JP2010189757A - Thin film production method and thin film production device - Google Patents

Thin film production method and thin film production device Download PDF

Info

Publication number
JP2010189757A
JP2010189757A JP2009165501A JP2009165501A JP2010189757A JP 2010189757 A JP2010189757 A JP 2010189757A JP 2009165501 A JP2009165501 A JP 2009165501A JP 2009165501 A JP2009165501 A JP 2009165501A JP 2010189757 A JP2010189757 A JP 2010189757A
Authority
JP
Japan
Prior art keywords
substrate
thin film
storage means
film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009165501A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimizu
均 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2009165501A priority Critical patent/JP2010189757A/en
Publication of JP2010189757A publication Critical patent/JP2010189757A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film production method and a thin film production device by which unideposit film deposition can be perdeposited so as to achieve quality control. <P>SOLUTION: In the thin film production method, a thin film deposition means, by which two or more kinds of thin films are selectively deposited on the main face of the substrate S while feeding the substrate S from either of the first substrate storage means 1 or the second substrate storage means 2 to the other, is arranged between a first substrate storage means 1 and a second substrate storage means 2 each storing a belt-like substrate, and the feeding direction of the substrate S is reversed for every time of depositing one layer of the thin films, further, the kind of the thin films is changed, and two or more kinds of thin films are successively laminated on the main face. The substrate storage means 1, 2 are provided with detection parts 7A, 7B detecting the thin film deposited on the belt-like substrate S, a film quality evaluation calculating part 8 where the film quality of the thin film detected by the detection parts 7A, 7B is evaluated, and a suitable interelectrode spacing is calculated is provided, and the interelectrode is controlled by an interelectrode command control part 9 by the calculated result of the film quality evaluation calculating part 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、膜質を評価して電極間隔を制御することができる薄膜製造方法および薄膜製造装置に関する。   The present invention relates to a thin film manufacturing method and a thin film manufacturing apparatus capable of controlling film spacing by evaluating film quality.

従来、非晶質(アモルファス)太陽電池の薄膜層を連続的に成膜する所謂、CVD装置として図4に示すようなロール・ツー・ロール型プラズマCVD装置が知られている。このCVD装置は、左右にそれぞれロール仕込み室10Aおよびロール取り出し室10Bを備え、ロール仕込み室10Aから送り出された基板Sに沿って、N型層、I型層、P型層の薄膜層を形成するための成膜室11A〜11Cを配置して構成されている。   Conventionally, a roll-to-roll type plasma CVD apparatus as shown in FIG. 4 is known as a so-called CVD apparatus for continuously forming a thin film layer of an amorphous solar cell. This CVD apparatus includes a roll preparation chamber 10A and a roll removal chamber 10B on the left and right sides, and forms N-type, I-type, and P-type thin film layers along the substrate S sent out from the roll preparation chamber 10A. The film forming chambers 11A to 11C for performing the above are arranged.

前記各成膜室11A〜11Cには、接地電極30A及び高周波電極30Bが配置され、これら電極間に形成される高周波電界により導入口30Cから成膜室11A〜11Cに導入された反応ガスを励起してプラズマ状態にする。反応が済んだ不要なガスは排気口30Dから外部に排気される。各成膜室11A〜11Cには、成膜する薄膜層の種類に応じて反応ガスが導入される。   In each of the film forming chambers 11A to 11C, a ground electrode 30A and a high frequency electrode 30B are arranged, and a reactive gas introduced into the film forming chambers 11A to 11C from the introduction port 30C is excited by a high frequency electric field formed between these electrodes. To a plasma state. Unnecessary gas after the reaction is exhausted to the outside through the exhaust port 30D. A reactive gas is introduced into each of the film forming chambers 11A to 11C according to the type of thin film layer to be formed.

この従来の装置を用いて、基板Sの主面に対して、N型層、I型層、P型層の薄膜層をこの順に積層させる場合、ロール仕込み室10Aに近い成膜室から順にN型層、I型層、P型層を成膜するための反応ガスを導入する。そして、ロール仕込み室10Aに収納された基板を送り出して、まず、N型の非晶質シリコン層を形成するための成膜室11Aを通過させる。N型層が成膜された基板領域は、続いてI型層を成膜するための成膜室11Bに導かれて、先のN型層に積層してI型層が成膜される。このN型層とI型層が積層された基板領域は、続いてP型層を成膜するための成膜室11Cに導かれて、先のN型層に積層してP型層が成膜される。以上により、N型層、I型層、P型層の各層が順次積層して成膜される。   When the conventional apparatus is used to stack the N-type layer, the I-type layer, and the P-type thin film layer in this order on the main surface of the substrate S, N layers are sequentially formed from the film formation chamber close to the roll preparation chamber 10A. A reaction gas for forming the mold layer, the I-type layer, and the P-type layer is introduced. Then, the substrate stored in the roll preparation chamber 10A is sent out, and first passes through the film formation chamber 11A for forming the N-type amorphous silicon layer. The substrate region on which the N-type layer is formed is then led to the film formation chamber 11B for forming the I-type layer, and is laminated on the previous N-type layer to form the I-type layer. The substrate region where the N-type layer and the I-type layer are laminated is then led to the film formation chamber 11C for forming the P-type layer, and is laminated on the previous N-type layer to form the P-type layer. Be filmed. As described above, the N-type layer, the I-type layer, and the P-type layer are sequentially stacked.

しかしながら、この従来例による装置によれば、N型層、I型層、P型層の薄膜層を形成するために3室の成膜室を必要とするため、積層数に比例した数の成膜室を必要とする。このため、積層数が増加すると、装置が大型化するとともに、装置のコストの増加を招く。
このように、従来の太陽電池を形成する成膜は多室、分離での真空プロセスであって、単膜毎の薄膜評価をすることが困難であり、成膜条件に評価結果をフィードバックすることが出来ずに生産の安定性が低下し、歩留まりが低下する要因となり、対策が必要となっていた。
However, according to this conventional apparatus, three film forming chambers are required to form the N-type layer, I-type layer, and P-type thin film layer. Requires a membrane chamber. For this reason, when the number of stacked layers increases, the size of the device increases and the cost of the device increases.
As described above, film formation for forming a conventional solar cell is a multi-chamber, separate vacuum process, and it is difficult to evaluate a thin film for each single film, and the evaluation result is fed back to film formation conditions. As a result, the stability of production declined and the yield decreased, and countermeasures were required.

そこで、ロール基板を収納した第1のロール基板収納室と第2のロール基板収納室の間に1つの成膜室を配設し、帯状のロール基板の送り出し方向を反転させて、種類の異なる薄膜を成形するようにした先行技術が知られている(特許文献1参照)。   Therefore, one film forming chamber is provided between the first roll substrate storage chamber and the second roll substrate storage chamber storing the roll substrate, and the feeding direction of the belt-shaped roll substrate is reversed, so that the types are different. A prior art in which a thin film is formed is known (see Patent Document 1).

しかしながら、この先行技術によると、ロール基板の送り出し方向を第1のロール基板収納室から送り出す場合と、第2のロール基板収納室から送り出す場合とで、同じ速度で同じ条件で送り出していた。このため、成膜室の条件によって膜質に斑が発生し、品質管理の低下を来たすことになっていた。   However, according to this prior art, when the feed direction of the roll substrate is sent out from the first roll substrate storage chamber and when the roll substrate is sent out from the second roll substrate storage chamber, the roll substrate is sent out at the same speed and under the same conditions. For this reason, unevenness occurs in the film quality depending on the conditions of the film forming chamber, resulting in a decrease in quality control.

特開平10−22518号公報Japanese Patent Laid-Open No. 10-22518

太陽電池の高効率化を図るため、光の長波長領域の吸収を広げる微結晶シリコン膜を用いた太陽電池の実用化が進んでいる。微結晶シリコン膜を用いた太陽電池は微結晶シリコン膜の膜厚が厚くなるほか、膜の積層数が多くなることから太陽電池を形成する膜の膜厚合計が従来の太陽電池に比べ約7倍必要となり、膜応力によって電極から膜が剥がれ、太陽電池の品質に影響する。このように太陽電池を製造する成膜装置の課題として電極のメンテナンスが挙げられる。電極メンテナンスは、通常、電極に付着する膜の膜厚が200μmであり、この値を目安に電極の交換、膜除去作業が行われ、この頻度によって稼働率が左右され、最終的に生産能力に影響する。このため、生産能力を上げる手段として多くの場合、電極数を増やしたり、拡大したりする。そのため、装置のフットプリントが大きくなるほか、装置コストが掛かる問題がある。また、稼働率を上げる技術としてドライクリーニングがある。ドライクリーニングは大気暴露せず、プラズマ中に反応ガスを導入し、エッチングして電極に付着した膜を除去する方法である。真空を維持しながら電極を継続して使用できる長所はあるが、ドライクリーニングに使用する反応ガスが安全から見て危険性が高いこと、環境の観点からは地球環境に対する負荷が大きく、この課題に対する予防付帯設備のコストが大きくなる問題がある。
本発明は、成膜室で成膜されたロール基板の膜質を検出し、この膜質を評価して成膜室の電極間隔を制御して均一の成膜を行い品質管理の向上を図ることができる薄膜製造方法および薄膜製造装置を提供することを目的とする。
In order to increase the efficiency of solar cells, solar cells using a microcrystalline silicon film that spreads light in the long wavelength region are being put into practical use. In the solar cell using the microcrystalline silicon film, the thickness of the microcrystalline silicon film is increased, and the number of laminated layers is increased, so that the total thickness of the film forming the solar cell is about 7 compared to the conventional solar cell. The film is peeled off from the electrode due to the film stress, which affects the quality of the solar cell. Thus, the maintenance of an electrode is mentioned as the subject of the film-forming apparatus which manufactures a solar cell. In electrode maintenance, the film thickness of the film attached to the electrode is usually 200 μm, and electrode replacement and film removal work is performed using this value as a guide. The operating rate depends on this frequency, and ultimately the production capacity is affected. Affect. For this reason, in many cases, the number of electrodes is increased or expanded as means for increasing the production capacity. For this reason, there is a problem that the footprint of the apparatus is increased and the apparatus cost is increased. There is also dry cleaning as a technique for increasing the operating rate. Dry cleaning is a method in which a reactive gas is introduced into plasma without being exposed to the atmosphere, and etching is performed to remove a film attached to an electrode. Although there is an advantage that the electrode can be used continuously while maintaining a vacuum, the reaction gas used for dry cleaning is highly dangerous from the viewpoint of safety, and from the environmental point of view, the burden on the global environment is large. There is a problem that the cost of preventive incidental equipment increases.
The present invention can detect the film quality of the roll substrate formed in the film formation chamber, evaluate the film quality, control the electrode spacing in the film formation chamber, and perform uniform film formation to improve quality control. An object of the present invention is to provide a thin film manufacturing method and a thin film manufacturing apparatus.

本発明は、上記課題を解決するため、帯状の基板の一端側を収納する第1の基板収納手段と前記帯状の基板の他端側を収納する第2の基板収納手段との間に、前記第1の基板収納手段と第2の基板収納手段の一方から他方に向けて前記基板を送り出しながら前記基板の主面に複数種類の薄膜の何れかを選択的に形成する薄膜形成手段を配設し、前記薄膜の一層を形成する度に前記基板の送り出し方向を反転させると共に薄膜種類を変えて、前記複数種類の薄膜を前記主面に順次積層する薄膜製造方法において、前記帯状の基板に形成された薄膜を検出する検出部を前記基板収納手段に設け、該検出部によって検出された薄膜の膜質を評価し、適切な電極間隔を演算する膜質評価演算部を設け、この膜質評価演算部の演算結果から電極間隔を電極間隔指令制御部によって制御することにある。
また、本発明は、前記膜質評価演算部の演算結果から前記薄膜形成手段の成膜室内の製膜ガス量および/または投入電力を制御し、薄膜を製膜することにある。
本発明は、前記薄膜形成手段を構成する成膜室と、前記第1および第2の基板収納手段を構成する収納室との室間を仕切り弁で仕切り、収納室から巻き出され、または収納室に巻き取られる基板に仕切り弁を密着させながら基板を通過させることにより、前記第1および第2の収納室の気圧を真空に保持することにある。
さらに、本発明は、帯状の基板の一端側を収納する第1の基板収納手段と、
前記帯状の基板の他端側を収納する第2の基板収納手段と、
前記第1の基板収納手段と第2の基板収納手段との間に、互いに対向する一対の電極を内蔵して配設され、前記第1の基板収納手段と第2の基板収納手段の一方から他方に向けて前記基板を送り出しながら前記電極間の放電によりプラズマ状態を形成し、前記基板の主面に複数種類の薄膜の何れかを選択的に形成する薄膜形成手段を備え、前記薄膜の一層を形成する度に前記基板の送り出し方向を反転させると共に薄膜種類を変えて、前記複数種類の薄膜を前記主面に順次積層して形成するようにした薄膜製造装置において、前記第1の基板収納手段と第2の基板収納手段のそれぞれに薄膜を検出する検出部を設け、これら検出部に一定間隔で近接するように帯状の基板を誘導する搬送路を設け、これら搬送路に配置した対をなすローラ間に搬送方向を変える検出ローラを配置し、前記検出部からの信号に基づいて膜質を評価するとともに、適切な電極間隔を演算する膜質評価演算部を設け、この膜質評価演算部からの信号に基づいて前記電極間隔を制御する電極間隔指令制御部を設けたことにある。
またさらに、前記電極相互間の距離を調整する電極移動機構を備えたことにある。
また、前記薄膜形成手段を構成する成膜室と、前記第1および第2の基板収納手段を構成する収納室との室間を仕切る仕切り壁に仕切り弁を設け、収納室から巻き出され、または収納室に巻き取られる基板に仕切り弁を密着して、前記収納室の気圧を保持したことにある。
In order to solve the above problems, the present invention provides a first substrate storage means for storing one end side of a belt-like substrate and a second substrate storage means for storing the other end side of the belt-like substrate. A thin film forming means for selectively forming one of a plurality of types of thin films on the main surface of the substrate while feeding the substrate from one of the first substrate storage means and the second substrate storage means toward the other. In the thin film manufacturing method in which the plurality of types of thin films are sequentially stacked on the main surface by reversing the feeding direction of the substrate every time one layer of the thin film is formed and changing the type of the thin film, formed on the belt-shaped substrate A detection unit for detecting the thin film is provided in the substrate storage means, a film quality evaluation calculation unit for evaluating the film quality of the thin film detected by the detection unit and calculating an appropriate electrode interval is provided. Calculate the electrode spacing from the calculation result. It is to control the spacing command control unit.
Further, the present invention is to form a thin film by controlling a film forming gas amount and / or input power in a film forming chamber of the thin film forming means from a calculation result of the film quality evaluation calculating unit.
In the present invention, the chamber between the film forming chamber constituting the thin film forming means and the storage chamber constituting the first and second substrate storage means is partitioned by a partition valve, and is unwound from the storage chamber or stored. The pressure in the first and second storage chambers is maintained in a vacuum by passing the substrate while bringing the partition valve into close contact with the substrate wound in the chamber.
Furthermore, the present invention provides a first substrate storage means for storing one end side of the belt-shaped substrate,
Second substrate storage means for storing the other end side of the belt-shaped substrate;
Between the first substrate storage means and the second substrate storage means, a pair of electrodes facing each other are built in and arranged from one of the first substrate storage means and the second substrate storage means. A thin film forming means for selectively forming one of a plurality of types of thin films on a main surface of the substrate by forming a plasma state by discharging between the electrodes while feeding the substrate toward the other; In the thin film manufacturing apparatus, the plurality of types of thin films are sequentially stacked on the main surface by reversing the substrate feeding direction and changing the type of thin film each time the substrate is formed. Each of the means and the second substrate storage means is provided with a detection unit for detecting a thin film, a conveyance path for guiding the belt-like substrate is provided so as to be close to the detection unit at a fixed interval, and a pair arranged in these conveyance paths is provided. Between eggplant rollers A detection roller that changes the feeding direction is arranged, and the film quality is evaluated based on a signal from the detection unit, and a film quality evaluation calculation unit that calculates an appropriate electrode interval is provided. Based on the signal from the film quality evaluation calculation unit An electrode interval command control unit for controlling the electrode interval is provided.
Furthermore, an electrode moving mechanism for adjusting the distance between the electrodes is provided.
In addition, a partition valve is provided on a partition wall that partitions between the film forming chamber constituting the thin film forming means and the storage chamber constituting the first and second substrate storage means, and is unwound from the storage chamber, Alternatively, the partition valve is brought into close contact with the substrate wound up in the storage chamber to maintain the pressure in the storage chamber.

請求項1によれば、帯状の基板に形成された薄膜を検出部によって検出し、この薄膜の膜質を評価することで、電極間隔を制御することができるので、製造効率の向上および歩留まりを向上することができる。
請求項2によれば、成膜室内の製膜ガス量および/または投入電力を制御して、薄膜を製膜するので、均一の成膜を製造することができ、品質管理の向上を図ることができる。
請求項3によれば、収納室の気圧を真空状態に保持することができる。
請求項4によれば、適切な電極間隔を膜質評価演算部で演算し、電極間隔指令制御部で電極間隔を制御しているので、均一の成膜を製造することができ、品質管理の向上を図ることができる。
請求項5によれば、電極移動機構により電極間の距離を調整できるので、電極間隔を容易に調整することができる。
請求項6によれば、第1および第2の基板収納手段を構成する収納室と成膜室との室間を仕切る仕切り壁に仕切り弁を設けたので、第1および第2の収納室の気圧を保持することができる。
According to the first aspect, the thin film formed on the belt-like substrate is detected by the detection unit, and the film quality of the thin film can be evaluated, so that the electrode interval can be controlled, so that the manufacturing efficiency is improved and the yield is improved. can do.
According to the second aspect, since the thin film is formed by controlling the amount of film forming gas and / or input power in the film forming chamber, uniform film formation can be manufactured and quality control can be improved. Can do.
According to the third aspect, the pressure in the storage chamber can be maintained in a vacuum state.
According to the fourth aspect, since an appropriate electrode interval is calculated by the film quality evaluation calculation unit and the electrode interval is controlled by the electrode interval command control unit, uniform film formation can be manufactured, and quality control is improved. Can be achieved.
According to the fifth aspect, since the distance between the electrodes can be adjusted by the electrode moving mechanism, the distance between the electrodes can be easily adjusted.
According to the sixth aspect of the present invention, since the partition valve is provided on the partition wall that partitions the storage chamber and the film forming chamber constituting the first and second substrate storage means, The atmospheric pressure can be maintained.

本発明による薄膜製造装置を示す概念図である。It is a conceptual diagram which shows the thin film manufacturing apparatus by this invention. ラマンピーク強度比と電極間距離の関係を示す図である。It is a figure which shows the relationship between a Raman peak intensity ratio and the distance between electrodes. 本発明の他の実施の形態による薄膜製造装置を示す概念図である。It is a conceptual diagram which shows the thin film manufacturing apparatus by other embodiment of this invention. 従来の複数の成膜室を有する薄膜製造装置を示す概念図である。It is a conceptual diagram which shows the conventional thin film manufacturing apparatus which has several film-forming chambers.

帯状の基板に形成された薄膜を検出する検出部を基板収納室に設け、該検出部によって検出された薄膜の膜質を評価し、適切な電極間隔を演算する膜質評価演算部を設け、この膜質評価演算部の演算結果から電極間隔を電極間隔指令制御部によって制御するものである。   A detection unit for detecting the thin film formed on the belt-shaped substrate is provided in the substrate storage chamber, a film quality evaluation calculation unit for evaluating the film quality of the thin film detected by the detection unit and calculating an appropriate electrode interval is provided. The electrode interval is controlled by the electrode interval command control unit from the calculation result of the evaluation calculation unit.

以下図示の実施例を参照しながら本発明を詳細に説明する。
図1は薄膜製造装置を示す概念図で、帯状の基板の一端側および他端側をそれぞれ収納するロール基板収納室1及び2(第1及び第2の基板形成手段)と、これらロール基板収納室1及び2の間に配設される成膜室3(薄膜形成手段)とを備えている。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
FIG. 1 is a conceptual diagram showing a thin film manufacturing apparatus. Roll substrate storage chambers 1 and 2 (first and second substrate forming means) for storing one end side and the other end side of a belt-like substrate, and the roll substrate storage. A film forming chamber 3 (thin film forming means) disposed between the chambers 1 and 2;

前記ロール基板収納室1は、基板Sの一端側をロール状に巻き取って軸支するローラ1Aと、該ローラ1Aに巻かれた基板を外部にガイドするためのガイドローラ1Bを備えている。同様にロール基板収納室2は、基板Sの他端側をロール状に巻き取って軸支するローラ2Aと、これを外部にガイドするためのガイドローラ2Bを備えている。   The roll substrate storage chamber 1 includes a roller 1A that winds one end of the substrate S in a roll shape and pivotally supports it, and a guide roller 1B that guides the substrate wound around the roller 1A to the outside. Similarly, the roll substrate storage chamber 2 includes a roller 2A that winds the other end of the substrate S in a roll shape and supports it, and a guide roller 2B for guiding the roller 2A to the outside.

前記成膜室3は、ヒータを内蔵した共通設置電極3Aと、ロール基板収納室1及び2の一方から他方に向けて送り出される基板Sを挟んで共通設置電極3Aに対向するように配設された高周波電極3Bと、基板Sが前記共通設置電極3Aの近傍に位置するようにガイドするガイドローラ3Cと、成膜室3の内部に反応ガスを導入するためのガス導入管3Dと、これを排気するための排気管3Eと、導入管3Dから導入された反応ガスをガイドして基板S以外への蒸着を防止する防着板3Fとから構成される。   The film formation chamber 3 is arranged so as to face the common installation electrode 3A across the common installation electrode 3A with a built-in heater and the substrate S sent out from one of the roll substrate storage chambers 1 and 2 to the other. A high-frequency electrode 3B, a guide roller 3C for guiding the substrate S to be positioned in the vicinity of the common installation electrode 3A, a gas introduction pipe 3D for introducing a reaction gas into the film forming chamber 3, and An exhaust pipe 3E for exhausting and a deposition preventing plate 3F that guides the reaction gas introduced from the introduction pipe 3D and prevents vapor deposition on other than the substrate S are configured.

前記成膜室3は、その内部にガス導入管3Dにより反応ガスが導入されると、この反応ガスを、共通設置電極3Aに内蔵されたヒータにより加熱するとともに、高周波電極3Bと共通設置電極3Aとの間の高周波電界により励起してプラズマ状態とする。そして、プラズマ状態となった反応ガスの各成分同士が反応して基板上に蒸着し、薄膜を成膜する。成膜される薄膜の種類は、導入される反応ガスの種類により定まる。高周波電極3Bには、電極を前後方向に移動する電極移動機構6が設けられ、共通設置電極3Aに対する距離を調整可能に構成されている。   When the reaction gas is introduced into the film forming chamber 3 through the gas introduction pipe 3D, the reaction gas is heated by a heater built in the common installation electrode 3A, and the high frequency electrode 3B and the common installation electrode 3A are heated. Excited by a high-frequency electric field between them and a plasma state. And each component of the reactive gas which became the plasma state reacts, it vapor-deposits on a board | substrate, and forms a thin film into a film. The type of thin film to be formed is determined by the type of reaction gas introduced. The high-frequency electrode 3B is provided with an electrode moving mechanism 6 that moves the electrode in the front-rear direction, and is configured such that the distance to the common electrode 3A can be adjusted.

前記ロール基板収納室1には、ガイドローラ1Bとガイドローラ3Cとの間の基板Sの搬送路に1個の検出ローラ4Aと、2個の補助ローラ4Bを本実施例では例として三角形状の頂点の位置に配置している。前記検出ローラ4Aは、前記搬送路に沿って配置された2個の補助ローラ4Bの間に位置して基板Sの搬送方向を直交する方向に大きく突出して曲がるように配置されている。   In the roll substrate storage chamber 1, one detection roller 4 </ b> A and two auxiliary rollers 4 </ b> B are formed in a triangular shape as an example in the present embodiment in the conveyance path of the substrate S between the guide roller 1 </ b> B and the guide roller 3 </ b> C. It is placed at the vertex position. The detection roller 4A is located between the two auxiliary rollers 4B arranged along the conveyance path, and is arranged so as to be greatly protruded and bent in a direction orthogonal to the conveyance direction of the substrate S.

また、同様に前記ロール基板収納室2には、ガイドローラ3Cとガイドローラ2Bとの間の基板Sの搬送路に1個の検出ローラ5Aと、対をなす2個の補助ローラ5Bを本実施例では例として三角形状の頂点の位置に配置している。前記検出ローラ5Aは、前記搬送路に沿って配置された対をなす2個の補助ローラ5Bの間に位置しており、基板Sの搬送方向を変えるように、基板Sの搬送方向に対して直交する方向に大きく突出して検出ローラ5Aが配置されている。   Similarly, the roll substrate storage chamber 2 is provided with one detection roller 5A and two auxiliary rollers 5B that make a pair in the conveyance path of the substrate S between the guide roller 3C and the guide roller 2B. In the example, it is arranged at the position of a triangular vertex as an example. The detection roller 5A is located between a pair of auxiliary rollers 5B arranged along the transport path, and changes the transport direction of the substrate S with respect to the transport direction of the substrate S. The detection roller 5A is disposed so as to protrude greatly in the orthogonal direction.

前記ロール基板収納室2には、検出ローラ5Aに対応して基板Sの主面に成膜した薄膜の良否を検知するモニター(検出部)7Aが配置され、前記ロール基板収納室1には、検出ローラ4Aに対応して基板Sの主面に成膜した薄膜の良否を検知するモニター(検出部)7Bが配置されている。
前記成膜室3は成膜時に粉状の反応生成物が多く発生し、モニター7A、7Bのセンサー部を汚し、評価に影響する懸念があるため、室間を区切り、ロール基板収納室1にモニター7Bを、およびロール基板収納室2にモニター7Aを配置している。
モニター7A、7Bは真空内に直接、設置する場合とビューイングポートを介して大気側に設置する場合の両方がある。
基板Sは連続搬送の際、振動する懸念があり、この影響でモニター7A、7Bの出力が変動することが想定されるため、測定は基板Sを検出ローラ4A、検出ローラ5Aに抱かした状態で行う。
The roll substrate storage chamber 2 is provided with a monitor (detection unit) 7A for detecting the quality of the thin film formed on the main surface of the substrate S corresponding to the detection roller 5A. A monitor (detection unit) 7B for detecting the quality of the thin film formed on the main surface of the substrate S corresponding to the detection roller 4A is disposed.
In the film forming chamber 3, many powdery reaction products are generated at the time of film forming, and the sensors of the monitors 7A and 7B are contaminated, which may affect the evaluation. The monitor 7B is disposed in the monitor 7B and the roll substrate storage chamber 2.
The monitors 7A and 7B are both installed directly in a vacuum and installed on the atmosphere side via a viewing port.
There is a concern that the substrate S vibrates during continuous conveyance, and it is assumed that the outputs of the monitors 7A and 7B fluctuate due to this influence. Therefore, the measurement is performed with the substrate S held by the detection roller 4A and the detection roller 5A. Do.

前記モニター7A,7Bには、膜質評価演算部8が接続され、モニター7A,7Bから送られてきた出力に基づいて膜質を演算する。   A film quality evaluation calculation unit 8 is connected to the monitors 7A and 7B, and calculates the film quality based on the outputs sent from the monitors 7A and 7B.

膜質評価演算部8からの出力信号は、電極間隔指令制御部9に送られ、電極間隔指令制御部9によって電極(前後)移動機構6を作動させるものである。   The output signal from the film quality evaluation calculation unit 8 is sent to the electrode interval command control unit 9, and the electrode interval command control unit 9 operates the electrode (front-rear) moving mechanism 6.

次に、本発明の薄膜製造方法を説明する。   Next, the thin film manufacturing method of the present invention will be described.

ローラ1Aに巻かれた基板Sは共通接地電極3Aと高周波電極3B間を通過して、薄膜を基板Sの主面に成膜する。
基板Sはローラ1Aからローラ2Aに連続搬送するため、基板Sの主面、搬送方向に連続的に成膜できる。
連続搬送の正転はローラ1Aからローラ2Aへ、逆転はローラ1Aからローラ2Aへの基板Sの送り出しをいう。
積層していく第1膜はロール基板収納室1からロール基板収納室2に基板Sを正転方向に連続搬送して成膜する。
成膜した第1膜の評価はローラ1Aに巻き取る前に行い、単膜での評価を行う。
The substrate S wound around the roller 1A passes between the common ground electrode 3A and the high frequency electrode 3B, and a thin film is formed on the main surface of the substrate S.
Since the substrate S is continuously conveyed from the roller 1A to the roller 2A, the film can be continuously formed on the main surface of the substrate S and the conveying direction.
The forward rotation of continuous conveyance refers to the delivery of the substrate S from the roller 1A to the roller 2A, and the reverse rotation refers to the delivery of the substrate S from the roller 1A to the roller 2A.
The first film to be laminated is formed by continuously transporting the substrate S from the roll substrate storage chamber 1 to the roll substrate storage chamber 2 in the normal rotation direction.
The first film formed is evaluated before being wound around the roller 1A, and a single film is evaluated.

第2膜はロール基板収納室2からロール基板収納室1に基板Sを逆転方向に連続搬送して成膜する。
この際も評価するため、ローラ2Aに巻き取る前に評価することで正転、逆転毎の膜評価が可能となり、積層段階毎の品質管理が行える。
本実施例のモニター7A,7B位置は正転方向の場合はロール基板収納室2、逆転方向の場合はロール基板収納室1で行う。
The second film is formed by continuously transporting the substrate S from the roll substrate storage chamber 2 to the roll substrate storage chamber 1 in the reverse direction.
Since the evaluation is also performed at this time, the film can be evaluated for each of the normal rotation and the reverse rotation by performing the evaluation before winding the roller 2A, and quality control can be performed for each lamination stage.
The positions of the monitors 7A and 7B in this embodiment are set in the roll substrate storage chamber 2 in the forward rotation direction and in the roll substrate storage chamber 1 in the reverse rotation direction.

