JP2010192459A - Nonaqueous secondary battery - Google Patents
Nonaqueous secondary battery Download PDFInfo
- Publication number
- JP2010192459A JP2010192459A JP2010102948A JP2010102948A JP2010192459A JP 2010192459 A JP2010192459 A JP 2010192459A JP 2010102948 A JP2010102948 A JP 2010102948A JP 2010102948 A JP2010102948 A JP 2010102948A JP 2010192459 A JP2010192459 A JP 2010192459A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- current collector
- secondary battery
- mixture layer
- electrode mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003792 electrolyte Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 39
- 239000010410 layer Substances 0.000 claims description 30
- 239000011244 liquid electrolyte Substances 0.000 claims description 15
- 238000007599 discharging Methods 0.000 claims description 14
- 150000002148 esters Chemical class 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 9
- 239000003575 carbonaceous material Substances 0.000 claims description 8
- 239000007773 negative electrode material Substances 0.000 claims description 7
- 239000011229 interlayer Substances 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 abstract description 8
- 238000004804 winding Methods 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 10
- -1 amine imide Chemical class 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002002 slurry Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- 229910013372 LiC 4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 238000004532 chromating Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- FZKPQHFEMFIDNR-UHFFFAOYSA-N 2-hydroxyethyl hydrogen sulfite Chemical compound OCCOS(O)=O FZKPQHFEMFIDNR-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011496 digital image analysis Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水二次電池に関し、さらに詳しくは、特に過充電時における信頼性が高く、かつサイクル特性が優れた非水二次電池に関するものである。 The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery having high reliability particularly during overcharge and excellent cycle characteristics.
リチウムイオン電池に代表される非水二次電池は、容量が大きく、かつ高電圧、高エネルギー密度、高出力であることから、ますます需要が増える傾向にある。 Non-aqueous secondary batteries represented by lithium-ion batteries have a large capacity, high voltage, high energy density, and high output, and therefore demand is increasing.
上記非水二次電池では、負極は金属製の集電材の少なくとも一方の面に負極活物質やバインダなどを含む負極合剤の層を形成することによって構成されるが、本発明者がこの非水二次電池についてさらに検討を進めている中で、この非水二次電池は、充放電に伴う負極合剤層の体積変化が大きい場合には、誤って過充電されたときに、負極の集電材に亀裂、切断などが生じ、その後のサイクル特性の劣化が大きくなることが判明した。 In the non-aqueous secondary battery, the negative electrode is formed by forming a layer of a negative electrode mixture containing a negative electrode active material or a binder on at least one surface of a metal current collector. In the course of further study of water secondary batteries, this non-aqueous secondary battery has a negative electrode mixture layer with a large volume change due to charge / discharge. It was found that the current collector was cracked, cut, etc., and the subsequent deterioration of the cycle characteristics increased.
本発明は、上記のような事情に鑑み、負極合剤層の充放電に伴う体積変化が大きい場合においても、過充電時に負極集電材に亀裂、切断などが発生するのを防止して、過充電時における信頼性を高め、かつ上記負極集電材の亀裂、切断などの発生に伴うサイクル特性の劣化を防止して、サイクル特性の優れた非水二次電池を提供することを目的とする。 In view of the circumstances as described above, the present invention prevents the negative electrode current collector from cracking, cutting, etc. during overcharge even when the volume change accompanying charging / discharging of the negative electrode mixture layer is large. An object of the present invention is to provide a non-aqueous secondary battery having excellent cycle characteristics by improving reliability during charging and preventing deterioration of cycle characteristics due to occurrence of cracks, cuts, etc. of the negative electrode current collector.
本発明は、正極、負極およびセパレータを巻回した渦巻状電極積層体および電解質を有する非水二次電池であって、上記負極が集電材の少なくとも一方の面に負極合剤層を形成したものからなり、該負極合剤層の充電後と放電後の最大体積変化率が8%以上の場合に、上記負極の集電材に破断伸び率が5%以上のものを用いることによって、過充電時においても負極の集電材に亀裂、切断などが発生するのを防止し、上記課題を解決したものである。また、負極の集電材として、上記特性に加えて、濡れ性が接触角で40度未満のものを用いることによって、サイクル特性の劣化をより効率よく防止することができる。 The present invention is a non-aqueous secondary battery having a spiral electrode laminate in which a positive electrode, a negative electrode and a separator are wound, and an electrolyte, wherein the negative electrode has a negative electrode mixture layer formed on at least one surface of a current collector When the maximum volume change after charging and discharging of the negative electrode mixture layer is 8% or more, the current collector of the negative electrode has a breaking elongation of 5% or more. In this case, cracks and cuts are prevented from occurring in the current collector of the negative electrode, and the above problems are solved. Further, in addition to the above characteristics, the use of a negative electrode current collector having a wettability of less than 40 degrees in contact angle can more effectively prevent deterioration of cycle characteristics.
本発明では、負極合剤層の充放電に伴う最大体積変化率が8%以上という体積変化の大きい負極合剤を用いる場合においても、負極集電材の亀裂、切断などの発生を防止して、過充電時における信頼性を高め、かつ上記負極集電材の亀裂、切断などに伴うサイクル特性の劣化を防止して、サイクル特性の優れた非水二次電池を提供することができる。 In the present invention, even when using a negative electrode mixture having a large volume change with a maximum volume change rate of 8% or more accompanying charge / discharge of the negative electrode mixture layer, preventing the occurrence of cracking, cutting, etc. of the negative electrode current collector, A non-aqueous secondary battery having excellent cycle characteristics can be provided by improving reliability during overcharge and preventing deterioration of cycle characteristics due to cracking or cutting of the negative electrode current collector.
本発明において、負極の集電材としては、材質的には、たとえば、銅、ニッケル、ステンレス鋼製で、形態的には、たとえば、箔、網状のものなどが用いられるが、その破断伸び率は5%以上であることが必要である。これは、負極の集電材の破断伸び率が5%以上でなければ充放電に伴う集電材の亀裂、切断などの発生を防止する効果が充分に発現できないからであり、この負極の集電材の破断伸び率としては特に7%以上であることが好ましい。このような破断伸び率を得るには、銅製の集電材を用いることが適している。 In the present invention, the current collector of the negative electrode is made of, for example, copper, nickel, stainless steel, and, for example, a foil or a net-like material is used. It is necessary to be 5% or more. This is because if the elongation at break of the current collector of the negative electrode is not more than 5%, the effect of preventing the occurrence of cracking, cutting, etc. of the current collector due to charge / discharge cannot be sufficiently exhibited. The elongation at break is particularly preferably 7% or more. In order to obtain such elongation at break, it is suitable to use a current collector made of copper.
本発明において、負極の集電材の破断伸び率とは、電池を20℃、2.75Vまで1Cレートで放電した後、分解し、集電材またはこれを負極合剤層と共に引っ張り試験を行い、集電材が破断するまでの伸び率を言う。集電材の伸びが大きい方が集電材の切断が少ないのは以下の理由による。 In the present invention, the elongation at break of the current collector of the negative electrode means that the battery is discharged at a rate of 1C up to 2.75 V at 20 ° C., then decomposed and subjected to a tensile test together with the current collector or the negative electrode mixture layer. The elongation until the electric material breaks. The reason why the current collector is less cut when the current collector is larger is as follows.
負極合剤層の充電後と放電後の最大体積変化率が8%以上である非水二次電池では、負極合剤層の充放電に伴う膨張収縮が大きく、充電するにつれて負極合剤層に引っ張られて集電材も伸びてしまう。このとき、集電材の破断伸び率が小さいと集電材が切断されて一部の負極合剤が利用できなくなり、サイクル特性の劣化が大きくなる。 In a non-aqueous secondary battery having a maximum volume change rate of 8% or more after charging and discharging of the negative electrode mixture layer, the expansion and contraction associated with charging and discharging of the negative electrode mixture layer is large. The current collector is stretched by being pulled. At this time, if the elongation at break of the current collector is small, the current collector is cut and some of the negative electrode mixture cannot be used, and the deterioration of the cycle characteristics increases.
また、負極合剤層の充電後と放電後の最大体積変化率が11%以上である非水二次電池では、さらにその影響が大きい。負極合剤層の充電後と放電後の最大体積変化率とは、その電池の標準充電電圧まで1Cレートで2時間半充電して分解したときに負極合剤層の厚みを測定し、一方で同様に作製した別の電池を1Cレートで2.75Vまで放電して分解したときに負極合剤層の厚みを測定し、その間で最も体積変化率の大きい部分の値である。 In addition, the influence is even greater in a non-aqueous secondary battery in which the maximum volume change after charging and discharging of the negative electrode mixture layer is 11% or more. The maximum volume change rate after charging and discharging of the negative electrode mixture layer is determined by measuring the thickness of the negative electrode mixture layer when it is decomposed by charging at a 1C rate for 2 hours and a half to the standard charging voltage of the battery. The thickness of the negative electrode mixture layer was measured when another battery produced in the same manner was discharged at a 1C rate to 2.75 V and decomposed, and the value of the portion with the largest volume change rate was obtained.
集電材の表面粗度も集電材の切断に影響する。集電材の表面が平滑であれば、充電して負極合剤層が膨張する際に集電材との間で滑りが生じ、切断されにくくなる。負極の集電材の表面粗度は粗な面の平均がRa(IPC−MF−150F)で0.3μm以下が望ましく、さらに0.25μm以下であることが望ましい。 The surface roughness of the current collector also affects the cutting of the current collector. If the surface of the current collector is smooth, slipping occurs between the current collector and the negative electrode mixture layer when charged and expands, making it difficult to cut. The surface roughness of the negative electrode current collector is preferably 0.3 μm or less, more preferably 0.25 μm or less, in terms of Ra (IPC-MF-150F).
また、負極の集電材の破断伸び率が大きい場合は通常濡れ性が悪く、電池を充放電させた場合のサイクル特性の劣化が大きい傾向にある。そのような場合には接触角で50度未満にするとサイクル特性の劣化が少なくなる。また、接触角を40度未満にするとさらに効果が大きくなり、より望ましい。この濡れ性を改善する方法としては、たとえば、集電材にクロメート処理する際にそのクロメート処理をアルカリクロメート処理で行ったり、集電材にクロメート処理する際のクロメート量を低減することが挙げられ、いずれも効果がある。そして、そのクロメート量は0.15mg/m2以下が望ましく、0.1mg/m2以下がより望ましい。 In addition, when the elongation at break of the current collector of the negative electrode is large, the wettability is usually poor, and the cycle characteristics tend to be greatly deteriorated when the battery is charged and discharged. In such a case, if the contact angle is less than 50 degrees, the deterioration of the cycle characteristics is reduced. Further, if the contact angle is less than 40 degrees, the effect is further increased, which is more desirable. As a method for improving the wettability, for example, when chromating the current collector, the chromate treatment is performed by alkali chromate treatment, or reducing the chromate amount when chromating the current collector. Is also effective. Then, the chromate amount 0.15 mg / m 2 or less is preferable, 0.1 mg / m 2 or less is more preferable.
なお、本発明における濡れ性は接触角で評価するが、その接触角は、スライドガラス上に長さ4cm、幅3cmの試料をテープで固定し、これに液滴量1μlの水を滴下して、この画像をコンピュータに取り込み、その画像解析により測定した値の3回の平均値をいい、解析手法は、「コンピュータ画像解析システムによる新しい接触角測定法」〔第45回コロイドおよび界面化学討論会講演要旨集,p99(1992)〕によるものである。 Note that the wettability in the present invention is evaluated by a contact angle. The contact angle is determined by fixing a sample having a length of 4 cm and a width of 3 cm on a slide glass with a tape, and dropping 1 μl of water in a droplet amount onto the sample. This image is taken into a computer and means the average of three values measured by image analysis. The analysis method is "a new contact angle measurement method using computer image analysis system" [The 45th Colloid and Interface Chemistry Conference Summary of Lecture, p99 (1992)].
また、本発明の効果は、電池内部の電極積層体単位体積当たり通常充電での容量が130mAh/cm3以上の場合に顕著に発現し、上記容量が140mAh/cm3以上の場合により顕著に発現するので、本発明はそのような高容量の電池に適用するのが適している。なお、電極積層体単位体積とは、電池内における正極、負極およびセパレータを積層したものまたは巻回したもののかさ(嵩)体積で、巻軸の体積を含まない正極、負極およびセパレータのかさ体積の合計体積である。 In addition, the effect of the present invention is remarkably exhibited when the capacity in the normal charge per unit volume of the electrode laminate inside the battery is 130 mAh / cm 3 or more, and more remarkably when the capacity is 140 mAh / cm 3 or more. Therefore, the present invention is suitable for application to such a high capacity battery. The electrode laminate unit volume is the bulk volume of the positive electrode, negative electrode and separator laminated or wound in the battery, and does not include the volume of the winding shaft. The total volume of
電解質として液状電解質(電解液)を用いる場合、その溶媒成分としてはエステルがよく用いられる。特によく用いられる鎖状エステルは、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチルなどの鎖状のCOO−結合を有する鎖状エステルである。 When a liquid electrolyte (electrolytic solution) is used as the electrolyte, an ester is often used as the solvent component. A chain ester particularly often used is a chain ester having a chain COO- bond such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, or methyl propionate.
また、上記鎖状エステルに下記の誘電率の高いエステル(誘電率30以上)を混合して用いるとさらに望ましい。このような誘電率の高いエステルとしては、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ガンマーブチロラクトン(γ−BL)、エチレングリコールサルファイト(EGS)などが挙げられる。特に環状構造のものが望ましく、とりわけ環状のカーボネートが望ましく、エチレンカーボネート(EC)が最も望ましい。 Further, it is more desirable to use the above-mentioned chain ester with the following ester having a high dielectric constant (dielectric constant of 30 or more). Examples of such an ester having a high dielectric constant include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), gamma-butyrolactone (γ-BL), and ethylene glycol sulfite (EGS). In particular, those having a cyclic structure are desirable, cyclic carbonates are particularly desirable, and ethylene carbonate (EC) is most desirable.
上記高誘電率エステルは液状電解質の全溶媒中の40体積%未満が望ましく、より望ましくは30体積%以下、さらに望ましくは25体積%以下である。そして、これらの誘電率の高いエステルによる安全性の向上は、上記エステルが液状電解質の全溶媒中で10体積%以上になると電池特性が良くなり、20体積%に達するとさらに向上が見られるようになる。 The high dielectric constant ester is desirably less than 40% by volume in the total solvent of the liquid electrolyte, more desirably 30% by volume or less, and even more desirably 25% by volume or less. And the improvement of safety by these esters having a high dielectric constant is such that the battery characteristics are improved when the ester is 10% by volume or more in the total solvent of the liquid electrolyte, and further improvement is seen when the ester reaches 20% by volume. become.
上記エステル以外に併用可能な溶媒としては、たとえば1,2−ジメトキシエタン(DME)、1,3−ジオキソラン(DO)、テトラヒドロフラン(THF)、2−メチル−テトラヒドロフラン(2Me−THF)、ジエチルエーテル(DEE)などが挙げられる。そのほか、アミンイミド系有機溶媒や、含イオウまたは含フッ素系有機溶媒なども用いることができる。 Examples of solvents that can be used in addition to the above ester include 1,2-dimethoxyethane (DME), 1,3-dioxolane (DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2Me-THF), diethyl ether ( DEE). In addition, amine imide organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used.
液状電解質の溶質としては、たとえばLiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC4F9SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(CF3SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(n≧2)、LiN(RfOSO2)2〔ここでRfはフルオロアルキル基〕などが単独でまたは2種以上混合して用いられるが、特にLiPF6やLiC4F9SO3などが望ましい。液状電解質中の溶質の濃度は、特に限定されるものではないが、濃度を1mol/l以上の多めにすると安全性がさらに良くなるので望ましく、1.2mol/l以上がさらに望ましい。また、1.7mol/lより少ないと電気特性が良くなるので望ましく、1.5mol/lより少ないとさらに望ましい。
The solute of a liquid electrolyte, for example LiClO 4, LiPF 6, LiBF 4 , LiAsF 6, LiSbF 6, LiCF 3
正極活物質としては、たとえばLiCoO2などのリチウムコバルト酸化物、LiMn2O4などのリチウムマンガン酸化物、LiNiO2などのリチウムニッケル酸化物、二酸化マンガン、五酸化バナジウム、クロム酸化物などの金属酸化物または二硫化チタン、二硫化モリブデンなどの金属硫化物などが用いられ、正極は、たとえば、それらの正極活物質に必要に応じて導電助剤やポリフッ化ビニリデンなどの結着剤などを適宜添加した正極合剤を、アルミニウム箔などの集電材を芯材として成形体に仕上げたものが用いられる。 Examples of the positive electrode active material include metal oxides such as lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMn 2 O 4 , lithium nickel oxide such as LiNiO 2 , manganese dioxide, vanadium pentoxide, and chromium oxide. Or metal sulfides such as titanium disulfide and molybdenum disulfide are used. For the positive electrode, for example, a conductive additive or a binder such as polyvinylidene fluoride is appropriately added to the positive electrode active material as necessary. The finished positive electrode mixture is finished into a molded body using a current collector such as an aluminum foil as a core material.
特にLiNiO2、LiCoO2、LiMn2O4などの充電時の開路電圧がLi基準で4V以上を示すリチウム複合酸化物を正極活物質として用いる場合には、高エネルギー密度が得られるので望ましい。 In particular, when a lithium composite oxide, such as LiNiO 2 , LiCoO 2 , or LiMn 2 O 4, whose open circuit voltage during charging is 4 V or more on the basis of Li is used as the positive electrode active material, it is desirable because a high energy density can be obtained.
負極に用いる活物質はリチウムイオンをドープ、脱ドープできるものであればよく、そのような負極活物質としては、たとえば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素化合物などを用い得るが、特に2000℃以上で焼成した炭素化合物は、充放電に伴う体積変化が大きく、本発明はこのような体積変化の大きい活物質を用いる場合に適用すると、特にその効果が顕著に発現する。また、本発明においては、Si、Sn、Inなどの合金またはLiに近い低電位で充放電できるSi、Sn、Inなどの酸化物などの化合物も負極活物質として用い得るが、これらを負極活物質として用いた場合、充放電に伴い負極合剤層の最大体積変化率が10%を超える場合があり、本発明はこのような負極活物質を用いる場合に適用すると、特にその効果が顕著に発現する。 The active material used for the negative electrode may be any material that can be doped and dedoped with lithium ions. Examples of such a negative electrode active material include graphite, pyrolytic carbons, cokes, glassy carbons, and organic polymer compounds. Carbon compounds such as calcined bodies, mesocarbon microbeads, carbon fibers, activated carbon and the like can be used. Particularly, carbon compounds calcined at 2000 ° C. or more have a large volume change due to charge / discharge, and the present invention has such volume changes. When applied to a case where an active material having a large size is used, the effect is particularly prominent. In the present invention, an alloy such as Si, Sn, In, or a compound such as an oxide such as Si, Sn, In that can be charged and discharged at a low potential close to Li can be used as the negative electrode active material. When used as a material, the maximum volume change rate of the negative electrode mixture layer may exceed 10% with charge and discharge, and the present invention is particularly effective when applied to the case of using such a negative electrode active material. To express.
負極活物質として炭素材料を用いる場合、該炭素材料は下記の特性を持つものが望ましい。すなわち、その(002)面の層間距離d002に関しては、望ましくは3.4Å以下である。また、c軸方向の結晶子の大きさLcは、30Å以上が望ましく、より望ましくは80Å以上、さらに望ましくは250Å以上である。そして、その平均粒径は8〜15μm、特に10〜13μmが望ましく、純度は99.9%以上が望ましい。 When a carbon material is used as the negative electrode active material, the carbon material preferably has the following characteristics. That is, the interlayer distance d 002 of the (002) plane is preferably 3.4 mm or less. The crystallite size Lc in the c-axis direction is preferably 30 mm or more, more preferably 80 mm or more, and further preferably 250 mm or more. The average particle size is preferably 8 to 15 μm, particularly preferably 10 to 13 μm, and the purity is preferably 99.9% or more.
負極は、たとえば、上記のような負極活物質に、必要に応じ、ポリフッ化ビニリデン、ラテックスゴムなどの結着剤や人造黒鉛などの導電助剤を加えた負極合剤を溶剤に溶解または分散させて調製した負極合剤スラリーを前記の集電材に塗付し、乾燥してスラリー中の溶剤を揮発させて除去し、集電材の少なくとも一方の面に負極合剤層を形成することによって作製される。 The negative electrode is prepared by, for example, dissolving or dispersing, in a solvent, a negative electrode mixture obtained by adding a binder such as polyvinylidene fluoride or latex rubber or a conductive assistant such as artificial graphite to the negative electrode active material as described above. The negative electrode mixture slurry prepared in this manner is applied to the current collector, dried to volatilize and remove the solvent in the slurry, and a negative electrode mixture layer is formed on at least one surface of the current collector. The
つぎに、実施例をあげて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。 Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.
実施例1
メチルエチルカーボネートとエチレンカーボネートとを体積比75:25で混合し、この混合溶媒にLiPF6を1.4mol/l溶解させて、組成が1.4mol/l Li
PF6/EC:MEC(25:75体積比)で示される液状電解質を調製した。
Example 1
Methyl ethyl carbonate and ethylene carbonate are mixed at a volume ratio of 75:25, LiPF 6 is dissolved in 1.4 mol / l in this mixed solvent, and the composition becomes 1.4 mol / l Li.
A liquid electrolyte represented by PF 6 / EC: MEC (25:75 volume ratio) was prepared.
上記液状電解質におけるECはエチレンカーボネートの略称であり、MECはメチルエチルカーボネートの略称である。従って、上記液状電解質を示す1.4mol/l Li
PF6 /EC:MEC(25:75体積比)は、メチルエチルカーボネート75体積%とエチレンカーボネート25体積%との混合溶媒にLiPF6を1.4mol/lを溶解させたものであることを示している。
EC in the liquid electrolyte is an abbreviation for ethylene carbonate, and MEC is an abbreviation for methyl ethyl carbonate. Therefore, 1.4 mol / l Li indicating the above liquid electrolyte
PF 6 / EC: MEC (25:75 volume ratio) shows that 1.4 mol / l of LiPF 6 is dissolved in a mixed solvent of 75% by volume of methyl ethyl carbonate and 25% by volume of ethylene carbonate. ing.
上記とは別に、LiCoO2に導電助剤として鱗片状黒鉛を重量比100:7で加えて混合し、この混合物と、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液とを混合してスラリーにした。この正極合剤スラリーを70メッシュの網を通過させて大きなものを取り除いた後、厚さ20μmのアルミニウム箔からなる正極集電材の両面に均一に塗付し、乾燥してスラリー中の溶剤を揮発させて除去し、正極集電材の両面に正極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断し、リード体を溶接して、帯状の正極を作製した。 In addition to the above, scale-like graphite as a conductive additive is added to LiCoO 2 at a weight ratio of 100: 7 and mixed, and this mixture is mixed with a solution in which polyvinylidene fluoride is dissolved in N-methylpyrrolidone to obtain a slurry. I made it. This positive electrode mixture slurry is passed through a 70 mesh net to remove large particles, and then uniformly applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 20 μm and dried to volatilize the solvent in the slurry. Then, a positive electrode mixture layer was formed on both surfaces of the positive electrode current collector, and then compression-molded by a roller press, cut, and the lead body was welded to produce a belt-like positive electrode.
また、黒鉛系炭素材料〔ただし、(002)面の層間距離d002=3.37Å、c軸方向の結晶子の大きさLc=950Å、平均粒径10μm、純度99.9%という特性を持つ炭素材料〕を、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液と混合してスラリーにした。この負極合剤スラリーを70メッシュの網を通過させて大きなものを取り除いた後、厚さ10μmの帯状の銅箔からなる負極集電材の両面に均一に塗付し、乾燥してスラリー中の溶剤を揮発させて除去し、負極集電材の両面に負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、リード体を溶接して、帯状の負極を作製した。ここで、用いた負極集電材の破断伸び率は8%であり、表面の粗度Raは0.2μmであった。また、用いた負極集電材の表面の濡れ性を表す接触角は35度であり、表面のクロメート量は0.01mg/m2であった。
Further, the graphite-based carbon material [where (002) plane interlayer distance d 002 = 3.37 Å, c-axis direction crystallite size Lc = 950 Å,
前記帯状の正極を厚さ25μmの微孔性ポリエチレンフィルムを介して上記帯状の負極に重ね、渦巻状に巻回して渦巻状電極積層体とした後、外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。 The belt-like positive electrode is stacked on the belt-like negative electrode through a microporous polyethylene film having a thickness of 25 μm and wound into a spiral electrode laminate, and then a cylindrical battery case having a bottomed cylindrical shape with an outer diameter of 18 mm. The lead body of the positive electrode and the negative electrode was welded.
つぎに液状電解質を電池ケース内に注入し、液状電解質がセパレータなどに充分に浸透した後、封口し、予備充電、エイジングを行い、図1に示す構造の筒形の非水二次電池を作製した。 Next, a liquid electrolyte is injected into the battery case, and after the liquid electrolyte has sufficiently penetrated into the separator, etc., it is sealed, precharged, and aged to produce a cylindrical non-aqueous secondary battery having the structure shown in FIG. did.
図1に示す電池について説明すると、1は前記の正極で、2は前記の負極である。ただし、図1では、繁雑化を避けるため、正極1や負極2の作製にあたって使用された集電材などは図示していない。そして、これらの正極1と負極2はセパレータ3を介して渦巻状に巻回され、渦巻状電極積層体として上記の液状電解質4と共に電池ケース5内に収容されている。
Referring to the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the current collectors used for manufacturing the
電池ケース5は前記のようにステンレス鋼製で、その底部には上記渦巻状電極積層体の挿入に先立って、ポリプロピレンからなる絶縁体6が配置されている。封口板7はアルミニウム製で、円板状をしていて、中央部に薄肉部7aを厚み方向の両端面より内部側に設け、かつ上記薄肉部7aの周囲に電池内圧を防爆弁9に作用させるための圧力導入口7bとしての孔が設けられている。そして、この薄肉部7aの上面に防爆弁9の突出部9aが溶接され、溶接部分11を構成している。なお、上記の封口板7に設けた薄肉部7aや防爆弁9の突出部9aなどは、図面上での理解がしやすいように、切断面のみを図示しており、切断面後方の輪郭線は図示を省略している。また、封口板7の薄肉部7aと防爆弁9の突出部9aとの溶接部分11も、図面上での理解が容易なように、実際よりは誇張した状態に図示している。
The
端子板8は、圧延鋼製で表面にニッケルメッキが施され、周縁部が鍔状になった帽子状をしており、この端子板8にはガス排出孔8aが設けられている。防爆弁9は、アルミニウム製で、円板状をしており、その中央部には発電要素側(図1では、下側)に先端部を有する突出部9aが設けられ、かつ薄肉部9bが設けられ、上記突出部9aの下面が、前記したように、封口板7の薄肉部7aの上面に溶接され、溶接部分11を構成している。絶縁パッキング10は、ポリプロピレン製で、環状をしており、封口板7の周縁部の上部に配置され、その上部に防爆弁9が配置していて、封口板7と防爆弁9とを絶縁するとともに、両者の間から液状電解質が漏れないように両者の間隙を封止している。環状ガスケット12はポリプロピレン製で、リード体13はアルミニウム製で、前記封口板7と正極1とを接続し、渦巻状電極積層体の上部には絶縁体14が配置され、負極2と電池ケース5の底部とはニッケル製のリード体15で接続されている。
The terminal board 8 is made of rolled steel, has a nickel plating on the surface, and has a hat shape with a peripheral edge portion, and the terminal board 8 is provided with a
実施例2
負極集電材として、破断伸び率が7%、表面の粗度Raが0.3μm、表面の濡れ性を表す接触角が65度で、表面のクロメート量が0.02mg/m2のものを用いた以外は、実施例1と同様にして筒形の非水二次電池を作製した。
Example 2
As the negative electrode current collector, a material having an elongation at break of 7%, a surface roughness Ra of 0.3 μm, a contact angle representing surface wettability of 65 degrees, and a surface chromate amount of 0.02 mg / m 2 is used. A cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1 except that.
比較例1
負極集電材として、破断伸び率が4%、表面の粗度Raが0.3μm、表面の濡れ性を表す接触角が79度のものを用いた以外は、実施例1と同様にして筒形の非水二次電池を作製した。
Comparative Example 1
As the negative electrode current collector, a cylindrical shape was used in the same manner as in Example 1 except that a material having a breaking elongation of 4%, a surface roughness Ra of 0.3 μm, and a contact angle representing surface wettability of 79 degrees was used. A non-aqueous secondary battery was prepared.
比較例2
実施例1の黒鉛系炭素材料の代わりに(002)面の層間距離d002が3.44Å、c軸方向の結晶子の大きさLcが32Å、平均粒径が10μmで純度が99.9%のコークス系炭素材料を用いたほかは、実施例1と同様に負極合剤層を形成した。ただし、この比較例2の炭素材料は、充放電に伴う体積変化は少ないものの、負極の利用率が約3割低下し、かつ電極密度も低下するため、正極活物質を約20%少なくしなければならず、そのため、約20%の容量減となってしまった。また、負極集電材としては、破断伸び率が4%、表面の粗度Raが0.3μm、表面の濡れ性を表す接触角が79度のものを用いた。そして、それら以外は、実施例1と同様にして筒形の非水二次電池を作製した。
Comparative Example 2
Instead of the graphite-based carbon material of Example 1, the (002) plane interlayer distance d 002 is 3.44 mm, the crystallite size Lc in the c-axis direction is 32 mm, the average particle size is 10 μm, and the purity is 99.9%. A negative electrode mixture layer was formed in the same manner as in Example 1 except that the coke-based carbon material was used. However, in the carbon material of Comparative Example 2, although the volume change due to charging / discharging is small, the utilization factor of the negative electrode is reduced by about 30% and the electrode density is also reduced, so that the positive electrode active material must be reduced by about 20%. Therefore, the capacity was reduced by about 20%. As the negative electrode current collector, one having a breaking elongation of 4%, a surface roughness Ra of 0.3 μm, and a contact angle representing surface wettability of 79 degrees was used. Except for these, a cylindrical nonaqueous secondary battery was produced in the same manner as in Example 1.
上記実施例1〜2および比較例1〜2の電池を、1550mA(1C)で2.75Vまで放電した後、1550mAで充電し、4.3Vに達した後は、4.3Vの定電圧に保つ条件で3時間半の過充電を行った。その後、電池を1550mAで2.75Vまで放電した後、一部の電池を分解し、負極集電材の銅箔にヒビや亀裂、切断などの異常が発生しているかどうかを調べた。その結果を表1に示す。また、表1には、4.2V充電時と2.75Vまで放電した時の負極合剤層の最大体積変化率も併せて示す。 The batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were discharged at 1550 mA (1C) to 2.75 V, charged at 1550 mA, and after reaching 4.3 V, the voltage was adjusted to 4.3 V. The battery was overcharged for 3 and a half hours under the condition of keeping. Thereafter, the batteries were discharged at 1550 mA to 2.75 V, and then a part of the batteries was disassembled, and it was examined whether abnormalities such as cracks, cracks, and cutting occurred in the copper foil of the negative electrode current collector. The results are shown in Table 1. Table 1 also shows the maximum volume change rate of the negative electrode mixture layer when charged to 4.2 V and discharged to 2.75 V.
また、残りの電池を1550mAで充電し、4.2Vに達した後は4.2Vの定電圧に保つ条件で2時間半の充電を行い、さらに1550mAで2.75Vまで放電する充放電サイクルを繰り返し行った。そして、50サイクル時の1サイクル目に対する容量保持率〔(50サイクル目の放電容量)/(1サクイル目の放電容量)×100〕を測定した。その結果を表2に示す。また、初度サイクルにおいて、4.2Vまで充電した後、2.75Vまで放電して放電容量を測定し、それに基づいて電極積層体単位体積当たりの容量を求めた。その結果も表2に示す。 In addition, the remaining battery is charged at 1550 mA, and after reaching 4.2 V, charging is performed for 2.5 hours under the condition of maintaining a constant voltage of 4.2 V, and further, a charging / discharging cycle of discharging to 2.75 V at 1550 mA is performed. Repeatedly. Then, the capacity retention ratio [(discharge capacity at the 50th cycle) / (discharge capacity at the 1st cycle) × 100] with respect to the first cycle at the 50th cycle was measured. The results are shown in Table 2. In the initial cycle, the battery was charged to 4.2 V, then discharged to 2.75 V, the discharge capacity was measured, and the capacity per unit volume of the electrode laminate was determined based on the discharge capacity. The results are also shown in Table 2.
表1に示すように、実施例1〜2は、負極合剤層の最大体積変化率が11%あるにもかかわらず、負極集電材にヒビ、亀裂、切断などの異常発生がまったくなかった。これを詳しく説明すると、実施例1や実施例2では、負極集電材として破断伸び率が5%以上のものを用いている関係で、負極合剤層の最大体積変化率が11%と非常に大きいにもかかわらず、負極集電材にヒビ、亀裂、切断などの異常発生がまったくなかった。 As shown in Table 1, in Examples 1 and 2, although the maximum volume change rate of the negative electrode mixture layer was 11%, the negative electrode current collector had no abnormality such as cracks, cracks, and cuts. Explaining this in detail, in Example 1 and Example 2, the maximum volume change rate of the negative electrode mixture layer was extremely 11%, because the negative electrode current collector had a breaking elongation of 5% or more. Despite being large, the negative electrode current collector had no abnormalities such as cracks, cracks and cuts.
これに対して、負極集電材として破断伸び率が4%と伸びの小さいものを用いた比較例1では、充放電に伴って集電材に亀裂が発生した。従って、この比較例1ではサイクル特性の劣化が大きくなることが予測される。なお、比較例2は負極合剤層の最大体積変化率が1%以下と小さいため、充放電に伴う負極集電材のヒビ、亀裂、切断などの異常発生はなかったが、この比較例2では、負極の密度が低くなり、電池容量が実施例1〜2に比べて約80%になっていて、容量が低いという問題を有していた。 On the other hand, in Comparative Example 1 using a material having a small elongation at break of 4% as the negative electrode current collector, cracks occurred in the current collector as a result of charging and discharging. Therefore, in this comparative example 1, it is predicted that the deterioration of the cycle characteristics will increase. In Comparative Example 2, since the maximum volume change rate of the negative electrode mixture layer was as small as 1% or less, there was no abnormality such as cracking, cracking or cutting of the negative electrode current collector due to charging / discharging. The density of the negative electrode was lowered, the battery capacity was about 80% compared to Examples 1-2, and the capacity was low.
また、表2に示すように、比較例1では50サイクル時に容量保持率が50%以下にまで低下したのに対し、実施例1〜2では85〜91%と高い容量保持率を有していた。特に集電材の表面の濡れ性を表す接触角が35度という濡れ性の高い負極集電材を用いた実施例1の電池では、容量保持率が91%と最も優れていた。上記のように、比較例1の50サイクル時の容量保持率が50%以下と低くなったのは、充放電に伴って負極集電体に亀裂、切断などが発生したことによるものと考えられる。 Further, as shown in Table 2, in Comparative Example 1, the capacity retention ratio decreased to 50% or less at 50 cycles, whereas in Examples 1-2, the capacity retention ratio was as high as 85-91%. It was. In particular, the battery of Example 1 using the negative electrode current collector having a high wettability with a contact angle of 35 degrees representing the wettability of the surface of the current collector had the most excellent capacity retention rate of 91%. As described above, the reason why the capacity retention rate at 50 cycles in Comparative Example 1 was as low as 50% or less is considered to be that the negative electrode current collector was cracked, cut, or the like accompanying charging / discharging. .
1 正極
2 負極
3 セパレータ
4 液状電解質
1
Claims (4)
1Cレートで充電し、4.2Vに達した後に4.2Vの定電圧に保つ条件で2時間半の充電を行い、さらに1Cレートで2.75Vまで放電したときの、上記電極積層体単位体積当たりの容量が130mAh/cm3以上であり、
上記負極が集電材の少なくとも一方の面に負極合剤層を形成したものからなり、
上記非水二次電池を4.3Vまで1Cレートで2時間半充電した後、分解した時の負極合剤層の厚みと、上記非水二次電池と同じ構成の別の非水二次電池を4.3Vまで1Cレートで2時間半充電した後、2.75Vまで放電してから分解した時の負極合剤層の厚みとから、下記式により求められる負極合剤層の充電後と放電後の体積変化率のうちの最大値である最大体積変化率が8%以上であり、上記負極の集電材の破断伸び率が5%以上であることを特徴とする非水二次電池。
体積変化率=(充電後の負極合剤層の厚み−放電後の負極合剤層の厚み)
÷(放電後の負極合剤層の厚み) A non-aqueous secondary battery having a spiral electrode laminate around which a positive electrode, a negative electrode and a separator are wound, and an electrolyte,
The electrode laminate unit volume when charged at a 1C rate, charged for 4.2 hours after reaching 4.2V and maintained at a constant voltage of 4.2V, and further discharged to 2.75V at a 1C rate. The capacity per unit is 130 mAh / cm 3 or more,
The negative electrode is formed by forming a negative electrode mixture layer on at least one surface of the current collector,
Another non-aqueous secondary battery having the same configuration as the non-aqueous secondary battery and the thickness of the negative electrode mixture layer when the non-aqueous secondary battery was charged to 4.3 V at a 1C rate for 2 and a half hours and then decomposed After being charged to 4.3 V at 1C rate for 2 and a half hours, after discharging to 2.75 V and then the thickness of the negative electrode mixture layer when disassembled, charging and discharging of the negative electrode mixture layer obtained by the following formula A nonaqueous secondary battery, wherein a maximum volume change rate, which is a maximum value of the subsequent volume change rates, is 8% or more, and a breaking elongation rate of the current collector of the negative electrode is 5% or more.
Volume change rate = (thickness of negative electrode mixture layer after charging−thickness of negative electrode mixture layer after discharge)
÷ (Thickness of negative electrode mixture layer after discharge)
The nonaqueous secondary battery according to claim 1, wherein a carbon material having an interlayer distance d 002 of (002) plane of 3.4 mm or less is used as the negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010102948A JP2010192459A (en) | 2010-04-28 | 2010-04-28 | Nonaqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010102948A JP2010192459A (en) | 2010-04-28 | 2010-04-28 | Nonaqueous secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006319424A Division JP4767156B2 (en) | 2006-11-28 | 2006-11-28 | Non-aqueous secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010192459A true JP2010192459A (en) | 2010-09-02 |
Family
ID=42818227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010102948A Pending JP2010192459A (en) | 2010-04-28 | 2010-04-28 | Nonaqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010192459A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12119439B2 (en) | 2017-11-30 | 2024-10-15 | Gs Yuasa International Ltd. | Energy storage device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0945368A (en) * | 1995-08-01 | 1997-02-14 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JPH09129241A (en) * | 1995-10-31 | 1997-05-16 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolytic secondary battery |
JPH09199179A (en) * | 1996-01-19 | 1997-07-31 | Japan Storage Battery Co Ltd | Lithium ion cell |
JPH09245770A (en) * | 1996-03-06 | 1997-09-19 | Sanyo Electric Co Ltd | Non-aqueous electrolyte battery |
JPH11158652A (en) * | 1997-11-25 | 1999-06-15 | Furukawa Circuit Foil Kk | Production of electrode material for secondary battery |
-
2010
- 2010-04-28 JP JP2010102948A patent/JP2010192459A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0945368A (en) * | 1995-08-01 | 1997-02-14 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JPH09129241A (en) * | 1995-10-31 | 1997-05-16 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolytic secondary battery |
JPH09199179A (en) * | 1996-01-19 | 1997-07-31 | Japan Storage Battery Co Ltd | Lithium ion cell |
JPH09245770A (en) * | 1996-03-06 | 1997-09-19 | Sanyo Electric Co Ltd | Non-aqueous electrolyte battery |
JPH11158652A (en) * | 1997-11-25 | 1999-06-15 | Furukawa Circuit Foil Kk | Production of electrode material for secondary battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12119439B2 (en) | 2017-11-30 | 2024-10-15 | Gs Yuasa International Ltd. | Energy storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113644317B (en) | Lithium ion battery | |
EP3128586B1 (en) | Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery | |
JP6398985B2 (en) | Lithium ion secondary battery | |
JP2012038702A (en) | Nonaqueous electrolyte secondary cell | |
JPH10112335A (en) | Organic electrolyte secondary battery | |
JP2008234855A (en) | Nonaqueous electrolyte secondary battery | |
JP2009277395A (en) | Nonaqueous secondary battery, and nonaqueous secondary battery system | |
JP3916116B2 (en) | Non-aqueous secondary battery | |
JP5219303B2 (en) | Non-aqueous secondary battery | |
JP3928756B2 (en) | Non-aqueous secondary battery | |
JP4530289B2 (en) | Non-aqueous secondary battery | |
JP4632272B2 (en) | Lithium secondary battery and electrolytic copper foil | |
JP2012181978A (en) | Nonaqueous electrolyte battery | |
JP4767156B2 (en) | Non-aqueous secondary battery | |
JP5782869B2 (en) | Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery | |
JP3748843B2 (en) | Organic electrolyte secondary battery | |
WO2017022731A1 (en) | Lithium ion secondary battery | |
JP3969551B2 (en) | Non-aqueous secondary battery | |
CN111886744A (en) | Electrolyte composition for lithium-ion electrochemical cells | |
JP2003045433A (en) | Nonaqueous secondary battery | |
JP4439070B2 (en) | Non-aqueous secondary battery and charging method thereof | |
WO2012124015A1 (en) | Non-aqueous secondary battery | |
JP4159005B2 (en) | Non-aqueous secondary battery | |
JP3456650B2 (en) | Organic electrolytes Organic electrolytes for secondary batteries | |
JP2005005208A (en) | Nonaqueous electrolyte secondary battery and method of manufacturing positive electrode for nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110520 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121220 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130903 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131202 |