JP2010195174A - Method of generating bubbles in friction resistance reducing device in ship - Google Patents

Method of generating bubbles in friction resistance reducing device in ship Download PDF

Info

Publication number
JP2010195174A
JP2010195174A JP2009041803A JP2009041803A JP2010195174A JP 2010195174 A JP2010195174 A JP 2010195174A JP 2009041803 A JP2009041803 A JP 2009041803A JP 2009041803 A JP2009041803 A JP 2009041803A JP 2010195174 A JP2010195174 A JP 2010195174A
Authority
JP
Japan
Prior art keywords
water
pipe
air
ship
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041803A
Other languages
Japanese (ja)
Other versions
JP4341058B1 (en
Inventor
Masaaki Sato
正明 佐藤
Goji Sato
剛司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009041803A priority Critical patent/JP4341058B1/en
Application granted granted Critical
Publication of JP4341058B1 publication Critical patent/JP4341058B1/en
Priority to PCT/JP2010/052888 priority patent/WO2010098361A1/en
Priority to KR1020117019441A priority patent/KR20110128824A/en
Publication of JP2010195174A publication Critical patent/JP2010195174A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • B63B2001/387Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes using means for producing a film of air or air bubbles over at least a significant portion of the hull surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of generating fine bubbles of low pressure in a friction resistance reducing device in a ship which can obtain the more effective reduction of frictional resistance by generating bubbles by the pressure of a natural water flow. <P>SOLUTION: The method provide the reduction effect of friction resistance by generating fine bubbles of low pressure using a pressure reducing phenomenon in a portion between an intake 1 provided at a position of a waterline Y or a lower near bow X and an exhaust nozzle 2 provided at the bottom Z of the ship near the bow X in the friction resistance reducing device for the ship by sending the bubbles to the bottom of the ship at arbitrary water depth as necessary without pressurizing them, and furthermore by jetting out the bubbles from the exhaust nozzle 2 without being affected by a surrounding water pressure environment. The device is simpler, has cost effectiveness higher than a conventional one, reduces manufacturing and installing cost, the cost of energy consumption required for air pressurization, the cost of energy consumption required in the process of distributing the generated bubbles to required portions of a ship body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、タンカー等大型船舶における摩擦抵抗低減装置における気泡の発生方法に係るものであり、特に、大型船舶運航の際、船体接水面と水との間に発生する摩擦抵抗を低減させるための低圧微細気泡を主として自然水流の圧力で発生させる気泡の発生方法に関するものである。   The present invention relates to a method for generating bubbles in a frictional resistance reduction device for a large ship such as a tanker, and in particular, for reducing the frictional resistance generated between the water contact surface of the hull and water when operating a large ship. The present invention relates to a bubble generation method for generating low-pressure fine bubbles mainly under the pressure of natural water flow.

従来、船舶運航時における船体の接水面と水との間に発生する摩擦抵抗を低減させる気泡発生装置は、気泡が微小であり、かつ高い水圧環境においても容易に発生が可能であることに重点が置かれていた。   Conventionally, bubble generating devices that reduce the frictional resistance generated between the water-contact surface of the hull and water during ship operation emphasize that bubbles are very small and can be easily generated even in high water pressure environments. Was placed.

例えば、船舶運航時の水抵抗を低減するために,船体壁面に気泡や空気層を介在させる種々の方法が開示されている。例えば、船側部から吹き出させる加圧空気を船速よりも遅い吹き出し速度として船体の斜め後方に向けて吹き出させるようにすると共に、船側部で発生させる微小気泡を船底部で発生させる微小気泡よりも小さい直径にして境界層内に送り込む方法が開示されている。例えば特許文献1、特許文献2のように。   For example, in order to reduce water resistance during ship operation, various methods for interposing bubbles and air layers on the hull wall surface are disclosed. For example, pressurized air blown out from the ship side is blown toward the rear of the hull as a blowing speed slower than the ship speed, and microbubbles generated at the ship side are made more than microbubbles generated at the ship bottom. A method of feeding into the boundary layer with a small diameter is disclosed. For example, Patent Document 1 and Patent Document 2.

しかしこのような方式では、微罪な気泡を得ることは困難であると共に、実際上は気泡吹き出しによるエネルギー消費が大きくなって実用性がないものであった。そこで、少ないエネルギー消費で摩擦抵抗を低減し、簡単に実施でき、かつ気泡混合率などを容易に調整できるようにし、効果的な摩擦低減を実施できるように、境界層中に気泡混合流体を斜め後方に向けて噴出させる技術が開示されている。例えば、特許文献3のように。   However, in such a system, it is difficult to obtain fine sin bubbles, and in practice, energy consumption due to the blowing of bubbles is large, which is impractical. Therefore, the bubble resistance fluid is slanted in the boundary layer so that the frictional resistance can be reduced with less energy consumption, can be easily implemented, the bubble mixing ratio can be easily adjusted, and the friction can be effectively reduced. A technique of ejecting backward is disclosed. For example, as in Patent Document 3.

また、大気圧に対する減圧を利用してマイクロバブルを発生させ、船舶の摩擦抵抗低減効果を狙った技術が開示されている。例えば、特許文献4、特許文献5、特許文献6のように。   In addition, a technique is disclosed in which microbubbles are generated using a reduced pressure with respect to atmospheric pressure to aim at a ship frictional resistance reduction effect. For example, Patent Document 4, Patent Document 5, and Patent Document 6.

