JP2010192385A - Sulfur battery - Google Patents

Sulfur battery Download PDF

Info

Publication number
JP2010192385A
JP2010192385A JP2009037969A JP2009037969A JP2010192385A JP 2010192385 A JP2010192385 A JP 2010192385A JP 2009037969 A JP2009037969 A JP 2009037969A JP 2009037969 A JP2009037969 A JP 2009037969A JP 2010192385 A JP2010192385 A JP 2010192385A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte membrane
sulfur
positive electrode
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009037969A
Other languages
Japanese (ja)
Inventor
Jiro Sakata
二郎 坂田
Kyoko Tsusaka
恭子 津坂
Hisahiro Hoshikawa
尚弘 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009037969A priority Critical patent/JP2010192385A/en
Publication of JP2010192385A publication Critical patent/JP2010192385A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable highly efficient utilization of sulfur, and to enhance the preservation characteristics, charge and discharge efficiency and battery capacity, for a sulfur battery. <P>SOLUTION: An evaluation cell 10 is provided with a cathode 20 containing sulfur; an anode 16 containing alkali metals; a solid electrolyte membrane 19 arranged between the cathode 20 and the anode 16; and an electrolyte solution at least interposed between the cathode 20 and the solid electrolyte membrane 19. In a first configuration, the solid electrolyte membrane 19 contains a polymer combination body having imides. Here, the combination body shows either a copolymer or a crosslinking body. The crosslinking may be either through covalent bonding or forming an imide salt with the use of multivalent cations. Additionally, in a second configuration, the solid electrolyte membrane 19 contains polymer with borons. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硫黄電池に関する。   The present invention relates to a sulfur battery.

従来、硫黄を正極活物質として使用する硫黄電池が知られている。硫黄は1675mAh/gという極めて高い理論容量密度を有するために、高容量電池として期待できる。しかし、電解液系の硫黄電池では、充放電時に硫黄分子やポリ硫化物イオン等が電解液中へ溶解して拡散することがあり、これが負極金属と反応して自己放電を生じ、保存特性や充放電効率を劣化させることがあった。また、全固体電解質系の電池では、硫黄が絶縁体であるために導電性の確保が難しく、硫黄の有効利用率が低下することがあり、硫黄電池に期待される高容量が得られないことがあった。   Conventionally, sulfur batteries using sulfur as a positive electrode active material are known. Sulfur has a very high theoretical capacity density of 1675 mAh / g, and therefore can be expected as a high capacity battery. However, in an electrolyte-based sulfur battery, sulfur molecules, polysulfide ions, etc. may be dissolved and diffused into the electrolyte during charge / discharge, which reacts with the negative electrode metal to cause self-discharge, resulting in storage characteristics and Charge / discharge efficiency may be degraded. Also, in all-solid electrolyte batteries, it is difficult to ensure conductivity because sulfur is an insulator, and the effective utilization rate of sulfur may decrease, and the high capacity expected for sulfur batteries cannot be obtained. was there.

そこで、例えば特許文献1では、セル構成や電解質を適切に選択することで、硫黄の有効利用率を高めること即ち単位硫黄量あたりの電池容量を理論容量に近づけることが提案されている。また、例えば特許文献2では、電解液系と全固体電解質系の中間として、負極金属上に保護層としての無機固体電解質膜を形成して、負極を保護することを提案している。さらに、例えば特許文献3では、リチウムを負極とする非水電解質リチウム硫黄電池において、正極としてポリマー電解質で被覆された硫黄を含むものを使用し、正極とセパレータの間又は負極とセパレータの間にポリマー電解質を配置することで、正極で生成したリチウム多硫化物が負極へ拡散して生じる自己放電を抑制し、充放電サイクル特性を高めることが提案されている。   Thus, for example, Patent Document 1 proposes to appropriately select a cell configuration and an electrolyte to increase the effective utilization rate of sulfur, that is, to bring the battery capacity per unit sulfur amount closer to the theoretical capacity. For example, Patent Document 2 proposes to protect the negative electrode by forming an inorganic solid electrolyte film as a protective layer on the negative electrode metal as an intermediate between the electrolyte system and the all solid electrolyte system. Further, for example, in Patent Document 3, in a non-aqueous electrolyte lithium-sulfur battery using lithium as a negative electrode, a battery containing sulfur coated with a polymer electrolyte as a positive electrode is used, and a polymer is interposed between the positive electrode and the separator or between the negative electrode and the separator. It has been proposed that by disposing an electrolyte, self-discharge caused by diffusion of lithium polysulfide produced at the positive electrode to the negative electrode is suppressed, and charge / discharge cycle characteristics are improved.

特表2001−520447号公報JP-T-2001-520447 特表2002−513991号公報JP-T-2002-513991 特開2003−242964号公報JP 2003-242964 A

しかしながら、この特許文献1の電池では、負極側への硫黄等の拡散を抑制するものではないため、自己放電や充放電効率低下の抑制に十分ではなかった。また、特許文献2の電池では、脆い無機固体電解質膜を使用するため、電解質膜に割れが生じるとか、効率的なセル構成とできないといった問題があった。また、特許文献3に記載された電池では、柔軟性を有するポリマー電解質を用いてリチウム多硫化物が負極へ拡散するのを抑制しているが、それでも十分でなく、例えば充放電サイクルを行った後であっても電池容量がより高いことが望まれていた。   However, since the battery of Patent Document 1 does not suppress diffusion of sulfur and the like to the negative electrode side, it is not sufficient for suppressing self-discharge and charge / discharge efficiency reduction. Moreover, since the battery of patent document 2 uses a brittle inorganic solid electrolyte membrane, there were problems that the electrolyte membrane was cracked or an efficient cell configuration could not be achieved. Moreover, in the battery described in Patent Document 3, lithium polysulfide is suppressed from diffusing to the negative electrode using a flexible polymer electrolyte, but this is not sufficient, for example, a charge / discharge cycle was performed. Even later, it was desired to have a higher battery capacity.

本発明は、このような課題に鑑みなされたものであり、硫黄の高効率利用を可能としつつ、保存特性や、充放電効率、電池容量がより良好な硫黄電池を提供することを主目的とする。   The present invention has been made in view of such problems, and its main purpose is to provide a sulfur battery with better storage characteristics, charge / discharge efficiency, and battery capacity while enabling high-efficiency utilization of sulfur. To do.

上述した目的を達成するために鋭意研究したところ、本発明者らは、イミドを持つポリマーの結合体を有する固体電解質膜又は、ホウ素を持つポリマーを有する固体電解質膜を電解液系の硫黄電池の負極と正極との間に配置し、少なくとも正極と固体電解質との間に電解液を介在させることで硫黄の高効率利用を可能としつつ、保存特性や、充放電効率、電池容量をより良好にできることを見いだし、本発明を完成するに至った。   As a result of diligent research in order to achieve the above-described object, the present inventors have found that a solid electrolyte membrane having a polymer-bonded polymer having an imide or a solid electrolyte membrane having a polymer having boron is used in an electrolyte-based sulfur battery. It is placed between the negative electrode and the positive electrode, and by interposing an electrolyte between at least the positive electrode and the solid electrolyte, it enables high-efficiency use of sulfur, while improving storage characteristics, charge / discharge efficiency, and battery capacity. The inventors have found what can be done and have completed the present invention.

即ち、本発明の第1の形態の硫黄電池は、
硫黄を含む正極と、
アルカリ金属を含む負極と、
前記正極と前記負極との間に配置され、イミドを持つポリマーの結合体を有する固体電解質膜と、
少なくとも前記正極と前記固体電解質膜との間に介在する電解液と、
を備えたものである。
That is, the sulfur battery of the first aspect of the present invention is
A positive electrode containing sulfur;
A negative electrode containing an alkali metal;
A solid electrolyte membrane disposed between the positive electrode and the negative electrode and having a polymer conjugate with an imide;
An electrolytic solution interposed between at least the positive electrode and the solid electrolyte membrane;
It is equipped with.

また、本発明の第2の形態の硫黄電池は、
硫黄を含む正極と、
アルカリ金属を含む負極と、
前記正極と前記負極との間に配置され、ホウ素を持つポリマーを有する固体電解質膜と、
少なくとも前記正極と前記固体電解質膜との間に介在する電解液と、
を備えたものである。
In addition, the sulfur battery of the second aspect of the present invention is
A positive electrode containing sulfur;
A negative electrode containing an alkali metal;
A solid electrolyte membrane disposed between the positive electrode and the negative electrode and having a polymer with boron;
An electrolytic solution interposed between at least the positive electrode and the solid electrolyte membrane;
It is equipped with.

この硫黄電池では、硫黄の高効率利用を可能としつつ、保存特性や、充放電効率、電池容量をより良好にできる。このような効果が得られる理由は定かではないが、以下のように推察される。即ち、正極と固体電解質膜との間に電解液が存在することにより、正極で生成された硫黄分子やポリ硫化物イオンが電解液中に溶解するため、固体電解質のみを使用する場合と比較して活物質供給の効率がより良好になる。このため、硫黄の高効率利用が可能となる。また、本発明の固体電解質膜は、カチオン交換性の膜であるためアニオンであるポリ硫化物イオンの遮断能力があり、固体膜であるため中性分子である硫黄分子(通常8量体)の透過を抑制する能力もある。これにより、充放電によって正極に形成されるポリ硫化物イオンや硫黄分子の負極側への拡散が防止できるため、負極上での自己放電を抑制でき、充電後の保存特性や充放電効率、電池容量が良好となる。したがって、電解液と本発明の固体電解質膜を組み合わせることにより、硫黄の高効率利用を可能としつつ、保存特性や、充放電効率、電池容量をより良好にできると推察される。   With this sulfur battery, it is possible to improve the storage characteristics, charge / discharge efficiency, and battery capacity while enabling highly efficient use of sulfur. The reason why such an effect is obtained is not clear, but is presumed as follows. That is, the presence of the electrolyte solution between the positive electrode and the solid electrolyte membrane dissolves sulfur molecules and polysulfide ions generated in the positive electrode in the electrolyte solution. Therefore, the efficiency of the active material supply becomes better. For this reason, highly efficient utilization of sulfur is attained. Further, the solid electrolyte membrane of the present invention is a cation exchange membrane and therefore has a blocking ability of polysulfide ions as anions, and since it is a solid membrane, it is a neutral molecule of sulfur molecules (usually octamers). There is also the ability to suppress permeation. This prevents diffusion of polysulfide ions and sulfur molecules formed on the positive electrode by charging and discharging to the negative electrode side, thereby suppressing self-discharge on the negative electrode, storage characteristics after charging and charging and discharging efficiency, battery Capacity is good. Therefore, by combining the electrolytic solution and the solid electrolyte membrane of the present invention, it is presumed that the storage characteristics, the charge / discharge efficiency, and the battery capacity can be improved while enabling high-efficiency use of sulfur.

評価セル10の構成の概略を表す断面図である。2 is a cross-sectional view illustrating a schematic configuration of an evaluation cell 10. FIG.

本発明の第1の形態の硫黄電池は、硫黄を含む正極と、アルカリ金属を含む負極と、前記正極と前記負極との間に配置され、イミドを持つポリマーの結合体を有する固体電解質膜と、少なくとも前記正極と前記固体電解質膜との間に介在する電解液と、を備えたものである。また、本発明の第2の形態の硫黄電池は、硫黄を含む正極と、アルカリ金属を含む負極と、前記正極と前記負極との間に配置され、ホウ素を持つポリマーを有する固体電解質膜と、少なくとも前記正極と前記固体電解質膜との間に介在する電解液と、を備えたものである。アルカリ金属としては、リチウム、ナトリウム及びカリウムなどが挙げられ、このうち理論容量密度が高いリチウムが好ましい。説明の便宜のため、以下リチウムを用いて説明する。即ちリチウム硫黄電池について説明する。   A sulfur battery according to a first aspect of the present invention includes a positive electrode containing sulfur, a negative electrode containing an alkali metal, a solid electrolyte membrane disposed between the positive electrode and the negative electrode, and having a polymer combination having an imide. And at least an electrolyte solution interposed between the positive electrode and the solid electrolyte membrane. The sulfur battery of the second aspect of the present invention is a positive electrode containing sulfur, a negative electrode containing an alkali metal, a solid electrolyte membrane having a polymer with boron disposed between the positive electrode and the negative electrode, And at least an electrolytic solution interposed between the positive electrode and the solid electrolyte membrane. Examples of the alkali metal include lithium, sodium, and potassium, among which lithium having a high theoretical capacity density is preferable. For convenience of explanation, description will be made using lithium below. That is, a lithium sulfur battery will be described.

本発明の硫黄電池において、正極は、硫黄を正極活物質として含むものであれば特に限定されるものではない。硫黄は硫黄単体であってもよいし、金属ポリ硫化物などの硫黄化合物であってもよい。この正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものでもよい。ここで、導電材としては、導電性を有する材料であれば特に限定されず、例えば、ケッチェンブラックやアセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類でもよいし、鱗片状黒鉛のような天然黒鉛や人造黒鉛、膨張黒鉛などのグラファイト類でもよいし、炭素繊維や金属繊維などの導電性繊維類でもよいし、銅や銀、ニッケル、アルミニウムなどの金属粉末類でもよいし、ポリフェニレン誘導体などの有機導電性材料でもよい。また、これらを単独で用いてもよいし、複数を混合して用いてもよい。結着材としては、特に限定されるものではないが、熱可塑性樹脂や熱硬化性樹脂などが挙げられる。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体などが挙げられる。これらの材料は単独で用いてもよいし、複数を混合して用いてもよい。集電体としては、ステンレス鋼やアルミニウム、銅、ニッケルなどの金属板や金属メッシュを用いることもできる。   In the sulfur battery of the present invention, the positive electrode is not particularly limited as long as it contains sulfur as a positive electrode active material. Sulfur may be a simple substance of sulfur or a sulfur compound such as metal polysulfide. For this positive electrode, for example, a positive electrode active material, a conductive material, and a binder are mixed, and an appropriate solvent is added to form a paste-like positive electrode material, which is applied to the surface of the current collector and dried. It may be formed by compressing to increase the electrode density. Here, the conductive material is not particularly limited as long as it is a conductive material. For example, carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black may be used. Natural graphite such as flake graphite, artificial graphite, graphite such as expanded graphite, conductive fibers such as carbon fiber and metal fiber, or metal powder such as copper, silver, nickel, and aluminum may be used. Alternatively, an organic conductive material such as a polyphenylene derivative may be used. Moreover, these may be used independently and may be used in mixture of two or more. Although it does not specifically limit as a binder, A thermoplastic resin, a thermosetting resin, etc. are mentioned. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin) , Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrif Examples include olefin copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, and ethylene-acrylic acid copolymer. . These materials may be used alone or in combination. As the current collector, a metal plate such as stainless steel, aluminum, copper, nickel, or a metal mesh can be used.

本発明の硫黄電池において、負極は、リチウムを吸蔵放出する材料を含むものとしてもよい。ここで、リチウムを吸蔵放出する材料としては、例えば金属リチウムやリチウム合金のほか、金属酸化物、金属硫化物、リチウムを吸蔵放出する炭素質物質などが挙げられる。リチウム合金としては、例えば、アルミニウムやシリコン、スズ、マグネシウム、インジウム、カルシウムなどとリチウムとの合金が挙げられる。金属酸化物としては、例えばスズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物などが挙げられる。金属硫化物としては、例えばスズ硫化物やチタン硫化物などが挙げられる。リチウムを吸蔵放出する炭素質物質としては、例えば黒鉛、コークス、メソフェーズピッチ系炭素繊維、球状炭素、樹脂焼成炭素などが挙げられる。この負極は、正極と同様に適宜、集電体や導電材、結着剤を用いることができる。   In the sulfur battery of the present invention, the negative electrode may include a material that absorbs and releases lithium. Here, examples of the material that occludes and releases lithium include metal oxides, metal sulfides, and carbonaceous substances that occlude and release lithium in addition to metal lithium and lithium alloys. Examples of the lithium alloy include alloys of lithium with aluminum, silicon, tin, magnesium, indium, calcium, and the like. Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the carbonaceous material that occludes and releases lithium include graphite, coke, mesophase pitch carbon fiber, spherical carbon, and resin-fired carbon. For this negative electrode, a current collector, a conductive material, and a binder can be used as appropriate as in the case of the positive electrode.

本発明の硫黄電池において、正極と負極との間に配置される固体電解質膜は、第1の形態においてはイミドを持つポリマーの結合体を有するものであり、第2の形態においてはホウ素を持つポリマーを有するものである。固体電解質膜はスルホン酸基を有していてもよい。これらの固体電解質膜は、硫化物イオンやポリ硫化物イオン、硫黄分子を遮蔽し、リチウムイオンを選択的に透過する機能において共通する。   In the sulfur battery of the present invention, the solid electrolyte membrane disposed between the positive electrode and the negative electrode has a polymer combination having an imide in the first form, and has boron in the second form. It has a polymer. The solid electrolyte membrane may have a sulfonic acid group. These solid electrolyte membranes have a common function in shielding sulfide ions, polysulfide ions, and sulfur molecules and selectively permeating lithium ions.

本発明の第1の形態の硫黄電池において、固体電解質膜はイミドを持つポリマーの結合体を有するものである。ここで、ポリマーの結合体とは、1種以上のポリマーが架橋や、重合などによって結合されたものをいう。このようなポリマーの結合体としては、例えば、ポリ(パーフルオロアルキレンスルホンイミド)などのスルホンイミドを含む結合体が挙げられる。なかでも、ポリ(パーフルオロトリメチレンスルホンイミド)(式(1)参照、以下PTSIとも称する)を含む結合体が好ましい。ここで、Mは金属であり、アルカリ金属であることが好ましい。また、nはn≧1を満たす正数である。ところで、PTSIは、結合体でない場合には極性溶媒での膨潤性が高く、膜形態にならない場合が多い。また、膨潤度が高いと遮断したい硫黄や硫化物イオン類が透過するおそれがある。このため、PTSIは結合体である必要がある。PTSIの結合体としては、PTSIとポリスルホンとの共重合体が好適であり、ブロック共重合体がより好適である。または、PTSIがベンゼン骨格の1,3,5位に結合した架橋体(特願2006−86261(WO007/114406)参照)が好適である。上述の架橋体は3置換ベンゼンとスルホンイミドのモル比が2:3であることが好ましい。このような架橋体であれば、架橋度がより適切であると推察される。架橋の方法としては、共有結合で架橋する方法の他、多価のカチオンを用いてイミド塩を形成することにより架橋する方法などが挙げられ、これらの組み合わせであってもよい。多価のカチオンを用いて架橋する場合、PTSIは式(1)におけるMが多価のカチオンに置換されて架橋体となる。架橋に用いるカチオンとしては、イオン化傾向の高いカルシウム、マグネシウム、アルミニウムなどが挙げられる。また、2価のカチオンであることが好ましい。なかでもカルシウムがであることが、イオン化傾向が高く、イオンとして安定に存在するためより好ましい。また、多価のカチオンはイミド交換容量の15%以上であることが好ましい。イミド交換容量の100%を多価カチオンで交換するとリチウムイオンの透過の阻害が起こると予想されるが、実際には大過剰の多価カチオン炭酸塩水溶液で処理しても全て交換されることはなく問題はないと考えられる。しかし、多価カチオンが少なすぎる場合には架橋度が低下し過剰な場合にはリチウムイオンの透過が阻害されることも考えられるため、多価カチオンはイミド交換容量の50%程度であることがより好ましい。多価のカチオンで架橋する前のイミドがLi体などの金属塩の形態で存在している場合には、架橋体はイミド塩をプロトン体にした後に所定量の多価イオン炭酸塩水溶液に浸漬する方法で得られたものであることが好ましい。架橋反応がより良好となるためである。なお、イミドを持つポリマーの結合体は、自立膜として用いることもできるが多孔質膜内に含浸した構造であることが好ましい。イミドを持つポリマーの結合体を多孔質膜内に含浸したものとする場合にはイミドを持つポリマーを多孔質膜内に含浸した後に上述の重合や架橋をさせることが好ましい。以下、PTSIとポリスルホンをブロック共重合させたものをPTSIPS(ポリ(パーフルオロトリメチレンスルホンイミド)・ポリスルホンブロック共重合体)とも称する。また、PTSIを多孔質膜に含浸して架橋させたものをFINP(フィリングイミドネットワークポリマー)とも称する。なお、FINPの特性は厚みや架橋度によって変化するため、適宜最適なものを選択すべきである。架橋度が低い場合にはリチウムイオンの透過性は高いが、膨潤しやすくポリ硫化物イオンや硫化物イオン、硫黄分子の遮蔽能力低下の要因となりやすい。また、膜厚が厚すぎたり架橋度が高すぎると抵抗が大きくなり電圧降下の要因となりやすい。そこで、リチウムイオンの透過性が高い架橋度の低い膜に、硫黄等を遮蔽する効果の高い架橋度の高い膜を積層した構造としてもよい。こうすることで、低抵抗、高選択性を両立できると推察される。   In the sulfur battery according to the first aspect of the present invention, the solid electrolyte membrane has a polymer conjugate having an imide. Here, the polymer conjugate refers to a polymer in which one or more kinds of polymers are bonded by crosslinking or polymerization. Examples of such a polymer conjugate include a conjugate containing a sulfonimide such as poly (perfluoroalkylenesulfonimide). Of these, a conjugate containing poly (perfluorotrimethylenesulfonimide) (see formula (1), hereinafter also referred to as PTSI) is preferable. Here, M is a metal and is preferably an alkali metal. N is a positive number satisfying n ≧ 1. By the way, when PTSI is not a conjugate, it is highly swellable with a polar solvent and often does not form a film. In addition, if the degree of swelling is high, sulfur or sulfide ions to be blocked may be transmitted. For this reason, PTSI needs to be a conjugate. As the PTSI conjugate, a copolymer of PTSI and polysulfone is preferable, and a block copolymer is more preferable. Alternatively, a crosslinked product in which PTSI is bonded to the 1,3,5 position of the benzene skeleton (see Japanese Patent Application No. 2006-86261 (WO007 / 114406)) is preferable. The cross-linked product described above preferably has a molar ratio of 3-substituted benzene to sulfonimide of 2: 3. With such a crosslinked body, it is presumed that the degree of crosslinking is more appropriate. Examples of the crosslinking method include a method of crosslinking by covalent bond, a method of crosslinking by forming an imide salt using a polyvalent cation, and a combination thereof may be used. When cross-linking is performed using a polyvalent cation, PTSI becomes a cross-linked product by substituting M in the formula (1) with a polyvalent cation. Examples of the cation used for crosslinking include calcium, magnesium, and aluminum which have a high ionization tendency. Moreover, it is preferable that it is a bivalent cation. Among these, calcium is more preferable because it has a high ionization tendency and exists stably as ions. The polyvalent cation is preferably 15% or more of the imide exchange capacity. When 100% of the imide exchange capacity is exchanged with a polyvalent cation, it is expected that the permeation of lithium ions will be inhibited, but in reality, even if treated with a large excess of an aqueous polyvalent cation carbonate solution, all will be exchanged. There seems to be no problem. However, if the amount of the polyvalent cation is too small, the degree of cross-linking decreases, and if it is excessive, the lithium ion permeation may be inhibited. Therefore, the polyvalent cation may be about 50% of the imide exchange capacity. More preferred. When the imide before cross-linking with a polyvalent cation is present in the form of a metal salt such as Li, the cross-linked product is immersed in a predetermined amount of polyvalent ion carbonate aqueous solution after making the imide salt into a proton. It is preferable that it is obtained by the method to do. This is because the crosslinking reaction becomes better. The polymer imide-containing conjugate can be used as a free-standing film, but preferably has a structure in which the porous film is impregnated. When the porous membrane is impregnated with a polymer combination having an imide, it is preferable to impregnate the porous membrane with the polymer having an imide and then perform the above-described polymerization or crosslinking. Hereinafter, a block copolymer of PTSI and polysulfone is also referred to as PTSIPS (poly (perfluorotrimethylenesulfonimide) / polysulfone block copolymer). In addition, a porous film impregnated with PTSI and crosslinked is also referred to as FINP (filling imide network polymer). Since the characteristics of FINP vary depending on the thickness and the degree of crosslinking, the optimal one should be selected as appropriate. When the degree of crosslinking is low, the lithium ion permeability is high, but it easily swells and tends to cause a reduction in the shielding ability of polysulfide ions, sulfide ions, and sulfur molecules. On the other hand, if the film thickness is too thick or the cross-linking degree is too high, the resistance increases and it is likely to cause a voltage drop. Therefore, a structure in which a film having a high degree of crosslinking and a film having a high effect of shielding sulfur or the like may be stacked on a film having a high lithium ion permeability and a low degree of crosslinking. By doing so, it is presumed that both low resistance and high selectivity can be achieved.

Figure 2010192385
Figure 2010192385

本発明の第2の形態の硫黄電池において、固体電解質膜はホウ素を構造内に持つポリマーである。ホウ素のルイス酸性によりアニオンがトラップされ、Liの輸送が選択的に起きるからである。これにより、アニオンであるポリ硫化物イオンや硫化物イオンは電解質膜を透過しにくくなり、固体膜による中性分子である硫黄の拡散防止もあわせて期待できるため、ポリ硫化物イオンや、硫化物イオン、硫黄と負極との反応を抑制できると考えられる。ホウ素を構造内に持つポリマーとしては、電子吸引基がホウ素に結合しているものが好ましく、例えばホウ酸エステル、フルオロフェニル基が置換したボラン誘導体などが挙げられる。具体的には、特開2008−117762に示されるような二重結合を有するホウ酸エステル化合物の重合体として、例えば、アクリル酸系ポリマーのエステル部分にホウ酸エステルを有するポリ(エチレングリコールモノメタクリレート)ボレートやポリ(エチレングリコールモノアクリレートボレート)と、例えばポリエチレングリコールジメチルエーテルなどのポリエーテル高分子化合物とから成る高分子電解質重合体が挙げられる。また、3置換ボラン構造をペンダントグループとして有するトリフェニルボランのフェニル基部分で主鎖と結合したボラン誘導体ポリマーや、そのフェニル基の水素がフッ素に置換されたパーフルオロフェニルボランがペンダントグループであるボラン誘導体ポリマーなどであってもよい。また、アニオンのトラップ能を有するホウ素を含む構造であればよく、ボランやホウ酸構造がペンダントグループではなくポリマーの主鎖内にあるホウ素ポリマーであってもよい。固体電解質膜の厚さは、10μm以上1mm以下であることが好ましく、10μm以上500μm以下であることがより好ましい。10μm以上であれば使用時の電気的短絡を防ぐのに十分でピンホールなどが発生しにくいため好ましい。また、500μm以下であれば電気抵抗による電圧低下が少ないため好ましい。   In the sulfur battery according to the second aspect of the present invention, the solid electrolyte membrane is a polymer having boron in its structure. This is because the anion is trapped by the Lewis acidity of boron, and Li transport occurs selectively. As a result, polysulfide ions and sulfide ions, which are anions, are difficult to permeate the electrolyte membrane, and it can be expected to prevent diffusion of sulfur, which is a neutral molecule, by a solid membrane. It is considered that the reaction between ions, sulfur and the negative electrode can be suppressed. The polymer having boron in the structure is preferably a polymer in which an electron withdrawing group is bonded to boron, and examples thereof include a borate ester and a borane derivative substituted with a fluorophenyl group. Specifically, as a polymer of a boric acid ester compound having a double bond as disclosed in JP-A-2008-117762, for example, poly (ethylene glycol monomethacrylate) having a boric acid ester in the ester portion of an acrylic acid polymer. ) Polyelectrolyte polymers comprising borate or poly (ethylene glycol monoacrylate borate) and a polyether polymer compound such as polyethylene glycol dimethyl ether. In addition, a borane derivative polymer having a triphenylborane structure having a trisubstituted borane structure as a pendant group bonded to the main chain at the phenyl group portion, or a borane in which perfluorophenylborane in which hydrogen of the phenyl group is substituted with fluorine is a pendant group It may be a derivative polymer. Further, it may be a structure containing boron having an anion trapping ability, and may be a boron polymer in which a borane or boric acid structure is not in the pendant group but in the main chain of the polymer. The thickness of the solid electrolyte membrane is preferably 10 μm or more and 1 mm or less, and more preferably 10 μm or more and 500 μm or less. A thickness of 10 μm or more is preferable because it is sufficient to prevent an electrical short circuit during use and pinholes are not easily generated. Moreover, if it is 500 micrometers or less, since there is little voltage drop by an electrical resistance, it is preferable.

本発明の硫黄電池において、電解液は、少なくとも正極と固体電解質膜との間に介在している。このようにすることで、正極で生成されたポリ硫化物イオンや硫化物イオン、硫黄分子が電解液中に溶解するため、固体電解質のみを使用する場合と比較して活物質供給の効率がより良好になると考えられる。このような構成として、例えば、正極や負極に電解液を含浸した状態で固体電解質膜と接触する構成としてもよい。このようにすることで、固体電解質膜が電気的短絡を防ぐ機能も併せ持つこととなる。また、固体電解質膜に電解液を含浸した状態で正極と接触する構成としてもよい。なお、負極と固体電解質膜との間には電解液が介在しなくてもよいが、固体同士の接触状態が良好でない場合などには、電解液によってイオン伝導を良好にすることができるため負極と固体電解質膜との間には電解液が介在していることが好ましい。電解液は、溶媒に支持塩を溶解した溶液であってもよい。支持塩としては、通常のリチウム二次電池に用いられるリチウム塩であれば特に限定されるものではなく、例えば、Li(CF3SO22N、Li(C25SO22N、LiPF6,LiClO4,LiBF4,などの公知の支持塩を用いることができる。これらは単独で用いてもよいし、複数を混合して用いてもよい。電解液の溶媒としては、非プロトン供与性で通常のリチウム二次電池に用いられるものであれば特に限定されないが、ジメトキシエタン(DME)、トリグライム、テトラグライムなどのエーテル類、ジオキソラン(DOL)、テトラヒドロフランなどの環状エーテル及び、それらの混合物が好適である。また、1−メチル−3−プロピルイミダゾリウムビス(トリフルオロスルホニル)イミド、1−エチル−3−ブチルイミダゾリウムテトラフルオロボレートなどのイオン液体を用いることもできる。電解液は、少なくとも正極と固体電解質膜との間に介在していればよく、多孔質セパレータなどに含浸されていてもよいし、ポリフッ化ビニリデンやポリエチレンオキサイド、ポリエチレングリコール、ポリアクリロニトリルなどの高分子類又はアミノ酸誘導体やソルビトール誘導体などの糖類に、支持塩を含む電解液を含ませてゲル化されていてもよい。また、硫黄電池では溶液中への活物質(硫黄やポリ硫化物イオンなど)の溶解により、有効に使える活物質量が低下することがあるため、あらかじめ電解液中にポリ硫化物イオンなどを添加しておいてもよい。 In the sulfur battery of the present invention, the electrolytic solution is interposed at least between the positive electrode and the solid electrolyte membrane. By doing so, since polysulfide ions, sulfide ions, and sulfur molecules generated at the positive electrode are dissolved in the electrolyte, the efficiency of supplying the active material is higher than when only a solid electrolyte is used. It seems to be good. As such a configuration, for example, a configuration in which the positive electrode or the negative electrode is in contact with the solid electrolyte membrane in an impregnated state with the electrolytic solution may be employed. By doing in this way, a solid electrolyte membrane will also have a function which prevents an electrical short circuit. Moreover, it is good also as a structure which contacts a positive electrode in the state which impregnated electrolyte solution in the solid electrolyte membrane. Note that the electrolyte does not have to be interposed between the negative electrode and the solid electrolyte membrane. However, when the contact state between the solids is not good, the ionic conduction can be improved by the electrolytic solution. It is preferable that an electrolytic solution is interposed between the electrode and the solid electrolyte membrane. The electrolytic solution may be a solution in which a supporting salt is dissolved in a solvent. The supporting salt is not particularly limited as long as it is a lithium salt used in a normal lithium secondary battery. For example, Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N , LiPF 6 , LiClO 4 , LiBF 4 , and other known supporting salts can be used. These may be used alone or in combination. The solvent of the electrolytic solution is not particularly limited as long as it is non-proton-donating and used in a normal lithium secondary battery, but ethers such as dimethoxyethane (DME), triglyme and tetraglyme, dioxolane (DOL), Cyclic ethers such as tetrahydrofuran and mixtures thereof are preferred. Alternatively, ionic liquids such as 1-methyl-3-propylimidazolium bis (trifluorosulfonyl) imide and 1-ethyl-3-butylimidazolium tetrafluoroborate can be used. The electrolytic solution only needs to be interposed at least between the positive electrode and the solid electrolyte membrane, and may be impregnated in a porous separator or the like, or a polymer such as polyvinylidene fluoride, polyethylene oxide, polyethylene glycol, or polyacrylonitrile. Or an saccharide such as an amino acid derivative or a sorbitol derivative may be gelled by containing an electrolyte solution containing a supporting salt. Also, in sulfur batteries, the amount of active material that can be effectively used may decrease due to the dissolution of the active material (sulfur, polysulfide ions, etc.) in the solution, so polysulfide ions, etc. are added to the electrolyte beforehand. You may keep it.

本発明の硫黄電池は、負極と正極との間にセパレータを備えていてもよい。セパレータは正極と固体電解質膜との間に配置されていてもよいし、負極と固体電解質膜との間に配置されていてもよいし、この両方であってもよい。このうち、正極と固体電解質膜との間に配置されていると、正極と固体電解質膜との間の電解液を保持しやすいため好ましい。セパレータとしては、二次電池の使用範囲に耐え得る組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムが挙げられる。これらは単独で用いてもよいし、複合して用いてもよい。   The sulfur battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator may be disposed between the positive electrode and the solid electrolyte membrane, may be disposed between the negative electrode and the solid electrolyte membrane, or both. Among these, it is preferable to dispose between the positive electrode and the solid electrolyte membrane because the electrolytic solution between the positive electrode and the solid electrolyte membrane is easily retained. The separator is not particularly limited as long as it has a composition that can withstand the use range of the secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a microporous film of an olefin resin such as polyethylene or polypropylene Is mentioned. These may be used alone or in combination.

本発明の硫黄電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。   The shape of the sulfur battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態においては、負極に含まれるアルカリ金属がリチウムであるリチウム硫黄電池について説明したが、負極に含まれるアルカリ金属はナトリウムやカリウムであってもよい。   For example, in the above-described embodiment, the lithium sulfur battery in which the alkali metal contained in the negative electrode is lithium has been described, but the alkali metal contained in the negative electrode may be sodium or potassium.

[実験例A1]
(1)固体電解質膜(PTSIPS膜)の作製
まず、PTSIPSの疎水部となるOH末端ポリ(エーテルエーテルスルホン)を以下のように合成した。ディーンスターク管と3方コックを接続した500mlの3つ口フラスコに、ビスフェノールを8.5g(46mmol)、ビス−(4−クロロフェニル)スルホンを12g(42mmol)、K2CO3を25g(0.18mol)加え、1時間真空にして乾燥させた。その後、市販の脱水ジメチルアセトアミド(DMAc)65mlと、トルエン65mlとを加え、100℃で1時間加熱した後、165℃まで3時間かけて昇温し、生成した水をトルエンと共沸させ、トルエンと共に水を反応系中から除いた。さらに3日間165℃で反応させた後、過剰量のビスフェノール4.2g(23mmol)を加えて、さらに同温度で1日間反応させた。反応後に沈澱している無機塩をろ過し、その後、重合溶液をエタノールに再沈澱させ、12時間以上真空乾燥することにより目的物(16g、収率88%)を得た。下にその合成法を示す(式(2)参照)。得られた目的物の重合度hをNMRで測定したところ、14.5であった。以下このポリマーをOH末端PEES(h=14.5)とも称する。
[Experimental example A1]
(1) Production of Solid Electrolyte Membrane (PTSIPS Membrane) First, OH-terminated poly (ether ether sulfone) serving as a hydrophobic portion of PTSIPS was synthesized as follows. Three-necked flask 500ml connected a Dean-Stark tube and a three-way stopcock, a bisphenol 8.5 g (46 mmol), bis - (4-chlorophenyl) sulfone 12 g (42 mmol), K 2 CO 3 and 25 g (0. 18 mol) and vacuumed for 1 hour to dry. Thereafter, 65 ml of commercially available dehydrated dimethylacetamide (DMAc) and 65 ml of toluene were added, heated at 100 ° C. for 1 hour, then heated to 165 ° C. over 3 hours, and the water produced was azeotroped with toluene. At the same time, water was removed from the reaction system. After further reacting at 165 ° C. for 3 days, an excess amount of 4.2 g (23 mmol) of bisphenol was added, and further reacted at the same temperature for 1 day. The inorganic salt precipitated after the reaction was filtered, and then the polymerization solution was reprecipitated in ethanol and vacuum-dried for 12 hours or longer to obtain the desired product (16 g, yield 88%). The synthesis method is shown below (see formula (2)). The degree of polymerization h of the obtained target product was measured by NMR and found to be 14.5. Hereinafter, this polymer is also referred to as OH-terminated PEES (h = 14.5).

Figure 2010192385
Figure 2010192385

次に、PTSIPSの親水部となるK体F−Ph末端ポリ(パーフルオロトリメチレンスルホンイミド)を以下のように合成した。200mlのフラスコにパーフルオロトリメチレン−1,3−ジスルホンアミド(PTMDSA、式(3)参照)を20g(65mmol)、パーフルオロトリメチレン−1,3−ジスルホニルフルオライド(PTMDSF、式(4)参照)を18g(57mmol)、アセトニトリルを20ml加えた。次にジイソプロピルエチルアミン50ml(0.29mol)を加え、80℃で48時間加熱した。その後、揮発分を留去し、1NのNaOH水溶液を加えた後、アセトニトリルで有機層を抽出した。エバポレータで溶媒留去し、1NのHCl水溶液を溶液が酸性を示すまで加えてからエバポレータで溶媒を除き、有機物をアセトニトリルで抽出することで塩を除いた。アセトニトリル抽出分を溶媒留去し、少量のアセトニトリルに溶かしてセライトでろ過し、80℃で減圧乾燥した。これを39g(8.5mmol)、4−フルオロベンゼンスルホニルクロライドを5.0g(26mmol)、アセトニトリル50mlを200mlのフラスコに加えた。さらに、ジイソプロピルエチルアミン30ml(0.17mol)を加えて80℃で1晩加熱した。その後、溶媒を留去し、1NのKOH水溶液と少量のアセトニトリルを加え、水層をデカンテーションして除いた。この操作を5回繰り返し、エバポレータで有機溶媒を留去した。その後アセトニトリルでセライトろ過することで塩を除き、減圧乾燥することで目的物(41g、収率51%)を得た。下にその合成法を示す(式(5)参照)。合成重合度jをNMRで測定したところ、20.5であった。以下このポリマーをK体F−Ph末端PTSI(j=20.5)とも称する。   Next, K body F-Ph terminal poly (perfluorotrimethylene sulfonimide), which becomes the hydrophilic part of PTSIPS, was synthesized as follows. In a 200 ml flask, 20 g (65 mmol) of perfluorotrimethylene-1,3-disulfonamide (PTMDSA, see formula (3)), perfluorotrimethylene-1,3-disulfonyl fluoride (PTMDSF, formula (4)) 18 g (57 mmol) and 20 ml of acetonitrile were added. Next, 50 ml (0.29 mol) of diisopropylethylamine was added and heated at 80 ° C. for 48 hours. Thereafter, volatile components were distilled off, 1N NaOH aqueous solution was added, and then the organic layer was extracted with acetonitrile. The solvent was distilled off with an evaporator, 1N HCl aqueous solution was added until the solution was acidic, the solvent was removed with an evaporator, and the organic substance was extracted with acetonitrile to remove the salt. The acetonitrile extract was evaporated, dissolved in a small amount of acetonitrile, filtered through celite, and dried under reduced pressure at 80 ° C. 39 g (8.5 mmol) of this, 5.0 g (26 mmol) of 4-fluorobenzenesulfonyl chloride, and 50 ml of acetonitrile were added to a 200 ml flask. Furthermore, 30 ml (0.17 mol) of diisopropylethylamine was added and heated at 80 ° C. overnight. Thereafter, the solvent was distilled off, 1N aqueous KOH solution and a small amount of acetonitrile were added, and the aqueous layer was removed by decantation. This operation was repeated 5 times, and the organic solvent was distilled off with an evaporator. Thereafter, the salt was removed by celite filtration with acetonitrile, and the residue was dried under reduced pressure to obtain the desired product (41 g, yield 51%). The synthesis method is shown below (see formula (5)). The synthetic polymerization degree j was measured by NMR and found to be 20.5. Hereinafter, this polymer is also referred to as K-form F-Ph terminal PTSI (j = 20.5).

Figure 2010192385
Figure 2010192385

このようにして得られたOH末端PEES(h=14.5)と、K体F−Ph末端PTSI(j=20.5)を用いて、PTSIPSを以下のように合成した。ディーンスターク管と3方コックを接続した100mlの2つ口ナス形フラスコに、上記で合成したOH末端PEES(h=14.5)を15g(OH末端基量5.1mmol)、K体F−Ph末端PTSI(j=20.5)を19g(F−Ph末端基量5.1mmol)、K2CO3を1.4g(10mmol)、18−クラウン−6を2.7g(10mmol)加え、1時間真空下で乾燥させた。その後、脱水DMAcを300ml、トルエンを250ml加え、100℃で1時間加熱した後、165℃まで徐々に昇温し、生成した水をトルエンと共沸させ、トルエンと共に水を反応系中から除いた。さらに14日間165℃で反応を行った。反応後、重合溶液をろ過し、母液を1NのHCl水溶液に加えて再沈殿をした。回収した沈殿物をアセトニトリルに溶解、ろ過し、母液のアセトニトリルを留去して目的物(29g、収率87%、イオン交換容量EW661g/eq.)を得た。下にその合成スキームを示す(式(6))。これをジメチルホルムアミド(DMF)に溶解し、乾燥時に多孔材が透明になるまで多孔質ポリエチレン膜に含浸し、80℃で加熱乾燥を繰り返し、PTSIPS膜を得た。この膜を1N塩酸水溶液で処理し、さらに1重量%炭酸リチウム水溶液で処理した後水洗乾燥してLi体のPTSIPS膜を得た。 Using the thus obtained OH-terminated PEES (h = 14.5) and K-form F-Ph-terminated PTSI (j = 20.5), PTSIPS was synthesized as follows. In a 100 ml two-necked eggplant-shaped flask connected to a Dean-Stark tube and a three-way cock, 15 g of the OH-terminated PEES (h = 14.5) synthesized above (OH end group amount 5.1 mmol), K-form F- 19 g Ph-terminal PTSI (j = 20.5) (F-Ph end group amount 5.1 mmol), 1.4 g (10 mmol) K 2 CO 3 and 2.7 g (10 mmol) 18-crown-6 were added. Dry under vacuum for 1 hour. Thereafter, 300 ml of dehydrated DMAc and 250 ml of toluene were added, heated at 100 ° C. for 1 hour, gradually heated to 165 ° C., the produced water was azeotroped with toluene, and water was removed from the reaction system together with toluene. . The reaction was further carried out at 165 ° C. for 14 days. After the reaction, the polymerization solution was filtered, and the mother liquor was added to 1N HCl aqueous solution for reprecipitation. The recovered precipitate was dissolved in acetonitrile and filtered, and acetonitrile in the mother liquor was distilled off to obtain the desired product (29 g, yield 87%, ion exchange capacity EW 661 g / eq.). The synthesis scheme is shown below (Formula (6)). This was dissolved in dimethylformamide (DMF), impregnated into a porous polyethylene film until the porous material became transparent at the time of drying, and repeatedly dried by heating at 80 ° C. to obtain a PTSIPS film. This membrane was treated with a 1N aqueous hydrochloric acid solution, further treated with a 1 wt% aqueous lithium carbonate solution, washed with water and dried to obtain a Li-type PTSIPS membrane.

Figure 2010192385
Figure 2010192385

(2)評価セルの作製
正極は、以下のように作製した。まず、硫黄粉末(平均粒子径75μm以下、純度99.99%、高純度化学製)、導電助剤のカーボン(ECP600JD, ライオン社製)、バインダーであるポリテトラフルオロエチレン(PTFE)を、50:40:10の重量比で混合してエタノールを加え、餅状になるまで混練し、シート状に成型後乾燥した。これを直径12mmに切り出し正極を得た。このとき正極の重量は3〜4mgであった。負極は、厚さ0.4mm、直径18mmの金属リチウムを用いた。電解液は1,2−ジメトキシエタン(DME)と1,3−ジオキソラン(DOL)とを体積比9:1で混合した溶液にリチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI)を1mol/Lの濃度となるように溶解したものを用いた。固体電解質膜は、上述の手法で得られたPTSIPS(膜厚40μm)を用いた。
(2) Production of evaluation cell The positive electrode was produced as follows. First, sulfur powder (average particle diameter of 75 μm or less, purity 99.99%, manufactured by High Purity Chemical), conductive assistant carbon (ECP600JD, manufactured by Lion), and binder, polytetrafluoroethylene (PTFE), 50: The mixture was mixed at a weight ratio of 40:10, ethanol was added, kneaded until it became a bowl-like shape, molded into a sheet, and then dried. This was cut into a diameter of 12 mm to obtain a positive electrode. At this time, the weight of the positive electrode was 3 to 4 mg. As the negative electrode, metallic lithium having a thickness of 0.4 mm and a diameter of 18 mm was used. The electrolyte was 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) mixed at a volume ratio of 9: 1, and lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) was added at 1 mol / L. What was melt | dissolved so that it might become a density | concentration was used. As the solid electrolyte membrane, PTSIPS (film thickness 40 μm) obtained by the above-described method was used.

このようにして得られた正極、負極、電解液及び、固体電解質膜を使用して評価セルを作製した。図1は評価セルの説明図であり、図1(a)は評価セル10の組立前の断面図、図1(b)は評価セル10の組立後の断面図である。評価セル10を組み立てるにあたり、まず、外周面にねじ溝が刻まれたステンレス製の円筒基体12の上面中央に設けられたキャビティ14に、負極16(上述した厚さ0.4mm、φ18mmの金属リチウム)と、セパレータ18(微多孔性ポリエチレン膜、東燃化学(株)製)と、固体電解質膜19と、セパレータ18と、正極20(上述した直径12mmの正極)とをこの順に積層する。次に、上述した非水系電解液約0.1mLをキャビティ14に注入したあと、ポリプロピレン製の絶縁リング29を入れ、次いで絶縁性のリング22の穴に液密に固定された導電性の円柱24を正極20の上に配置し、導電性のコップ状の蓋26を円筒基体12にねじ込む。更に、円柱24の上に絶縁用樹脂リング27を配置し、蓋26の上面中央に設けられた開口26aの内周面に刻まれたねじ溝に貫通孔25aを持つ加圧ボルト25をねじ込み、負極16とセパレータ18と固体電解質膜18と正極20とを加圧密着させる。このようにして、評価セル10を作製することができる。なお、円柱24は、リング22の上面より下に位置し絶縁用樹脂リング27を介して蓋26と接しているため、蓋26と円柱24とは非接触な状態となっている。また、キャビティ14の周辺にはパッキン28が配置されているため、キャビティ14内に注入された電解液が外部に漏れることはない。この評価セル10では、蓋26と加圧ボルト25と円筒基体12とが負極16と一体化されて全体が負極側となり、円柱24が正極20と一体化されると共に負極16と絶縁されているため正極側となる。このようにして得られた評価セルを実験例1とした。   An evaluation cell was produced using the positive electrode, negative electrode, electrolytic solution, and solid electrolyte membrane thus obtained. FIG. 1 is an explanatory view of an evaluation cell, FIG. 1 (a) is a cross-sectional view before the evaluation cell 10 is assembled, and FIG. 1 (b) is a cross-sectional view after the evaluation cell 10 is assembled. In assembling the evaluation cell 10, first, a negative electrode 16 (the above-described metal lithium having a thickness of 0.4 mm and φ18 mm is formed in a cavity 14 provided in the center of the upper surface of a stainless steel cylindrical base 12 having a thread groove on the outer peripheral surface. ), A separator 18 (microporous polyethylene membrane, manufactured by Tonen Chemical Co., Ltd.), a solid electrolyte membrane 19, a separator 18, and a positive electrode 20 (a positive electrode having a diameter of 12 mm described above) are laminated in this order. Next, after injecting about 0.1 mL of the above-described non-aqueous electrolyte into the cavity 14, a polypropylene insulating ring 29 is inserted, and then a conductive cylinder 24 liquid-tightly fixed in the hole of the insulating ring 22. Is placed on the positive electrode 20, and a conductive cup-shaped lid 26 is screwed into the cylindrical substrate 12. Further, an insulating resin ring 27 is arranged on the cylinder 24, and a pressure bolt 25 having a through hole 25a is screwed into a screw groove carved in an inner peripheral surface of an opening 26a provided at the center of the upper surface of the lid 26, The negative electrode 16, the separator 18, the solid electrolyte membrane 18, and the positive electrode 20 are pressed and adhered. In this way, the evaluation cell 10 can be manufactured. The cylinder 24 is positioned below the upper surface of the ring 22 and is in contact with the lid 26 via the insulating resin ring 27, so that the lid 26 and the cylinder 24 are not in contact with each other. Further, since the packing 28 is disposed around the cavity 14, the electrolyte injected into the cavity 14 does not leak outside. In this evaluation cell 10, the lid 26, the pressure bolt 25, and the cylindrical base 12 are integrated with the negative electrode 16, so that the whole becomes the negative electrode side, and the column 24 is integrated with the positive electrode 20 and insulated from the negative electrode 16. Therefore, it becomes the positive electrode side. The evaluation cell thus obtained was designated as Experimental Example 1.

[実験例A2]
(1)固体電解質膜(高架橋度FINP膜)の作製
まず、ベンゼン−1,3,5−スルホンアミド(1,3,5−置換ベンゼン)(BTSA、式(7)参照)とPTMDSF(式(4)参照)とを1:1.5のモル比となるように秤量した。これらを、アセトニトリルと、テトラエチルアミン(いずれも和光純薬工業製)とが4.000:5.721の重量比となるように調製された溶液中で1時間撹拌し、材料モノマー溶液とした。得られた材料モノマー溶液をバイアル瓶中で、多孔質ポリエチレン膜(膜厚50μm、DSM Solutech社製)に含浸させ、3分間超音波を照射し、50℃で24時間反応させ、さらに90℃で24時間加熱した。その後15体積%の硝酸と85体積%のエタノールとから成る溶液中で室温下12時間撹拌した後、50℃の温度条件下15%硝酸溶液中で24時間撹拌し、Li体の高架橋度FINP膜(膜厚36μm、イオン交換容量〜3meq/g)を得た。
[Experiment A2]
(1) Production of solid electrolyte membrane (highly crosslinked FINP membrane) First, benzene-1,3,5-sulfonamide (1,3,5-substituted benzene) (BTSA, see formula (7)) and PTMDSF (formula ( 4) was weighed to a molar ratio of 1: 1.5. These were stirred for 1 hour in a solution prepared such that acetonitrile and tetraethylamine (both manufactured by Wako Pure Chemical Industries, Ltd.) had a weight ratio of 4.000: 5.721 to obtain a material monomer solution. The obtained material monomer solution was impregnated into a porous polyethylene membrane (film thickness 50 μm, manufactured by DSM Soltech) in a vial bottle, irradiated with ultrasonic waves for 3 minutes, reacted at 50 ° C. for 24 hours, and further at 90 ° C. Heated for 24 hours. Thereafter, the mixture was stirred for 12 hours at room temperature in a solution composed of 15% by volume nitric acid and 85% by volume ethanol, and then stirred for 15 hours in a 15% nitric acid solution under a temperature condition of 50 ° C. (Film thickness 36 μm, ion exchange capacity ˜3 meq / g) was obtained.

Figure 2010192385
Figure 2010192385

(2)評価セルの作製
このようにして得られた高架橋度FINP膜を固体電解質膜として用いた以外は実験例A1と同様に評価セルを作製し、実験例A2とした。
(2) Production of Evaluation Cell An evaluation cell was produced in the same manner as in Experimental Example A1 except that the highly crosslinked FINP membrane thus obtained was used as a solid electrolyte membrane, and designated as Experimental Example A2.

[実験例A3]
(1)固体電解質膜(FINP膜)の作製
BTSA(式(7)参照)と、PTMDSF(式(4)参照)と、PTMDSA(式(3)参照)と、を1:4.5:3のモル比となるように秤量し、多孔質ポリエチレン膜として膜厚60μmのものを使用した以外は実験例A2と同様にしてLi体のFINP膜(膜厚40μm、イオン交換容量〜3meq/g)を得た。
[Experiment A3]
(1) Production of solid electrolyte membrane (FINP membrane) BTSA (see formula (7)), PTMDSF (see formula (4)), and PTMDSA (see formula (3)) are 1: 4.5: 3 Li-type FINP membrane (film thickness 40 μm, ion exchange capacity ˜3 meq / g) in the same manner as in Experimental Example A2, except that a porous polyethylene membrane having a thickness of 60 μm was used. Got.

(2)評価セルの作製
このようにして得られたFINP膜を固体電解質膜として用いた以外は実験例A1と同様に評価セルを作製し、実験例A3とした。
(2) Production of Evaluation Cell An evaluation cell was produced in the same manner as in Experimental Example A1 except that the FINP membrane thus obtained was used as a solid electrolyte membrane, and designated as Experimental Example A3.

[実験例A4]
(1)固体電解質膜(FINP膜)の作製
多孔質ポリエチレン膜として実験例A2と同じ膜厚50μmのものを使用した以外は実験例A3と同様にしてLi体のFINP膜(膜厚30μm、イオン交換容量〜3meq/g)を得た。
[Experiment A4]
(1) Production of Solid Electrolyte Membrane (FINP Membrane) A Li-type FINP membrane (film thickness of 30 μm, ion) was used in the same manner as in Experiment A3 except that a porous polyethylene membrane having the same thickness of 50 μm as in Experiment A2 was used. Exchange capacity ˜3 meq / g) was obtained.

(2)評価セルの作製
このようにして作製したFINP膜を固体電解質膜として用いた以外は実験例A1と同様に評価セルを作製し、実験例A4とした。
(2) Production of Evaluation Cell An evaluation cell was produced in the same manner as in Experimental Example A1 except that the FINP membrane thus produced was used as a solid electrolyte membrane, and designated as Experimental Example A4.

[実験例A5]
実験例A4で用いたFINP膜(Li体)を1Nの塩酸で塩酸処理、水洗し、リチウムをプロトン置換した後、イミド塩交換容量の50%に当たる量の飽和石灰水中に1時間浸漬し、Caイオン交換し、架橋構造を形成した。このとき、石灰水は中性に変化しており、交換容量の50%がCaイオンに交換できたことになる。これを水洗後、1wt%炭酸リチウム水溶液に漬け、リチウム交換した。これを乾燥してFINP膜を得た。このようにして得られたFINP膜を固体電解質膜として用いた以外は実験例A1と同様に評価セルを作製し、実験例A5とした。
[Experiment A5]
The FINP membrane (Li body) used in Experimental Example A4 was treated with hydrochloric acid with 1N hydrochloric acid, washed with water, and lithium was protonated, and then immersed in saturated lime water in an amount equivalent to 50% of the imide salt exchange capacity for 1 hour. Ion exchange was performed to form a crosslinked structure. At this time, the lime water has changed to neutral, and 50% of the exchange capacity has been exchanged for Ca ions. This was washed with water, dipped in a 1 wt% lithium carbonate aqueous solution, and lithium exchanged. This was dried to obtain a FINP film. An evaluation cell was produced in the same manner as in Experimental Example A1 except that the FINP membrane thus obtained was used as a solid electrolyte membrane, and this was designated as Experimental Example A5.

[実験例A6]
実験例A3で用いたFINP膜(Li体)を1Nの塩酸で塩酸処理、水洗し、リチウムをプロトン置換した後、イミド塩交換容量の15%に当たる量の飽和石灰水に1時間浸漬した以外は、実験例A5と同様にしてFINP膜を得た。このようにして得られたFINP膜を固体電解質膜として用いた以外は実験例A1と同様に評価セルを作製し、実験例A6とした。
[Experiment A6]
The FINP membrane (Li body) used in Experimental Example A3 was treated with hydrochloric acid with 1N hydrochloric acid, washed with water, lithium was proton-substituted, and then immersed in saturated lime water in an amount equivalent to 15% of the imide salt exchange capacity for 1 hour. A FINP film was obtained in the same manner as in Experimental Example A5. An evaluation cell was prepared in the same manner as in Experimental Example A1 except that the FINP membrane thus obtained was used as a solid electrolyte membrane, and this was designated as Experimental Example A6.

[実験例A7]
実験例A3で用いたFINP膜(Li体)を1Nの塩酸で塩酸処理、水洗し、リチウムをプロトン置換した後、イミド塩交換容量に対し大過剰の飽和石灰水に1時間浸漬した以外は実験例A6と同様にしてFINP膜を得た。このようにして得られたFINP膜を固体電解質膜として用いた以外は実験例A1と同様に評価セルを作製し、実験例A7とした。
[Experiment A7]
Experiments were conducted except that the FINP film (Li body) used in Experimental Example A3 was treated with hydrochloric acid with 1N hydrochloric acid, washed with water, proton-substituted lithium, and then immersed in a large excess of saturated lime water with respect to the imide salt exchange capacity for 1 hour. A FINP film was obtained in the same manner as in Example A6. An evaluation cell was prepared in the same manner as in Experimental Example A1 except that the FINP membrane thus obtained was used as a solid electrolyte membrane, and used as Experimental Example A7.

[実験例A8]
実験例A7で用いたFINP膜(Li体)をプロトン置換しなかったこと以外は実験例A7と同様にしてFINP膜を得た。このようにして得られたFINP膜を固体電解質膜として用いたこと以外は実験例A1と同様に評価セルを作製し、実験例A8とした。
[Experiment A8]
A FINP membrane was obtained in the same manner as in Experimental Example A7, except that the FINP membrane (Li body) used in Experimental Example A7 was not proton-substituted. An evaluation cell was prepared in the same manner as in Experimental Example A1 except that the FINP membrane thus obtained was used as a solid electrolyte membrane, and used as Experimental Example A8.

[実験例B1]
(1)固体電解質膜(ホウ酸エステル電解膜)の作製
特開2008−117762の実施例4の製法に従い、ホウ酸エステル電解質膜(厚さ0.3mm、 σ=5×10-4S/cm (室温))を得た。
[Experimental example B1]
(1) Production of Solid Electrolyte Membrane (Borate Electrolyte Membrane) According to the production method of Example 4 of Japanese Patent Application Laid-Open No. 2008-117762, borate ester electrolyte membrane (thickness 0.3 mm, σ = 5 × 10 −4 S / cm (Room temperature)).

(2)評価セルの作製
このようにして得られたホウ酸エステル電解質膜を固体電解質膜として用い、電解液として1Mのリチウムビス(テトラフルオロエチルスルホニル)イミド(LiBETI)を支持塩として含むポリエチレングリコールジメチルエーテルを用いた以外は実験例A1と同様に評価セルを作製し、実験例B1とした。
(2) Production of evaluation cell Polyethylene glycol containing 1M lithium bis (tetrafluoroethylsulfonyl) imide (LiBETI) as a supporting salt as an electrolyte using the borate electrolyte membrane thus obtained as a solid electrolyte membrane An evaluation cell was prepared in the same manner as in Experimental Example A1 except that dimethyl ether was used, and used as Experimental Example B1.

[実験例B2]
実験例B1と同様にしてホウ酸エステル電解質膜を作製してこれを固体電解質膜として用い、電解液として1Mのリチウムビス(テトラフルオロエチルスルホニル)イミド(LiBETI)と3MのLi23とを支持塩として含むポリエチレングリコールジメチルエーテルを用いた以外は実験例A1と同様にして評価セルを作製し、実験例B2とした。
[Experiment B2]
A boric acid ester electrolyte membrane was prepared in the same manner as in Experimental Example B1, and this was used as a solid electrolyte membrane. As an electrolyte, 1M lithium bis (tetrafluoroethylsulfonyl) imide (LiBETI) and 3M Li 2 S 3 were used. An evaluation cell was prepared in the same manner as in Experimental Example A1 except that polyethylene glycol dimethyl ether contained as a supporting salt was used, and used as Experimental Example B2.

[実験例C1]
固体電解質膜を用いなかったこと以外は実験例A1と同様に評価セルを作製し、実験例C1とした。
[Experimental example C1]
An evaluation cell was prepared in the same manner as in Experimental Example A1 except that no solid electrolyte membrane was used, and it was designated as Experimental Example C1.

[実験例C2]
(1)固体電解質膜(PTSI膜)の作製
50mlのフラスコにPTMDSA(式(3)参照)を4.3g(14mmol)と、PTMDSF(式(4)参照)を4.1g(13mmol)と、アセトニトリルを6ml加えた。そこに、ジイソプロピルエチルアミン11ml(65mmol)を加えて80℃で48時間加熱した。そして揮発分を留去して1NのNaOH水溶液を加えた後、アセトニトリルで有機層を抽出した。さらにエバポレータで溶媒留去し、1NのHCl水溶液を溶液が酸性を示すまで加えてからエバポレータで溶媒を除き、有機物をアセトニトリルで抽出することで塩を除いた。さらにアセトニトリル抽出分を溶媒留去し、少量のアセトニトリルに溶かしてセライトでろ過し、80℃で減圧乾燥した。これを8.0g(1.0mmol)と、4−フルオロベンゼンスルホニルクロライドを0.84g(4.3mmol)と、アセトニトリル12mlとを50mlのフラスコに加えた。さらに、ジイソプロピルエチルアミン5.4ml(31mmol)を加えて80℃で約12時間加熱した。その後揮発分を留去し、1NのNaOH水溶液を加えた後、アセトニトリルで有機層を抽出した。さらにエバポレータで溶媒留去し、1NのHCl水溶液を溶液が酸性を示すまで加えてからエバポレータで溶媒を除き、有機物をアセトニトリルで抽出することで塩を除いた。さらにアセトニトリル抽出分を溶媒留去し、少量のアセトニトリルに溶かしてセライトでろ過し、80℃で減圧乾燥することで目的物を得た(4.6g、収率55%)。下図にその合成法を示す(式(8)参照)。得られた目的物の合成重合度jをNMRで測定したところ、29.8であった。このポリマーの水溶液に等量の炭酸リチウム水溶液を加え、Li体に変換後、加熱乾燥した。このLi体ポリマーをエタノールに溶解して濾紙(日本理化学機械社製、品番704、厚さ0.25mm)に含浸させて60℃で加熱乾燥をし、乾燥時に多孔材が透明になるまでこれを繰り返した。得られたPTSI膜の厚さは約0.5mmであった。なお、PTSIは電解液に漬けるとオイル状になり、多孔質ポリエチレンからは分離し液滴状になってしまい、膜として機能しなくなったため、親水性の濾紙を用いた。このようにしてPTSI膜を得た。
[Experimental example C2]
(1) Production of solid electrolyte membrane (PTSI membrane) 4.3 g (14 mmol) of PTMDSA (see formula (3)) and 4.1 g (13 mmol) of PTMDSF (see formula (4)) in a 50 ml flask, 6 ml of acetonitrile was added. Thereto, 11 ml (65 mmol) of diisopropylethylamine was added and heated at 80 ° C. for 48 hours. Then, volatile components were distilled off, 1N NaOH aqueous solution was added, and then the organic layer was extracted with acetonitrile. Further, the solvent was distilled off with an evaporator, 1N HCl aqueous solution was added until the solution was acidic, the solvent was removed with an evaporator, and the organic substance was extracted with acetonitrile to remove the salt. Further, the solvent was distilled off from the acetonitrile extract, dissolved in a small amount of acetonitrile, filtered through celite, and dried under reduced pressure at 80 ° C. 8.0 g (1.0 mmol) of this, 0.84 g (4.3 mmol) of 4-fluorobenzenesulfonyl chloride, and 12 ml of acetonitrile were added to a 50 ml flask. Further, 5.4 ml (31 mmol) of diisopropylethylamine was added and heated at 80 ° C. for about 12 hours. Thereafter, volatile components were distilled off, 1N NaOH aqueous solution was added, and then the organic layer was extracted with acetonitrile. Further, the solvent was distilled off with an evaporator, 1N HCl aqueous solution was added until the solution was acidic, the solvent was removed with an evaporator, and the organic substance was extracted with acetonitrile to remove the salt. Further, the acetonitrile extract was evaporated, dissolved in a small amount of acetonitrile, filtered through celite, and dried under reduced pressure at 80 ° C. to obtain the desired product (4.6 g, yield 55%). The following figure shows the synthesis method (see formula (8)). It was 29.8 when synthetic polymerization degree j of the obtained target object was measured by NMR. An equal amount of an aqueous lithium carbonate solution was added to the aqueous solution of the polymer, converted to a Li form, and then dried by heating. This Li polymer is dissolved in ethanol and impregnated into filter paper (product number 704, thickness 0.25 mm, manufactured by Nihon Riken Kikai Co., Ltd.) and dried by heating at 60 ° C. until the porous material becomes transparent at the time of drying. Repeated. The thickness of the obtained PTSI film was about 0.5 mm. Since PTSI became oily when immersed in the electrolyte, and separated from the porous polyethylene to form droplets, which no longer functioned as a membrane, hydrophilic filter paper was used. In this way, a PTSI film was obtained.

Figure 2010192385
Figure 2010192385

(2)評価セルの作製
このようにして得られたPTSI膜を固体電解質膜として用い、多孔質ポリエチレンの代わりに濾紙に含浸した以外は実験例A1と同様に評価セルを作製し、実験例C2とした。
(2) Production of Evaluation Cell An evaluation cell was produced in the same manner as in Experimental Example A1 except that the PTSI membrane thus obtained was used as a solid electrolyte membrane and impregnated in filter paper instead of porous polyethylene. Experimental Example C2 It was.

[実験例C3]
固体電解質膜としてOHARA社製Liイオン導電性ガラスセラミック固体電解質であるLiTi2(PO4)・AlPO4(0.3mm厚、σ=1〜2×10-4S/cm (室温))を用いたこと以外は実験例A1と同様にして評価セルを作製し、実験例C3とした。
[Experiment C3]
LiTi 2 (PO 4 ) · AlPO 4 (0.3 mm thickness, σ = 1 to 2 × 10 −4 S / cm (room temperature)), which is a Li ion conductive glass ceramic solid electrolyte manufactured by OHARA, is used as the solid electrolyte membrane. An evaluation cell was produced in the same manner as in Experimental Example A1 except that the result was as Experimental Example C3.

[評価]
上述のように作製した各実験例の評価セルを用いて、充放電試験を行った。まず、0.5mAの電流で1V(vs.Li/Li+)の放電終止電位まで放電を行った後、0.5mAの電流で3V(vs.Li/Li+)の充電終止電位まで充電を行った。この充放電を1サイクルとして、5サイクル目の充電容量(Ah/g−S)と放電容量(Ah/g−S)を測定し、放電容量を充電容量で除したものに100を乗じて充放電効率(%)を求めた。ここで、Ah/g−Sは正極中の硫黄重量当たりの容量を示す。そして、5サイクル目の充電後、電流を5mAに上げ、1V(vs.Li/Li+)の放電終止電位まで放電を、3V(vs.Li/Li+)の充電終止電位まで充電を交互に5回繰り返し、充放電容量(Ah/g−S)を測定した。5回目の放電容量(Ah/g−S)を5mA放電時の容量とした。さらに引き続いて上述の0.5mAの放電、充電を5回繰り返した後、開回路状態で保持し、10時間後の開放電圧(V)を測定した。さらに、10時間保持直前の充電容量(Ah/g−S)と10時間保持後の放電容量(Ah/g−S)を測定し、上記と同様に充放電効率(%)を求めた。また、24時間保持直前の充電容量(Ah/g−S)と24時間保持後の放電容量(Ah/g−S)を測定し、上記と同様に充放電効率(%)を求めた。さらに引き続いて上述の0.5mAでの充放電を繰り返し、60サイクル目の充電容量(Ah/g−S)と放電容量(Ah/g−S)を測定し、上記と同様に充放電効率(%)を求めた。さらに60サイクル目の放電容量を5サイクル目の放電容量で除したものに100を乗じて容量維持率(%)を求めた。
[Evaluation]
A charge / discharge test was performed using the evaluation cell of each experimental example produced as described above. First, after discharging to a discharge end potential of 1 V (vs. Li / Li + ) at a current of 0.5 mA, charging is performed to a charge end potential of 3 V (vs. Li / Li + ) at a current of 0.5 mA. went. With this charge / discharge as one cycle, the charge capacity (Ah / g-S) and discharge capacity (Ah / g-S) of the fifth cycle are measured, and the charge capacity divided by the charge capacity is multiplied by 100 to charge. The discharge efficiency (%) was determined. Here, Ah / g-S indicates the capacity per weight of sulfur in the positive electrode. After the fifth cycle charge, the current is increased to 5 mA, the discharge is alternately performed up to the discharge end potential of 1 V (vs. Li / Li + ), and the charge is alternately performed up to the charge end potential of 3 V (vs. Li / Li + ). The charge / discharge capacity (Ah / g-S) was measured 5 times. The fifth discharge capacity (Ah / g-S) was defined as the capacity at the time of 5 mA discharge. Subsequently, the discharge and charging at 0.5 mA described above were repeated 5 times, and then the circuit was held in an open circuit state, and the open circuit voltage (V) after 10 hours was measured. Further, the charge capacity immediately before holding for 10 hours (Ah / g-S) and the discharge capacity after holding for 10 hours (Ah / g-S) were measured, and the charge / discharge efficiency (%) was determined in the same manner as described above. Moreover, the charge capacity (Ah / g-S) immediately before the 24-hour holding and the discharge capacity (Ah / g-S) after the 24-hour holding were measured, and the charge / discharge efficiency (%) was determined in the same manner as described above. Subsequently, the above charge / discharge at 0.5 mA was repeated, the charge capacity (Ah / g-S) and the discharge capacity (Ah / g-S) at the 60th cycle were measured, and the charge / discharge efficiency ( %). Further, the capacity retention rate (%) was obtained by multiplying the discharge capacity at the 60th cycle by the discharge capacity at the 5th cycle and multiplying by 100.

Figure 2010192385
Figure 2010192385

[実験結果]
実験例A1〜A8、B1、B2、C1〜C3の実験結果を表1に示す。表1には上述した評価の結果として5サイクル目の放電容量、5サイクル目の充放電効率、10時間保持後の開放電圧、10時間保持後の充放電効率、24時間保持後の充放電効率、5mA放電における放電容量、60サイクル目の放電容量、60サイクル目の充放電効率及び、容量維持率をまとめた。固体電解質膜として分子内にイミドを持つポリマーの共重合体若しくは架橋体を有する固体電解質膜用いた場合(実験例A1〜A8)、固体電解質膜を用いない場合(実験例C1)と比較して、5サイクル目放電容量、5サイクル目充放電効率、60サイクル目放電容量及び60サイクル目充放電効率がいずれも良好であり、高い電池容量や充放電効率、が得られることがわかった。また、10時間後開放電圧、10時間後充放電効率及び24時間後充放電効率がいずれも高い値を示し、充電後の保存特性も良好であることがわかった。なかでも、共重合体を有する実験例A1や、高架橋度の架橋体を有する実験例A2、カチオン架橋により架橋度を高めた架橋体を有する実験例A5は保存特性がより良好であることがわかった。また、架橋体を有する場合には、高架橋度の架橋体を有する実験例A2の充放電効率が良好であり、次いでカチオン架橋がされた実験例A5の充放電効率が良好であった。一方、放電容量は低架橋度の架橋体を有する実験例A3、A4が良好であり、次いでカチオン架橋により架橋度を高めた実験例A5が良好であった。また、架橋度が同程度である場合、膜厚が30μmの実験例A4と比較して膜厚が40μmの実験例A3が全ての項目において同等以上の結果であった。また、Ca架橋をした架橋体を有する場合には、5mA放電容量以外の項目では実験例A5、A6、A7が良好であり中でもA5がより良好であった。このことから、高出力が要求されないような電池においてはCa架橋が50%程度なされていることが好ましいと推察された。また、Ca架橋をした架橋体である場合には、イミド塩のLi体を直接Ca架橋したものより、一度Li体をプロトン置換した後にCa架橋したものが好ましいと推察された。なお、固体電解質膜として分子内にイミドをもつポリマーを有する場合であっても、共重合体や架橋体でない場合には、放電容量が著しく低い値を示した(実験例C2)。実験例C2のPTSI膜は電解液に漬けるとオイル状になり、多孔質ポリエチレンからは分離して液滴状になってしまい、膜として機能しなかった。膜としてPTSIを保持するために親水性の濾紙を用いることで、実験は可能であったが、特性変動が激しく、安定なバリア層としては働かないことが分かった。このことから、分子内にイミドを持つポリマーを有する場合、このポリマーはさらに共重合体や架橋体であるべきであると推察された。
[Experimental result]
Table 1 shows the experimental results of Experimental Examples A1 to A8, B1, B2, and C1 to C3. Table 1 shows the discharge capacity at the fifth cycle, the charge / discharge efficiency at the fifth cycle, the open-circuit voltage after holding for 10 hours, the charge / discharge efficiency after holding for 10 hours, and the charge / discharge efficiency after holding for 24 hours. The discharge capacity at 5 mA discharge, the discharge capacity at the 60th cycle, the charge / discharge efficiency at the 60th cycle, and the capacity retention rate were summarized. Compared to the case of using a solid electrolyte membrane having a polymer copolymer or cross-linked polymer having an imide in the molecule as a solid electrolyte membrane (Experimental Examples A1 to A8) and not using a solid electrolyte membrane (Experimental Example C1) It was found that the fifth cycle discharge capacity, the fifth cycle charge / discharge efficiency, the 60th cycle discharge capacity, and the 60th cycle charge / discharge efficiency were all good, and a high battery capacity and charge / discharge efficiency were obtained. It was also found that the open voltage after 10 hours, the charge / discharge efficiency after 10 hours, and the charge / discharge efficiency after 24 hours showed high values, and the storage characteristics after charge were also good. Among them, Experimental Example A1 having a copolymer, Experimental Example A2 having a highly crosslinked product, and Experimental Example A5 having a crosslinked product having a higher degree of crosslinking by cationic crosslinking have better storage characteristics. It was. Moreover, when it has a crosslinked body, the charging / discharging efficiency of Experimental Example A2 having a crosslinked body with a high degree of crosslinking was good, and then the charging / discharging efficiency of Experimental Example A5 that was cationically crosslinked was favorable. On the other hand, Experimental Examples A3 and A4 having a low-crosslinking degree were good in discharge capacity, and then Experimental Example A5 in which the degree of crosslinking was increased by cationic crosslinking was good. In addition, when the degree of cross-linking was the same, Experimental Example A3 with a film thickness of 40 μm was equivalent or superior in all items compared to Experimental Example A4 with a film thickness of 30 μm. Moreover, when it had the crosslinked body which carried out Ca bridge | crosslinking, Experimental example A5, A6, A7 was favorable in items other than 5 mA discharge capacity, and A5 was more favorable especially. From this, it was surmised that it is preferable that Ca cross-linking is about 50% in a battery that does not require high output. Moreover, in the case of a cross-linked product obtained by Ca cross-linking, it was presumed that a Li-form of an imide salt that had been Ca-cross-linked after being proton-substituted once was preferable to one that was directly Ca-cross-linked. Even when the solid electrolyte membrane had a polymer having an imide in the molecule, the discharge capacity was extremely low when it was not a copolymer or a crosslinked product (Experimental Example C2). The PTSI membrane of Experimental Example C2 became oily when dipped in the electrolyte, and separated from porous polyethylene into droplets and did not function as a membrane. Experiments were possible by using hydrophilic filter paper to retain PTSI as a membrane, but it was found that the characteristics fluctuated greatly and did not work as a stable barrier layer. From this, when it has a polymer which has an imide in a molecule | numerator, it was guessed that this polymer should be a copolymer and a crosslinked body further.

固体電解質膜として分子内にホウ素を持つポリマーを有するものを用いた場合(実験例B1、B2)、固体電解質膜を用いない場合(実験例C1)と比較して、5サイクル目充放電効率、60サイクル目充放電効率がいずれも良好であり、高い充放電効率が得られることがわかった。このとき、電解液中にポリ硫化物イオンを含んでいる実験例B2では、含んでいない実験例B1と比較して、充放電効率を低下することなく、放電容量も向上することがわかった。さらに、実験例B2は実験例A1〜A8と比較しても60サイクル後の容量維持率が最も高いことから、電解液中にポリ硫化物イオンを添加することで固体電解質の種類によらず容量維持率が向上すると推察された。   When using a solid electrolyte membrane having a polymer having boron in the molecule (Experimental Examples B1 and B2), compared with the case of not using a solid electrolyte membrane (Experimental Example C1), the charge / discharge efficiency at the fifth cycle, It was found that the charge / discharge efficiency at the 60th cycle was good, and high charge / discharge efficiency was obtained. At this time, it was found that in the experimental example B2 containing polysulfide ions in the electrolytic solution, the discharge capacity was improved without lowering the charge / discharge efficiency as compared with the experimental example B1 not containing. Furthermore, since Experimental Example B2 has the highest capacity retention rate after 60 cycles even when compared with Experimental Examples A1 to A8, the addition of polysulfide ions to the electrolytic solution does not depend on the type of solid electrolyte. It was estimated that the maintenance rate would improve.

実験例C3のように無機固体電解質を使用した場合、5mA放電での放電容量が0Ah/g−Sであった。また、実験終了後に評価セルを分解したところ、固体電解質に細かい割れが発生していた。これは、無機固体電解質は脆い材質であることに起因すると推察された。   When an inorganic solid electrolyte was used as in Experimental Example C3, the discharge capacity at 5 mA discharge was 0 Ah / g-S. Moreover, when the evaluation cell was disassembled after the experiment was completed, fine cracks were generated in the solid electrolyte. This is presumed to be caused by the fact that the inorganic solid electrolyte is a brittle material.

以上のことから、イミドを持つポリマーの結合体を有する固体電解質膜又はホウ素を持つポリマーを有する固体電解質膜と、少なくとも正極と固体電解質との間に介在する電解液とを備えることにより、硫黄の高効率利用を可能としつつ、保存特性や、充放電効率、電池容量がバランスよく良好となると推察された。   From the above, by providing a solid electrolyte membrane having a polymer conjugate with an imide or a solid electrolyte membrane having a polymer with boron, and an electrolytic solution interposed at least between the positive electrode and the solid electrolyte, It was presumed that storage characteristics, charge / discharge efficiency, and battery capacity would be well balanced while enabling high-efficiency utilization.

10 評価セル、12 円筒基体、14 キャビティ、16 負極、18 セパレータ、19 固体電解質膜、20 正極、22 リング、24 円柱、25 加圧ボルト、25a 貫通孔、26 蓋、26a 開口、27 絶縁用樹脂リング、28 パッキン、29 絶縁リング。 10 Evaluation Cell, 12 Cylindrical Substrate, 14 Cavity, 16 Negative Electrode, 18 Separator, 19 Solid Electrolyte Membrane, 20 Positive Electrode, 22 Ring, 24 Column, 25 Pressure Bolt, 25a Through Hole, 26 Lid, 26a Opening, 27 Insulating Resin Ring, 28 Packing, 29 Insulating ring.

Claims (6)

硫黄を含む正極と、
アルカリ金属を含む負極と、
前記正極と前記負極との間に配置され、イミドを持つポリマーの結合体を有する固体電解質膜と、
少なくとも前記正極と前記固体電解質膜との間に介在する電解液と、
を備えた硫黄電池。
A positive electrode containing sulfur;
A negative electrode containing an alkali metal;
A solid electrolyte membrane disposed between the positive electrode and the negative electrode and having a polymer conjugate with an imide;
An electrolytic solution interposed between at least the positive electrode and the solid electrolyte membrane;
Sulfur battery equipped with.
前記固体電解質膜は、前記結合体がポリスルホン構造とパーフルオロアルキレンスルホンイミド構造の共重合体である、請求項1に記載の硫黄電池。   2. The sulfur battery according to claim 1, wherein in the solid electrolyte membrane, the conjugate is a copolymer of a polysulfone structure and a perfluoroalkylenesulfonimide structure. 前記固体電解質膜は、前記結合体が多価のカチオンで架橋されている、請求項1又は2に記載の硫黄電池。   The sulfur battery according to claim 1 or 2, wherein the solid electrolyte membrane has the conjugate crosslinked with a multivalent cation. 硫黄を含む正極と、
アルカリ金属を含む負極と、
前記正極と前記負極との間に配置され、ホウ素を持つポリマーを有する固体電解質膜と、
少なくとも前記正極と前記固体電解質膜との間に介在する電解液と、
を備えた硫黄電池。
A positive electrode containing sulfur;
A negative electrode containing an alkali metal;
A solid electrolyte membrane disposed between the positive electrode and the negative electrode and having a polymer with boron;
An electrolytic solution interposed between at least the positive electrode and the solid electrolyte membrane;
Sulfur battery equipped with.
前記固体電解質膜は、ホウ酸エステルを持つポリマーである、請求項4に記載の硫黄電池。   The sulfur battery according to claim 4, wherein the solid electrolyte membrane is a polymer having a borate ester. 前記電解液は、ポリ硫化物イオンを含む、請求項1〜5のいずれか1項に記載の硫黄電池。   The sulfur battery according to claim 1, wherein the electrolytic solution contains polysulfide ions.
JP2009037969A 2009-02-20 2009-02-20 Sulfur battery Pending JP2010192385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037969A JP2010192385A (en) 2009-02-20 2009-02-20 Sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037969A JP2010192385A (en) 2009-02-20 2009-02-20 Sulfur battery

Publications (1)

Publication Number Publication Date
JP2010192385A true JP2010192385A (en) 2010-09-02

Family

ID=42818186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037969A Pending JP2010192385A (en) 2009-02-20 2009-02-20 Sulfur battery

Country Status (1)

Country Link
JP (1) JP2010192385A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083314A1 (en) * 2013-12-03 2015-06-11 株式会社アルバック Lithium sulfur secondary battery
JP2015531978A (en) * 2012-09-14 2015-11-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Alkali metal-chalcogen battery with low self-discharge and high cycle life and high performance
WO2017064843A1 (en) * 2015-10-14 2017-04-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN111430815A (en) * 2019-12-02 2020-07-17 蜂巢能源科技有限公司 Battery cell and preparation method and application thereof
CN114122387B (en) * 2015-10-14 2024-05-31 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531978A (en) * 2012-09-14 2015-11-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Alkali metal-chalcogen battery with low self-discharge and high cycle life and high performance
WO2015083314A1 (en) * 2013-12-03 2015-06-11 株式会社アルバック Lithium sulfur secondary battery
CN105993093A (en) * 2013-12-03 2016-10-05 株式会社爱发科 Lithium sulfur secondary battery
JPWO2015083314A1 (en) * 2013-12-03 2017-03-16 株式会社アルバック Lithium sulfur secondary battery
JPWO2017064843A1 (en) * 2015-10-14 2018-08-02 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2017064842A1 (en) * 2015-10-14 2017-04-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN108140899A (en) * 2015-10-14 2018-06-08 株式会社杰士汤浅国际 Non-aqueous electrolyte secondary battery
JPWO2017064842A1 (en) * 2015-10-14 2018-08-02 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2017064843A1 (en) * 2015-10-14 2017-04-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
EP3364486A4 (en) * 2015-10-14 2019-05-22 GS Yuasa International Ltd. Nonaqueous electrolyte secondary battery
EP3364490A4 (en) * 2015-10-14 2019-06-05 GS Yuasa International Ltd. Nonaqueous electrolyte secondary battery
US10892513B2 (en) 2015-10-14 2021-01-12 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery
US11196078B2 (en) 2015-10-14 2021-12-07 Gs Yuasa International, Ltd. Nonaqueous electrolyte secondary battery
CN114122387A (en) * 2015-10-14 2022-03-01 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery
CN114122387B (en) * 2015-10-14 2024-05-31 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery
CN111430815A (en) * 2019-12-02 2020-07-17 蜂巢能源科技有限公司 Battery cell and preparation method and application thereof
CN111430815B (en) * 2019-12-02 2022-11-22 蜂巢能源科技有限公司 Battery cell and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Gao et al. A sodium‐ion battery with a low‐cost cross‐linked gel‐polymer electrolyte
Wang et al. Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review
Li et al. Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid‐state electrolytes
Wang et al. Materials design for rechargeable metal-air batteries
He et al. Effective strategies for long-cycle life lithium–sulfur batteries
Xu et al. Recent progress in the design of advanced cathode materials and battery models for high‐performance lithium‐X (X= O2, S, Se, Te, I2, Br2) batteries
Zhang et al. Recent advances in electrolytes for lithium–sulfur batteries
Li et al. Suppressing shuttle effect using Janus cation exchange membrane for high-performance lithium–sulfur battery separator
US20150188109A1 (en) Separator for lithium-sulfur secondary battery
JP6477708B2 (en) Positive electrode for sodium ion secondary battery and sodium ion secondary battery
JP2020074477A (en) Lithium ion capacitor
JP6153124B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2016103905A1 (en) Electrolyte solution for secondary batteries, and secondary battery
WO2019132449A1 (en) Lithium secondary battery
KR20150133343A (en) Positive electrode for lithium sulfur battery and lithium sulfur battery including the same
JP2009093880A (en) Power storage device
JP2013225497A (en) Alkali metal-sulfur secondary battery
JP2007157584A (en) Electrolyte material
Tang et al. Advances in Rechargeable Li-S Full Cells
JP2010192385A (en) Sulfur battery
KR101771330B1 (en) Electrolyte and secondary battery comprising the same
JP2014007117A (en) Li BASED SECONDARY BATTERY
Wang et al. Strategies with functional materials in tackling instability challenges of non-aqueous lithium-oxygen batteries
Liao et al. A novel SiO2 nanofiber-supported organic–inorganic gel polymer electrolyte for dendrite-free lithium metal batteries
Azimi et al. Materials and technologies for rechargeable lithium–sulfur batteries