本実施例の薄膜評価は微結晶シリコン膜を想定した薄膜製造装置であり、膜管理の一つの指針として、結晶化率がある。
微結晶シリコン膜は微小サイズの結晶とアモルファス領域とが混在した状態の薄膜である。
微結晶シリコン膜の結晶化率を評価する方法として、例えば、ラマン分光法によるラマンピーク強度比を用いた評価方法が知られている。太陽電池に用いられる微結晶シリコン膜の場合は要求される品質に応じて決定され、例えば、ラマンピーク強度比の計測値が、この適正範囲内であるか否かにより評価が行われる。
本実施の薄膜製造装置は単膜毎に薄膜評価が実施でき、ラマンピーク強度比を計測し、成膜条件にフィードバックすることで、製造効率と歩留まりを向上できる。
本実施例の膜質モニター7A,7Bは検出方法としてラマン分光法を用いた。
The thin film evaluation of this example is a thin film manufacturing apparatus assuming a microcrystalline silicon film, and there is a crystallization rate as one guideline for film management.
The microcrystalline silicon film is a thin film in which microscopic crystals and amorphous regions are mixed.
As a method for evaluating the crystallization rate of a microcrystalline silicon film, for example, an evaluation method using a Raman peak intensity ratio by Raman spectroscopy is known. In the case of a microcrystalline silicon film used for a solar cell, it is determined according to the required quality. For example, the evaluation is performed based on whether or not the measured value of the Raman peak intensity ratio is within this appropriate range.
The thin film manufacturing apparatus of this embodiment can perform thin film evaluation for each single film, measure the Raman peak intensity ratio, and feed back to the film forming conditions, thereby improving manufacturing efficiency and yield.
The film quality monitors 7A and 7B of this example used Raman spectroscopy as a detection method.

図2にラマンピーク強度比と電極間距離の関係を示す。
ラマンピーク強度比は電極間距離を微調整することにより変化することが分かっている。
この特性から膜質モニター7A,7Bによりラマンピーク強度比を評価し、その結果を基にラマンピーク強度比と電極間距離の関係から膜質評価演算部8で演算し、電極間隔指令制御部9によって電極間距離の現在量と比較して電極間距離の調整量を求め、その量を電極間隔指令として与え、電極(前後)移動機構6を可動して高周波電極3Bの位置を微調整してラマンピーク強度を管理値内の範囲に制御できる。
FIG. 2 shows the relationship between the Raman peak intensity ratio and the distance between the electrodes.
It has been found that the Raman peak intensity ratio changes by finely adjusting the interelectrode distance.
From this characteristic, the Raman peak intensity ratio is evaluated by the film quality monitors 7A and 7B, and based on the result, the film quality evaluation calculation unit 8 calculates the relationship between the Raman peak intensity ratio and the interelectrode distance, and the electrode interval command control unit 9 The amount of adjustment of the distance between the electrodes is obtained in comparison with the current amount of the distance between the electrodes, the amount is given as an electrode interval command, and the position of the high-frequency electrode 3B is finely adjusted by moving the electrode (front-rear) moving mechanism 6 The intensity can be controlled within a range within the control value.

制御は例えば、電極間距離taで成膜したラマンピーク強度a、電極間距離tで成膜したラマンピーク強度bを求め、その間で制御しようとするラマンピーク強度にするための電極間距離を演算し、高周波電極3Bの現在位置と目標位置との移動量を電極(前後)移動機構6の位置制御部に与え、高周波電極3Bを目標位置に可動する。
この薄膜評価を数回繰返し、目標値の精度を高める。
Control example, Raman peak intensity a formed under the inter-electrode distance t a, obtains a Raman peak intensity b formed under the inter-electrode distance t b, the distance between the electrodes to the Raman peak intensity to be controlled at between And the amount of movement between the current position and the target position of the high-frequency electrode 3B is given to the position control unit of the electrode (front-rear) moving mechanism 6 to move the high-frequency electrode 3B to the target position.
This thin film evaluation is repeated several times to increase the accuracy of the target value.

この他にラマンピーク強度比は反応ガス量、成膜圧力、成膜温度によっても変化するため、評価結果をこれらの条件にフィードバックし、制御することも可能である。
薄膜のモニターはローラ1A,2Aに巻かれる長尺、例えば2200mの巻き始め、巻き終わりの10〜20m程に成膜した部分で測定する。
太陽電池は積層毎に膜種が異なり、本実施例の薄膜製造装置は成膜室3を望む膜種に、成膜条件を整えるプレデポする必要があって、前記巻き始め、巻き終わりの10〜20m程にこのプレデポを行う。
このプレデポ部分の薄膜を評価することにより、成膜準備と薄膜評価が同時に行える。
このような評価方法を用いて積層毎に微結晶シリコン膜の評価結果を成膜条件にフィードバックして成膜することができ、太陽電池の生産効率が向上する。
In addition, since the Raman peak intensity ratio varies depending on the amount of reaction gas, film forming pressure, and film forming temperature, the evaluation result can be fed back to these conditions and controlled.
The thin film monitor measures the length of the film wound around the rollers 1A and 2A, for example, at the part where the film is formed at the beginning of winding of 2200m and the end of winding about 10 to 20m.
The solar cell has a different film type for each stack, and the thin film manufacturing apparatus of this embodiment needs to pre-deposit the film type desired in the film formation chamber 3 to adjust the film formation conditions. Perform this pre-depot about 20m.
By evaluating the thin film in this pre-deposition portion, film formation preparation and thin film evaluation can be performed simultaneously.
By using such an evaluation method, the evaluation result of the microcrystalline silicon film can be fed back to the film formation conditions for each stack, and the production efficiency of the solar cell is improved.

図3は本発明の他の実施の形態の薄膜製造装置を示す概念図で、図1と同一部分は同符号を付して同一部分の説明は省略して示す。
帯状の基板Sの一端側および他端側をそれぞれ収納するロール基板収納室1及び2の間に配設される成膜室3(薄膜形成手段)のロール基板収納室1と成膜室3の間、及び成膜室3とロール基板収納室2との間をそれぞれ仕切る仕切り壁30の基板通路30a,30bに、仕切り弁31,32をそれぞれ設置し、成膜室3を大気中に暴露しても、ロール基板収納室1及び2の真空状態が保持されるようにしている。
このため、成膜した基板Sをロール基板収納室1及び2に真空保持しながら、成膜室3を大気に戻し、電極のメンテナンスを行うことができる。電極のメンテナンスなしではロール基板長さとして数百mの成膜しかできず、ロール基板成膜の長所である基板交換の短縮を生かせないが、ロールを真空に保ち電極のメンテナンスができることにより、ロール基板長2200mの成膜が可能になる。また、電極数の低減もでき、フットプリントの縮小にも効果がある。
FIG. 3 is a conceptual diagram showing a thin film manufacturing apparatus according to another embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description of the same parts is omitted.
Between the roll substrate storage chamber 1 and the film formation chamber 3 of the film formation chamber 3 (thin film forming means) disposed between the roll substrate storage chambers 1 and 2 that respectively store one end side and the other end side of the belt-like substrate S. Gate valves 31 and 32 are respectively installed in the substrate passages 30a and 30b of the partition wall 30 that partition the space between the film formation chamber 3 and the roll substrate storage chamber 2, thereby exposing the film formation chamber 3 to the atmosphere. However, the vacuum state of the roll substrate storage chambers 1 and 2 is maintained.
For this reason, the film-forming chamber 3 can be returned to the atmosphere while maintaining the vacuum in the film-forming substrate S in the roll substrate storage chambers 1 and 2, and the electrode can be maintained. Without electrode maintenance, the roll substrate can only be formed to a length of several hundreds of meters, and the shortening of substrate replacement, which is an advantage of roll substrate deposition, cannot be made use of. A film with a substrate length of 2200 m can be formed. In addition, the number of electrodes can be reduced, and the footprint can be reduced.

1 ロール基板収納室(第1の基板収納手段)
2 ロール基板収納室(第2の基板収納手段)
3 成膜室(薄膜形成手段)
3A 共通設置電極
3B 高周波電極
4A 検出ローラ
4B 補助ローラ
5A 検出ローラ
5B 補助ローラ
6 電極(前後)移動機構
7A,7B モニター(検出部)
8 膜質評価演算部
9 電極間隔指令制御部
30 仕切り壁
30a,30b 基板通路
31,32 仕切り弁

1 Roll substrate storage chamber (first substrate storage means)
2 Roll substrate storage chamber (second substrate storage means)
3 Deposition chamber (Thin film forming means)
3A Common installation electrode 3B High frequency electrode 4A Detection roller 4B Auxiliary roller 5A Detection roller 5B Auxiliary roller 6 Electrode (front-rear) moving mechanism 7A, 7B Monitor (detection unit)
8 Film quality evaluation calculation unit 9 Electrode interval command control unit 30 Partition wall 30a, 30b Substrate passage 31, 32 Gate valve

Claims (6)

帯状の基板の一端側を収納する第1の基板収納手段と前記帯状の基板の他端側を収納する第2の基板収納手段との間に、前記第1の基板収納手段と第2の基板収納手段の一方から他方に向けて前記基板を送り出しながら前記基板の主面に複数種類の薄膜の何れかを選択的に形成する薄膜形成手段を配設し、前記薄膜の一層を形成する度に前記基板の送り出し方向を反転させると共に薄膜種類を変えて、前記複数種類の薄膜を前記主面に順次積層する薄膜製造方法において、前記帯状の基板に形成された薄膜を検出する検出部を前記基板収納手段に設け、該検出部によって検出された薄膜の膜質を評価し、適切な電極間隔を演算する膜質評価演算部を設け、この膜質評価演算部の演算結果から電極間隔を電極間隔指令制御部によって制御することを特徴とする薄膜製造方法。   Between the first substrate storage means for storing one end side of the band-shaped substrate and the second substrate storage means for storing the other end side of the band-shaped substrate, the first substrate storage means and the second substrate Each time a single layer of the thin film is formed, a thin film forming means for selectively forming one of a plurality of types of thin films is disposed on the main surface of the substrate while feeding the substrate from one of the storage means toward the other. In the thin film manufacturing method in which the plurality of types of thin films are sequentially stacked on the main surface by reversing the feeding direction of the substrate and changing the type of thin film, a detection unit for detecting the thin film formed on the belt-shaped substrate is the substrate. Provided in the storage means, provided with a film quality evaluation calculation unit for evaluating the film quality of the thin film detected by the detection unit, and calculating an appropriate electrode interval, and determining the electrode interval from the calculation result of the film quality evaluation calculation unit Controlled by Thin film manufacturing method comprising. 前記膜質評価演算部の演算結果から前記薄膜形成手段の成膜室内の製膜ガス量および/または投入電力を制御し、薄膜を製膜することを特徴とする請求項1に記載の薄膜製造方法。   2. The thin film manufacturing method according to claim 1, wherein a thin film is formed by controlling a film forming gas amount and / or input power in a film forming chamber of the thin film forming means from a calculation result of the film quality evaluation calculating unit. . 前記薄膜形成手段を構成する成膜室と、前記第1および第2の基板収納手段を構成する収納室との室間を仕切り弁で仕切り、収納室から巻き出され、または収納室に巻き取られる基板に仕切り弁を密着させながら基板を通過させることにより、前記第1および第2の収納室の気圧を真空に保持することを特徴とする請求項1または2に記載の薄膜製造方法。   The chamber between the film forming chamber constituting the thin film forming means and the storage chamber constituting the first and second substrate storage means is partitioned by a partition valve, and is unwound from the storage chamber or wound into the storage chamber. The thin film manufacturing method according to claim 1 or 2, wherein the atmospheric pressure in the first and second storage chambers is maintained in a vacuum by allowing the substrate to pass through in close contact with a gate valve. 帯状の基板の一端側を収納する第1の基板収納手段と、
前記帯状の基板の他端側を収納する第2の基板収納手段と、
前記第1の基板収納手段と第2の基板収納手段との間に、互いに対向する一対の電極を内蔵して配設され、前記第1の基板収納手段と第2の基板収納手段の一方から他方に向けて前記基板を送り出しながら前記電極間の放電によりプラズマ状態を形成し、前記基板の主面に複数種類の薄膜の何れかを選択的に形成する薄膜形成手段を備え、
前記薄膜の一層を形成する度に前記基板の送り出し方向を反転させると共に薄膜種類を変えて、前記複数種類の薄膜を前記主面に順次積層して形成するようにした薄膜製造装置において、
前記第1の基板収納手段と第2の基板収納手段のそれぞれに薄膜を検出する検出部を設け、これら検出部に一定間隔で近接するように帯状の基板を誘導する搬送路を設け、これら搬送路に配置した対をなすローラ間に搬送方向を変える検出ローラを配置し、前記検出部からの信号に基づいて膜質を評価するとともに、適切な電極間隔を演算する膜質評価演算部を設け、この膜質評価演算部からの信号に基づいて前記電極間隔を制御する電極間隔指令制御部を設けたことを特徴とする薄膜製造装置。
First substrate storage means for storing one end side of the belt-shaped substrate;
Second substrate storage means for storing the other end side of the belt-shaped substrate;
Between the first substrate storage means and the second substrate storage means, a pair of electrodes facing each other are built in and arranged from one of the first substrate storage means and the second substrate storage means. Forming a plasma state by discharging between the electrodes while sending the substrate toward the other, and comprising a thin film forming means for selectively forming any of a plurality of types of thin films on the main surface of the substrate,
In the thin film manufacturing apparatus in which the plurality of types of thin films are sequentially formed on the main surface by reversing the feeding direction of the substrate every time one layer of the thin film is formed and changing the type of thin film,
Each of the first substrate storage means and the second substrate storage means is provided with a detection unit for detecting a thin film, and a conveyance path for guiding the belt-like substrate is provided so as to be close to the detection unit at a fixed interval. A detection roller that changes the conveyance direction is arranged between a pair of rollers arranged in the path, and a film quality evaluation calculation unit that calculates an appropriate electrode interval is provided while evaluating a film quality based on a signal from the detection unit. An apparatus for manufacturing a thin film, comprising: an electrode interval command control unit that controls the electrode interval based on a signal from a film quality evaluation calculation unit.
前記電極相互間の距離を調整する電極移動機構を備えたことを特徴とする請求項4に記載の薄膜製造装置。   The thin film manufacturing apparatus according to claim 4, further comprising an electrode moving mechanism that adjusts a distance between the electrodes. 前記薄膜形成手段を構成する成膜室と、前記第1および第2の基板収納手段を構成する収納室との室間を仕切る仕切り壁に仕切り弁を設け、収納室から巻き出され、または収納室に巻き取られる基板に仕切り弁を密着して、前記収納室の気圧を保持したことを特徴とする請求項4または5に記載の薄膜製造装置。   A partition valve is provided on a partition wall that partitions between the film forming chamber constituting the thin film forming means and the storage chambers constituting the first and second substrate storage means, and is unwound from the storage chamber or stored. The thin film manufacturing apparatus according to claim 4 or 5, wherein a partition valve is brought into close contact with a substrate wound around the chamber to maintain the pressure in the storage chamber.
JP2009165501A 2009-01-23 2009-07-14 Thin film production method and thin film production device Pending JP2010189757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165501A JP2010189757A (en) 2009-01-23 2009-07-14 Thin film production method and thin film production device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009012869 2009-01-23
JP2009165501A JP2010189757A (en) 2009-01-23 2009-07-14 Thin film production method and thin film production device

Publications (1)

Publication Number Publication Date
JP2010189757A true JP2010189757A (en) 2010-09-02

Family

ID=42816096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165501A Pending JP2010189757A (en) 2009-01-23 2009-07-14 Thin film production method and thin film production device

Country Status (1)

Country Link
JP (1) JP2010189757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557761A (en) * 2017-08-23 2018-01-09 中国科学院过程工程研究所 A kind of volume to volume device and its control method for being used for the serialization growth two-dimensional material on ribbon wire material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195055A (en) * 1996-01-16 1997-07-29 Canon Inc Roll-to-roll treatment and apparatus therefor
JPH1022518A (en) * 1996-07-02 1998-01-23 Sharp Corp Chemical vapor detection equipment
WO1999058740A1 (en) * 1998-05-14 1999-11-18 Sony Corporation Thin film forming method and thin film forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195055A (en) * 1996-01-16 1997-07-29 Canon Inc Roll-to-roll treatment and apparatus therefor
JPH1022518A (en) * 1996-07-02 1998-01-23 Sharp Corp Chemical vapor detection equipment
WO1999058740A1 (en) * 1998-05-14 1999-11-18 Sony Corporation Thin film forming method and thin film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557761A (en) * 2017-08-23 2018-01-09 中国科学院过程工程研究所 A kind of volume to volume device and its control method for being used for the serialization growth two-dimensional material on ribbon wire material

Similar Documents

Publication Publication Date Title
JP6360882B2 (en) Deposition platform for flexible substrates and method of operation thereof
JP2020125544A (en) Apparatus for depositing film on substrate and method for providing gas separation between two deposition source of deposition apparatus
JP6706650B2 (en) Common deposition platform, processing station, and method of operation
TWI619827B (en) Apparatus for depositing thin film on substrate and method of depositing thin film thereon
US20200165721A1 (en) Vacuum processing system and methods therefor
JP2016514197A5 (en)
JP2016514198A5 (en)
JP2010189757A (en) Thin film production method and thin film production device
JP2007227522A (en) Device and method for manufacturing photoelectric conversion device
JP4780474B2 (en) Thin film laminate manufacturing method and manufacturing apparatus
JP2009074154A (en) Film deposition system
JP2016094648A (en) Method of forming sealing film, and sealing film
JP2011096962A (en) Method of manufacturing and apparatus of manufacturing thin-film solar cell
JP6419428B2 (en) Differential exhaust system
JP2009052086A (en) Film deposition device
JP2017179411A (en) Thin film formation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140124