特開2008−18781号公報JP 2008-18781 A 特開平11−227674号公報JP-A-11-227474 特開平07−156859号公報Japanese Patent Laid-Open No. 07-156859 特開2002−79986号公報JP 2002-79986 A 特開2002−68073号公報JP 2002-68073 A 特開2002−79985号公報JP 2002-79985 A

これらの方法によれば、空気を加圧することなく低圧微小気泡を発生させることが可能となるので、従来の加圧方式に比べて二つの利点が得られる。一つは発生させた低圧微小気泡の膨張性質がわずかであるため、より効率的な摩擦低減効果を生むこと。もう一つはコンプレッサーなどの空気加圧装置を用いないため、より少ないエネルギー消費で気泡発生が可能となり、それに掛かる経費も安価に抑えられることである。とはいえ、上記のような減圧を利用して低圧微小気泡を発生させる方法においても、なお、次のような問題が指摘できる。   According to these methods, low-pressure microbubbles can be generated without pressurizing air, so two advantages can be obtained as compared with the conventional pressurization method. One is that the generated low-pressure micro-bubbles have a slight expansion property, which produces a more efficient friction reduction effect. The other is that since no air pressurizing device such as a compressor is used, bubbles can be generated with less energy consumption, and the cost required for the generation of bubbles can be reduced. However, the following problems can be pointed out even in the method of generating low-pressure microbubbles using the above-described reduced pressure.

それはこれらの低圧微小気泡の発生装置において、低圧微小気泡の発生過程そのものが周囲の水圧の影響を受けて阻害されるために、ある一定の水圧環境より高い水圧環境では気泡が発生しなくなることである。   In these low-pressure microbubble generators, the generation process itself of low-pressure microbubbles is hindered by the influence of the surrounding water pressure, which prevents bubbles from being generated in a hydraulic environment higher than a certain hydraulic environment. is there.

とりわけ船底の水位が10〜20mにもおよぶタンカー等の大型船舶において摩擦抵抗低減効果を得ようとする場合には、加圧方式と同様にコンプレッサーなどの装置を使用して微小気泡を発生させることが必要になると考えられるため、これらの二つの利点は消えてしまう。   In particular, when trying to obtain the effect of reducing frictional resistance in large ships such as tankers where the water level at the bottom of the ship extends from 10 to 20 m, microbubbles should be generated using a device such as a compressor as in the pressurization method. These two advantages will disappear, because it will be necessary.

よって、この発明は、これらの上記の課題を解決しようとするものである。
第一の課題は、上記のような摩擦抵抗低減効果にたいして負の性質を持つ高圧バブルを発生させる装置を提供することではなく、船外に噴出された後も、大きく膨張する性質を持たない非膨張性の気泡を自然水流の圧力によって発生させ、より効果的な摩擦抵抗低減を得ることの可能な船舶における摩擦抵抗低減装置における低圧微小気泡の発生方法を開発・提供することにある。
Therefore, the present invention is intended to solve these problems.
The first problem is not to provide a device for generating a high-pressure bubble having a negative property with respect to the frictional resistance reducing effect as described above, but it does not have a property to expand greatly even after being ejected out of the ship. An object of the present invention is to develop and provide a method for generating low-pressure microbubbles in a frictional resistance reducing device in a ship that can generate inflatable bubbles by the pressure of natural water flow and obtain a more effective frictional resistance reduction.

第二の課題は、従来の減圧現象を利用した低圧微小気泡発生方法のように低圧微小気泡の発生過程において水圧の影響を受けて気泡発生が阻害されたり、また、一定の水圧環境下でコンプレッサー等の空気加圧装置を併用して微小気泡を発生させる必要のある方法を提供することではなく、減圧現象を利用して低圧微小気泡を発生させる過程自体から気泡発生を阻害する水圧の影響を取り除き、発生させた低圧微小気泡を必要に応じて任意の水深の船底へ加圧することなく送ること、また、周囲の水圧環境の影響を受けることなく噴出口から船外に噴出させて摩擦抵抗低減効果を得ることを可能とする方法の開発・提供することである。   The second problem is that the generation of low-pressure microbubbles is affected by water pressure in the process of generating low-pressure microbubbles using the conventional decompression phenomenon, and the generation of bubbles is hindered. This is not to provide a method that needs to generate microbubbles in combination with an air pressurization device such as air pressure, but to reduce the influence of water pressure that inhibits bubble generation from the process itself of generating low pressure microbubbles using the decompression phenomenon. Friction resistance is reduced by removing the low-pressure microbubbles generated and sending them to the bottom of the ship at any depth without being pressurized, and by jetting them out of the jet without being affected by the surrounding water pressure environment. It is to develop and provide a method that makes it possible to obtain an effect.

第三の課題は、従来の船舶における摩擦抵抗低減装置における微小気泡発生装置や送水経路の複雑な構造に対して、より簡素で費用対効果の高い構造を開発・提供し、制作・設置費用、さらに空気加圧に必要なエネルギー消費費用、発生させた気泡を船体の所要部位に配分する過程で必要となるエネルギー消費費用などを軽減することである。   The third issue is to develop and provide a simpler and more cost-effective structure for the micro-bubble generator and the complicated structure of the water supply path in the conventional frictional resistance reduction device in a ship. Furthermore, the energy consumption cost required for air pressurization and the energy consumption cost required in the process of distributing the generated bubbles to the required part of the hull are reduced.

この発明による課題を解決するための手段としては、上記の第一の課題を解決する手段は、低圧微小気泡発生方法における低圧微小気泡発生装置によるものである。この装置は図示するように、大気圧に対して減圧領域を形成する二つの気泡発生部位によって構成されており、この部位において発生した減圧領域を利用して水流中に空気を自然吸引させ、非膨張性質をもった低圧微小気泡を発生させることを特徴としている。
上記の第二の課題を解決する手段は、取水口から噴出口にいたる送水経路の位置構成自体によるものである。
前記第三の課題を解決する手段もまた、取水口から噴出口にいたる送水経路の位置構成自体によるものである。
As means for solving the problems according to the present invention, the means for solving the first problem is based on the low-pressure microbubble generator in the low-pressure microbubble generation method. As shown in the figure, this apparatus is composed of two bubble generation portions that form a reduced pressure region with respect to atmospheric pressure. The reduced pressure region generated at this portion is used to naturally suck air into the water flow, It is characterized by generating low-pressure microbubbles with expansion properties.
The means for solving the second problem is due to the position configuration itself of the water supply path from the water intake to the jet outlet.
The means for solving the third problem is also due to the position configuration itself of the water supply path from the intake port to the jet port.

この発明によると、次の効果がある。
1) 空気加圧によらず、より船舶の摩擦抵抗低減に有効な低圧微小気泡を多量に発生させることが可能である。低圧微小気泡の発生部位に形成された減圧領域から水中に吸引された空気は全く加圧されず低圧状態を保ったまま、瞬時に微小気泡となり、そのまま水流とともに必要な部位に噴出される。この加圧されない低圧微小気泡は、従来の空気加圧装置によって発生した高圧気泡と比較して、水中に放出されても非膨張性を維持し、直径0.1〜0.2mm程度の大きさを保つため、より効果的な摩擦抵抗低減効果を生む。
2) 水圧環境に影響されずに低圧微小気泡を多量発生させることが可能である。また、同時に、それを船舶における任意の水深の噴出口から放出させることが可能である。従来の減圧現象を利用して低圧微小気泡を発生させる装置のように船底下部に低圧微小気泡の発生部位が位置していないため、大型船舶で使用する場合でも、コンプレッサー等の空気加圧装置を併用して耐水圧性質の高圧気泡を作り出す必要がない。
3) 気泡の発生過程と船外への分配過程における費用対効果が高い。この発明の送水経路の位置構成により、航行時に流入してくる自然水流をそのまま水流の動力源として利用可能となる為、水流を加圧する動力をほとんど使用しない。また気泡の発生過程に必要な動力も同じ水流を使用するので、空気加圧装置も必要としない。より少ない消費エネルギーで効果を生み出すことが可能である。
4) 低圧微小気泡発生方法が極めて簡素である。即ち,制作に要する技術は特別なものである必要はなく、費用は従来の公知の気泡発生装置より安価で、しかもメンテナンスにかかる費用も安価である。
The present invention has the following effects.
1) It is possible to generate a large amount of low-pressure microbubbles that are more effective for reducing the frictional resistance of ships, regardless of air pressurization. The air sucked into the water from the decompression region formed at the site where the low-pressure microbubbles are generated is not pressurized at all and is instantly converted into microbubbles while maintaining the low-pressure state, and is jetted to the necessary site as it is with the water flow. The non-pressurized low-pressure microbubbles maintain non-expandability even when released into water, compared to the high-pressure bubbles generated by a conventional air pressurizer, and have a diameter of about 0.1 to 0.2 mm. Therefore, a more effective frictional resistance reduction effect is produced.
2) A large amount of low-pressure microbubbles can be generated without being affected by the hydraulic environment. At the same time, it can be discharged from a spout at an arbitrary depth in the ship. Unlike the conventional device that generates low-pressure microbubbles using the decompression phenomenon, the area where low-pressure microbubbles are generated is not located at the bottom of the ship. It is not necessary to create high-pressure bubbles with water pressure resistance in combination.
3) Cost-effective in the process of bubble generation and distribution to the outside of the ship. Since the natural water flow that flows in at the time of navigation can be used as it is as a power source for the water flow, the power for pressurizing the water flow is hardly used. Moreover, since the same water flow is used for the power necessary for the bubble generation process, an air pressurizing device is not required. It is possible to produce effects with less energy consumption.
4) The method for generating low-pressure microbubbles is extremely simple. That is, the technology required for production does not need to be special, and the cost is lower than that of a conventional known bubble generator, and the cost for maintenance is also low.

この発明の実施に使用する装置の一例を示す一部欠截側面図である。It is a partial missing side view which shows an example of the apparatus used for implementation of this invention. この発明の実施に使用する装置の一例を示す部分拡大説明図である。It is a partial expanded explanatory view which shows an example of the apparatus used for implementation of this invention. この発明の実施に使用する装置の一例を示す正面図である。It is a front view which shows an example of the apparatus used for implementation of this invention. この発明の実施を検証するための実験装置の第一次気泡発生部位、並びに第一次気泡発生部位の一例を示し、(a)は一部欠截斜視図であり、(b)は一部欠截正面図である。1 shows an example of a primary bubble generation site and a primary bubble generation site of an experimental apparatus for verifying the implementation of the present invention, in which (a) is a partially broken perspective view, and (b) is a partial view. FIG. この発明の実施を検証するための実験装置の第一次気泡発生部位、並びに第一次気泡発生部位の他の例を示し、(a)は一部欠截斜視図であり、(b)は一部欠截正面図である。The primary bubble generation site | part of the experimental apparatus for verifying implementation of this invention, and the other example of a primary bubble generation site | part are shown, (a) is a partially missing perspective view, (b) It is a partial missing front view. この発明の実施を検証するための実験装置の一例を示す一部欠截説明図である。It is a partial deficiency explanatory drawing which shows an example of the experimental apparatus for verifying implementation of this invention. この発明の実施を検証するための実験装置の一例を示す一部欠截説明図である。It is a partial deficiency explanatory drawing which shows an example of the experimental apparatus for verifying implementation of this invention. この発明の実施を検証するための実験装置のデータを示すクラフ図である。It is a craft diagram which shows the data of the experimental apparatus for verifying implementation of this invention. この発明の実施を検証するための実験装置のデータを測定する測定器の説明図である。It is explanatory drawing of the measuring device which measures the data of the experimental apparatus for verifying implementation of this invention.

この発明は、船舶の船体のなかに、低圧微小気泡発生のための一本の送水経路を設け、取水口を船首付近の喫水線下に、噴出口を船底部に設け、また、送水経路の中間部の喫水線より上方の位置において低圧微小気泡の発生部位を設けたものである。この低圧微小気泡の発生部位は2ケ所あり、第一次気泡発生部位は、送水経路を形成する送水管の内部に第一空気流入管を横断面が送水管と空気流入管の二本の管によって、狭小な間隙を形成するように連結されて構成され、第二次気泡発生部位は同じく、送水経路を形成する第二空気流入管の内部に、送水管を横断面が空気流入管と送水管の二本の管によって、狭小な間隙を形成するように連結されている。   In the present invention, a water supply path for generating low-pressure microbubbles is provided in the hull of a ship, a water intake is provided under the draft line near the bow, a jet outlet is provided at the bottom of the ship, and an intermediate part of the water supply path is provided. The generation | occurrence | production site | part of a low voltage | pressure microbubble is provided in the position above the waterline of a part. There are two places where these low-pressure microbubbles are generated. The primary bubble generation part is the first air inflow pipe inside the water supply pipe forming the water supply path, and the two cross-sections are the water supply pipe and the air inflow pipe. Are connected to form a narrow gap, and the secondary bubble generation site is also formed in the second air inflow pipe that forms the water supply path, and the cross section of the water supply pipe is connected to the air inflow pipe. The two water tubes are connected to form a narrow gap.

この発明はこれらの各々の気泡発生部位における狭小な間隙で生ずる減圧領域を利用して、空気流入管から空気を吸引し、送水経路を流れる水流中に吸引混合させることを特徴とした船舶における低圧微小気泡の発生装置であり、送水ポンプは、主に航行の発進時に喫水線下にある取水口から、喫水線上にある気泡発生部位の位置まで水流を供給したり、低速航行時などにおいて補助的に水流の動力として使用することを目的として設けられたものである。   The present invention uses a reduced pressure region generated by a narrow gap at each of these bubble generation sites to suck air from an air inflow pipe and suck and mix it into a water stream flowing through a water supply path. This is a microbubble generator, and the water pump mainly supplies water from the intake port under the waterline to the position of the bubble generation site on the waterline at the start of navigation, or assists during low-speed navigation, etc. It is provided for the purpose of being used as power for water flow.

この発明の一実施例を図面に基づいて詳細に説明すると、船舶の摩擦抵抗低減装置において、船首(X)付近で吃水線(Y)以下の位置に設けた取水口(1)と、船首(X)に近い船底(Z)に設けた噴出口(2)を、送水管(3a,3a′)と気水混合送水管(3b)よりなる、切れ目のない1本の管で連結し、前記取水口(1)の後方で取水口(1)と同じ水位の位置に、送水管(3a)の内に送水ポンプ(4)を装着し、その後方の送水管(3a′)は喫水線(Y)付近より上方に位置するように船尾方向へ向かって配管してある送水管(3a′)の船尾よりの位置に、送水管(3a′)よりも両管を内外に重ねた場合、狭い間隔が出来る程の細い太さの第1空気流入管(5a)の先端を水流方向に曲げ、送水管(3a)を貫通させて挿入し、両管が平行になった位置で、第1空気流入管(5a)を先端を切断し、その周辺領域または、位置付近を第1次気泡発生部位(A)とし、次いで、その後方に調整弁(6)を装着し、かつ、送水管と内外に重ねた場合に狭小な間隙が出来る程の太い太さの第2空気流入管(5b)で送水管(3a′)を外側より包むように装着し、両管が平行になった位置で送水管(3a′)を切断し、その周辺領域または位置付近を第2次気泡発生部位(B)とし、第2空気流入管(5b)はその位置以後へそのまま延長した形で、気水混合水流を送るための気水混合送水管(3b)として噴出口(2)に連結し、取水口(1)から流入水は、第1次気泡発生部位(A)と第2次気泡発生部位(B)において発生する大気圧に対する減圧現象を利用し、第1空気流入管(5a)と第2空気流入管(5b)から空気を吸引し、低圧微小気泡を発生させ気水混合送水管(3b)から噴出される気水混合送水流と共に、何らの動力も使用せず噴出口(2)より噴出させることを特徴とする船舶における摩擦抵抗低減装置における気泡の発生方法から構成される。   An embodiment of the present invention will be described in detail with reference to the drawings. In a ship frictional resistance reducing device, a water intake (1) provided near a bow (X) and below a flood line (Y), and a bow ( The spout (2) provided on the ship bottom (Z) close to X) is connected by a single unbroken pipe consisting of water pipes (3a, 3a ') and air-water mixed water pipe (3b), A water pump (4) is installed in the water pipe (3a) at the same water level as the water inlet (1) behind the water inlet (1), and the water pipe (3a ') behind the water pipe (3a') is a draft line (Y ) When both pipes are stacked inward and outward from the stern of the water supply pipe (3a ') piped in the stern direction so as to be positioned above the vicinity, the gap is narrow. Bend the tip of the first air inflow pipe (5a) thin enough to allow the water flow direction to penetrate the water supply pipe (3a) And at the position where both pipes are parallel, the tip of the first air inflow pipe (5a) is cut, and the peripheral region or the vicinity of the position is set as the primary bubble generation site (A), and then the rear When the adjustment valve (6) is attached to the water supply pipe and the water supply pipe is overlapped with the water supply pipe inside and outside, the water supply pipe (3a ') is connected from the outside with the second air inflow pipe (5b) thick enough to form a narrow gap. It is attached so as to wrap, and the water supply pipe (3a ') is cut at a position where both pipes are parallel to each other, and the peripheral region or the vicinity of the position is set as the secondary bubble generation site (B), and the second air inflow pipe (5b) Is connected to the jet outlet (2) as an air / water mixed water pipe (3b) for sending the air / water mixed water stream, and the inflow water from the intake (1) Utilizing the depressurization phenomenon against atmospheric pressure generated at the bubble generation site (A) and the secondary bubble generation site (B) The air is sucked from the first air inflow pipe (5a) and the second air inflow pipe (5b) to generate low-pressure microbubbles, and together with the air / water mixed water supply flow ejected from the air / water mixed water supply pipe (3b). It is comprised from the generation | occurrence | production method of the bubble in the frictional resistance reduction apparatus in the ship characterized by making it eject from a jet nozzle (2), without using the motive power of.

尚、前記第2空気流入管(5b)に装着する調整弁は、機能的には空気流入増加調整弁である。   The adjustment valve mounted on the second air inflow pipe (5b) is functionally an air inflow increase adjustment valve.

次に、この発明の船舶の摩擦抵抗低減方法に使用する装置の各構成および機能を詳述すると、 1) 取水口
取水口(1)の大きさは、船体の機能に支障のない範囲で大量に取水するものが望ましいので、大きい程よい。また、第1次気泡発生部位(A)第2気泡発生部位(B)でゴミなどが詰まらないようフィルターを設ける必要がある。
2) 送水ポンプ
取水の大部分は、船の進行に伴う自然水流を利用するのであるが、最初に船舶が発進する時、又は低速で航行する時に送水ポンプ(4)で取水する必要がある。
3) 低圧微小気泡発生装置
本発明の主たる目的の一つである微小な気泡を必要なだけ発生させる装置であり、図1および図2に示すように、第1次気泡発生部位(A)、第2気泡発生部位(B)を設け、該第1次気泡発生部位(A)は送水管(3a′)内に第1空気流入管(7a)を貫通させて挿入し、適当な長さで切断し、該送水管(3a′)と第1空気流入管(7a)との狭い間隙から噴出する水流により、第1空気流入管(7a)の切断面付近で発生する強力な減圧領域を利用し第1空気流入管(7a)より空気を吸引させ、同時にその位置で低圧微小気泡を発生させ水流と混合させ、第2次気泡発生部位(B)へ送られる。第2次気泡発生部位(B)は第1次気泡発生部位(A)より多少の間隙をおいて送水管(3a′)を切断し、その切断部位を第2空気流入管(5b)で被い、第2空気流入管(5b)と送水管(3a′)との間隙によって送水管の切断面の位置付近に生ずる減圧領域により、第2空気流入管(5b)から吸引させ、同時に気水混合水にさらに気泡を追加発生させて、噴出口(2)へと送られる。その時の第2空気流入管(5b)の上端の流入口に空気調整弁(6)を取り付けて空気の流入量の調節を行う。
4) 噴出口
気泡発生部位(A,B)から送られてくる気水混合水流と末端の噴出口(2)より船底(Z)へ噴出されるが、その位置で噴出力を一層強めるための噴出口(2)部の先端の断面積を縮小する必要がある。縮小程度は状況にもよるが、約1/2程度が適当であろう。
Next, the configuration and functions of the apparatus used in the method for reducing the frictional resistance of a ship according to the present invention will be described in detail. 1) Water intake The size of the water intake (1) is large as long as the hull function is not hindered. Since it is desirable to take in water, the larger the better. Moreover, it is necessary to provide a filter so that dust and the like are not clogged at the primary bubble generation site (A) and the second bubble generation site (B).
2) Water pump Most of the water intake uses natural water flow as the ship progresses, but it is necessary to take water with the water pump (4) when the ship first starts or sails at low speed.
3) Low-pressure microbubble generator This is an apparatus for generating as many microbubbles as one of the main objects of the present invention. As shown in FIGS. 1 and 2, the primary bubble generation site (A), A second bubble generation site (B) is provided, and the first bubble generation site (A) is inserted through the first air inflow pipe (7a) into the water supply pipe (3a ′), and has an appropriate length. A strong pressure reduction region generated near the cut surface of the first air inflow pipe (7a) is used by cutting and flowing out of a narrow gap between the water supply pipe (3a ') and the first air inflow pipe (7a). Then, air is sucked from the first air inflow pipe (7a), and at the same time, low-pressure microbubbles are generated and mixed with the water flow, and sent to the secondary bubble generation site (B). The secondary bubble generation site (B) cuts the water supply pipe (3a ′) with a slight gap from the primary bubble generation site (A), and the cut site is covered by the second air inflow pipe (5b). On the other hand, the second air inflow pipe (5b) is sucked from the second air inflow pipe (5b) by the reduced pressure region generated near the position of the cut surface of the water supply pipe by the gap between the second air inflow pipe (5b) and the water supply pipe (3a '). Additional bubbles are generated in the mixed water and sent to the spout (2). At that time, an air regulating valve (6) is attached to the inlet of the upper end of the second air inlet pipe (5b) to adjust the amount of inflow of air.
4) Spout The air-water mixed water stream sent from the bubble generation site (A, B) and the spout from the end spout (2) are spouted to the ship bottom (Z). It is necessary to reduce the cross-sectional area at the tip of the jet outlet (2). The degree of reduction depends on the situation, but about half will be appropriate.

次に、この発明の船舶の摩擦抵抗低減方法に使用する装置の各構成および機能を、より具体的に検証する目的で、模型の試作器を使用した低圧微小気泡の発生テストと水深耐圧テストも試みた。
この発明の大きな目的は船舶の運航の際、船体接水面に低圧微小気泡を発生させて被い、船体接水面で発生する摩擦抵抗を低減させることによって、船体推進に必要なエネルギーの省力化をはかることであるが、とりわけタンカーのような大型船舶において使用する場合では、減圧現象を利用して発生させた低圧微細気泡を任意の水深の船底に送り、周囲の水圧環境を受けないように噴出口から噴出させることが重要な課題となるため、理論的な仮定の整合性のみで課題の解決手段を提示するとすれば根拠は希薄である。よって以下に実験の概要と結果、及び、それにより得られた推論を示す。
Next, for the purpose of more specifically verifying each configuration and function of the apparatus used in the method for reducing the frictional resistance of a ship according to the present invention, a low-pressure microbubble generation test and a water depth pressure test using a model prototype are also performed. Tried.
A major object of the present invention is to reduce the frictional resistance generated on the water contact surface of the hull by generating low pressure micro-bubbles on the water contact surface of the hull during ship operation, thereby reducing the energy required for propulsion of the hull. However, especially when used on large ships such as tankers, low-pressure microbubbles generated by using the depressurization phenomenon are sent to the bottom of the ship at an arbitrary depth and injected so as not to receive the surrounding hydraulic environment. Since ejecting from the exit is an important issue, the basis for providing a solution to the problem only by the consistency of theoretical assumptions is sparse. Therefore, the outline of the experiment, the results, and the inference obtained thereby are shown below.

図4は、低圧微小気泡の発生テストで用いた試作器を示したものであり、該試作器の気泡発生部位は直径30mm程度の小さな器具であるが、実際の大型船舶の実寸に合わせた寸法に置き換えた場合でも、減圧現象を利用した低圧微小気泡発生の原理が同一であることを特徴としたものである。また、図5で示した気泡発生装置とは二本の空気流入管の位置関係が異なっているが機能は同じである。   FIG. 4 shows a prototype used in the low-pressure microbubble generation test. The bubble generation site of the prototype is a small instrument having a diameter of about 30 mm, but the actual size of the large ship is matched to the actual size. Even in the case of replacement, the principle of generation of low-pressure microbubbles using the decompression phenomenon is the same. Moreover, although the positional relationship of two air inflow pipes differs from the bubble generator shown in FIG. 5, the function is the same.

図6は、低圧微小気泡の発生テスト1の概略図である。試作器の送水管は水道栓に連結されており、一本の水道栓が水流の動力源となっている。前記テスト1では先端部と一体化している気泡発生部位を水深2cmと60cmの各位置に固定し、低圧微小気泡の発生状態を観察したが、その結果、水深2cmの位置では微小気泡の多量発生が可能であったが、水深60cmの位置で発生不能となった。
この現象は送水管及び空気流入管の先端部周辺で発生した減圧領域に外部の空気が吸引され、さらに水流中に引き込まれて気泡化されていく過程において、空気が水圧の影響を受け、気泡化されなくなったことを示している。この結果から図3及び図4における気泡発生装置を大型船舶の実寸にあわせて実物化し、船底水位(約10〜15M)の水圧環境の位置に装着した場合、たとえ送水管の水流の流速を速くしたとしても気泡発生は不可能になるとの推論が得られた。また,10〜15Mの水深で微小気泡を発生させようとすればコンプレッサーなどの空気加圧装置を使う必要があり、その場合は、非膨張性質をもつ低圧微小気泡は失われることは容易に推測できるのである。これらの推論は、第二の課題と関連を持つものである。
FIG. 6 is a schematic diagram of the low-pressure microbubble generation test 1. The water pipe of the prototype is connected to a water tap, and one water tap is the power source for the water flow. In Test 1, the bubble generation site integrated with the tip was fixed at each position of 2 cm and 60 cm depth, and the occurrence of low pressure microbubbles was observed. As a result, a large amount of microbubbles were generated at a position of 2 cm depth. Although it was possible, it became impossible to generate at a water depth of 60 cm.
This phenomenon is caused by external air being sucked into the decompression area around the tip of the water pipe and air inflow pipe, and then being drawn into the water stream to be bubbled. Indicates that it is no longer available. From this result, when the bubble generating device in FIGS. 3 and 4 is actualized according to the actual size of a large ship and installed in the position of the water pressure environment of the bottom water level (about 10-15M), the flow velocity of the water flow in the water pipe is increased. Even so, it was inferred that bubble generation would be impossible. In addition, it is necessary to use an air pressurizing device such as a compressor to generate microbubbles at a water depth of 10 to 15M. In that case, it is easily assumed that low-pressure microbubbles having non-expandable properties are lost. It can be done. These inferences are related to the second issue.

次に、図7に示す試作器を用いて低圧微小気泡の発生テスト2を試みた。この試作器は、前述の図6の試作器の第2空気流入管の先端部のみが4M延長され、図4及び図5の第2空気流入管(5b)の断面積にたいして先端部の断面積が小さくしてあることを特徴としている。試作器の送水管は二本の水道栓に連結されており二本の水道栓を水流の動力源としている。また、水槽の水深は4.5Mである。   Next, a test 2 for generating low-pressure microbubbles was tried using the prototype shown in FIG. In this prototype, only the tip of the second air inlet pipe of the prototype shown in FIG. 6 is extended by 4M, and the sectional area of the tip of the second air inlet pipe (5b) in FIGS. Is characterized by being made small. The water pipe of the prototype is connected to two taps, and the two taps are used as a power source for water flow. The water depth of the aquarium is 4.5M.

この前記テスト2は以下のように行われた。図8に示すように試作器の気泡発生部位は水面上の位置に固定したまま、先端部は水深0.1M、1M、2M、3M、4Mの各位置で垂直に固定し、各々の位置で測定器具を用いて空気の吸引速度を測定した。その結果、図7に示すように水面表層0.1Mを除いて、ほぼ気泡発生量の差は見られなかった。この結果から、先端部を4Mよりさらに深い水深位置に固定しても同様の結果が得られるとの推論が得られた。この推論は第二の課題の解決手段と関連性を持つものである。
尚、水深0.1Mにおける空気吸引における空気吸引速度が他の水深でのそれより速いのは噴出した気泡が水面に近いため、その大部分が水面に直接放出された為と考えられる。
The test 2 was performed as follows. As shown in FIG. 8, while the bubble generation part of the prototype is fixed at a position on the water surface, the tip is fixed vertically at each of the water depths of 0.1M, 1M, 2M, 3M, and 4M. The air suction speed was measured using a measuring instrument. As a result, as shown in FIG. 7, almost no difference in the amount of bubbles generated was observed except for the surface 0.1M of the water surface. From this result, it was inferred that the same result could be obtained even if the tip was fixed at a deeper depth than 4M. This reasoning is related to the solution of the second problem.
The reason why the air suction speed in air suction at a water depth of 0.1 M is faster than that at other water depths is that most of the bubbles are directly discharged to the water surface because the ejected bubbles are close to the water surface.

前記テスト2で用いた気泡発生量の測定方法は、図9に示す測定器によるものである。(A)は、空気流入量測定バルーンである。気泡の発生量と測定バルーン内の空気吸引量は等しいはずであるから、この測定器を試作器の、第1空気流入管、第2空気流入管と接続して気泡発生の開始時から測定バルーン内の空気が空になる時までの秒数を計測して毎秒あたりの気泡発生量を計算した。(図8に示すグラフ参照)   The measurement method of the bubble generation amount used in the test 2 is based on the measuring device shown in FIG. (A) is an air inflow measurement balloon. Since the amount of bubbles generated and the amount of air sucked into the measurement balloon should be equal, this measuring device is connected to the first air inlet pipe and the second air inlet pipe of the prototype to measure the balloon from the beginning of bubble generation. The amount of bubbles generated per second was calculated by measuring the number of seconds until the air inside became empty. (Refer to the graph shown in FIG. 8)

この発明の目的は、船舶の航行の際、船体接水面に低圧微細気泡を発生させて摩擦抵抗を低減させることである。このような目的における気泡発生装置の機能としては大量に気泡を発生させる必要である。船底を覆う微小気泡の集合密度が高いほど摩擦抵抗は低減するからである。このような理由から試作器の気泡発生量を測定器具で測定したが、先端部の水深4Mにおける気泡発生量は160cc/sec,また使用水道水の量は800cc/secであった。容積比に換算すると水量:気泡発生量=約5.5:1である。比較基準がないため評価は難しいが、至近距離からの写真撮影から直径0.01mm程度の微小気泡が大量に発生していることは確認できた。試作器の気泡発生機能は非常に効率が良いと判断した。これらの実験結果から低圧微小気泡発生の物理的原理が同一である限りにおいて、試作器を大型船舶の実寸にあわせて実物化しても同様の結果が得られるであろうという推論が得られた。この推論はこの発明の課題を解決するための手段と関連を持つものである。   An object of the present invention is to reduce the frictional resistance by generating low-pressure fine bubbles on the water contact surface of the hull during navigation of the ship. As a function of the bubble generator for such a purpose, it is necessary to generate a large amount of bubbles. This is because the frictional resistance decreases as the density of microbubbles covering the ship bottom increases. For this reason, the amount of bubbles generated in the prototype was measured with a measuring instrument. The amount of bubbles generated at a water depth of 4 M at the tip was 160 cc / sec, and the amount of tap water used was 800 cc / sec. When converted to a volume ratio, the amount of water: the amount of bubbles generated = about 5.5: 1. Although it is difficult to evaluate because there is no comparison standard, it was confirmed that a large amount of microbubbles having a diameter of about 0.01 mm were generated from photography from a close distance. It was judged that the bubble generation function of the prototype was very efficient. From these experimental results, it was inferred that the same result would be obtained even if the prototype was built to the actual size of a large ship as long as the physical principle of low pressure microbubble generation was the same. This reasoning is related to the means for solving the problems of the present invention.

この発明の船舶における摩擦抵抗低減装置におけるバブルの発生方法の技術を確立し、実施することにより、産業上利用できるものである。   The present invention can be utilized industrially by establishing and implementing the technology of the bubble generation method in the frictional resistance reducing device for a ship according to the present invention.

1 取水口
2 噴出口
3a 送水管
3a′送水管
3b 気水混合送水管
4 送水ポンプ
5a 第1空気流入管
5b 第2空気流入管
6 調整弁
7 空気流入口
7a 第1空気流入口
7b 第2空気流入口
A 第1次気泡発生部位
B 第2次気泡発生部位
X 船首
Y 吃水線
Z 船底
DESCRIPTION OF SYMBOLS 1 Intake port 2 Spout 3a Water pipe 3a 'Water pipe 3b Air-water mixed water pipe 4 Water pump 5a 1st air inflow pipe 5b 2nd air inflow pipe 6 Adjustment valve 7 Air inflow port 7a 1st air inflow port 7b 2nd Air inflow port A Primary bubble generation site B Secondary bubble generation site X Bow Y Flood line Z Ship bottom

Claims (1)

船舶の摩擦抵抗低減装置において、
船首付近で吃水線以下の位置に設けた取水口と、
船首に近い船底に設けた噴出口を、
送水管と気水混合送水管よりなる、切れ目のない1本の管で連結し、
前記取水口の後方で取水口と同じ水位の位置に、送水管の内に送水ポンプを装着し、
その後方の送水管は吃水線付近より上方に位置するように船尾方向へ向かって配管してある送水管の船尾よりの位置に、
送水管よりも両管を内外に重ねた場合、狭い間隙が出来る程の細い太さの第1空気流入管の先端を水流方向に曲げ、送水管を貫通させて挿入し、
両管が平行になった位置で、第1空気流入管の先端を切断し、
その周辺領域、または、位置付近を第1次気泡発生部位とし、
次いで、その後方に調整弁を装着し、かつ送水管と内外に重ねた場合に狭小な間隙が出来る程の太い太さの第2空気流入管で送水管を外側より包むように装着し、
両管が平行になった位置で送水管を切断し、その周辺領域、または位置付近を第2次気泡発生部位とし、
第2空気流入管はその位置以後へそのまま延長した形で、気水混合水流を送るための気水混合送水管として噴出口に連結し、
取水口からの流入水は、第1次気泡発生部位と第2次気泡発生部位において発生する大気圧に対する減圧現象を利用し、第1空気流入管と第2空気流入管から空気を吸引し、
低圧微小気泡を発生させ気水混合送水管から噴出される気水混合水流と共に、
何らの動力も使用せず噴出口より噴出させることを特徴とする
船舶における摩擦抵抗低減装置における気泡の発生方法。
In the ship frictional resistance reduction device,
A water intake near the bow and below the inundation line;
A spout on the bottom of the ship near the bow
Connected with a single continuous pipe consisting of a water pipe and an air-water mixed water pipe,
At the same water level as the water intake behind the water intake, a water supply pump is installed in the water supply pipe,
At the position from the stern of the water pipe that is piped in the stern direction so that the water pipe on the rear is located above the vicinity of the inundation line,
When both pipes are stacked inside and outside than the water pipe, the tip of the first air inlet pipe that is thin enough to create a narrow gap is bent in the direction of water flow, inserted through the water pipe,
At the position where both pipes are parallel, cut the tip of the first air inflow pipe,
The surrounding area or the vicinity of the position is the primary bubble generation site,
Next, a regulating valve is attached to the rear, and when the water pipe is overlapped with the inside and outside of the water pipe, it is attached so as to wrap the water pipe from the outside with a second air inlet pipe that is thick enough to create a narrow gap,
Cut the water supply pipe at the position where both pipes are parallel, and use the surrounding area or the vicinity of the position as the secondary bubble generation site,
The second air inflow pipe is connected to the jet outlet as an air / water mixed water pipe for sending the air / water mixed water flow in the form extended as it is after that position,
The inflow water from the intake port draws air from the first air inflow pipe and the second air inflow pipe by utilizing a depressurization phenomenon with respect to atmospheric pressure generated at the primary bubble generation site and the secondary bubble generation site,
Along with the air-water mixed water stream that generates low-pressure microbubbles and is ejected from the air-water mixed water pipe,
A method of generating bubbles in a frictional resistance reduction device in a ship, characterized in that the jetting is performed from a spout without using any power.
JP2009041803A 2009-02-25 2009-02-25 Method of generating bubbles in a frictional resistance reduction device in a ship Expired - Fee Related JP4341058B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009041803A JP4341058B1 (en) 2009-02-25 2009-02-25 Method of generating bubbles in a frictional resistance reduction device in a ship
PCT/JP2010/052888 WO2010098361A1 (en) 2009-02-25 2010-02-24 Method for generating air bubbles in an apparatus for reducing friction resistance in a ship
KR1020117019441A KR20110128824A (en) 2009-02-25 2010-02-24 Method for generating air bubbles in an apparatus for reducing friction resistance in a ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041803A JP4341058B1 (en) 2009-02-25 2009-02-25 Method of generating bubbles in a frictional resistance reduction device in a ship

Publications (2)

Publication Number Publication Date
JP4341058B1 JP4341058B1 (en) 2009-10-07
JP2010195174A true JP2010195174A (en) 2010-09-09

Family

ID=41253456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041803A Expired - Fee Related JP4341058B1 (en) 2009-02-25 2009-02-25 Method of generating bubbles in a frictional resistance reduction device in a ship

Country Status (3)

Country Link
JP (1) JP4341058B1 (en)
KR (1) KR20110128824A (en)
WO (1) WO2010098361A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129431A1 (en) * 2014-02-28 2015-09-03 三菱重工業株式会社 Frictional resistance reduction device for ship
CN105905233A (en) * 2016-06-06 2016-08-31 武汉理工大学 Air guide device capable of reducing ship wind resistance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503688B1 (en) * 2009-10-05 2010-07-14 正明 佐藤 Friction resistance reduction device for ships
CN102849195B (en) * 2012-09-18 2016-03-02 南通中远川崎船舶工程有限公司 A kind of Guide pipe device for stem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084651A (en) * 1950-05-23 1963-04-09 Parmenter Richard Silencer for ships
JPH08225095A (en) * 1995-02-21 1996-09-03 Yoji Kato Microbubble generating device
JPH08229371A (en) * 1995-02-27 1996-09-10 Yoji Kato Microbubble generator
JP2001239995A (en) * 2000-02-29 2001-09-04 Mitsubishi Heavy Ind Ltd Underwater discharge devices for exhaust gas in ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129431A1 (en) * 2014-02-28 2015-09-03 三菱重工業株式会社 Frictional resistance reduction device for ship
JP2015163492A (en) * 2014-02-28 2015-09-10 三菱重工業株式会社 Friction reduction device of ship
CN105905233A (en) * 2016-06-06 2016-08-31 武汉理工大学 Air guide device capable of reducing ship wind resistance

Also Published As

Publication number Publication date
JP4341058B1 (en) 2009-10-07
WO2010098361A1 (en) 2010-09-02
KR20110128824A (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4503688B1 (en) Friction resistance reduction device for ships
JP6822659B2 (en) Ships with air lubrication system and such system
JP4341058B1 (en) Method of generating bubbles in a frictional resistance reduction device in a ship
CN106627983A (en) System and operation method used for providing air lubricating layer and draining ship
JP2009274705A (en) Frictional resistance reduction ship and method for operating the same
TWI647147B (en) Flat bottom boat and method of controlling at least one air cavity length
KR20110116125A (en) Positive pressure super micro bubble generator
JP4866990B2 (en) Hull frictional resistance reduction device
CN106458289A (en) Use of an air lubrication system for reducing marine growth on a vessel
JP2019142482A (en) System for minimizing bow wave
JP2010208435A (en) Resistance reducing apparatus of ship
JP5599482B1 (en) Ship equipped with bubble resistance reduction device and ship resistance reduction method
JP2002002582A (en) Friction resistance reducing ship
JP2016064812A (en) Hull fluid resistance reduction device
CN201520395U (en) Bubble drag reduction subdivision variable-pressure air injection device
RU2299152C1 (en) Two-mode water scoop of hovercraft water-jet propeller
JP2018154199A (en) Vessel
JP5806251B2 (en) Ship equipped with bubble resistance reduction device and ship resistance reduction method
JP4523450B2 (en) A method of shielding water discharge noise from ships.
CH705199A2 (en) Method of reducing the bow wave resistance of a ship uses apparatus for generating a mixture of gas and water in front of the bow
JP2000168673A (en) Frictional resistance reducing ship
KR20160117655A (en) Bubble generating unit
JPH09151913A (en) Method of reducing friction of ship etc and friction reduced ship
KR100439003B1 (en) Frictional resistance reducing method, and ship with reduced frictional resistance
JP2011088515A (en) Frictional resistance reducing ship

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees