by this invention. The ethylenically unsaturated monomer having a reactive group improves the grafting frequency of the monomer to starch, and has effects of preventing aging and improving water resistance. Specific examples include 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, trimethoxysilylpropyl methacrylate, and glycidyl methacrylate. The amount of the ethylenically unsaturated monomer having a reactive group capable of reacting with the hydroxyl group of starch is preferably 0.1% by mass to 30% by mass with respect to the total amount of (A) pregelatinized starch and (B) starch. It is more preferable that it is 0.5 mass%-15 mass%. If it is less than 0.1% by mass, the effects of preventing aging and improving water resistance cannot be obtained. When it is more than 30% by mass, the graft polymerization tends to be unstable and the storage stability tends to be lowered.

本発明では(A)α化澱粉と(B)澱粉の比率、及び、エチレン性不飽和モノマーのグラフト重合の反応温度でグラフト変性澱粉に残る結晶度をコントロールしている。本発明に用いられる(A)α化澱粉と(B)澱粉の比率は10:90〜90:10、より好ましくは20:80〜80:20である。(A)α化澱粉の比率が10%未満であると、得られるグラフト変性澱粉の水性媒体中での分散安定性が低下し、グラフト変性澱粉が沈降する傾向にある。(A)α化澱粉の比率が90%を超えると、得られるグラフト変性澱粉に残る結晶性が低く、耐水性が低下する傾向にある。   In the present invention, the ratio of (A) pregelatinized starch to (B) starch and the crystallinity remaining in the graft-modified starch are controlled by the reaction temperature of the graft polymerization of the ethylenically unsaturated monomer. The ratio of (A) pregelatinized starch and (B) starch used in the present invention is 10:90 to 90:10, more preferably 20:80 to 80:20. (A) When the ratio of pregelatinized starch is less than 10%, the dispersion stability of the resulting graft-modified starch in an aqueous medium is lowered, and the graft-modified starch tends to settle. (A) When the ratio of pregelatinized starch exceeds 90%, the crystallinity remaining in the obtained graft-modified starch is low, and the water resistance tends to decrease.

本発明において、エチレン性不飽和モノマーの重合反応は、反応温度30℃〜60℃、より好ましくは、40〜60℃で行うことが好ましい。30℃より低い場合は、反応中に澱粉の老化が進行し、グラフトが不均一となる傾向にある。60℃より高い場合は、澱粉の糊化が進行し、得られるグラフト変性澱粉に残る結晶性が低く、耐水性が低下する傾向にある。   In the present invention, the polymerization reaction of the ethylenically unsaturated monomer is preferably performed at a reaction temperature of 30 ° C to 60 ° C, more preferably 40 to 60 ° C. When the temperature is lower than 30 ° C., aging of the starch proceeds during the reaction, and the graft tends to become non-uniform. When the temperature is higher than 60 ° C., gelatinization of the starch proceeds, the crystallinity remaining in the obtained graft-modified starch is low, and the water resistance tends to decrease.

本発明で用いられるレドックス開始剤は、水溶性であり、解裂してラジカルを発生する酸化剤と、酸化剤の解裂を促進する還元剤の組み合わせである。レドックス開始剤を用いることで、澱粉の糊化温度以下の温度でグラフト反応を行うことができ、得られるグラフト変性澱粉に残る結晶性の低下を防ぐことができる。   The redox initiator used in the present invention is a combination of an oxidizing agent that is water-soluble and cleaves to generate radicals, and a reducing agent that promotes cleavage of the oxidizing agent. By using a redox initiator, the graft reaction can be carried out at a temperature lower than the gelatinization temperature of starch, and the decrease in crystallinity remaining in the graft-modified starch obtained can be prevented.

酸化剤の具体例としては、過酸化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩、t−ブチルハイドロパーオキサイド、ジコハク酸パーオキサイド等の有機過酸化物が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。酸化剤は、(A)α化澱粉と(B)澱粉の総量に対して0.1質量%〜20質量%の範囲で使用することが好ましい。酸化剤の使用量が0.1質量%未満であると、澱粉の切断の程度が低く、系の粘度が上昇、耐老化性が低下する場合がある。酸化剤の使用量が20質量%を超えると、グラフト変性澱粉の分子量が低くなり、耐水性が低下する場合がある。   Specific examples of the oxidizing agent include persulfates such as hydrogen peroxide, ammonium persulfate, potassium persulfate, and sodium persulfate, and organic peroxides such as t-butyl hydroperoxide and disuccinic acid peroxide. These may be used individually by 1 type and may be used in combination of 2 or more type. The oxidizing agent is preferably used in the range of 0.1% by mass to 20% by mass with respect to the total amount of (A) pregelatinized starch and (B) starch. When the amount of the oxidizing agent used is less than 0.1% by mass, the degree of starch cutting is low, the viscosity of the system increases, and the aging resistance may decrease. When the usage-amount of an oxidizing agent exceeds 20 mass%, the molecular weight of graft-modified starch will become low and water resistance may fall.

還元剤の具体例としては、二酸化チオ尿素、亜ジチオン酸ナトリウム、酸性亜硫酸ソーダ、ロンガリット、L−アスコルビン酸、酒石酸、シュウ酸、硫酸第一鉄が挙げられる。中でも、還元力が高く、着色しにくい点で二酸化チオ尿素、亜ジチオン酸ナトリウムがより好ましい。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。還元剤の使用量としては、酸化剤を解裂させるに必要な量であり、酸化剤に対して0.1mol当量〜2mol当量で使用することが好ましい。   Specific examples of the reducing agent include thiourea dioxide, sodium dithionite, acidic sodium sulfite, Rongalite, L-ascorbic acid, tartaric acid, oxalic acid, and ferrous sulfate. Of these, thiourea dioxide and sodium dithionite are more preferred because of their high reducing power and difficulty in coloring. These may be used individually by 1 type and may be used in combination of 2 or more type. The amount of the reducing agent used is an amount necessary for cleaving the oxidizing agent, and is preferably used in an amount of 0.1 mol equivalent to 2 mol equivalent with respect to the oxidizing agent.

本発明で用いられる界面活性剤は、エチレン性不飽和モノマー組成物を乳化し、反応中の水性媒体中のモノマー濃度を調節することで、水性媒体中でのエチレン性不飽和モノマーの非グラフト共重合体の生成を抑制し、グラフト率を向上させる。具体例としては、アルキル又はアルキルアリル硫酸塩、アルキル又はアルキルアリルスルホン酸塩、アルキルアリルスルホコハク酸塩、スチレンスルホン酸塩、アルキルベンゼンスルホン酸塩等のアニオン性乳化剤、グリセリンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンカルボン酸エステル、ポリオキシアルキレンアルキルエーテル等のノニオン性乳化剤、オクテニルコハク酸澱粉、ヒドロキシエチルセルロース、ポリビニルアルコール等の水溶性高分子等が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも、老化防止効果のある長鎖アルキル基を持つものが好ましい。界面活性剤は、エチレン性不飽和モノマー組成物に対して0.1質量%〜5質量%の範囲で使用することが好ましい。界面活性剤の使用量が0.1質量%未満であると、グラフト率が低下する場合があり、一方、界面活性剤の使用量が5質量%を超えると、耐水性が低下する場合がある。   The surfactant used in the present invention emulsifies the ethylenically unsaturated monomer composition and adjusts the monomer concentration in the aqueous medium during the reaction, thereby allowing the non-grafted copolymer of the ethylenically unsaturated monomer in the aqueous medium. Suppresses the formation of polymer and improves the graft ratio. Specific examples include anionic emulsifiers such as alkyl or alkyl allyl sulfate, alkyl or alkyl allyl sulfonate, alkyl allyl sulfosuccinate, styrene sulfonate, alkyl benzene sulfonate, glycerin alkyl ether, polyoxyethylene alkylphenyl, etc. Nonionic emulsifiers such as ether, polyoxyethylene alkyl ether, polyoxyethylene carboxylic acid ester, polyoxyalkylene alkyl ether, water-soluble polymers such as octenyl succinic acid starch, hydroxyethyl cellulose, polyvinyl alcohol, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, those having a long-chain alkyl group having an antiaging effect are preferable. The surfactant is preferably used in the range of 0.1% by mass to 5% by mass with respect to the ethylenically unsaturated monomer composition. When the amount of the surfactant used is less than 0.1% by mass, the graft ratio may be decreased. On the other hand, when the amount of the surfactant used exceeds 5% by mass, the water resistance may be decreased. .

本発明で用いられる硬化剤は、グラフト変性澱粉の水酸基またはカルボキシル基と反応してグラフト変性澱粉分子間を架橋し、耐水性、耐アルカリ性を向上させる。グラフト変性澱粉の水酸基またはカルボキシル基と反応可能な官能基としては、イソシアネート基、酸無水物、カルボジイミド基、エポキシ基等が挙げられる。これら官能基を有する化合物(硬化剤)の具体例として、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、キシレンジイソシアネート、エチレングリコール ビスアンヒドロトリメリテート、グリセリンビス アンヒドロトリメリテート モノアセテート、3、3’、4、4’−ジフェニルスルホンテトラカルボン酸二無水物、ポリカルボジイミド、ネオペンチルグリコールジグリシジルエーテル、グリセリントリグリシジルエーテル等が挙げられる。中でも、架橋反応が比較的早く、水性媒体への分散のよい点で、ヘキサメチレンジイソシアネートが好ましい。   The curing agent used in the present invention reacts with the hydroxyl group or carboxyl group of the graft-modified starch to crosslink between the graft-modified starch molecules, thereby improving water resistance and alkali resistance. Examples of the functional group capable of reacting with the hydroxyl group or carboxyl group of the graft-modified starch include an isocyanate group, an acid anhydride, a carbodiimide group, and an epoxy group. Specific examples of the compound having a functional group (curing agent) include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, xylene diisocyanate, ethylene glycol bisanhydro trimellitate, glycerin bis anhydro trimellitate monoacetate, 3, 3 ′ 4,4′-diphenylsulfonetetracarboxylic dianhydride, polycarbodiimide, neopentyl glycol diglycidyl ether, glycerin triglycidyl ether, and the like. Of these, hexamethylene diisocyanate is preferred because it has a relatively fast crosslinking reaction and is well dispersed in an aqueous medium.

硬化剤は、(A)α化澱粉と(B)澱粉の総量に対して1質量%〜50質量%の範囲で使用することが好ましい。硬化剤の使用量が1質量%未満であると、グラフト変性澱粉分子間の架橋密度が低く、耐水性、耐アルカリ性の向上が見られない場合がある。硬化剤の使用量が50質量%を超えると、ポットライフが非常に短く、作業性が低下する場合がある。   It is preferable to use a hardening | curing agent in 1 mass%-50 mass% with respect to the total amount of (A) pregelatinized starch and (B) starch. When the amount of the curing agent used is less than 1% by mass, the crosslinking density between the graft-modified starch molecules is low, and the water resistance and alkali resistance may not be improved. When the usage-amount of a hardening | curing agent exceeds 50 mass%, a pot life is very short and workability | operativity may fall.

本発明のグラフト変性澱粉の反応工程において、酸、酵素による澱粉鎖の切断を併用してもよい。   In the reaction step of the graft-modified starch of the present invention, starch chain cleavage by acid or enzyme may be used in combination.

本発明のグラフト変性澱粉の水性組成物には、上記で説明した以外の樹脂、着色剤、可塑剤、老化防止剤、防腐剤、殺菌剤、消泡剤、濡れ剤、紫外線吸収剤、光安定剤等の公知慣用の添加剤を、本発明の効果を損なわない範囲で適宜添加してもよい。   The aqueous composition of the graft-modified starch of the present invention includes resins, colorants, plasticizers, anti-aging agents, antiseptics, bactericides, antifoaming agents, wetting agents, UV absorbers, and light stabilizers other than those described above. You may add suitably well-known usual additives, such as an agent, in the range which does not impair the effect of this invention.

なお、本発明における澱粉の糊化度(α化度)は示差走査熱量計を用いて、下記条件にて50℃〜90℃付近に検出される糊化吸熱ピークのエンタルピーを測定し、下記の式(1)にて算出されるものである。   In addition, the gelatinization degree (alpha-ization degree) of the starch in this invention measured the enthalpy of the gelatinization endothermic peak detected in the following conditions on the following conditions using a differential scanning calorimeter, and the following It is calculated by equation (1).

試料:澱粉に蒸留水を加えて固形分濃度20%に調整した水溶液、または、懸濁液を1時間静置したもの。
サンプル容器:銀製密閉容器
リファレンス:蒸留水
測定温度:5℃〜105℃
昇温速度:4℃/分
Sample: An aqueous solution prepared by adding distilled water to starch to a solid content concentration of 20%, or a suspension in which the suspension was allowed to stand for 1 hour.
Sample container: Silver sealed container Reference: Distilled water Measurement temperature: 5 ° C to 105 ° C
Temperature increase rate: 4 ° C / min

Figure 2010195950
Figure 2010195950

式(1)において、△Hgは試料澱粉にて検出される糊化吸熱エンタルピー、△Hgは試料澱粉の未処理状態における当該生澱粉にて検出される糊化吸熱エンタルピーである。 In formula (1), ΔHg 1 is the gelatinized endothermic enthalpy detected in the sample starch, and ΔHg 2 is the gelatinized endothermic enthalpy detected in the raw starch in the untreated state of the sample starch.

本発明におけるグラフト変性澱粉中の澱粉由来の成分の糊化度(α化度)は示差走査熱量計を用いて、下記条件にて50℃〜90℃付近に検出される糊化吸熱ピークのエンタルピーを測定し、下記の式(2)にて算出されるものである。   The gelatinization degree (alpha degree) of the starch-derived component in the graft-modified starch in the present invention is determined by using a differential scanning calorimeter, and the enthalpy of the gelatinization endothermic peak detected at around 50 ° C. to 90 ° C. under the following conditions. Is calculated by the following equation (2).

試料:グラフト変性澱粉に蒸留水を加えて固形分濃度20%に調整した水分散体を1時間静置したもの。
サンプル容器:銀製密閉容器
リファレンス:蒸留水
測定温度:5℃〜105℃
昇温速度:4℃/分
Sample: An aqueous dispersion prepared by adding distilled water to graft-modified starch to a solid content concentration of 20% and allowing to stand for 1 hour.
Sample container: Silver sealed container Reference: Distilled water Measurement temperature: 5 ° C to 105 ° C
Temperature increase rate: 4 ° C / min

Figure 2010195950
Figure 2010195950

式(2)において、△Hgは試料グラフト変性澱粉の水分散体にて検出される糊化吸熱エンタルピー、△Hgは該グラフト変性澱粉を得るのに用いられた澱粉(且つ未処理状態における生澱粉)の水懸濁液にて検出される糊化吸熱エンタルピー、Cは試料グラフト変性澱粉の水分散体中における澱粉由来成分の濃度、Cは該グラフト変性澱粉を得るのに用いられた澱粉(且つ未処理状態における生澱粉)の水懸濁液の濃度である。 In formula (2), ΔHg 3 is the gelatinized endothermic enthalpy detected in the aqueous dispersion of the sample-grafted modified starch, and ΔHg 4 is the starch (and in the untreated state) used to obtain the graft-modified starch. The gelatinized endothermic enthalpy detected in an aqueous suspension of raw starch), C 1 is the concentration of the starch-derived component in the aqueous dispersion of the sample graft modified starch, and C 2 is used to obtain the graft modified starch. Concentration of the aqueous suspension of the raw starch (and raw starch in the untreated state).

本発明のグラフト変性澱粉の水性組成物においては、グラフト変性澱粉中に存在する澱粉由来の成分のα化度は80%以下であり、より好ましくは50〜75%である。澱粉由来の成分のα化度が80%より高くなると、耐水性が低下する傾向にある。澱粉由来の成分のα化度が50%より低くなると、得られるグラフト変性澱粉の水性媒体中での安定性が低下し、沈降する傾向にある。   In the aqueous composition of the graft-modified starch of the present invention, the pregelatinization degree of the starch-derived component present in the graft-modified starch is 80% or less, more preferably 50 to 75%. When the pregelatinization degree of the starch-derived component is higher than 80%, the water resistance tends to decrease. When the degree of pregelatinization of the starch-derived component is lower than 50%, the stability of the obtained graft-modified starch in an aqueous medium is lowered and tends to settle.

本発明のグラフト変性澱粉の水性組成物の用途としては、特に限定はされないが、プラスチック、塗料用バインダー、接着剤、洗濯糊、サイズ剤、コーティング剤があげられる。   The use of the aqueous composition of the graft-modified starch of the present invention is not particularly limited, and examples thereof include plastics, paint binders, adhesives, laundry glue, sizing agents, and coating agents.

以下、実施例により本発明を更に詳細に説明する。なお、例中の部、及び、%は特に断りの無い限り、「質量部」、「質量%」である。また、澱粉の質量は含水物としての質量である。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, the part and% in an example are "mass part" and "mass%" unless there is particular notice. Moreover, the mass of starch is a mass as a hydrate.

〔実施例1〕
冷却管、温度計、撹拌機及び滴下ロートを備えた反応容器に、イオン交換水100質量部及び酸化澱粉(王子コーンスターチ株式会社製、商品名「王子エースA」、水分含量12.5質量%)57.1質量部を仕込み、攪拌して澱粉スラリーとした。温度を95℃まで昇温して30分間攪拌し、澱粉スラリーを透明な糊化澱粉水溶液とした(糊化度99%)。温度を55℃まで冷却した後、酸化澱粉(糊化度0%)57.1質量部、及び、イオン交換水350質量部を投入した。ここに、アクリル酸ブチル100質量部、界面活性剤(株式会社ADEKA社製「アデカリアソープSR−10」)0.4質量部、イオン交換水60質量部を混合したモノマー乳化物を5時間かけて滴下した。同時に、35%過酸化水素水5質量部とイオン交換水20質量部を混合した酸化剤水溶液、二酸化チオ尿素5.6質量部をイオン交換水300質量部に溶解した還元剤水溶液を5時間かけて反応容器に滴下した。滴下終了後、さらに55℃で2時間攪拌した後、常温まで冷却し、グラフト変性澱粉の水分散体を得た。
[Example 1]
In a reaction vessel equipped with a condenser, a thermometer, a stirrer, and a dropping funnel, 100 parts by mass of ion-exchanged water and oxidized starch (made by Oji Cornstarch Co., Ltd., trade name “Oji Ace A”, water content 12.5% by mass) 57.1 parts by mass were charged and stirred to obtain a starch slurry. The temperature was raised to 95 ° C. and stirred for 30 minutes to make the starch slurry into a transparent gelatinized starch aqueous solution (degree of gelatinization 99%). After cooling the temperature to 55 ° C., 57.1 parts by mass of oxidized starch (0% gelatinization) and 350 parts by mass of ion-exchanged water were added. A monomer emulsion in which 100 parts by mass of butyl acrylate, 0.4 part by mass of a surfactant (“ADEKA rear soap SR-10” manufactured by ADEKA Co., Ltd.) and 60 parts by mass of ion-exchanged water are mixed for 5 hours. And dripped. At the same time, an oxidizing agent aqueous solution in which 5 parts by mass of 35% hydrogen peroxide water and 20 parts by mass of ion-exchanged water are mixed, and an aqueous reducing agent solution in which 5.6 parts by mass of thiourea dioxide are dissolved in 300 parts by mass of ion-exchanged water are taken for 5 hours. Then, it was dropped into the reaction vessel. After completion of dropping, the mixture was further stirred at 55 ° C. for 2 hours and then cooled to room temperature to obtain an aqueous dispersion of graft-modified starch.

〔実施例2〕
実施例1において、澱粉スラリーを95℃まで昇温した時点で無水オクテニルコハク酸7質量部を反応容器に投入し、澱粉スラリーの糊化と同時に付加反応を行った。それ以外は実施例1と同様にして、実施例2のグラフト変性澱粉の水分散体を得た。
[Example 2]
In Example 1, when the starch slurry was heated to 95 ° C., 7 parts by mass of octenyl succinic anhydride was added to the reaction vessel, and an addition reaction was performed simultaneously with gelatinization of the starch slurry. Otherwise in the same manner as in Example 1, an aqueous dispersion of the graft-modified starch of Example 2 was obtained.

〔実施例3〕
実施例2におけるアクリル酸ブチル100質量部を、アクリル酸ブチル90質量部、トリメトキシシリルプロピルメタクリレート10質量部の混合物とした以外は実施例2と同様にして、実施例3のグラフト変性澱粉の水分散体を得た。
Example 3
The water of the graft-modified starch of Example 3 was the same as Example 2 except that 100 parts by mass of butyl acrylate in Example 2 was a mixture of 90 parts by mass of butyl acrylate and 10 parts by mass of trimethoxysilylpropyl methacrylate. A dispersion was obtained.

〔実施例4〕
実施例2における二酸化チオ尿素5.6質量部をアスコルビン酸4.5質量部としたこと以外は実施例2と同様にして、実施例4のグラフト変性澱粉の水分散体を得た。
Example 4
An aqueous dispersion of the graft-modified starch of Example 4 was obtained in the same manner as in Example 2 except that 5.6 parts by mass of thiourea dioxide in Example 2 was changed to 4.5 parts by mass of ascorbic acid.

〔比較例1〕
実施例2における澱粉スラリーの昇温を65℃としたこと以外は実施例2と同様の操作を行なった。しかし、モノマー乳化物の重合により、反応物に沈降分離が発生し、グラフト変性澱粉の水性分散体を得ることはできなかった。
[Comparative Example 1]
The same operation as in Example 2 was performed except that the temperature of the starch slurry in Example 2 was changed to 65 ° C. However, due to polymerization of the monomer emulsion, precipitation separation occurred in the reaction product, and an aqueous dispersion of graft-modified starch could not be obtained.

〔比較例2〕
実施例2における温度55℃に冷却後に投入する酸化澱粉を温度60℃で投入し、60℃で30分攪拌後に55℃まで冷却したこと以外は実施例2と同様にして、比較例2のグラフト変性澱粉の水分散体を得た。
[Comparative Example 2]
The grafted graft of Comparative Example 2 was prepared in the same manner as in Example 2, except that the oxidized starch charged after cooling to a temperature of 55 ° C in Example 2 was charged at a temperature of 60 ° C, stirred for 30 minutes at 60 ° C and then cooled to 55 ° C. An aqueous dispersion of modified starch was obtained.

〔比較例3〕
実施例2において、反応容器にイオン交換水190質量部及び酸化澱粉108.6質量部を仕込み、攪拌して澱粉スラリーとした。温度を95℃まで昇温し、無水オクテニルコハク酸13.3質量部を反応容器に投入した。95℃で30分間攪拌した後、温度を55℃まで冷却し、酸化澱粉5.7質量部、及び、イオン交換水260質量部を投入した。それ以外は実施例2と同様にして、比較例3のグラフト変性澱粉の水分散体を得た。
[Comparative Example 3]
In Example 2, 190 parts by mass of ion-exchanged water and 108.6 parts by mass of oxidized starch were charged in a reaction vessel and stirred to obtain a starch slurry. The temperature was raised to 95 ° C., and 13.3 parts by mass of octenyl succinic anhydride was added to the reaction vessel. After stirring at 95 ° C. for 30 minutes, the temperature was cooled to 55 ° C., and 5.7 parts by mass of oxidized starch and 260 parts by mass of ion-exchanged water were added. Otherwise in the same manner as in Example 2, an aqueous dispersion of the graft-modified starch of Comparative Example 3 was obtained.

〔比較例4〕
実施例2において、反応容器にイオン交換水10質量部及び酸化澱粉5.7質量部を仕込み、攪拌して澱粉スラリーとした。温度を95℃まで昇温し、無水オクテニルコハク酸0.7質量部を反応容器に投入した。95℃で30分間攪拌した後、温度を55℃まで冷却し、酸化澱粉108.6質量部、及び、イオン交換水440質量部を投入した。それ以外は実施例2と同様の操作を行なった。しかし、モノマー乳化物の重合により、反応物に沈降分離が発生し、グラフト変性澱粉の水性分散体を得ることはできなかった。
[Comparative Example 4]
In Example 2, 10 parts by mass of ion-exchanged water and 5.7 parts by mass of oxidized starch were charged into a reaction vessel and stirred to obtain a starch slurry. The temperature was raised to 95 ° C., and 0.7 part by mass of octenyl succinic anhydride was added to the reaction vessel. After stirring at 95 ° C. for 30 minutes, the temperature was cooled to 55 ° C., and 108.6 parts by mass of oxidized starch and 440 parts by mass of ion-exchanged water were added. Otherwise, the same operation as in Example 2 was performed. However, due to polymerization of the monomer emulsion, precipitation separation occurred in the reaction product, and an aqueous dispersion of graft-modified starch could not be obtained.

〔比較例5〕
実施例2における無水オクテニルコハク酸を無水コハク酸に変更したこと以外は実施例2と同様にして、比較例5のグラフト変性澱粉の水分散体を得た。
[Comparative Example 5]
An aqueous dispersion of the graft-modified starch of Comparative Example 5 was obtained in the same manner as in Example 2 except that octenyl succinic anhydride in Example 2 was changed to succinic anhydride.

〔比較例6〕
実施例2におけるモノマー乳化物をアクリル酸ブチル4質量部、界面活性剤0.016質量部、イオン交換水2.4質量部を混合したモノマー乳化物とした以外は実施例2と同様にして、比較例6のグラフト変性澱粉の水分散体を得た。
[Comparative Example 6]
Except that the monomer emulsion in Example 2 was a monomer emulsion in which 4 parts by mass of butyl acrylate, 0.016 parts by mass of a surfactant, and 2.4 parts by mass of ion-exchanged water were mixed, An aqueous dispersion of the graft-modified starch of Comparative Example 6 was obtained.

〔比較例7〕
実施例2において、反応容器にイオン交換水200質量部及び酸化澱粉114.2質量部を仕込み、攪拌して澱粉スラリーとした。温度を60℃まで昇温して糊化澱粉水溶液(糊化度58%)とし、温度60℃で無水オクテニルコハク酸を投入して付加反応を行った。温度55℃まで冷却後、糊化度0%の酸化澱粉を用いず、イオン交換水250質量部のみ添加した以外は実施例2と同様の操作を行なった。しかし、モノマー乳化物の重合により、反応物に沈降分離が発生し、グラフト変性澱粉の水性分散体を得ることはできなかった。
[Comparative Example 7]
In Example 2, 200 parts by mass of ion-exchanged water and 114.2 parts by mass of oxidized starch were charged in a reaction vessel and stirred to obtain a starch slurry. The temperature was raised to 60 ° C. to obtain a gelatinized starch aqueous solution (gelatinization degree 58%), and octenyl succinic anhydride was added at a temperature of 60 ° C. to carry out an addition reaction. After cooling to a temperature of 55 ° C., the same operation as in Example 2 was performed, except that oxidized starch having a gelatinization degree of 0% was not used and only 250 parts by mass of ion-exchanged water was added. However, due to polymerization of the monomer emulsion, precipitation separation occurred in the reaction product, and an aqueous dispersion of graft-modified starch could not be obtained.

実施例1〜4及び比較例1〜7のグラフト変性澱粉の水溶液を以下の方法に従って評価した。結果を表1及び表2に示した。   The aqueous solutions of the graft-modified starches of Examples 1 to 4 and Comparative Examples 1 to 7 were evaluated according to the following methods. The results are shown in Tables 1 and 2.

(フィルム作成)
ガラス板にポリエチレンシートを貼り、その上にシリコンで枠を作成した。その枠にグラフト変性澱粉の水分散体を乾燥フィルムの膜厚が約0.4mmとなる量を流し込み、23℃、湿度65%RHで7日間乾燥させた。色相、クラック、歪の有無を目視で観察した。
(Create film)
A polyethylene sheet was pasted on a glass plate, and a frame was made of silicon on the sheet. An aqueous dispersion of graft-modified starch was poured into the frame in such an amount that the film thickness of the dried film was about 0.4 mm and dried at 23 ° C. and humidity 65% RH for 7 days. The presence or absence of hue, cracks, and distortion was visually observed.

(溶出率)
作成したフィルム0.2質量部を110℃で5時間乾燥し、フィルムの乾燥質量を測定した。作成したフィルム0.2質量部をイオン交換水50質量部に1日浸漬した。1日後フィルムを取り出し、110℃で5時間乾燥して、水浸漬後のフィルムの乾燥質量を測定した。水溶出率は以下の式(3)で計算した。
(Elution rate)
0.2 parts by mass of the prepared film was dried at 110 ° C. for 5 hours, and the dry mass of the film was measured. 0.2 parts by mass of the prepared film was immersed in 50 parts by mass of ion-exchanged water for 1 day. One day later, the film was taken out and dried at 110 ° C. for 5 hours, and the dry mass of the film after water immersion was measured. The water elution rate was calculated by the following formula (3).

Figure 2010195950
Figure 2010195950

(グラフト変性澱粉中の澱粉由来の成分)
グラフト変性澱粉中の澱粉由来の成分の糊化度(α化度)は、上に述べた条件で、示差走査熱量計を用いて糊化吸熱ピークのエンタルピーを測定し、式(2)により算出した。
(Starch-derived component in graft-modified starch)
The degree of gelatinization (degree of gelatinization) of the starch-derived component in the graft-modified starch is calculated by the equation (2) by measuring the enthalpy of the gelatinization endothermic peak using a differential scanning calorimeter under the conditions described above. did.

Figure 2010195950
Figure 2010195950

Figure 2010195950
Figure 2010195950

表1、表2の結果から明らかなように、実施例1〜3のグラフト変性澱粉の水分散体は、着色が無く耐水性が良好な皮膜を形成でき、さらに実施例2、3は粘度安定性が良好である。   As is apparent from the results of Tables 1 and 2, the aqueous dispersions of graft-modified starches of Examples 1 to 3 can form a film having no color and good water resistance, and Examples 2 and 3 are viscosity stable. Good properties.

[実施例5]
実施例2で得られたグラフト変性澱粉の水分散体100質量部(固形分で20質量部)に対し、硬化剤として、ヘキサメチレンジイソシアネートを4質量部添加し、硬化性組成物を得た。得られた硬化性組成物について、上で述べた方法と同様の方法で、フィルム性能を測定した。フィルムの色は無色で、クラックや歪みもなく、また水溶出率も4.0%と非常に低い値が得られた。
[Example 5]
4 parts by mass of hexamethylene diisocyanate was added as a curing agent to 100 parts by mass (20 parts by mass in solid content) of the graft-modified starch aqueous dispersion obtained in Example 2 to obtain a curable composition. About the obtained curable composition, the film performance was measured by the method similar to the method described above. The color of the film was colorless, there was no crack or distortion, and the water elution rate was 4.0%, which was a very low value.

Claims (10)

水性媒体中、炭素数4〜30の直鎖若しくは分岐鎖のアルキル基またはアルケニル基を有する無水ジカルボン酸化合物を付加した澱粉の存在下で、エチレン性不飽和モノマーを乳化重合することによって得られるグラフト変性澱粉の水性組成物であり、グラフト変性澱粉がエチレン性不飽和モノマーからなるポリマー成分に対して40〜2000質量%の澱粉由来の成分を有し、澱粉由来の成分のα化度が80%以下であるグラフト変性澱粉の水性組成物。 Grafts obtained by emulsion polymerization of ethylenically unsaturated monomers in an aqueous medium in the presence of starch to which a dicarboxylic anhydride compound having a linear or branched alkyl group or alkenyl group having 4 to 30 carbon atoms is added. It is an aqueous composition of modified starch, and the graft-modified starch has 40 to 2000 mass% of starch-derived components with respect to the polymer component composed of ethylenically unsaturated monomer, and the starch-derived component has a degree of alpha of 80%. An aqueous composition of graft-modified starch which is: 少なくとも1種の(A)α化度が80%以上のα化澱粉に、炭素数4〜30の直鎖若しくは分岐鎖のアルキル基またはアルケニル基を有する無水ジカルボン酸化合物を付加した変性澱粉、及び、少なくとも1種の(B)α化度が20%以下の澱粉の存在下で、エチレン性不飽和モノマーを乳化重合することによって得られる請求項1に記載のグラフト変性澱粉の水性組成物。 A modified starch obtained by adding a dicarboxylic anhydride compound having a linear or branched alkyl group or alkenyl group having 4 to 30 carbon atoms to at least one (A) pregelatinized starch having a pregelatinization degree of 80% or more, and The aqueous composition of graft-modified starch according to claim 1, which is obtained by emulsion polymerization of an ethylenically unsaturated monomer in the presence of at least one (B) starch having a degree of pregelatinization of 20% or less. (A)α化度が80%以上のα化澱粉と(B)α化度が20%以下の澱粉の比が10:90〜90:10であることを特徴とする請求項2に記載のグラフト変性澱粉の水性組成物。 The ratio of (A) pregelatinized starch having a pregelatinization degree of 80% or more and (B) starch having a pregelatinization degree of 20% or less is 10:90 to 90:10. An aqueous composition of graft-modified starch. エチレン性不飽和モノマーの使用量が(A)α化度が80%以上のα化澱粉と(B)α化度が20%以下の澱粉の総量に対して5質量%〜250質量%であることを特徴とする請求項2または3のいずれかに記載のグラフト変性澱粉の水性組成物。 The amount of the ethylenically unsaturated monomer used is 5% by mass to 250% by mass with respect to the total amount of (A) pregelatinized starch having a degree of pregelatinization of 80% or more and (B) starch having a pregelatinization degree of 20% or less. The aqueous composition of graft-modified starch according to any one of claims 2 and 3. 無水ジカルボン酸化合物の(A)α化度が80%以上のα化澱粉に対する添加量が0.1質量%〜30質量%である請求項2、3または4のいずれかに記載のグラフト変性澱粉の水性組成物。 The graft-modified starch according to any one of claims 2, 3 and 4, wherein the addition amount of the dicarboxylic anhydride compound (A) to the pregelatinized starch having a pregelatinization degree of 80% or more is 0.1 mass% to 30 mass%. Aqueous composition. 無水ジカルボン酸化合物が無水オクテニルコハク酸であることを特徴とする請求項1、2、3、4または5のいずれかに記載のグラフト変性澱粉の水性組成物。 The aqueous composition of graft-modified starch according to any one of claims 1, 2, 3, 4 and 5, wherein the dicarboxylic anhydride compound is octenyl succinic anhydride. レドックス開始剤を用いて、エチレン性不飽和モノマーを乳化重合することによって得られる請求項1、2、3、4、5または6のいずれかに記載のグラフト変性澱粉の水性組成物。 The aqueous composition of graft-modified starch according to any one of claims 1, 2, 3, 4, 5 and 6, obtained by emulsion polymerization of an ethylenically unsaturated monomer using a redox initiator. レドックス開始剤の還元剤が二酸化チオ尿素または亜ジチオン酸ナトリウムであることを特徴とする請求項7に記載のグラフト変性澱粉の水性組成物。 The aqueous composition of graft-modified starch according to claim 7, wherein the reducing agent of the redox initiator is thiourea dioxide or sodium dithionite. エチレン性不飽和モノマーが、澱粉の水酸基と反応可能な反応基を有するエチレン性不飽和モノマーを含むことを特徴とする請求項1、2、3、4、5、6、7または8のいずれかに記載のグラフト変性澱粉の水性組成物。 The ethylenically unsaturated monomer includes an ethylenically unsaturated monomer having a reactive group capable of reacting with a hydroxyl group of starch, according to any one of claims 1, 2, 3, 4, 5, 6, 7 and 8. An aqueous composition of the graft-modified starch described in 1. 請求項1、2、3、4、5、6、7、8または9のいずれかに記載のグラフト変性澱粉の水性組成物、及び水酸基またはカルボキシル基と反応可能な官能基を有する硬化剤との混合物であることを特徴とする硬化性組成物。 An aqueous composition of the graft-modified starch according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8, or 9, and a curing agent having a functional group capable of reacting with a hydroxyl group or a carboxyl group A curable composition, which is a mixture.
JP2009043582A 2009-02-26 2009-02-26 Aqueous composition of graft-modified starch and curable composition using the same Expired - Fee Related JP5441441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043582A JP5441441B2 (en) 2009-02-26 2009-02-26 Aqueous composition of graft-modified starch and curable composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043582A JP5441441B2 (en) 2009-02-26 2009-02-26 Aqueous composition of graft-modified starch and curable composition using the same

Publications (3)

Publication Number Publication Date
JP2010195950A true JP2010195950A (en) 2010-09-09
JP2010195950A5 JP2010195950A5 (en) 2012-02-23
JP5441441B2 JP5441441B2 (en) 2014-03-12

Family

ID=42820993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043582A Expired - Fee Related JP5441441B2 (en) 2009-02-26 2009-02-26 Aqueous composition of graft-modified starch and curable composition using the same

Country Status (1)

Country Link
JP (1) JP5441441B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195809A (en) * 2010-02-26 2011-10-06 Saiden Chemical Industry Co Ltd Method for producing polymer composition
JP2017529423A (en) * 2014-08-14 2017-10-05 ロケット フレールRoquette Freres Dextrin copolymer with styrene and acrylate, process for its preparation and its use for paper coating
CN111269356A (en) * 2020-03-24 2020-06-12 福建省春天生态科技股份有限公司 Preparation method of surface modified material for rural raw soil wall
CN113366058A (en) * 2019-02-08 2021-09-07 凯米拉公司 Starch composition
CN114410047A (en) * 2022-01-13 2022-04-29 南京交通职业技术学院 Environment-friendly plastic and preparation method thereof
CN115305069A (en) * 2021-05-07 2022-11-08 中国石油天然气集团有限公司 Filtrate reducer and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590518A (en) * 1978-12-28 1980-07-09 Nichiden Kagaku Kk Preparation of starch-polystyrene graft copolymer
JPH04356513A (en) * 1990-02-03 1992-12-10 Basf Ag Graft copolymer of monosaccharide, oligosaccharide, polysaccharide and derivative thereof, its manufacture, and detergent and cleaning agent additive made from the copolymer
JPH10259590A (en) * 1997-03-21 1998-09-29 Misawa Ceramics Corp Improving agent for surface paper quality using modified starch
JP2003040945A (en) * 2001-06-05 2003-02-13 Nikka Technos:Kk Starch-grafted copolymer, detergent builder composition containing the same, and method for producing the same
JP2010059330A (en) * 2008-09-04 2010-03-18 Showa Highpolymer Co Ltd Aqueous composition of graft modified starch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590518A (en) * 1978-12-28 1980-07-09 Nichiden Kagaku Kk Preparation of starch-polystyrene graft copolymer
JPH04356513A (en) * 1990-02-03 1992-12-10 Basf Ag Graft copolymer of monosaccharide, oligosaccharide, polysaccharide and derivative thereof, its manufacture, and detergent and cleaning agent additive made from the copolymer
JPH10259590A (en) * 1997-03-21 1998-09-29 Misawa Ceramics Corp Improving agent for surface paper quality using modified starch
JP2003040945A (en) * 2001-06-05 2003-02-13 Nikka Technos:Kk Starch-grafted copolymer, detergent builder composition containing the same, and method for producing the same
JP2010059330A (en) * 2008-09-04 2010-03-18 Showa Highpolymer Co Ltd Aqueous composition of graft modified starch

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195809A (en) * 2010-02-26 2011-10-06 Saiden Chemical Industry Co Ltd Method for producing polymer composition
JP2017529423A (en) * 2014-08-14 2017-10-05 ロケット フレールRoquette Freres Dextrin copolymer with styrene and acrylate, process for its preparation and its use for paper coating
CN113366058A (en) * 2019-02-08 2021-09-07 凯米拉公司 Starch composition
CN111269356A (en) * 2020-03-24 2020-06-12 福建省春天生态科技股份有限公司 Preparation method of surface modified material for rural raw soil wall
CN111269356B (en) * 2020-03-24 2022-12-27 福建省春天生态科技股份有限公司 Preparation method of surface modified material for rural raw soil wall
CN115305069A (en) * 2021-05-07 2022-11-08 中国石油天然气集团有限公司 Filtrate reducer and preparation method thereof
CN114410047A (en) * 2022-01-13 2022-04-29 南京交通职业技术学院 Environment-friendly plastic and preparation method thereof

Also Published As

Publication number Publication date
JP5441441B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5733394B2 (en) Method for producing adhesive material for water-based paint
JP5441441B2 (en) Aqueous composition of graft-modified starch and curable composition using the same
CA2768302C (en) Starch hybrid polymers
JP2013535518A5 (en)
KR101921985B1 (en) Crosslinker accelerator system for polyacrylates
JP2010501025A (en) Polymer composition
JP6044727B2 (en) Resin composition and method for producing resin composition
CN110891991B (en) Rubbery polymer, graft copolymer and thermoplastic resin composition
TR201809481T4 (en) Aqueous binders for particulate and / or fibrous substrates.
CN110437393B (en) Easily-formed three-layer core-shell particle and preparation method thereof
Chen et al. Rapid synthesis of polymer-grafted cellulose nanofiber nanocomposite via surface-initiated Cu (0)-mediated reversible deactivation radical polymerization
KR20140086024A (en) Starch-based polymer particle with core-shell structure and paint composition comprising the same
Gabriel et al. Toward a Fully Biobased Pressure-Sensitive Adhesive
JP4334546B2 (en) Manufacturing method of aqueous dispersion
JP2011524454A (en) A composition comprising a (meth) acrylic polymer and a copolymer having an association group
Rodrigues et al. Thermal and mechanical properties of cationic starch-graft-poly (butyl acrylate-co-methyl methacrylate) latex film obtained by semi-continuous emulsion polymerization for adhesive application
JP5422160B2 (en) Aqueous composition of graft-modified starch
CN105969257A (en) High-strength water-resistant starch modified polyvinyl alcohol adhesive for wood and preparation method thereof
JP2007254541A (en) Polyester-based resin composition-processing aid and polyester-based resin composition
Dhar et al. Poly (methyl methacrylate) modified Starch: their preparations, properties and applications
JP2004300193A (en) Aqueous emulsion
JP2009227876A (en) Thermoplastic resin composition and molded article therefrom
CN1982395A (en) Cation branched-chain starch wood binder and its production
JP3633327B2 (en) Method for producing methyl methacrylate polymer beads
US20220220319A1 (en) Thermally expandable preparation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5441441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees