JP2010188402A - Immersion nozzle for curved type continuous casting machine - Google Patents

Immersion nozzle for curved type continuous casting machine Download PDF

Info

Publication number
JP2010188402A
JP2010188402A JP2009037485A JP2009037485A JP2010188402A JP 2010188402 A JP2010188402 A JP 2010188402A JP 2009037485 A JP2009037485 A JP 2009037485A JP 2009037485 A JP2009037485 A JP 2009037485A JP 2010188402 A JP2010188402 A JP 2010188402A
Authority
JP
Japan
Prior art keywords
immersion nozzle
protrusion
flow
discharge
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009037485A
Other languages
Japanese (ja)
Other versions
JP5344948B2 (en
Inventor
Hiroyuki Onoda
博之 斧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009037485A priority Critical patent/JP5344948B2/en
Publication of JP2010188402A publication Critical patent/JP2010188402A/en
Application granted granted Critical
Publication of JP5344948B2 publication Critical patent/JP5344948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a completely new technique capable of largely setting the cross-sectional area of the flow passage of a discharge hole while realizing the flowing pattern of a discharge flow becoming a downward flow at the inside of a curve and becoming an upward flow at the outside of the curve. <P>SOLUTION: The inner circumferential face 4 at the outside of the curve of the immersion nozzle 1, also being a position held between a pair of discharge holes 2 in a planar view is provided with a rectifying projection 5 with a specified shape so as to satisfy the following conditions (1) to (4); wherein, B denotes the horizontal length [mm] of the projection in the width direction of a mold in the planar view of the projection; d1 denotes the distance [mm] in a vertical direction between the lower edge of the rectifying projection and the bottom face at the inside of the immersion nozzle; and d2 denotes the distance [mm] in a vertical direction between the upper edge of the rectifying projection and the lower edge of the rectifying projection: 0.05≤A/ϕ≤0.15 (1), 0.4≤B/ϕ≤0.8 (2), 0.75≤d1/ϕ≤1.25 (3), and 2≤d2/A≤6 (4). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、湾曲型連続鋳造機向けの浸漬ノズルに関する。   The present invention relates to an immersion nozzle for a curved continuous casting machine.

湾曲型連続鋳造機を用いて連続鋳造するに際し、凝固シェルの湾曲内側への介在物の捕捉・集積を抑制する技術として、例えば、特許文献1(特開昭51−138526号公報)や特許文献2(実開平3−47645号公報)は、浸漬ノズルの吐出孔の向きを平面視で湾曲内側に方向付けする構成を開示する。このような方向付けによれば吐出流が湾曲内側に方向付けされ、例えば特許文献1の第5図や特許文献2の第2図のように、吐出流の流動パターンは、湾曲内側では下降流となり湾曲外側では上昇流となり、もって、凝固シェルの湾曲内側への介在物の捕捉・集積を抑制できるようになっている。   For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 51-138526) and Patent Document are known as techniques for suppressing the trapping and accumulation of inclusions inside the curved shell of the solidified shell during continuous casting using a curved continuous casting machine. 2 (Japanese Utility Model Laid-Open No. 3-47645) discloses a configuration in which the direction of the discharge hole of the immersion nozzle is directed inwardly in a plan view. According to such orientation, the discharge flow is directed to the inside of the curve. For example, as shown in FIG. 5 of Patent Document 1 and FIG. 2 of Patent Document 2, the flow pattern of the discharge flow is a downward flow inside the curve. Thus, an upward flow is generated on the outside of the curve, so that trapping and accumulation of inclusions inside the curve of the solidified shell can be suppressed.

しかし、上記特許文献1等に開示の技術を採用するには、吐出孔の流路断面積を小さく設定しなければならない。というのは、仮に上記技術を利用するに際し吐出孔の流路断面積を大きくとると、浸漬ノズルの内側底面近傍で形成される単一の大径な渦流の旋回方向が吐出孔の向きよりも吐出流の向きに対して支配的となり、また、この大径の渦流の旋回方向はランダムに切り替わるものだから、結局のところ、吐出流が湾曲内側を向くか湾曲外側を向くかは定かでなくなるからである。   However, in order to employ the technique disclosed in Patent Document 1 and the like, the flow passage cross-sectional area of the discharge hole must be set small. This is because if the flow passage cross-sectional area of the discharge hole is increased when using the above technique, the swirling direction of a single large-diameter vortex formed near the inner bottom surface of the immersion nozzle is more than the direction of the discharge hole. Since it becomes dominant to the direction of the discharge flow, and the swirling direction of this large-sized vortex flow is switched randomly, it is not certain whether the discharge flow faces the inside of the curve or the outside of the curve after all. It is.

このように上記特許文献1等に開示の技術は、吐出孔の流路断面積を小さく設定しなければならないという技術的制約があるので、スループット(吐出流の単位時間あたりの流量)が比較的低く設定された連続鋳造を実施するには問題なかったが、スループットが比較的高く設定される連続鋳造を実施する昨今の操業では大きな問題となる。というのは、吐出孔の流路断面積が小さく、スループットが高いと、必然的に吐出流の流速が高くなり、凝固シェルの抜熱し難いコーナー部への入熱が過大となって、ブレークアウトを引き起こすような著しい凝固遅れを招く虞があるからである。また、吐出孔の流路断面積が小さいと詰まりも発生し易い。   As described above, the technique disclosed in Patent Document 1 and the like has a technical restriction that the flow passage cross-sectional area of the discharge hole must be set small, so that the throughput (flow rate per unit time of the discharge flow) is relatively high. Although there was no problem in carrying out continuous casting set at a low level, it becomes a big problem in the recent operations in which continuous casting is set at a relatively high throughput. This is because if the flow passage cross-sectional area of the discharge hole is small and the throughput is high, the flow rate of the discharge flow is inevitably high, the heat input to the corner of the solidified shell that is difficult to remove heat is excessive, and breakout occurs. This is because there is a risk of causing a significant coagulation delay that may cause the occurrence of the problem. Further, when the flow passage cross-sectional area of the discharge hole is small, clogging is likely to occur.

本発明は斯かる諸点に鑑みてなされたものであり、その主な目的は、上記の技術的制約をブレークスルーするものであって、即ち、湾曲内側では下降流となり湾曲外側では上昇流となるような吐出流の流動パターンを実現しつつ、吐出孔の流路断面積を大きく設定することが可能な、全く新規な技術を提供することにある。   The present invention has been made in view of the above points, and its main purpose is to break through the above technical constraints, that is, the downward flow is inside the curve and the upward flow is outside the curve. An object of the present invention is to provide a completely new technique capable of setting the flow passage cross-sectional area of the discharge hole to be large while realizing such a flow pattern of the discharge flow.

課題を解決するための手段及び効果Means and effects for solving the problems

本願発明の解決しようとする課題は以上の如くであり、本願発明の発明者は、鋭意研究の末、浸漬ノズルの内側底面近傍で形成される単一の大径な渦流の旋回方向を固定する技術を見出し、以下の発明を完成させた。   The problems to be solved by the present invention are as described above, and the inventors of the present invention have fixed the swirling direction of a single large-diameter vortex formed near the inner bottom surface of the submerged nozzle after extensive research. The technology was found and the following invention was completed.

本願発明の観点によれば、タンディッシュ内に保持される溶鋼を鋳型内へ注湯するのに供される有底円筒状の浸漬ノズルであって、湾曲型連続鋳造機向けであり、前記浸漬ノズルの周壁には、一対の対向する吐出孔が形成される、浸漬ノズルは、以下のように構成される。即ち、前記浸漬ノズルの湾曲外側の内周面であって、平面視で前記一対の吐出孔の間に挟まれる位置に、整流突起が設けられる。・前記整流突起の、平面視で鋳型厚み方向において特定する突起水平厚みA[mm]と、・前記整流突起の、平面視で鋳型幅方向において特定する突起水平長さB[mm]と、・前記整流突起の下端である整流突起下端と、前記浸漬ノズルの内側底面との間の垂直方向における距離である整流突起下端距離d1[mm]と、・前記整流突起の上端である整流突起上端と、上記の整流突起下端との間の垂直方向における距離である突起垂直厚みd2[mm]と、は、下記式(1)〜(4)の条件を満足する。   According to an aspect of the present invention, there is a bottomed cylindrical immersion nozzle used for pouring molten steel held in a tundish into a mold, which is for a curved continuous casting machine, and the immersion The immersion nozzle having a pair of opposed discharge holes formed in the peripheral wall of the nozzle is configured as follows. That is, the rectifying protrusion is provided on the inner peripheral surface on the curved outer side of the immersion nozzle and at a position sandwiched between the pair of discharge holes in a plan view. A projection horizontal thickness A [mm] specified in the mold thickness direction in plan view of the rectifying projection, and a projection horizontal length B [mm] specified in the mold width direction in plan view of the rectification projection, A rectifying protrusion lower end distance d1 [mm] which is a vertical distance between the lower end of the rectifying protrusion and the inner bottom surface of the immersion nozzle; and an upper end of the rectifying protrusion which is an upper end of the rectifying protrusion; The protrusion vertical thickness d2 [mm], which is the distance in the vertical direction between the lower end of the rectifying protrusions, satisfies the conditions of the following formulas (1) to (4).

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

以下、本願発明に係る浸漬ノズルによる効果を、上記特許文献1等の浸漬ノズルと対比させながら説明する。   Hereinafter, the effect of the immersion nozzle according to the present invention will be described in comparison with the immersion nozzle of Patent Document 1 and the like.

<特許文献1等の浸漬ノズル>図1(a)は上記特許文献1に開示の浸漬ノズルであって、吐出孔の流路断面積を比較的大きく設定したものの斜視図であり、図1(b)は図1(a)の一部切欠き斜視図であり、図1(c)〜(d)は図1(b)に類似する図であって、溶鋼の流れをイメージした図である。図1に示す浸漬ノズルでは、内側底面に衝突した溶鋼は、内側底面と内周面によって形成される所謂湯溜り部にて、図1(c2)に示すように鋳型幅方向を軸とする大きな単一の渦流を形成する。吐出孔の流路断面積が比較的大きく設定される場合は、この渦流が型崩れすることなく吐出孔の外方へと連続するので、鋳型厚み方向に偏りを持った吐出流が形成される。ところで、この大きな単一の渦流の旋回方向は、図1(c2)に示すように上記内側底面から湾曲内側へ向かって上昇する反時計回りとなる場合と、図1(d2)に示すように上記内側底面から湾曲外側へ向かって上昇する時計回りとなる場合と、の二つの場合があり、その旋回方向はランダムに切り替わる。従って、図1(a2)に示すように吐出孔の流路断面積を比較的大きく設定すると、例え図1(a1)に示すように吐出孔の向きを湾曲内側へ大きく方向付けしたとしても、図1(c1)及び(d1)に示すように吐出流が湾曲外側を向く(図12(a)参照)か湾曲内側(図12(b)参照)を向くかは定かではない。 <Immersion nozzle of Patent Document 1> FIG. 1A is a perspective view of the immersion nozzle disclosed in Patent Document 1, in which the flow passage cross-sectional area of the discharge hole is set to be relatively large. FIG. 1B is a partially cutaway perspective view of FIG. 1A, and FIGS. 1C to 1D are views similar to FIG. 1B, illustrating the flow of molten steel. . In the immersion nozzle shown in FIG. 1, the molten steel that has collided with the inner bottom surface is a large pool centered on the mold width direction as shown in FIG. A single vortex is formed. When the flow passage cross-sectional area of the discharge hole is set to be relatively large, this vortex flow continues to the outside of the discharge hole without losing its shape, so that a discharge flow having a bias in the mold thickness direction is formed. . By the way, the swirl direction of this large single vortex flows as shown in FIG. 1 (c2), when it is counterclockwise rising from the inner bottom surface toward the curved inner side, and as shown in FIG. 1 (d2). There are two cases: a clockwise direction rising from the inner bottom surface toward the curved outer side, and the turning direction is randomly switched. Therefore, if the flow passage cross-sectional area of the discharge hole is set to be relatively large as shown in FIG. 1 (a2), even if the direction of the discharge hole is greatly oriented to the inside of the curve as shown in FIG. 1 (a1), As shown in FIGS. 1 (c1) and (d1), it is not certain whether the discharge flow faces the curved outer side (see FIG. 12 (a)) or the curved inner side (see FIG. 12 (b)).

<本願発明に係る浸漬ノズル>図2(a)は本願発明に係る浸漬ノズルの斜視図であり、図2(b)は図2(a)の一部切欠き斜視図であり、図2(c)は図2(b)に類似する図であって、溶鋼の流れをイメージした図である。図2に示す本願発明の浸漬ノズルでは、溶鋼は、内側底面に衝突する前に、湾曲外側に設けられた整流突起と衝突する。そして、この衝突によって浸漬ノズル内の溶鋼の流れは一旦、湾曲内側寄りに集約される。このとき、前記整流突起と内側底面との間に大きな負圧域が形成され、上記溶鋼の流れはこの負圧域に引き寄せられるかたちで、図2(c2)に示すように鋳型幅方向を軸とし、内側底面から湾曲外側へ向かって上昇する時計回りの、単一の大径な渦流を形成する。このように、本願発明に係る浸漬ノズルでは、上記の単一の大径な渦流の旋回方向が上記の整流突起によって固定されるので、吐出流の向きは湾曲内側に固定され、図12(b)に示すような、湾曲内側では下降流となり湾曲外側では上昇流となるような吐出流の流動パターンが安定して実現される。また、図2に開示の浸漬ノズルは上記の単一の大径な渦流を積極利用するものであるから、もはや上記の流動パターンを実現するために吐出孔の流路断面積を小さく設定しなければならないという技術的制約から解放され、従って、図12(b)に示すような上記の流動パターンを実現しつつ、吐出孔の流路断面積を大きく設定することが可能となる。 <Immersion nozzle according to the present invention> FIG. 2 (a) is a perspective view of the immersion nozzle according to the present invention, FIG. 2 (b) is a partially cutaway perspective view of FIG. 2 (a), and FIG. c) is a view similar to FIG. 2 (b), and is an image of the flow of molten steel. In the immersion nozzle of the present invention shown in FIG. 2, the molten steel collides with the rectifying protrusion provided on the curved outer side before colliding with the inner bottom surface. And by this collision, the flow of the molten steel in the immersion nozzle is once concentrated near the curved inner side. At this time, a large negative pressure region is formed between the flow straightening protrusion and the inner bottom surface, and the flow of the molten steel is attracted to the negative pressure region. As shown in FIG. And a single clockwise large eddy current rising from the inner bottom surface toward the curved outer side is formed. Thus, in the immersion nozzle according to the present invention, the swirling direction of the single large-diameter vortex is fixed by the rectifying protrusion, so the direction of the discharge flow is fixed inside the curve, and FIG. The flow pattern of the discharge flow as shown in FIG. 6 is stably realized such that the flow is a downward flow inside the curve and an upward flow outside the curve. In addition, since the immersion nozzle disclosed in FIG. 2 actively uses the single large-diameter vortex, the flow passage cross-sectional area of the discharge hole must be set small to realize the above flow pattern. Therefore, it is possible to set the flow passage cross-sectional area of the discharge hole large while realizing the above flow pattern as shown in FIG. 12B.

以上に説明した本願発明に係る浸漬ノズルを採用すれば、凝固シェルの湾曲内側への介在物の捕捉・集積を抑制できることはもちろん、高スループットの操業において、凝固シェルのコーナー部への入熱が過大となるのを回避することが可能となる。   If the immersion nozzle according to the present invention described above is employed, the trapping and accumulation of inclusions inside the curve of the solidified shell can be suppressed, and of course, heat input to the corner of the solidified shell can be achieved in a high-throughput operation. It becomes possible to avoid becoming excessive.

なお、図2に開示の浸漬ノズルは本願発明を具現化した一例であり、本願発明の技術的範囲は図2によっては何ら限定されるものではない。   The immersion nozzle disclosed in FIG. 2 is an example that embodies the present invention, and the technical scope of the present invention is not limited in any way by FIG.

特許文献1に開示の浸漬ノズルであって、吐出孔の流路断面積を比較的大きく設定したものの斜視図FIG. 3 is a perspective view of an immersion nozzle disclosed in Patent Document 1 in which a flow passage cross-sectional area of a discharge hole is set to be relatively large 本願発明に係る浸漬ノズルの斜視図Perspective view of immersion nozzle according to the present invention 図5の3−3線矢視断面図であって、本願発明の一実施形態に係る浸漬ノズルの立面断面図FIG. 6 is a cross-sectional view taken along line 3-3 in FIG. 5, and is an elevational cross-sectional view of an immersion nozzle according to an embodiment of the present invention. 図5の4−4線矢視断面図であって、本願発明の一実施形態に係る浸漬ノズルの立面断面図Fig. 4 is a cross-sectional view taken along line 4-4 in Fig. 5, and is an elevational cross-sectional view of an immersion nozzle according to an embodiment of the present invention. 図4の5−5線矢視断面図であって、本願発明の一実施形態に係る浸漬ノズルの水平断面図FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 4 and is a horizontal cross-sectional view of an immersion nozzle according to an embodiment of the present invention. 本願発明の一実施形態に係る浸漬ノズルによって実現される溶鋼の流れをイメージした図The figure which imaged the flow of the molten steel implement | achieved by the immersion nozzle which concerns on one Embodiment of this invention 整流突起の変形例を示す図The figure which shows the modification of a baffle protrusion 吐出孔の変形例を示す図The figure which shows the modification of an ejection hole 技術的効果の確認試験の試験方法に関する説明図Explanatory drawing on test method for technical effect confirmation test 整流突起による流体の剥離現象と、再付着の可能性について説明するための図A diagram for explaining the phenomenon of fluid separation by the rectifying protrusion and the possibility of reattachment 湾曲内側への吐出角度と、介在物量と、の関係を示すグラフGraph showing the relationship between the discharge angle to the inside of the curve and the amount of inclusions 湾曲型連続鋳造機の全体図Overall view of curved continuous casting machine

周知の通り、連続鋳造機の鋳造経路に着目すると、湾曲型連続鋳造機と垂直曲げ型連続鋳造機なるものがある。前者は、鋳型から鋳造経路に沿って、円弧経路部と矯正経路部、水平経路部を有するものであり、後者は、上記円弧経路部の上流に垂直経路部を設け、溶鋼中の介在物浮上を図ったものである。また、連続鋳造機の鋳造する鋳片の断面形状に着目すると、断面形状のアスペクト比が2以上であるスラブと2以下のブルーム、更に、断面形状が正方形であるビレットなるものがある。本願発明の適用対象は、湾曲型連続鋳造機におけるスラブ又はブルームの連続鋳造で用いられる浸漬ノズルに限られる。以下、本明細書では、一例として、本願発明を、湾曲型連続鋳造機におけるスラブの連続鋳造で用いられる浸漬ノズルに適用した例を説明する。   As is well known, focusing on the casting path of a continuous casting machine, there are a curved continuous casting machine and a vertical bending continuous casting machine. The former has an arc path portion, a correction path portion, and a horizontal path portion along the casting path from the mold, and the latter has a vertical path portion upstream of the arc path portion, and floats inclusions in the molten steel. Is intended. Focusing on the cross-sectional shape of a slab cast by a continuous casting machine, there are a slab having a cross-sectional aspect ratio of 2 or more, a bloom of 2 or less, and a billet having a square cross-sectional shape. The application object of the present invention is limited to an immersion nozzle used in continuous casting of slabs or blooms in a curved continuous casting machine. Hereinafter, in this specification, the example which applied this invention to the immersion nozzle used by the continuous casting of the slab in a curved type continuous casting machine is demonstrated as an example.

以下、図面を参照しつつ、本願発明の一実施形態に係る浸漬ノズルの構成を説明する。図2に示される浸漬ノズル1は、タンディッシュ内に保持される溶鋼を鋳型内へ注湯するのに供されるものであって、有底円筒状に形成される。この浸漬ノズル1の周壁には、一対の対向する吐出孔2が、浸漬ノズル1の内側底面3から若干上方へ離れた位置に、形成される。そして、本実施形態に係る浸漬ノズル1の湾曲外側の内周面4であって、平面視で前記一対の吐出孔2の間に挟まれる位置に、整流突起5が設けられる。ここで、浸漬ノズル1の吐出孔2から吐出される溶鋼の吐出流の向きと、鋳型幅方向及び鋳型厚み方向は技術的に密接に関連するので、各図には極力、鋳型幅方向と鋳型厚み方向を図示した。図2に示すように浸漬ノズル1は、吐出孔2の形成方向6が鋳型幅方向と一致するように鋳型内に配される。各図には極力、鋳型幅方向及び鋳型厚み方向の何れにも直交する関係にある浸漬ノズル1の軸心方向も併せて図示した。以下、上記の浸漬ノズル1の構成を詳細に説明する。   Hereinafter, the configuration of an immersion nozzle according to an embodiment of the present invention will be described with reference to the drawings. The immersion nozzle 1 shown in FIG. 2 is used for pouring molten steel held in a tundish into a mold, and is formed in a bottomed cylindrical shape. A pair of opposed discharge holes 2 are formed in the peripheral wall of the immersion nozzle 1 at a position slightly away from the inner bottom surface 3 of the immersion nozzle 1. And the rectification | projection protrusion 5 is provided in the inner peripheral surface 4 of the curved outer side of the immersion nozzle 1 which concerns on this embodiment, and the position pinched | interposed between the said pair of discharge holes 2 by planar view. Here, since the direction of the discharge flow of the molten steel discharged from the discharge hole 2 of the immersion nozzle 1, the mold width direction and the mold thickness direction are closely related technically, each figure shows the mold width direction and the mold as much as possible. The thickness direction is illustrated. As shown in FIG. 2, the immersion nozzle 1 is arranged in the mold so that the forming direction 6 of the discharge holes 2 coincides with the mold width direction. Each figure also shows the axial direction of the immersion nozzle 1 that is orthogonal to the mold width direction and the mold thickness direction as much as possible. Hereinafter, the configuration of the immersion nozzle 1 will be described in detail.

(浸漬ノズル1)
浸漬ノズル1は、図3に示すように、内径φ[mm]を有する有底円筒状であって、整流突起5と共に耐火物で一体形成される。浸漬ノズル1の内径φ[mm]は例えば、60〜100とされる。
(Immersion nozzle 1)
As shown in FIG. 3, the immersion nozzle 1 has a bottomed cylindrical shape having an inner diameter φ [mm], and is integrally formed with a rectifying protrusion 5 and a refractory. The inner diameter φ [mm] of the immersion nozzle 1 is 60 to 100, for example.

(吐出孔2)
吐出孔2は、図5に示すように一対で対向するように浸漬ノズル1の周壁に形成され、図4に示すように浸漬ノズル1の内周面4から外周面7へ向かって若干斜め下向きに傾斜し、図3に示すように浸漬ノズル1の内周面4においては丸みを帯びた矩形の縁8を有し、浸漬ノズル1の外周面7においても同様に丸みを帯びた矩形の縁9を有する(図4を併せて参照)。また、吐出孔2の形成方向6は、図5の平面視で鋳型幅方向に対して平行とされる。また、吐出孔2は、図5に示されるように浸漬ノズル1の内周面4から外周面7へ向かって緩やかに幅広となるように形成される。
(Discharge hole 2)
The discharge holes 2 are formed in the peripheral wall of the immersion nozzle 1 so as to face each other as shown in FIG. 5, and are slightly inclined downward from the inner peripheral surface 4 to the outer peripheral surface 7 of the immersion nozzle 1 as shown in FIG. As shown in FIG. 3, the inner peripheral surface 4 of the immersion nozzle 1 has a rounded rectangular edge 8, and the outer peripheral surface 7 of the immersion nozzle 1 similarly has a rounded rectangular edge. 9 (see also FIG. 4). Further, the forming direction 6 of the discharge holes 2 is parallel to the mold width direction in a plan view of FIG. Further, as shown in FIG. 5, the discharge hole 2 is formed so as to be gradually widened from the inner peripheral surface 4 to the outer peripheral surface 7 of the immersion nozzle 1.

図3に示すように、浸漬ノズル1の内周面4における吐出孔2の縁8の下端である吐出孔下端8dと内側底面3との間の垂直方向における距離である吐出孔下端距離hd[mm]は例えば、20〜40とされる。同様に、上記の縁8の上端である吐出孔上端8uと内側底面3との間の垂直方向における距離である吐出孔上端距離hu[mm]は例えば、50〜120とされる。また、図3に示す立面視において、浸漬ノズル1の内周面4における吐出孔2の縁8を投影することで二次元的に特定できる、吐出孔2の流路断面積は、高スループットの操業のため、直径が70〜110[mm]の円の面積相当となっている。具体的には、図3に示す立面視において、浸漬ノズル1の内周面4における吐出孔2の縁8を投影することで二次元的に特定できる、吐出孔2の流路幅Wi[mm]及び流路高さHi[mm]は、夫々、50〜95、80〜100とされる。そして、図3において内側底面3と吐出孔下端8dと内周面4によって囲まれる空間は、一般に湯溜り部10と称され、この湯溜り部10は、主として鋳造開始時の溶鋼の飛び散りを防止する機能を発揮するものである。図4に示す立面視で吐出孔2の内底面2aが水平と成す角度θである下向き吐出角θ[deg.]は概ね10〜55とされる。   As shown in FIG. 3, the discharge hole lower end distance hd [that is the distance in the vertical direction between the discharge hole lower end 8 d that is the lower end of the edge 8 of the discharge hole 2 on the inner peripheral surface 4 of the immersion nozzle 1 and the inner bottom surface 3. mm] is, for example, 20-40. Similarly, the discharge hole upper end distance hu [mm], which is the distance in the vertical direction between the discharge hole upper end 8 u which is the upper end of the edge 8 and the inner bottom surface 3, is 50 to 120, for example. In addition, in the elevation view shown in FIG. 3, the flow passage cross-sectional area of the discharge hole 2 that can be specified two-dimensionally by projecting the edge 8 of the discharge hole 2 on the inner peripheral surface 4 of the immersion nozzle 1 is high throughput. Therefore, the diameter corresponds to the area of a circle having a diameter of 70 to 110 [mm]. Specifically, in the elevation view shown in FIG. 3, the flow path width Wi [of the discharge hole 2 that can be specified two-dimensionally by projecting the edge 8 of the discharge hole 2 on the inner peripheral surface 4 of the immersion nozzle 1. mm] and the flow path height Hi [mm] are 50 to 95 and 80 to 100, respectively. In FIG. 3, the space surrounded by the inner bottom surface 3, the discharge hole lower end 8 d and the inner peripheral surface 4 is generally referred to as a hot water reservoir 10, and this hot water reservoir 10 mainly prevents splashing of molten steel at the start of casting. The function to perform is demonstrated. A downward discharge angle θ [deg.], Which is an angle θ between the inner bottom surface 2a of the discharge hole 2 and the horizontal in an elevational view shown in FIG. ] Is approximately 10-55.

(整流突起5)
<断面形状>図3に示すように、鋳型幅方向に対して垂直な断面において、整流突起5は略台形状であって、内周面4から浸漬ノズル1の軸心Cに向かって次第に窄まる形状である。即ち、整流突起5は、軸心C側下方へ向かって傾斜する平面としての突起上面11と、軸心C側上方へ向かって傾斜する平面としての突起下面12と、突起上面11と突起下面12を連結する突起内周面13と、を有する。図3に示す断面視で突起上面11及び突起下面12は水平に対して概ね30〜60度で傾斜する。上記の突起内周面13は平面であって、鋳型厚み方向に対して直交する関係にある。この突起内周面13は図4に示す断面視において鋳型幅方向に延在し、特に突起内周面13の下端線13d(整流突起5の下端部5d)は、図4の立面視で鋳型幅方向に対して平行とされる。同様に、突起内周面13の上端線13u(整流突起5の上端部5u)も、図4の立面視で鋳型幅方向に対して平行とされる。端的に言えば、本実施形態において整流突起5は、鋳型幅方向に延在するように形成される。
(Rectifying protrusion 5)
<Cross-sectional shape> As shown in FIG. 3, in the cross section perpendicular to the mold width direction, the rectifying protrusion 5 is substantially trapezoidal and gradually narrows from the inner peripheral surface 4 toward the axis C of the immersion nozzle 1. It is a round shape. That is, the rectifying protrusion 5 includes a protrusion upper surface 11 as a plane inclined downward on the axis C side, a protrusion lower surface 12 as a plane inclined upward on the axis C side, and the protrusion upper surface 11 and the protrusion lower surface 12. A protrusion inner peripheral surface 13 for connecting the two. In the cross-sectional view shown in FIG. 3, the upper surface 11 and the lower surface 12 of the protrusion are inclined at approximately 30 to 60 degrees with respect to the horizontal. The protrusion inner peripheral surface 13 is a flat surface and is orthogonal to the mold thickness direction. The protrusion inner peripheral surface 13 extends in the mold width direction in the cross-sectional view shown in FIG. 4, and in particular, the lower end line 13d of the protrusion inner peripheral surface 13 (the lower end portion 5d of the rectifying protrusion 5) is seen in the elevation view of FIG. Parallel to the mold width direction. Similarly, the upper end line 13u of the protrusion inner peripheral surface 13 (the upper end portion 5u of the rectifying protrusion 5) is also parallel to the mold width direction in the elevational view of FIG. In short, in the present embodiment, the rectifying protrusion 5 is formed so as to extend in the mold width direction.

<突起垂直厚み>図4に示す符号d2は、上記の上端線13u(整流突起上端)と下端線13d(整流突起下端)との間の垂直方向における距離である突起垂直厚みd2[mm]である。即ち、整流突起5の突起垂直厚みd2[mm]は、突起内周面13に着目して特定する。 <Protrusion Vertical Thickness> The symbol d2 shown in FIG. 4 is the protrusion vertical thickness d2 [mm] which is the distance in the vertical direction between the upper end line 13u (the upper end of the rectifying protrusion) and the lower end line 13d (the lower end of the rectifying protrusion). is there. That is, the protrusion vertical thickness d2 [mm] of the rectifying protrusion 5 is specified by paying attention to the protrusion inner peripheral surface 13.

<整流突起下端距離>図4に示す符号d1は、上記の下端線13dと内側底面3との間の垂直方向における距離である整流突起下端距離d1[mm]である。即ち、整流突起5の整流突起下端距離d1[mm]は、突起内周面13と内側底面3に着目して特定する。 <Directing protrusion lower end distance> Reference sign d1 shown in FIG. 4 is a rectifying protrusion lower end distance d1 [mm], which is a distance in the vertical direction between the lower end line 13d and the inner bottom surface 3 described above. That is, the rectifying protrusion lower end distance d1 [mm] of the rectifying protrusion 5 is specified by paying attention to the protrusion inner peripheral surface 13 and the inner bottom surface 3.

<突起水平厚み>図5に示す符号Aは、整流突起5の、図5の平面視で鋳型厚み方向(吐出孔2の形成方向6に対して垂直な方向)において特定する突起水平厚みA[mm]である。具体的には、突起水平厚みA[mm]は、図5の平面視で鋳型幅方向に対して垂直であり、浸漬ノズル1の軸心Cを通る直線Eと整流突起5との重複距離として特定される。 <Protrusion Horizontal Thickness> The symbol A shown in FIG. 5 indicates the protrusion horizontal thickness A [specification of the rectifying protrusion 5 in the mold thickness direction (direction perpendicular to the forming direction 6 of the discharge holes 2) in the plan view of FIG. mm]. Specifically, the protrusion horizontal thickness A [mm] is perpendicular to the mold width direction in a plan view of FIG. 5, and is an overlap distance between the straight line E passing through the axis C of the immersion nozzle 1 and the rectifying protrusion 5. Identified.

<突起水平長さ>図5に示す符号Bは、整流突起5の、図5の平面視で鋳型幅方向(吐出孔2の形成方向6に対して平行な方向)において特定する突起水平長さB[mm]である。具体的には、突起水平長さB[mm]は、図5において破線と実線で特定される整流突起5の、鋳型幅方向における最大長さそのものとして特定される。 <Protrusion Horizontal Length> The symbol B shown in FIG. 5 indicates the protrusion horizontal length specified in the mold width direction (direction parallel to the formation direction 6 of the discharge holes 2) of the flow straightening protrusion 5 in plan view of FIG. B [mm]. Specifically, the protrusion horizontal length B [mm] is specified as the maximum length itself in the mold width direction of the rectifying protrusion 5 specified by the broken line and the solid line in FIG.

以上の形状をした整流突起5は、更に、下記式(1)〜(4)の条件を満足する。   The rectifying protrusion 5 having the above shape further satisfies the conditions of the following formulas (1) to (4).

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

以上に、本実施形態に係る浸漬ノズル1の構成を説明した。なお、強度や溶損などの観点から、面と面は鈍角で交差するものとし、面と面の交差する部位には適度な丸みを付すのが好ましい。ただし、丸みを付すことで上記各寸法が不明瞭となった場合は、丸みが付されていない場合を想定したときに特定できる寸法を代わりに採用するものとする。   The configuration of the immersion nozzle 1 according to this embodiment has been described above. From the viewpoint of strength, melting damage, etc., it is preferable that the surface and the surface intersect at an obtuse angle, and the portion where the surface and the surface intersect with each other is appropriately rounded. However, when each of the above dimensions becomes unclear due to rounding, dimensions that can be specified when assuming no rounding shall be adopted instead.

次に、図6に基づいて、本実施形態に係る浸漬ノズル1の作用を説明する。本実施形態に係る浸漬ノズル1では、図6(a)に示すように浸漬ノズル1の上端から下端へ向かって流れてきた溶鋼は、内側底面3に衝突する前に、湾曲外側に設けられた整流突起5と衝突する。そして、この衝突によって、浸漬ノズル1内の溶鋼の流れは一旦、湾曲内側寄りに集約される。このとき、整流突起5と内側底面3との間に大きな負圧域Fが形成され、上記溶鋼の流れはこの負圧域Fに引き寄せられるかたちで、図6(b)に示すように鋳型幅方向を軸とし、内側底面3から湾曲外側へ向かって上昇する時計回りの、単一の大径な渦流Pを形成する。このように、本実施形態に係る浸漬ノズル1では、上記の単一の大径な渦流Pの旋回方向が上記の整流突起5によって固定されるので、吐出流の向きは湾曲内側に固定され、図12(b)に示すような、湾曲内側では下降流となり湾曲外側では上昇流となるような吐出流の流動パターンが安定して実現される。また、図2に開示の浸漬ノズル1は上記の単一の大径な渦流Pを積極利用するものであるから、もはや上記の流動パターンを実現するために吐出孔2の流路断面積を小さく設定しなければならないという技術的制約から解放され、従って、図12(b)に示すような上記の流動パターンを実現しつつ、吐出孔2の流路断面積を大きく設定することが可能となる。   Next, the operation of the immersion nozzle 1 according to the present embodiment will be described based on FIG. In the immersion nozzle 1 according to the present embodiment, as shown in FIG. 6A, the molten steel that has flowed from the upper end to the lower end of the immersion nozzle 1 is provided outside the curve before colliding with the inner bottom surface 3. Collides with rectifying protrusion 5. And by this collision, the flow of the molten steel in the immersion nozzle 1 is once concentrated near the curved inner side. At this time, a large negative pressure region F is formed between the rectifying protrusion 5 and the inner bottom surface 3, and the flow of the molten steel is attracted to the negative pressure region F. As shown in FIG. A single large-diameter vortex P that is clockwise and rises from the inner bottom surface 3 toward the curved outer side with the direction as an axis is formed. Thus, in the immersion nozzle 1 according to the present embodiment, the swirling direction of the single large-diameter vortex P is fixed by the rectifying protrusion 5, so the direction of the discharge flow is fixed inside the curve, As shown in FIG. 12B, the flow pattern of the discharge flow that is a downward flow inside the curve and an upward flow outside the curve is stably realized. Further, since the immersion nozzle 1 disclosed in FIG. 2 actively uses the single large-diameter vortex P, the flow passage cross-sectional area of the discharge hole 2 is no longer reduced in order to realize the flow pattern. Therefore, it is possible to set the flow passage cross-sectional area of the discharge hole 2 large while realizing the above flow pattern as shown in FIG. 12B. .

従って、上記の浸漬ノズル1を採用すれば、凝固シェルの湾曲内側への介在物の捕捉・集積を抑制できることはもちろん、高スループットの操業において、凝固シェルのコーナー部への入熱が過大となるのを回避することが可能となる。   Therefore, if the above immersion nozzle 1 is employed, the trapping and accumulation of inclusions inside the curve of the solidified shell can be suppressed, and the heat input to the corner of the solidified shell becomes excessive in high-throughput operation. Can be avoided.

以上に本願発明の好適な実施形態を説明したが、上記の整流突起5や吐出孔2は、以下のように変更することができる。   Although the preferred embodiment of the present invention has been described above, the rectifying protrusions 5 and the discharge holes 2 can be changed as follows.

即ち、図7(a1)に示す平面視で、整流突起5の突起内周面13は、内周面4と同じように円弧を描くように形成されてもよい。突起水平厚みA[mm]や突起水平長さB[mm]、整流突起下端距離d1[mm]、突起垂直厚みd2[mm]の測定基準については、図7(a1)及び(a2)に示すように、上記実施形態と全く同様である。   That is, the projection inner peripheral surface 13 of the rectifying projection 5 may be formed to draw an arc in the same manner as the inner peripheral surface 4 in a plan view shown in FIG. The measurement standards of the protrusion horizontal thickness A [mm], the protrusion horizontal length B [mm], the straightening protrusion lower end distance d1 [mm], and the protrusion vertical thickness d2 [mm] are shown in FIGS. 7 (a1) and (a2). As described above, this is exactly the same as the above embodiment.

また、図7(b1)に示す平面視で、上記実施形態に係る整流突起5は、鋳型幅方向における端が斜めにカットされて形成されてもよい。突起水平厚みA[mm]や突起水平長さB[mm]、整流突起下端距離d1[mm]、突起垂直厚みd2[mm]の測定基準については、図7(b1)及び(b2)に示すように、上記実施形態と全く同様である。   In addition, in the plan view shown in FIG. 7B1, the rectifying protrusion 5 according to the above embodiment may be formed by obliquely cutting an end in the mold width direction. The measurement standards of the protrusion horizontal thickness A [mm], the protrusion horizontal length B [mm], the straightening protrusion lower end distance d1 [mm], and the protrusion vertical thickness d2 [mm] are shown in FIGS. 7B1 and 7B2. As described above, this is exactly the same as the above embodiment.

また、図8(c1)に示す平面視で、上記実施形態に係る吐出孔2は、内周面4から外周面7にかけて、一定の流路幅に形成されてもよい。   8 (c1), the discharge hole 2 according to the above embodiment may be formed with a constant flow path width from the inner peripheral surface 4 to the outer peripheral surface 7.

以下、上記実施形態に係る浸漬ノズル1の技術的効果を確認するための試験に関して説明する。上述した各数値範囲などは、下記の試験により合理的に裏付けられている。   Hereinafter, the test for confirming the technical effect of the immersion nozzle 1 which concerns on the said embodiment is demonstrated. Each numerical range mentioned above is reasonably supported by the following test.

≪試験:試験概要≫
各試験は、鋳型と溶鋼に代えて水槽と水を採用した所謂水モデル試験である。各試験は、浸漬ノズル1の構造や水槽のサイズなどに細かな変更を加えながら実施した。
≪Examination: Outline of examination≫
Each test is a so-called water model test that employs a water tank and water instead of the mold and molten steel. Each test was performed while making minor changes to the structure of the immersion nozzle 1 and the size of the water tank.

≪試験:試験方法:図9≫
本試験においては、浸漬ノズル1に所定の水流量Wat[L/min]で水が供給されている定常状態において、100秒間、浸漬ノズル1からの吐出流の様子を図9(a)の平面視で市販のビデオカメラを用いて撮影し記録した。このとき、浸漬ノズル1内を流れる水に対して空気を含ませることで、上記吐出流の様子を可視化した。そして、このときの映像を適宜の画像処理を踏まえて解析することで、上記100秒のうちどれくらいの時間、吐出流の向きが湾曲内側へ十分に方向付けされていたかを調査した。この調査の結果、吐出流の向きが湾曲内側へ十分に方向付けされていた時間、具体的には湾曲内側への方向付けを正とする吐出流の吐出角α[deg.]が5以上であった時間を、上記100秒で除した値としての内側吐出時間率Rを求めた。そして、この内側吐出時間率Rが略100%であったとき、その浸漬ノズル1は、吐出流の向きを湾曲内側へ十分に方向付けできるとして「○」と評価し、そうでない場合を「×」と評価した。なお、図9における数値の単位はmmであり、符号Wは水槽の幅(鋳型幅に相当する。)を、符号Dは水槽の厚み(鋳型厚みに相当する。)を夫々示す。また、吐出流の吐出角α[deg.]の閾値として5を採用した根拠は、本願明細書の末尾に記載する。
≪Test: Test method: Fig. 9≫
In this test, the state of the discharge flow from the immersion nozzle 1 for 100 seconds in a steady state where water is supplied to the immersion nozzle 1 at a predetermined water flow rate Wat [L / min] is shown in FIG. Visually photographed and recorded using a commercially available video camera. At this time, the state of the discharge flow was visualized by including air in the water flowing through the immersion nozzle 1. Then, by analyzing the video at this time based on appropriate image processing, it was investigated how long in 100 seconds the direction of the discharge flow was sufficiently directed toward the inside of the curve. As a result of this investigation, the time during which the direction of the discharge flow is sufficiently directed toward the inside of the curve, specifically, the discharge angle α [deg. ] Was 5 or more, and the inner discharge time rate R as a value obtained by dividing the time by 100 seconds was obtained. When the inner discharge time rate R is approximately 100%, the immersion nozzle 1 evaluates as “◯” because the direction of the discharge flow can be sufficiently directed toward the inside of the curve, and otherwise indicates “× ". In FIG. 9, the unit of numerical values is mm, the symbol W indicates the width of the water tank (corresponding to the mold width), and the symbol D indicates the thickness of the water tank (corresponding to the mold thickness). Further, the discharge angle α [deg. The reason for adopting 5 as the threshold value is described at the end of the present specification.

≪試験:個別の試験条件及び試験結果≫
次に、各試験の個別の試験条件とその試験結果を下記表1に示す。下記表1において、列タイトル「W mm」は水槽のサイズであって、実機における鋳型幅に相当する。列タイトル「D mm」も水槽のサイズであって、実機における鋳型厚みに相当する。下記表1の水槽のサイズは、一般的なスラブ向けの鋳型を想定したものである。列タイトル「Air NL/min」は試験中に浸漬ノズルに導入する空気の流量を意味する。この空気は、図2に示される浸漬ノズルの上端近傍から吹き込んだ。列タイトル「SV開閉方向」とあるのは、スライドバルブの開閉方向を意味する。即ち、一般に、浸漬ノズル1の上端には、鋳型への溶鋼の流量を調整するためのスライドバルブが設けられており、このスライドバルブは、バルブをある特定の方向にスライドさせ、このスライドの開度を調整することで上記流量を調整できるようになっている。このバルブのスライド方向が鋳型厚み方向と一致する場合、列タイトル「SV開閉方向」において該当する箇所に「鋳型厚方向」と記載し、このバルブのスライド方向が鋳型幅方向と一致する場合、同様に、「鋳型幅方向」と記載した。列タイトル「吐出孔形状」において、「ラッパ」とあるのは図5に相当し、「平行」とあるのは図8(c1)に相当する。列タイトル「S mm」とあるのは、図3に示す立面視において、浸漬ノズル1の内周面4における吐出孔2の縁8を投影することで二次元的に特定できる吐出孔2の流路断面積を意味し、この流路断面積を同一の面積を有する円の直径で表現した場合のその直径[mm]を記載した。列タイトル「整流段差位置」において、「外側」とあるのは、図5の平面視で、湾曲外側に整流突起5を配置したことを意味し、「内側」とあるのは、図5の平面視で、湾曲内側に整流突起5を配置したことを意味する。列タイトル「数式(1)」などについては、各数式を参照されたい。なお、該当する数式を満足する場合を「○」とし、そうでない場合を「×」とした。列タイトル「R %」は、上記の内側吐出時間率R[%]を意味する。参考までに、列タイトル「Ave(α) deg.」欄には、吐出角α[deg.]の平均値を記載した。列タイトル「総合評価」には、上記内側吐出時間率Rの基づく評価の結果を記載した。なお、試験No.6、11、25、30、44、49では、他の特別な理由でこの総合評価の欄が「×」となっている。
≪Test: Individual test conditions and test results≫
Next, individual test conditions and test results of each test are shown in Table 1 below. In Table 1 below, the column title “W mm” is the size of the water tank and corresponds to the mold width in the actual machine. The column title “D mm” is also the size of the water tank and corresponds to the mold thickness in the actual machine. The size of the water tank in Table 1 below assumes a mold for a general slab. The column title “Air NL / min” means the flow rate of air introduced into the immersion nozzle during the test. This air was blown from the vicinity of the upper end of the immersion nozzle shown in FIG. The column title “SV open / close direction” means the open / close direction of the slide valve. That is, generally, a slide valve for adjusting the flow rate of the molten steel to the mold is provided at the upper end of the immersion nozzle 1, and this slide valve slides the valve in a specific direction and opens the slide. The flow rate can be adjusted by adjusting the degree. If the slide direction of this valve matches the mold thickness direction, “mold thickness direction” is described in the corresponding place in the column title “SV opening / closing direction”, and if the slide direction of this valve matches the mold width direction, the same Is described as “mold width direction”. In the column title “ejection hole shape”, “trumpet” corresponds to FIG. 5, and “parallel” corresponds to FIG. 8 (c1). The column title “S mm” refers to the discharge hole 2 that can be identified two-dimensionally by projecting the edge 8 of the discharge hole 2 on the inner peripheral surface 4 of the immersion nozzle 1 in an elevational view shown in FIG. The channel cross-sectional area is meant, and the diameter [mm] when the channel cross-sectional area is expressed by the diameter of a circle having the same area is described. In the column title “rectifying step position”, “outside” means that the rectifying protrusions 5 are arranged on the curved outer side in a plan view of FIG. 5, and “inside” means that the plane in FIG. This means that the straightening protrusions 5 are arranged on the curved inner side. For the column title “Formula (1)” and the like, refer to each formula. In addition, the case where the corresponding mathematical formula is satisfied was set as “◯”, and the case where it was not satisfied was set as “X”. The column title “R%” means the inner discharge time rate R [%]. For reference, the column title “Ave (α) deg.” Has a discharge angle α [deg. The average value of] was described. The column title “overall evaluation” describes the result of evaluation based on the inner discharge time rate R. In addition, Test No. In 6, 11, 25, 30, 44, and 49, this comprehensive evaluation column is “X” for other special reasons.

Figure 2010188402
Figure 2010188402

(まとめ)
(請求項1)
以上説明したように上記実施形態において、浸漬ノズル1は、以下のように構成される。即ち、浸漬ノズル1の湾曲外側の内周面4であって、平面視で一対の吐出孔2の間に挟まれる位置に、整流突起5が設けられる。下記式(1)〜(4)の条件を満足する。
(Summary)
(Claim 1)
As described above, in the above embodiment, the immersion nozzle 1 is configured as follows. That is, the rectifying protrusion 5 is provided on the inner peripheral surface 4 on the curved outer side of the immersion nozzle 1 and at a position sandwiched between the pair of discharge holes 2 in a plan view. The conditions of the following formulas (1) to (4) are satisfied.

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

Figure 2010188402
Figure 2010188402

以上の構成によれば、上記の単一の大径な渦流Pの旋回方向が上記の整流突起5によって固定されるので、吐出流の向きは湾曲内側に固定され、図12(b)に示すような、湾曲内側では下降流となり湾曲外側では上昇流となるような吐出流の流動パターンが安定して実現される。また、図2に開示の浸漬ノズル1は上記の単一の大径な渦流Pを積極利用するものであるから、もはや上記の流動パターンを実現するために吐出孔2の流路断面積を小さく設定しなければならないという技術的制約から解放され、従って、図12(b)に示すような上記の流動パターンを実現しつつ、吐出孔2の流路断面積を大きく設定することが可能となる。   According to the above configuration, since the swirling direction of the single large-diameter vortex P is fixed by the rectifying protrusion 5, the direction of the discharge flow is fixed inside the curve, as shown in FIG. As described above, the flow pattern of the discharge flow that is a downward flow inside the curve and an up flow outside the curve is stably realized. Further, since the immersion nozzle 1 disclosed in FIG. 2 actively uses the single large-diameter vortex P, the flow passage cross-sectional area of the discharge hole 2 is no longer reduced in order to realize the flow pattern. Therefore, it is possible to set the flow passage cross-sectional area of the discharge hole 2 large while realizing the above flow pattern as shown in FIG. 12B. .

上記実施形態に係る浸漬ノズル1を採用すれば、凝固シェルの湾曲内側への介在物の捕捉・集積を抑制できることはもちろん、高スループットの操業において、凝固シェルのコーナー部への入熱が過大となるのを回避することが可能となる。   If the immersion nozzle 1 according to the above embodiment is employed, the trapping and accumulation of inclusions inside the curve of the solidified shell can be suppressed, and of course, heat input to the corner of the solidified shell is excessive in high-throughput operation. It becomes possible to avoid becoming.

(考察)
以下、上記表1の結果を詳細に考察する。
(Discussion)
Hereinafter, the results of Table 1 will be discussed in detail.

(吐出孔形状)
試験No.1〜57によれば、吐出孔形状のバリエーションとして、図5に示すラッパ型に加え、図8(c1)に示す平行型も十分、有効であることが実証された。
(Discharge hole shape)
Test No. According to Nos. 1 to 57, it was proved that the parallel type shown in FIG. 8C1 is sufficiently effective as a variation of the discharge hole shape in addition to the trumpet type shown in FIG.

(吐出孔の流路断面積)
試験No.1〜57によれば、吐出流の向きを湾曲内側に方向付けしつつ、吐出孔2の流路断面積を特許文献1等と比較して大きく設定することが可能であることが示された。
(Cross-sectional area of discharge hole)
Test No. 1 to 57 show that the flow passage cross-sectional area of the discharge hole 2 can be set to be larger than that of Patent Document 1 or the like while the direction of the discharge flow is directed to the inside of the curve. .

(整流段差位置)
試験No.1、20、39と、その他の試験と、の対比によれば、上記の整流突起5を湾曲内側に配置するか湾曲外側に配置するかということと、吐出流の向きが湾曲内側に方向付けされるか湾曲外側に方向付けされるかということと、が密接に一対一で対応していることが判る。なお、実際に試験してはいないが、整流突起5を湾曲外側でも湾曲内側でもない他の位置へ配置した場合は、理屈で考えると図6に示すような渦流Pは形成されないだろう。また、試験No.2、21、40では、整流突起5を設けなかった。このときの溶鋼の流れはまさに図1(c2)及び(d2)の行き来だった。
(Rectification step position)
Test No. According to the comparison between 1, 20, 39 and other tests, whether the rectifying protrusion 5 is arranged inside the curve or the curve outside, and the direction of the discharge flow is directed inside the curve. It can be seen that there is a close one-to-one correspondence between being directed to the outside of the curve. Although not actually tested, if the rectifying protrusion 5 is arranged at another position that is neither the curved outer side nor the curved inner side, the vortex P as shown in FIG. 6 will not be formed in theory. In addition, Test No. In 2, 21, and 40, the rectifying protrusion 5 was not provided. At this time, the flow of molten steel was exactly as shown in FIGS. 1 (c2) and (d2).

(数式1、数式2)
試験No.2〜11、21〜30、40〜49によれば、図5の平面視において整流突起5が過小であると、内側吐出時間率Rに関する評価が良好ではなかったことが判る。このときの溶鋼の流れはまさに図1(c2)及び(d2)の行き来だっただろう。即ち、図6(a)に示す負圧域Fが十分には確保されなかったからだと考えられる。
(Formula 1, Formula 2)
Test No. According to 2 to 11, 21 to 30, and 40 to 49, it can be seen that when the rectifying protrusion 5 is too small in the plan view of FIG. The flow of molten steel at this time would have been exactly the flow of FIG. 1 (c2) and (d2). That is, it is considered that the negative pressure region F shown in FIG.

また、試験No.6、25、44のように図5の平面視において整流突起5の厚みが過大であると、内側吐出時間率Rに関する評価は良好ではあるものの、熱衝撃に弱くなり、実際に使用するにあたって十分な強度を確保することが難しい。従って、これらの試験No.における総合評価は「×」とした。   In addition, Test No. If the thickness of the rectifying protrusion 5 is excessively large in the plan view of FIG. 5 as in FIGS. 6, 25, and 44, the evaluation regarding the inner discharge time rate R is good, but it becomes weak against thermal shock and is sufficient for actual use. It is difficult to ensure a sufficient strength. Therefore, these test Nos. The overall evaluation was “×”.

また、試験No.11、30、49のように図5の平面視において整流突起5の幅が過大であると、内側吐出時間率Rに関する評価は良好ではあるものの、段差位置の方向性がなくなり(特に、図7(a1)のケースで、B/φ=1.0の場合は完全に内周面4に沿った段差となってしまい、方向性が完全に失われる。)、渦流Pの発生は不安定になると考えられる。また、浸漬ノズル1の平面視で特定できる流路断面積が小さくなるので、浸漬ノズル1内の流速が増大し、流速が大きいまま吐出孔2から吐出されるので、凝固シェルのコーナー部への入熱が過大になりかねない。従って、これらの試験No.における総合評価は「×」とした。   In addition, Test No. If the width of the rectifying protrusion 5 is excessively large in the plan view of FIG. 5 as in FIGS. 11, 30, and 49, the evaluation on the inner discharge time rate R is good, but the directionality of the step position is lost (particularly FIG. 7). In the case of (a1), when B / φ = 1.0, the step is completely along the inner peripheral surface 4 and the directionality is completely lost.) The generation of the vortex P is unstable. It is considered to be. Further, since the cross-sectional area of the flow path that can be specified in plan view of the immersion nozzle 1 is reduced, the flow velocity in the immersion nozzle 1 is increased, and the discharge flow is discharged from the discharge hole 2 while the flow velocity is large. Heat input can be excessive. Therefore, these test Nos. The overall evaluation was “×”.

(数式3)
試験No.12〜15、31〜34、50〜53によれば、d1/φが1.0に近いほど内側吐出時間率Rに関する評価が良好であることが判る。これは、d1/φが1.0に近いほど、図6(a)に示すように、整流突起5と内側底面3と内周面4に囲まれる領域が一層正方形に近づき、この領域が正方形に近ければ近いほど渦流Pが発生し易く、また、発生した渦流Pが真円形に近く、更には、発生した渦流Pが型崩れし難いからだと考えられる。
(Formula 3)
Test No. According to 12-15, 31-34, 50-53, it can be seen that the evaluation regarding the inner discharge time rate R is better as d1 / φ is closer to 1.0. As d1 / φ is closer to 1.0, as shown in FIG. 6A, the region surrounded by the rectifying protrusion 5, the inner bottom surface 3, and the inner peripheral surface 4 becomes closer to a square, and this region is a square. This is probably because the vortex P is more likely to be generated as it is closer to, the generated vortex P is closer to a perfect circle, and the generated vortex P is less likely to lose its shape.

(数式4)
試験No.16、35、54に係る整流突起5の断面形状では、実機の鋳造で使用に耐え得る十分な強度を確保することはできない。この意味で、いずれにせよ、これらの試験No.の総合評価は×となる。また、試験No.19、38、57によれば、図3に示す整流突起5の断面形状を扁平形状とすると、内側吐出時間率Rに関する評価が良好ではないことが判る。これは、図10に示すように、整流突起5の突起上面11との衝突で剥離した溶鋼の流れが整流突起5の突起内周面13上に再付着し、この結果、整流突起5の下方に、十分な大きさの負圧域Fが形成されなかったからだと考えられる。なお、『機械工学便覧 基礎編α4 流体工学 初版P.47』には、『流れ方向の長さがBで厚さがHである角柱において、・・・、B/H>6.0では、前縁角から剥離した剪断層は側壁上で再付着し・・・』なる記載がある。この記載は、上記実施形態において数式(4)の右辺に6.0を採用することとした補強的な裏付けとなっている。
(Formula 4)
Test No. With the cross-sectional shape of the rectifying protrusion 5 according to 16, 35, 54, it is not possible to ensure sufficient strength to withstand use in actual casting. In this sense, in any case, these test Nos. The overall evaluation is x. In addition, Test No. 19, 38, and 57 show that the evaluation regarding the inner discharge time rate R is not good when the cross-sectional shape of the rectifying protrusion 5 shown in FIG. 3 is a flat shape. As shown in FIG. 10, the flow of the molten steel separated by the collision with the upper surface 11 of the rectifying protrusion 5 is reattached on the inner peripheral surface 13 of the rectifying protrusion 5, and as a result, In addition, it is considered that a sufficiently large negative pressure region F was not formed. In addition, “Mechanical Engineering Handbook Basic α4 Fluid Engineering First Edition 47 ”includes:“ In a prism with a flow direction length of B and a thickness of H,..., B / H> 6.0, the shear layer peeled off from the leading edge angle is reattached on the side wall. "..." This description is reinforcing support for adopting 6.0 on the right side of Equation (4) in the above embodiment.

なお、上記式(1)〜(4)において、比を用いて表現してるのは、以下の理由による。即ち、一般的な連続鋳造において、浸漬ノズル1の管内や湯溜り部10は十分に乱流場となっており、浸漬ノズル1の内側の形状や、浸漬ノズル1の内側における溶鋼の流れには相似則が適用され、サイズが異なっても比が一定であれば溶鋼の流れも変化しないだろうからである。   In the above formulas (1) to (4), the ratio is used for the following reason. That is, in general continuous casting, the inside of the pipe of the immersion nozzle 1 and the water reservoir 10 are sufficiently turbulent, and the shape inside the immersion nozzle 1 and the flow of molten steel inside the immersion nozzle 1 This is because if the similarity rule is applied and the ratio is constant even if the sizes are different, the flow of molten steel will not change.

<閾値の根拠:図11>
図11に、特開昭51−138526号公報に開示のデータをグラフ化したものを示す。なお、下向き吐出角θ[deg.]は何れのプロットにおいても15である。このグラフによれば、吐出角α[deg.]を5以上とすれば、吐出角α[deg.]が0の場合と比較して介在物量を概ね6割程度、低減し、鋳片品質を改善できることが判る。従って、得られる鋳片品質の観点から、吐出角α[deg.]の閾値として5を採用した。
<Threshold basis: FIG. 11>
FIG. 11 is a graph of the data disclosed in Japanese Patent Laid-Open No. 51-138526. The downward discharge angle θ [deg. ] Is 15 in any plot. According to this graph, the discharge angle α [deg. ] Is 5 or more, the discharge angle α [deg. ], The amount of inclusions can be reduced by about 60%, and the slab quality can be improved. Therefore, the discharge angle α [deg. ] Was adopted as the threshold value.

1 浸漬ノズル
2 吐出孔
3 内側底面
5 整流突起
1 Immersion nozzle 2 Discharge hole 3 Inner bottom surface 5 Rectification protrusion

Claims (1)

タンディッシュ内に保持される溶鋼を鋳型内へ注湯するのに供される有底円筒状の浸漬ノズルであって、湾曲型連続鋳造機向けであり、前記浸漬ノズルの周壁には、一対の対向する吐出孔が形成される、浸漬ノズルにおいて、
前記浸漬ノズルの湾曲外側の内周面であって、平面視で前記一対の吐出孔の間に挟まれる位置に、整流突起が設けられ、
・前記整流突起の、平面視で鋳型厚み方向において特定する突起水平厚みA[mm]と、
・前記整流突起の、平面視で鋳型幅方向において特定する突起水平長さB[mm]と、
・前記整流突起の下端である整流突起下端と、前記浸漬ノズルの内側底面との間の垂直方向における距離である整流突起下端距離d1[mm]と、
・前記整流突起の上端である整流突起上端と、上記の整流突起下端との間の垂直方向における距離である突起垂直厚みd2[mm]と、
は、下記式(1)〜(4)の条件を満足する。
Figure 2010188402
Figure 2010188402
Figure 2010188402
Figure 2010188402
A bottomed cylindrical immersion nozzle that is used to pour molten steel held in a tundish into a mold, and is for a curved continuous casting machine. In an immersion nozzle in which opposed discharge holes are formed,
On the inner peripheral surface of the curved outer side of the immersion nozzle, a rectifying protrusion is provided at a position sandwiched between the pair of discharge holes in a plan view,
A protrusion horizontal thickness A [mm] specified in the mold thickness direction in plan view of the rectifying protrusion;
A protrusion horizontal length B [mm] specified in the mold width direction in plan view of the rectifying protrusion;
A straightening protrusion lower end distance d1 [mm], which is a distance in the vertical direction between the straightening protrusion lower end that is the lower end of the straightening protrusion and the inner bottom surface of the immersion nozzle;
A protrusion vertical thickness d2 [mm] which is a distance in the vertical direction between the upper end of the straightening protrusion and the lower end of the straightening protrusion;
Satisfies the conditions of the following formulas (1) to (4).
Figure 2010188402
Figure 2010188402
Figure 2010188402
Figure 2010188402
JP2009037485A 2009-02-20 2009-02-20 Immersion nozzle for curved continuous casting machine Expired - Fee Related JP5344948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037485A JP5344948B2 (en) 2009-02-20 2009-02-20 Immersion nozzle for curved continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037485A JP5344948B2 (en) 2009-02-20 2009-02-20 Immersion nozzle for curved continuous casting machine

Publications (2)

Publication Number Publication Date
JP2010188402A true JP2010188402A (en) 2010-09-02
JP5344948B2 JP5344948B2 (en) 2013-11-20

Family

ID=42815029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037485A Expired - Fee Related JP5344948B2 (en) 2009-02-20 2009-02-20 Immersion nozzle for curved continuous casting machine

Country Status (1)

Country Link
JP (1) JP5344948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180081729A (en) * 2015-11-10 2018-07-17 베수비우스 유에스에이 코포레이션 A casting nozzle comprising a flow deflector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9510728B2 (en) 2014-11-20 2016-12-06 Whilrpool Corporation Reduced vapor dry systems and methods for dishwashers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112655A (en) * 1994-10-12 1996-05-07 Nippon Steel Corp Nozzle for continuously casting steel
JP2004255407A (en) * 2003-02-25 2004-09-16 Shinagawa Refract Co Ltd Nozzle for continuously casting steel
JP2004283857A (en) * 2003-03-20 2004-10-14 Shinagawa Refract Co Ltd Nozzle for continuously casting steel
JP2005297022A (en) * 2004-04-13 2005-10-27 Shinagawa Refract Co Ltd Nozzle for continuously casting steel
JP2005296971A (en) * 2004-04-07 2005-10-27 Shinagawa Refract Co Ltd Immersion nozzle for continuously casting steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112655A (en) * 1994-10-12 1996-05-07 Nippon Steel Corp Nozzle for continuously casting steel
JP2004255407A (en) * 2003-02-25 2004-09-16 Shinagawa Refract Co Ltd Nozzle for continuously casting steel
JP2004283857A (en) * 2003-03-20 2004-10-14 Shinagawa Refract Co Ltd Nozzle for continuously casting steel
JP2005296971A (en) * 2004-04-07 2005-10-27 Shinagawa Refract Co Ltd Immersion nozzle for continuously casting steel
JP2005297022A (en) * 2004-04-13 2005-10-27 Shinagawa Refract Co Ltd Nozzle for continuously casting steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180081729A (en) * 2015-11-10 2018-07-17 베수비우스 유에스에이 코포레이션 A casting nozzle comprising a flow deflector
KR102593854B1 (en) 2015-11-10 2023-10-25 베수비우스 유에스에이 코포레이션 Cast nozzle with flow deflector

Also Published As

Publication number Publication date
JP5344948B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5451868B2 (en) Immersion nozzle for continuous casting equipment
US5882577A (en) Tundish
JP4772798B2 (en) Method for producing ultra-low carbon slab
JP5344948B2 (en) Immersion nozzle for curved continuous casting machine
JP4585504B2 (en) Method for continuous casting of molten metal
RU2570259C2 (en) Teeming barrel for metal melt direction
JP5867531B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5280883B2 (en) Immersion nozzle that suppresses drift in the mold thickness direction by providing a pair of steps on the inner peripheral surface
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP2007331003A (en) Continuous casting method for low carbon steel, using immersion nozzle with weir-type reservoir
JP6331810B2 (en) Metal continuous casting method
JP4851199B2 (en) Immersion nozzle
JP2004283848A (en) Immersion nozzle for continuous casting of steel
JP6792179B2 (en) Immersion nozzle for continuous casting
JP6451380B2 (en) Steel continuous casting method
JP2008000810A (en) Method for continuously casting high carbon steel using immersion nozzle with gate type pouring basin
JP6695731B2 (en) Lower nozzle
JP2002346706A (en) Continuous casting apparatus
JP4902276B2 (en) Continuous casting method of high carbon steel using dipping nozzle with dimple
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
JP5266154B2 (en) Rectifying structure that suppresses drift caused by opening and closing of slide plate
JP2009090324A (en) Continuous casting device, and continuous casting method
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
JP4750013B2 (en) Immersion nozzle with drum type weir
JP2009125750A (en) Submerged nozzle for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees