JP2010190539A - Refrigerant-to-refrigerant heat exchanger - Google Patents

Refrigerant-to-refrigerant heat exchanger Download PDF

Info

Publication number
JP2010190539A
JP2010190539A JP2009037831A JP2009037831A JP2010190539A JP 2010190539 A JP2010190539 A JP 2010190539A JP 2009037831 A JP2009037831 A JP 2009037831A JP 2009037831 A JP2009037831 A JP 2009037831A JP 2010190539 A JP2010190539 A JP 2010190539A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
heat exchanger
peripheral surface
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009037831A
Other languages
Japanese (ja)
Inventor
Kumar Dotto Oshitto
オシットクマール 努人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2009037831A priority Critical patent/JP2010190539A/en
Publication of JP2010190539A publication Critical patent/JP2010190539A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant-to-refrigerant heat exchanger maximizing a heat transfer area, improving strength of an inner pipe, and preventing vibration and noise. <P>SOLUTION: This refrigerant-to-refrigerant heat exchanger 4 includes a cylindrical outer pipe 10 having a high-temperature refrigerant inflow pipe 45a projected at one side end of an outer peripheral face, and a high-temperature refrigerant outflow pipe 14b projected at the other side end, the plurality of inner pipes 12 disposed in a state of penetrating through the outer pipe 10, and a central pipe 13 coaxial with the outer pipe 10, and disposed in a state of being joined to outer peripheral faces of the inner pipes 12, and the outer peripheral faces of the inner pipes 12 and an inner peripheral face of the outer pipe 10 are separated by a prescribed distance. The strength of the inner pipe 12 is improved by the central pipe 13, and its heat transfer area is further enlarged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷媒と冷媒との間で熱交換を行う冷媒間熱交換器に関わり、より詳細には、熱交換効率を向上させた構成に関する。   The present invention relates to an inter-refrigerant heat exchanger that performs heat exchange between refrigerants, and more particularly to a configuration that improves heat exchange efficiency.

従来の冷媒間熱交換器は、例えば特許文献1で示すように、大径の低圧側冷媒配管内に、小径の高圧側冷媒配管を一対となるように収納して、高圧冷媒と低圧冷媒の熱交換を行う冷媒間熱交換器としての液ガス熱交換器を構成している。ヒートポンプ給湯装置のヒートポンプユニットは、圧縮機、ガスクーラ、減圧機構である膨張弁、蒸発器を順次、接続して冷媒回路を構成し、ガスクーラから膨張弁へ供給される高圧冷媒と、蒸発器から圧縮機へ供給される低圧冷媒の間で冷媒間熱交換を行うよう、上記した液ガス熱交換器を設けている。   A conventional inter-refrigerant heat exchanger, for example, as shown in Patent Document 1, stores a pair of small-diameter high-pressure refrigerant pipes in a large-diameter low-pressure refrigerant pipe so that a pair of high-pressure refrigerant and low-pressure refrigerant is contained. A liquid gas heat exchanger is configured as an inter-refrigerant heat exchanger that performs heat exchange. The heat pump unit of the heat pump hot water supply device is composed of a compressor, a gas cooler, an expansion valve that is a decompression mechanism, and an evaporator in sequence to form a refrigerant circuit, and a high-pressure refrigerant that is supplied from the gas cooler to the expansion valve and a compressor that compresses The liquid gas heat exchanger described above is provided so as to perform heat exchange between refrigerants between the low-pressure refrigerants supplied to the machine.

しかしながら、大径の低圧側冷媒配管内に小径の高圧側冷媒配管を一対となるように収納することにより、高圧側冷媒配管が周囲を流れる液状冷媒に影響を受けて振動、騒音を生じる虞があり、また、高圧側冷媒配管内を流れるガス状冷媒から、低圧側冷媒配管を流れる液状冷媒に対しての伝熱面積が高圧側冷媒配管の管表面積に限定され、伝熱効率を向上させることが望まれていた。   However, by storing a pair of small-diameter high-pressure refrigerant pipes in a large-diameter low-pressure refrigerant pipe in a pair, there is a risk that the high-pressure refrigerant pipe will be affected by the liquid refrigerant flowing around it and generate vibration and noise. In addition, the heat transfer area from the gaseous refrigerant flowing in the high-pressure side refrigerant pipe to the liquid refrigerant flowing in the low-pressure side refrigerant pipe is limited to the pipe surface area of the high-pressure side refrigerant pipe, which can improve the heat transfer efficiency. It was desired.

特開2008−224073号(7頁、図1)JP 2008-224073 (page 7, FIG. 1)

本発明は、上記問題点に鑑み、熱交換を行う伝熱面積を極力拡大するとともに、大径の配管内に配置される小径の配管の強度を向上させて、振動、騒音を抑制することのできる冷媒間熱交換器を提供することを目的とする。   In view of the above problems, the present invention expands the heat transfer area for heat exchange as much as possible and improves the strength of a small-diameter pipe arranged in a large-diameter pipe to suppress vibration and noise. It aims at providing the heat exchanger between refrigerant | coolants which can be performed.

本発明は、上記課題を解決するため、一端部に冷媒流入管を設け、他端部に冷媒流出管を設け、前記冷媒流入管から流入した冷媒を、前記冷媒流出管に流通させる外管と、同外管内に設けられ、同外管内を流れる冷媒と熱交換を行う冷媒を流通させる複数の内管及び前記外管内の冷媒が流通する中央管とからなり、前記内管の外周面と前記外管との内周面とは離間されるとともに、複数の前記内管の外周面と前記中央管の外周面とが接合されてなる構成となっている。   To solve the above problems, the present invention provides a refrigerant inflow pipe at one end, a refrigerant outflow pipe at the other end, and an outer pipe for circulating the refrigerant flowing from the refrigerant inflow pipe to the refrigerant outflow pipe; A plurality of inner pipes that are provided in the outer pipe and circulate a refrigerant that exchanges heat with the refrigerant that flows in the outer pipe and a central pipe through which the refrigerant in the outer pipe flows, and the outer peripheral surface of the inner pipe and the While being spaced apart from the inner peripheral surface with the outer tube, the outer peripheral surface of the plurality of inner tubes and the outer peripheral surface of the central tube are joined.

また、圧縮機と、熱源側熱交換器と、冷媒間熱交換器と、主減圧手段と、利用側熱交換器とを順次接続するとともに、前記冷媒間熱交換器と前記主減圧手段との間から分岐したバイパス管を設け、同バイパス管を副減圧手段を介して前記冷媒間熱交換器を通過させ、前記圧縮機の吸込側に接続してなる冷媒回路において、前記冷媒間熱交換器が、一端部に冷媒流入管を設け、他端部に冷媒流出管を設けた外管と、同外管内に設けられ、同外管の内周面とは離間された複数の内管及び同内管の外周面と接合され、前記外管内の冷媒が流通する中央管とからなり、前記外管に、前記室外熱交換器から流出し、前記主減圧手段に流入する高温の冷媒を流通させる一方、前記内管に、前記副減圧手段から流出し、前記圧縮機の吸込側に流出する前記バイパス管の冷媒を流通させてなる構成となっている。   Further, the compressor, the heat source side heat exchanger, the inter-refrigerant heat exchanger, the main decompression means, and the use side heat exchanger are sequentially connected, and the inter-refrigerant heat exchanger and the main decompression means In the refrigerant circuit formed by providing a bypass pipe branched from the passage, passing the bypass pipe through the inter-refrigerant heat exchanger via a sub-pressure reduction means, and connecting to the suction side of the compressor, the inter-refrigerant heat exchanger However, an outer pipe having a refrigerant inflow pipe at one end and a refrigerant outflow pipe at the other end, and a plurality of inner pipes provided in the outer pipe and spaced apart from the inner peripheral surface of the outer pipe. It consists of a central tube joined to the outer peripheral surface of the inner tube and through which the refrigerant in the outer tube flows. The high-temperature refrigerant flowing out from the outdoor heat exchanger and flowing into the main decompression means flows through the outer tube. On the other hand, the bar that flows out from the sub-pressure reducing means to the inner pipe and flows out to the suction side of the compressor. It has a configuration comprising by circulating a coolant path tube.

請求項1記載の発明によれば、複数の内管の外周面と中央管の外周面とが接合されることにより、内管の強度を向上させて、振動、騒音の発生を防止できるようになっている。   According to the first aspect of the present invention, the outer peripheral surface of the plurality of inner pipes and the outer peripheral surface of the central pipe are joined, so that the strength of the inner pipe can be improved and the generation of vibration and noise can be prevented. It has become.

請求項2記載の発明によれば、外管内を流れる高温の冷媒が、内管内を流れる冷媒と、外気とに放熱するので、室外熱交換器から流出し主減圧手段に流入する冷媒を効率的に冷却することができるようになっている。   According to the invention described in claim 2, since the high-temperature refrigerant flowing in the outer pipe dissipates heat to the refrigerant flowing in the inner pipe and the outside air, the refrigerant flowing out of the outdoor heat exchanger and flowing into the main decompression means is efficiently used. It can be cooled down.

本発明による冷媒間熱交換器を使用した一例としての冷媒回路である。It is a refrigerant circuit as an example using the heat exchanger between refrigerants by the present invention. 本発明による冷媒間熱交換器の断面図及び要部断面図である。It is sectional drawing and principal part sectional drawing of the heat exchanger between refrigerant | coolants by this invention.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings.

本発明による冷媒間熱交換器を用いた冷媒回路として、例えば図1で示す冷媒回路1は、圧縮機2と、室外熱交換器3と、冷媒間熱交換器4と、主膨張弁5と、室内熱交換器6とを配管8により順次接続するとともに、冷媒間熱交換器4と主膨張弁5との間から、副膨張弁7を備えたバイパス管9を分岐させている。同バイパス管9は副膨張弁7を経た後、冷媒間熱交換器4を通り、圧縮機2の吸込側となる圧縮機2と室内熱交換器6との間に接続されている。   As a refrigerant circuit using the inter-refrigerant heat exchanger according to the present invention, for example, a refrigerant circuit 1 shown in FIG. 1 includes a compressor 2, an outdoor heat exchanger 3, an inter-refrigerant heat exchanger 4, and a main expansion valve 5. The indoor heat exchanger 6 is sequentially connected by a pipe 8, and a bypass pipe 9 including a sub expansion valve 7 is branched from between the inter-refrigerant heat exchanger 4 and the main expansion valve 5. The bypass pipe 9 passes through the sub-expansion valve 7, passes through the inter-refrigerant heat exchanger 4, and is connected between the compressor 2 on the suction side of the compressor 2 and the indoor heat exchanger 6.

圧縮機2で圧縮され高温高圧となった冷媒は室外熱交換器3に流入して、同室外熱交換器3の周囲を流れる空気に放熱して凝縮する。凝縮した冷媒は冷媒間熱交換器4で、後述するようにバイパス管9を流れる冷媒により冷却されて過冷却状態となり、主膨張弁5で減圧されて更に低温低圧の冷媒となる。低温低圧となった冷媒は室内熱交換器6に流入して、同室内熱交換器6の周囲を流れる空気から吸熱して蒸発し、蒸発した冷媒は圧縮機2に還流するようになっている。   The refrigerant that has been compressed by the compressor 2 to become high temperature and high pressure flows into the outdoor heat exchanger 3, and dissipates heat to the air flowing around the outdoor heat exchanger 3 to condense. The condensed refrigerant is cooled in the inter-refrigerant heat exchanger 4 by the refrigerant flowing through the bypass pipe 9 as described later, and becomes a supercooled state, and is depressurized by the main expansion valve 5 to become a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant flows into the indoor heat exchanger 6, absorbs heat from the air flowing around the indoor heat exchanger 6 and evaporates, and the evaporated refrigerant returns to the compressor 2. .

冷媒間熱交換器4からバイパス管9に分岐した冷媒は副膨張弁7で減圧されて低温低圧となり冷媒間熱交換器4に流入して、配管8から流れてきた凝縮冷媒と熱交換し、その後、圧縮機2の吸込側に還流する。冷媒間熱交換器4でバイパス管9内を流れる冷媒と熱交換した冷媒は、主膨張弁5で減圧された後、室内熱交換器6に流入する。   The refrigerant branched from the inter-refrigerant heat exchanger 4 to the bypass pipe 9 is depressurized by the sub-expansion valve 7, becomes low temperature and low pressure, flows into the inter-refrigerant heat exchanger 4, and exchanges heat with the condensed refrigerant flowing from the pipe 8. Then, it recirculates to the suction side of the compressor 2. The refrigerant having exchanged heat with the refrigerant flowing in the bypass pipe 9 by the inter-refrigerant heat exchanger 4 is decompressed by the main expansion valve 5 and then flows into the indoor heat exchanger 6.

次に、上記した冷媒間熱交換器4について説明する。冷媒間熱交換器4は図2(A)の断面図及び図2(B)の要部断面図で示すように、円筒形状の外管10と、同外管10を貫通するように配置された複数の内管12と、外管10と同軸上となるとともに、内管12の外周面と接合するように配置された中央管13とから構成されている。内管12の外周面と中央管13の外周面とを接合することにより、離間されて配置された複数の内管12の強度を向上させることができ、外管10内を流れる高圧の冷媒により、内管12に振動とともに、これに起因する騒音の発生等を極力、防止することができるようになっている。   Next, the above-described refrigerant heat exchanger 4 will be described. The inter-refrigerant heat exchanger 4 is disposed so as to penetrate the cylindrical outer tube 10 and the outer tube 10 as shown in the cross-sectional view of FIG. 2A and the main-part cross-sectional view of FIG. A plurality of inner pipes 12 and a central pipe 13 that is coaxial with the outer pipe 10 and that is disposed so as to be joined to the outer peripheral surface of the inner pipe 12. By joining the outer peripheral surface of the inner tube 12 and the outer peripheral surface of the central tube 13, it is possible to improve the strength of the plurality of spaced apart inner tubes 12, and the high-pressure refrigerant flowing in the outer tube 10 In addition to the vibration in the inner tube 12, the generation of noise caused by this can be prevented as much as possible.

外管10は外周面の一側端部に高温冷媒流入管14aを突設させ、他側端部に高温冷媒流出管14bを突設させている。高温冷媒流入管14aには、例えば冷媒回路1において、室外熱交換器3に接続された配管8の一端が接続され、高温冷媒流出管15bには主膨張弁5に接続された配管8の一端が接続されており、室外熱交換器3において放熱することにより凝縮した冷媒は、高温冷媒流入管14aから外管10内に流入し同外管10内で熱交換された後、高温冷媒流出管14bから流出して主膨張弁5に向かうようになっている。   The outer pipe 10 has a high-temperature refrigerant inflow pipe 14a projecting from one end of the outer peripheral surface and a high-temperature refrigerant outflow pipe 14b projecting from the other end. For example, in the refrigerant circuit 1, one end of a pipe 8 connected to the outdoor heat exchanger 3 is connected to the high-temperature refrigerant inflow pipe 14a, and one end of the pipe 8 connected to the main expansion valve 5 is connected to the high-temperature refrigerant outflow pipe 15b. The refrigerant condensed by radiating heat in the outdoor heat exchanger 3 flows into the outer pipe 10 from the high-temperature refrigerant inflow pipe 14a and is heat-exchanged in the outer pipe 10, and then the high-temperature refrigerant outflow pipe It flows out of 14b and goes to the main expansion valve 5.

低温冷媒が流通する内管12は熱伝導性の高い銅材あるいは銅合金からなり、図2(B)で示すように、外管10内において、円周上に均等となるように3本配置されており、また、内管12の外周面と外管10との内周面とは所定距離、離間されている。内管12の一端部は半円錐状に形成されたヘッダ11aの一側に接続され、同ヘッダ11aの他側には、副膨張弁7に接続されたバイパス管9の一端が接続されている。内管12の他端部は、同様に半円錐状に形成されたヘッダ11bの一側に接続され、同ヘッダ11bの他側には、圧縮機2の吸込側に接続されたバイパス管9の一端が接続されている。   The inner pipe 12 through which the low-temperature refrigerant flows is made of a copper material or a copper alloy having high thermal conductivity, and as shown in FIG. 2 (B), three inner pipes 12 are arranged so as to be even on the circumference in the outer pipe 10. In addition, the outer peripheral surface of the inner tube 12 and the inner peripheral surface of the outer tube 10 are separated by a predetermined distance. One end of the inner pipe 12 is connected to one side of a header 11a formed in a semiconical shape, and one end of a bypass pipe 9 connected to the sub-expansion valve 7 is connected to the other side of the header 11a. . The other end of the inner pipe 12 is connected to one side of a header 11b similarly formed in a semiconical shape, and a bypass pipe 9 connected to the suction side of the compressor 2 is connected to the other side of the header 11b. One end is connected.

バイパス管9に流入し副膨張弁7により低温低圧となった冷媒はヘッダ11aに流入し、同ヘッダ11a内で拡散することにより攪拌されて均一な温度となる。均一な温度となった冷媒は3本の内管12に流入し、これを流通することにより外管10内を流れる高温の冷媒と熱交換して、高温の冷媒を冷却した後、ヘッダ11bに流出するようになっている。ヘッダ11bに流出した冷媒は配管9により圧縮機2の吸込側へ還流するようになっている。   The refrigerant that has flowed into the bypass pipe 9 and has become low temperature and low pressure by the sub-expansion valve 7 flows into the header 11a and is diffused in the header 11a to be agitated to a uniform temperature. The refrigerant having a uniform temperature flows into the three inner pipes 12 and circulates them to exchange heat with the high-temperature refrigerant flowing in the outer pipe 10 to cool the high-temperature refrigerant, and then to the header 11b. It comes to leak. The refrigerant that has flowed out of the header 11b is returned to the suction side of the compressor 2 through the pipe 9.

上記したように、3本の内管12の内方には、内管12と同様に熱伝導性の高い銅材あるいは銅合金からなり、口径の大きい中央管13が配設され、同中央管13の外周面と内管12の外周面とは接合されるとともに、接合部周辺の隙間には熱伝導性の高い接合材15が埋め込まれている。同接合材15により内管12と中央管13との外周面は接合されるとともに、伝熱面積を増大させるようになっている。   As described above, inside the three inner pipes 12, a central pipe 13 made of a copper material or a copper alloy having a high thermal conductivity and having a large diameter is disposed similarly to the inner pipe 12. The outer peripheral surface of 13 and the outer peripheral surface of the inner tube 12 are bonded together, and a bonding material 15 having high thermal conductivity is embedded in the gap around the bonded portion. The joint material 15 joins the outer peripheral surfaces of the inner tube 12 and the central tube 13 and increases the heat transfer area.

3本の内管12の管壁と、これらより口径の大きい中央管13の管壁とが接合されることにより、内管12の管表面積による伝熱面積に、口径の大きい中央管13の管表面積による伝熱面積が加わり、伝熱面積を拡大できるようになっている。また、内管12と中央管13の接合部周辺の隙間には熱伝導性の高い接合材15が埋め込まれていることにより、内管12からの熱が効率良く中央管13に伝達されるようになっている。   By joining the tube walls of the three inner tubes 12 and the tube wall of the central tube 13 having a larger diameter than these, the heat transfer area due to the surface area of the inner tube 12 is increased. Heat transfer area due to surface area is added, and heat transfer area can be expanded. Further, since the bonding material 15 having high thermal conductivity is embedded in the gap around the joint portion between the inner tube 12 and the central tube 13, the heat from the inner tube 12 is efficiently transmitted to the central tube 13. It has become.

内管12内を流通する低温の冷媒が、内管12の管表面と中央管13の管表面とを介して、これらの外周部を流れる高温の冷媒と熱交換し、同高温の冷媒を冷却するとともに、中央管13内部を流れる冷媒も冷却することにより、効率的な熱交換が行われるようになっている。   The low-temperature refrigerant flowing through the inner pipe 12 exchanges heat with the high-temperature refrigerant flowing through the outer peripheral portion of the inner pipe 12 and the pipe surface of the central pipe 13 to cool the high-temperature refrigerant. At the same time, the refrigerant flowing inside the central tube 13 is also cooled, so that efficient heat exchange is performed.

また、内管12の外周面と、外管10の内周面とが密着されず、離間されていることにより、外管10の管壁から内管12への熱の侵入を極力防ぐようになっており、熱の侵入等による外乱を抑制して、冷媒間熱交換器4に予め設定された冷媒間の熱交換量を充分に遂行することができるようになっている。また、内管12に低温の冷媒を流し、外管10に高温の冷媒を流すことにより、内管12を覆う外管10から効率的に熱が移動し、熱交換効率が向上するようになっている。   In addition, the outer peripheral surface of the inner tube 12 and the inner peripheral surface of the outer tube 10 are not in close contact with each other and are separated from each other so as to prevent heat from entering the inner tube 12 from the tube wall of the outer tube 10 as much as possible. Thus, disturbance due to heat intrusion or the like is suppressed, and the amount of heat exchange between refrigerants preset in the inter-refrigerant heat exchanger 4 can be sufficiently performed. Further, by flowing a low-temperature refrigerant through the inner tube 12 and flowing a high-temperature refrigerant through the outer tube 10, heat is efficiently transferred from the outer tube 10 covering the inner tube 12, and the heat exchange efficiency is improved. ing.

また、外管10内を流れる冷媒から内管12内を流れる冷媒への熱伝達効率を良くするために、内管12の表面形状を、冷媒との接触面積が増加するように変更することが考えられるが、本発明によれば、複数の内管12にコスト増に がる螺旋形状や溝形状を設けることなく、単体の中央管13の外周面あるいは内周面を変更するのみで、外管10内を流れる冷媒と内管12内を流れる冷媒との間で熱交換能力を向上させることができるようになっている。また、外管10内に高温の冷媒を流すことにより、外管10の外部へも高温の冷媒から放熱することができるようになっている。   Further, in order to improve the heat transfer efficiency from the refrigerant flowing in the outer pipe 10 to the refrigerant flowing in the inner pipe 12, the surface shape of the inner pipe 12 may be changed so that the contact area with the refrigerant increases. Although it is conceivable, according to the present invention, the outer peripheral surface or the inner peripheral surface of the single central tube 13 can be changed only by changing the outer peripheral surface or the inner peripheral surface of the single central tube 13 without providing the plurality of inner tubes 12 with a spiral shape or groove shape that increases the cost. Heat exchange capability can be improved between the refrigerant flowing through the pipe 10 and the refrigerant flowing through the inner pipe 12. In addition, by flowing a high-temperature refrigerant through the outer tube 10, heat can be radiated from the high-temperature refrigerant to the outside of the outer tube 10.

1 冷媒回路
2 圧縮機
3 室外熱交換器
4 冷媒間熱交換器
5 主膨張弁
6 室内熱交換器
7 副膨張弁
8 配管
9 バイパス管
10 外管
11a、11b ヘッダ
12 内管
13 中央管
14a 高温冷媒流入管
14b 高温冷媒流出管
15 接合材
DESCRIPTION OF SYMBOLS 1 Refrigerant circuit 2 Compressor 3 Outdoor heat exchanger 4 Refrigerant heat exchanger 5 Main expansion valve 6 Indoor heat exchanger 7 Sub expansion valve 8 Pipe 9 Bypass pipe 10 Outer pipe 11a, 11b Header 12 Inner pipe 13 Central pipe 14a High temperature Refrigerant inflow pipe 14b High temperature refrigerant outflow pipe 15

Claims (2)

一端部に冷媒流入管を設け、他端部に冷媒流出管を設け、前記冷媒流入管から流入した冷媒を、前記冷媒流出管に流通させる外管と、同外管内に設けられ、同外管内を流れる冷媒と熱交換を行う冷媒を流通させる複数の内管及び前記外管内の冷媒が流通する中央管とからなり、
前記内管の外周面と前記外管との内周面とは離間されるとともに、複数の前記内管の外周面と前記中央管の外周面とが接合されてなることを特徴とする冷媒間熱交換器。
A refrigerant inflow pipe is provided at one end, a refrigerant outflow pipe is provided at the other end, an outer pipe that circulates the refrigerant flowing from the refrigerant inflow pipe to the refrigerant outflow pipe, and the outer pipe is provided in the outer pipe. A plurality of inner pipes that circulate a refrigerant that exchanges heat with the refrigerant that flows through and a central pipe through which the refrigerant in the outer pipe circulates,
The outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube are separated from each other, and the outer peripheral surface of the plurality of inner tubes and the outer peripheral surface of the central tube are joined together. Heat exchanger.
圧縮機と、熱源側熱交換器と、冷媒間熱交換器と、主減圧手段と、利用側熱交換器とを順次接続するとともに、前記冷媒間熱交換器と前記主減圧手段との間から分岐したバイパス管を設け、同バイパス管を副減圧手段を介して前記冷媒間熱交換器を通過させ、前記圧縮機の吸込側に接続してなる冷媒回路において、
前記冷媒間熱交換器が、一端部に冷媒流入管を設け、他端部に冷媒流出管を設けた外管と、同外管内に設けられ、同外管の内周面とは離間された複数の内管及び同内管の外周面と接合され、前記外管内の冷媒が流通する中央管とからなり、
前記外管に、前記室外熱交換器から流出し、前記主減圧手段に流入する高温の冷媒を流通させる一方、前記内管に、前記副減圧手段から流出し、前記圧縮機の吸込側に流出する前記バイパス管の冷媒を流通させてなることを特徴とする冷媒回路。
A compressor, a heat source side heat exchanger, an inter-refrigerant heat exchanger, a main decompression unit, and a use-side heat exchanger are sequentially connected, and between the inter-refrigerant heat exchanger and the main decompression unit. In the refrigerant circuit formed by providing a branched bypass pipe, allowing the bypass pipe to pass through the inter-refrigerant heat exchanger via a sub-decompression unit, and connecting to the suction side of the compressor,
The inter-refrigerant heat exchanger is provided in the outer pipe with the refrigerant inflow pipe provided at one end and the refrigerant outflow pipe at the other end, and is separated from the inner peripheral surface of the outer pipe. A plurality of inner pipes and a central pipe that is joined to the outer peripheral surface of the inner pipe and through which the refrigerant in the outer pipe flows,
A high-temperature refrigerant flowing out from the outdoor heat exchanger and flowing into the main pressure reducing means flows through the outer pipe, while flowing out from the auxiliary pressure reducing means into the inner pipe and flows out to the suction side of the compressor A refrigerant circuit in which the refrigerant in the bypass pipe is circulated.
JP2009037831A 2009-02-20 2009-02-20 Refrigerant-to-refrigerant heat exchanger Pending JP2010190539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037831A JP2010190539A (en) 2009-02-20 2009-02-20 Refrigerant-to-refrigerant heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037831A JP2010190539A (en) 2009-02-20 2009-02-20 Refrigerant-to-refrigerant heat exchanger

Publications (1)

Publication Number Publication Date
JP2010190539A true JP2010190539A (en) 2010-09-02

Family

ID=42816772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037831A Pending JP2010190539A (en) 2009-02-20 2009-02-20 Refrigerant-to-refrigerant heat exchanger

Country Status (1)

Country Link
JP (1) JP2010190539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150031578A (en) * 2013-09-16 2015-03-25 엘지전자 주식회사 An air conditioner
KR20150039989A (en) * 2013-10-04 2015-04-14 엘지전자 주식회사 An air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197975U (en) * 1987-06-08 1988-12-20
JP2001355924A (en) * 2001-06-25 2001-12-26 Daikin Ind Ltd Air conditioner
JP2002162177A (en) * 2000-11-27 2002-06-07 Kanagawa Prefecture Heat exchanger element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197975U (en) * 1987-06-08 1988-12-20
JP2002162177A (en) * 2000-11-27 2002-06-07 Kanagawa Prefecture Heat exchanger element
JP2001355924A (en) * 2001-06-25 2001-12-26 Daikin Ind Ltd Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150031578A (en) * 2013-09-16 2015-03-25 엘지전자 주식회사 An air conditioner
KR102136878B1 (en) * 2013-09-16 2020-07-23 엘지전자 주식회사 An air conditioner
KR20150039989A (en) * 2013-10-04 2015-04-14 엘지전자 주식회사 An air conditioner
KR102136749B1 (en) * 2013-10-04 2020-08-13 엘지전자 주식회사 An air conditioner

Similar Documents

Publication Publication Date Title
JP3948475B2 (en) Air conditioner
JP2007071519A (en) Cooling system
JP6042026B2 (en) Refrigeration cycle equipment
JP2007232282A (en) Heat pump type water heater
JP2009109062A (en) Refrigerating cycle device using four-way switch valve
JP2009133593A (en) Cooling apparatus
JP5636871B2 (en) Refrigeration equipment
KR101309312B1 (en) Double-pipe heat exchanger and method of maufacturing the same
JP2007178090A (en) Heat pump-type water heater
JP6368205B2 (en) Heat pump system
JP6104378B2 (en) Air conditioner
JP2010190539A (en) Refrigerant-to-refrigerant heat exchanger
JP2010230256A (en) Refrigerant-to-refrigerant heat exchanger
JP2003279275A (en) Heat exchanger and refrigerating cycle device using this heat exchanger
JP2008051370A (en) Water cooling type refrigerating system and cold storage equipped with the same
JP2010121844A (en) Refrigerating cycle device
JP2012237518A (en) Air conditioner
JP2012057849A (en) Heat transfer tube, heat exchanger, and refrigerating cycle device
JP2005265269A (en) Heat exchange pipe for refrigerating cycle
JP2008309443A (en) Heat transfer pipe connecting structure
JP2019113239A (en) Air conditioning equipment
JP2007278541A (en) Cooling system
JP2003314927A (en) Heat exchanger and refrigerating cycle device using the same
JP2007078275A (en) Heat exchanger for stirling refrigerating machine
JP5163549B2 (en) Inter-refrigerant heat exchanger and refrigerant circuit using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110331

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120723

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Effective date: 20121204

Free format text: JAPANESE INTERMEDIATE CODE: A02