JP2010188385A - Method of manufacturing semiconductor wafer - Google Patents

Method of manufacturing semiconductor wafer Download PDF

Info

Publication number
JP2010188385A
JP2010188385A JP2009036033A JP2009036033A JP2010188385A JP 2010188385 A JP2010188385 A JP 2010188385A JP 2009036033 A JP2009036033 A JP 2009036033A JP 2009036033 A JP2009036033 A JP 2009036033A JP 2010188385 A JP2010188385 A JP 2010188385A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
laser beam
intermediate product
semiconductor
peeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009036033A
Other languages
Japanese (ja)
Other versions
JP5601778B2 (en
Inventor
Junichi Ikeno
順一 池野
Yosuke Kunishi
洋介 国司
Hideki Suzuki
秀樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2009036033A priority Critical patent/JP5601778B2/en
Publication of JP2010188385A publication Critical patent/JP2010188385A/en
Application granted granted Critical
Publication of JP5601778B2 publication Critical patent/JP5601778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor wafer by which a thin semiconductor wafer can easily be manufactured in a comparatively short period of time, and also product ratio can be enhanced. <P>SOLUTION: An aberration reinforcing glass plate 10 for a laser beam is interposed between the surface of a thick semiconductor wafer 1 and a condensing lens 3, with the surface of the semiconductor wafer 1 irradiated in this state with a laser beam 2. As a result, a converging point 4 is formed inside the semiconductor wafer 1 while the semiconductor wafer 1 and the converging point 4 are relatively moved. Inside the semiconductor wafer 1, a machining region 5 is continuously formed in parallel to the surface of the semiconductor wafer 1, thereby dividedly forming the intermediate product of the semiconductor wafer. Then, with the machining region 5 as a boundary, the intermediate product is peeled from a peeling starting region together with a peeling auxiliary plate; thus, a thin semiconductor wafer is manufactured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、薄い半導体ウェーハを切り出して製造する半導体ウェーハの製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor wafer by cutting and manufacturing a thin semiconductor wafer.

従来、シリコンウェーハに代表される半導体ウェーハを製造する場合には、図示しないが、石英るつぼのシリコン融液から凝固した円柱形のインゴットを適切な長さのブロックに切断してその周縁部を目標の直径になるよう研削し、その後、ブロック化されたインゴットをワイヤソーによりウェーハ形にスライスして半導体ウェーハを製造するようにしている(特許文献1、2、3参照)。   Conventionally, when manufacturing a semiconductor wafer typified by a silicon wafer, although not shown, a cylindrical ingot solidified from a silicon melt in a quartz crucible is cut into blocks of appropriate lengths, and the peripheral edge is targeted. Then, the semiconductor wafer is manufactured by slicing the block-shaped ingot into a wafer shape with a wire saw (see Patent Documents 1, 2, and 3).

このようにして製造された半導体ウェーハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片化が図られることにより、厚さが約750μmから100μm以下、例えば75μmや50μm程度に調整される。   The semiconductor wafer thus manufactured is subjected to various processes such as formation of a circuit pattern in the previous process in order, and then provided to the subsequent process. In this subsequent process, the back surface is back-grinded and thinned. Accordingly, the thickness is adjusted to about 750 μm to 100 μm or less, for example, about 75 μm or 50 μm.

特開2005‐277136号公報JP 2005-277136 A 特開2008‐200772号公報JP 2008-200772 A 特開2005‐297156号公報JP 2005-297156 A

従来における半導体ウェーハは、以上のように製造され、インゴットがワイヤソーにより切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となるので、厚さ0.1mm以下の薄い半導体ウェーハを製造することが非常に困難であり、製品率も向上しないという問題がある。また、半導体ウェーハにバックグラインド処理を施す場合には、作業に長時間を要し、微細な研削カスが半導体ウェーハの回路パターンを汚染するおそれがある。   Conventional semiconductor wafers are manufactured as described above, and the ingot is cut with a wire saw, and a cutting allowance larger than the thickness of the wire saw is required for cutting, so a thin semiconductor wafer with a thickness of 0.1 mm or less It is very difficult to manufacture the product, and the product rate is not improved. Further, when the backgrinding process is performed on the semiconductor wafer, it takes a long time for the work, and there is a possibility that the fine grinding residue contaminates the circuit pattern of the semiconductor wafer.

また近年、次世代の半導体として、硬度が大きく、熱伝導率も高いシリコンカーバイトが鋭意検討・開発されているが、このシリコンカーバイトの場合には、シリコンよりも硬度が大きい関係上、インゴットをワイヤソーにより容易にスライスすることができない事態が予想される。   In recent years, silicon carbide with high hardness and high thermal conductivity has been intensively studied and developed as the next-generation semiconductor. However, in the case of silicon carbide, the ingot has a higher hardness than silicon. It is expected that the wire cannot be easily sliced with a wire saw.

本発明は上記に鑑みなされたもので、薄い半導体ウェーハを比較的短時間で容易に製造することができ、しかも、製品率を向上させることのできる半導体ウェーハの製造方法を提供することを目的としている。   The present invention has been made in view of the above, and it is an object of the present invention to provide a method of manufacturing a semiconductor wafer that can easily manufacture a thin semiconductor wafer in a relatively short time and that can improve the product rate. Yes.

本発明においては上記課題を解決するため、半導体の表面にレーザ光線を集光手段を介して照射することにより、半導体ウェーハを製造する半導体ウェーハの製造方法であって、
半導体の表面と集光手段との間にレーザ光線用の収差増強材を介在し、この状態でレーザ光線を照射して半導体の内部に集光点を形成し、半導体と集光点とを相対的に移動させ、半導体の内部に加工領域を半導体の表面に平行に形成することにより、半導体ウェーハの中間品を形成し、その後、加工領域を境に中間品を剥離開始領域から剥離して半導体ウェーハを得ることを特徴としている。
In the present invention, in order to solve the above-mentioned problem, a semiconductor wafer manufacturing method for manufacturing a semiconductor wafer by irradiating the surface of the semiconductor with a laser beam through a condensing means,
A laser beam aberration enhancing material is interposed between the surface of the semiconductor and the focusing means, and in this state, a laser beam is irradiated to form a focusing point inside the semiconductor, and the semiconductor and the focusing point are relative to each other. The semiconductor product is formed in parallel with the surface of the semiconductor to form an intermediate product of the semiconductor wafer, and then the intermediate product is separated from the separation start region with the processing region as a boundary. It is characterized by obtaining a wafer.

なお、中間品の剥離開始領域に対するレーザ光線の照射量を、剥離開始領域以外の他領域に対するレーザ光線の照射量の2倍以上とすることができる。
また、中間品を剥離開始領域から剥離する前に、半導体の一部を除去して剥離開始領域の側面に加工領域を露出させることができる。
さらに、半導体と中間品のうち、少なくとも中間品の表面に剥離補助基材を固定し、この剥離補助基材と共に中間品を剥離して半導体ウェーハを得ることも可能である。
In addition, the irradiation amount of the laser beam with respect to the peeling start area | region of an intermediate product can be made into 2 times or more of the irradiation amount of the laser beam with respect to other area | regions other than a peeling start area | region.
In addition, before the intermediate product is peeled from the peeling start region, a part of the semiconductor can be removed to expose the processing region on the side surface of the peeling start region.
Furthermore, it is possible to obtain a semiconductor wafer by fixing a peeling assisting base material on at least the surface of the intermediate product between the semiconductor and the intermediate product and peeling the intermediate product together with the peeling assisting base material.

ここで、特許請求の範囲における半導体には、少なくとも適当な長さにブロック化されたインゴットや厚い半導体ウェーハが含まれる。また、集光手段には、少なくとも凹面鏡や各種レンズ等が含まれる。収差増強材として、必要数のガラス板を適宜使用することができる。さらに、剥離補助基材は、半導体や中間品に着脱自在に粘着する弾性変形可能なシートやフィルム、これらを備えた弾性変形可能な板等が該当する。   Here, the semiconductor in the scope of claims includes at least an ingot and a thick semiconductor wafer blocked to an appropriate length. The light collecting means includes at least a concave mirror and various lenses. As the aberration enhancing material, a necessary number of glass plates can be appropriately used. Furthermore, the peeling assisting base material corresponds to an elastically deformable sheet or film that is detachably adhered to a semiconductor or an intermediate product, an elastically deformable plate provided with these, and the like.

本発明によれば、切り代が不要で微細加工に適する非接触のレーザ光線により半導体ウェーハの中間品を形成し、この中間品を剥離することで、薄い半導体ウェーハを得ることができる。また、収差増強材を介在してレーザ光線の集光スポットの間隔を拡大するので、レーザ光線の照射回数を減少させることができる。   According to the present invention, a thin semiconductor wafer can be obtained by forming an intermediate product of a semiconductor wafer with a non-contact laser beam that is suitable for microfabrication and does not require a cutting margin, and peeling the intermediate product. In addition, since the interval between the converging spots of the laser beam is increased via the aberration enhancing material, the number of times of laser beam irradiation can be reduced.

本発明によれば、半導体の肉厚に拘わらず、対応可能なレーザ光線を用いるので、薄い半導体ウェーハを比較的短時間で容易に製造することができ、しかも、製品率を向上させることができるという効果がある。また、半導体の表面と集光手段との間に、レーザ光線用の収差増強材を介在するので、集光スポットを拡大してレーザ光線の照射回数を減少させることができる。   According to the present invention, since a compatible laser beam is used regardless of the thickness of the semiconductor, a thin semiconductor wafer can be easily manufactured in a relatively short time, and the product rate can be improved. There is an effect. Further, since the aberration enhancing material for laser beam is interposed between the semiconductor surface and the condensing means, it is possible to enlarge the condensing spot and reduce the number of times of laser beam irradiation.

また、剥離開始領域の側面に加工領域を露出させれば、剥離作業の基点を得ることができるので、半導体ウェーハの中間品を容易に剥離することができる。
さらに、半導体と中間品のうち、少なくとも中間品の表面に剥離補助基材を固定し、この剥離補助基材と共に中間品を剥離すれば、汚染を招くことなく、中間品全体を均一に剥離し、損傷部分の少ない薄い半導体ウェーハを得ることが可能になる。
Further, if the processing area is exposed on the side surface of the peeling start area, the base point of the peeling work can be obtained, so that the intermediate product of the semiconductor wafer can be easily peeled off.
Furthermore, if the peeling assisting base material is fixed to at least the surface of the intermediate product between the semiconductor and the intermediate product, and the intermediate product is peeled off together with the peeling assisting base material, the entire intermediate product is uniformly peeled without causing contamination. It becomes possible to obtain a thin semiconductor wafer with few damaged parts.

本発明に係る半導体ウェーハの製造方法の実施形態における基本的な構成を模式的に示す説明図である。It is explanatory drawing which shows typically the basic composition in embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention. 本発明に係る半導体ウェーハの製造方法の実施形態における半導体ウェーハの中間品を剥離する状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which peels the intermediate product of the semiconductor wafer in embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention. 本発明に係る半導体ウェーハの製造方法の実施形態における収差増強ガラス板を介在させた状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which interposed the aberration enhancement glass plate in embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention. 本発明に係る半導体ウェーハの製造方法の第2の実施形態におけるレーザ光線の集光スポットに関する問題点を模式的に示す説明図である。It is explanatory drawing which shows typically the problem regarding the condensing spot of the laser beam in 2nd Embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention. 本発明に係る半導体ウェーハの製造方法の第2の実施形態における半導体ウェーハの周面を一部除去し、剥離開始領域の側面に加工領域を露出させた状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which removed the peripheral surface of the semiconductor wafer in 2nd Embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention, and exposed the process area | region to the side surface of the peeling start area | region. 本発明に係る半導体ウェーハの製造方法の第2の実施形態における半導体ウェーハの表面を一部除去し、剥離開始領域の側面に加工領域を露出させた状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which removed a part of surface of the semiconductor wafer in 2nd Embodiment of the manufacturing method of the semiconductor wafer which concerns on this invention, and exposed the process area | region to the side surface of the peeling start area | region.

以下、図面を参照して本発明に係る半導体ウェーハの製造方法の好ましい実施形態を説明すると、本実施形態における半導体ウェーハの製造方法は、基本的には図1や図2に示すように、厚い半導体ウェーハ1の表面にレーザ光線2を集光レンズ3を介して照射することにより、半導体ウェーハ1の内部に集光点4を形成し、半導体ウェーハ1と集光点4を相対的に移動させ、半導体ウェーハ1の内部に加工領域5を形成することにより、薄い半導体ウェーハの中間品6を形成し、その後、加工領域5を境界面として中間品6を剥離補助板7と共に剥離開始領域9から剥離して薄い半導体ウェーハを製造するようにしている。   Hereinafter, a preferred embodiment of a method for producing a semiconductor wafer according to the present invention will be described with reference to the drawings. The method for producing a semiconductor wafer in the present embodiment is basically thick as shown in FIGS. By irradiating the surface of the semiconductor wafer 1 with the laser beam 2 through the condenser lens 3, a condensing point 4 is formed inside the semiconductor wafer 1, and the semiconductor wafer 1 and the condensing point 4 are moved relatively. The intermediate product 6 of the thin semiconductor wafer is formed by forming the processing region 5 inside the semiconductor wafer 1, and then the intermediate product 6 together with the peeling auxiliary plate 7 from the peeling start region 9 with the processing region 5 as a boundary surface. A thin semiconductor wafer is manufactured by peeling.

厚い半導体ウェーハ1は、特に限定されるものではないが、例えばφ300mmの厚いシリコンウェーハからなり、レーザ光線2の照射される表面が予め平坦化されていることが好ましい。   The thick semiconductor wafer 1 is not particularly limited, but is preferably made of, for example, a thick silicon wafer having a diameter of 300 mm, and the surface irradiated with the laser beam 2 is preferably planarized in advance.

レーザ光線2は、半導体ウェーハ1の周面ではなく、表面に照射装置から集光レンズ3を介して照射される。このレーザ光線2は、例えばパルス幅が1μms以下のパルスレーザ光からなり、800nm以上の波長、好ましくは1000nm以上の波長が選択され、YAGレーザ等が好適に使用される。   The laser beam 2 is irradiated not on the peripheral surface of the semiconductor wafer 1 but on the surface from the irradiation device via the condenser lens 3. The laser beam 2 is composed of, for example, a pulse laser beam having a pulse width of 1 μms or less, and a wavelength of 800 nm or more, preferably 1000 nm or more is selected, and a YAG laser or the like is preferably used.

レーザ光線2の波長が800nm以上なのは、800nm以上であれば、半導体ウェーハ1に対するレーザ光線2の透過性を向上させ、半導体ウェーハ1の内部に加工領域5を確実に形成することができるからである。レーザ光線2は、半導体ウェーハ1の表面の周縁部に照射されたり、あるいは半導体ウェーハ1の表面の中心部から周縁部方向に照射される。   The reason why the wavelength of the laser beam 2 is 800 nm or more is that if the wavelength is 800 nm or more, the transmittance of the laser beam 2 with respect to the semiconductor wafer 1 can be improved and the processing region 5 can be reliably formed inside the semiconductor wafer 1. . The laser beam 2 is applied to the peripheral part of the surface of the semiconductor wafer 1 or from the central part of the surface of the semiconductor wafer 1 to the peripheral part.

集光レンズ3は、半導体ウェーハ1の内部にレーザ光線2のエネルギーを効率的に集中させるよう機能する。この集光レンズ3の開口数(NA)は、半導体ウェーハ1の表面におけるアブレーション等による損失を防止する観点から、大きな数値、具体的には0.5以上、0.5〜0.8が好ましい。   The condenser lens 3 functions to efficiently concentrate the energy of the laser beam 2 inside the semiconductor wafer 1. The numerical aperture (NA) of the condenser lens 3 is preferably a large numerical value, specifically 0.5 or more and 0.5 to 0.8 from the viewpoint of preventing loss due to ablation or the like on the surface of the semiconductor wafer 1. .

半導体ウェーハ1と集光点4とは相対的に移動するが、この相対的な移動には、図示しない移動装置が使用される。移動装置は、特に限定されるものではないが、例えば半導体ウェーハ1を水平に搭載する回転可能なステージやXYステージ等が使用される。   Although the semiconductor wafer 1 and the condensing point 4 move relatively, a moving device (not shown) is used for this relative movement. The moving device is not particularly limited. For example, a rotatable stage or an XY stage on which the semiconductor wafer 1 is horizontally mounted is used.

剥離補助板7は、特に限定されるものではないが、例えば半導体ウェーハ1よりも大きい平板からなり、薄い半導体ウェーハの中間品6に対向する平坦な対向面に、自己粘着性のシート8が粘着される。この剥離補助板7として、アクリル板等を適宜使用することができる。   The auxiliary peeling plate 7 is not particularly limited. For example, the peeling auxiliary plate 7 is made of a flat plate larger than the semiconductor wafer 1, and the self-adhesive sheet 8 adheres to a flat facing surface facing the intermediate product 6 of the thin semiconductor wafer. Is done. As this peeling auxiliary plate 7, an acrylic plate or the like can be used as appropriate.

上記において、厚い半導体ウェーハ1を分割して薄い半導体ウェーハを製造する場合には、先ず、移動装置のステージに厚い半導体ウェーハ1を水平に搭載し、この半導体ウェーハ1の表面上方にレーザ光線2の照射装置を配置し、ステージを回転させつつ照射装置から半導体ウェーハ1の表面周縁部にレーザ光線2を集光レンズ3を介して照射する(図1参照)。   In the above, when a thin semiconductor wafer is manufactured by dividing the thick semiconductor wafer 1, first, the thick semiconductor wafer 1 is horizontally mounted on the stage of the moving device, and the laser beam 2 is placed above the surface of the semiconductor wafer 1. An irradiation device is arranged, and the laser beam 2 is irradiated from the irradiation device to the peripheral edge of the surface of the semiconductor wafer 1 through the condenser lens 3 while rotating the stage (see FIG. 1).

すると、集光されたレーザ光線2は、半導体ウェーハ1の表面で屈折し、この半導体ウェーハ1の内部に集光点4を形成して変質させ、半導体ウェーハ1の回転に伴い、半導体ウェーハ1の内部に加工領域5を半導体ウェーハ1の表面に平行に連続的に形成し、この加工領域5の連続形成により、薄い半導体ウェーハの中間品6が平面円形に区画形成される。   Then, the condensed laser beam 2 is refracted on the surface of the semiconductor wafer 1 to form a condensing point 4 inside the semiconductor wafer 1 to change its quality, and as the semiconductor wafer 1 rotates, A processing region 5 is continuously formed in parallel inside the surface of the semiconductor wafer 1, and the intermediate product 6 of a thin semiconductor wafer is partitioned and formed into a planar circle by the continuous formation of the processing region 5.

なお、レーザ光線2の照射量は、中間品6の剥離を確実にする観点から、中間品6の剥離開始領域9に対する照射量が剥離開始領域9以外の他領域に対する照射量の2倍以上に設定される。   The irradiation amount of the laser beam 2 is set so that the irradiation amount of the intermediate product 6 to the peeling start region 9 is more than twice the irradiation amount to other regions other than the peeling start region 9 from the viewpoint of ensuring the peeling of the intermediate product 6 Is set.

こうして薄い半導体ウェーハの中間品6を区画形成したら、中間品6の全表面に剥離補助板7を着脱自在に粘着固定し、その後、連続した加工領域5を境界面として中間品6を剥離補助板7と共に剥離開始領域9から上方に剥離(図2参照)すれば、半導体ウェーハ1から中間品6が剥離することにより、中間品6が薄い半導体ウェーハとなる。   When the intermediate product 6 of the thin semiconductor wafer is partitioned and formed in this way, the peeling auxiliary plate 7 is detachably attached and fixed to the entire surface of the intermediate product 6, and then the intermediate product 6 is peeled off using the continuous processing region 5 as a boundary surface. 7 and peeling upward from the peeling start area 9 (see FIG. 2), the intermediate product 6 is peeled from the semiconductor wafer 1, whereby the intermediate product 6 becomes a thin semiconductor wafer.

なお、剥離補助板7を粘着固定する際、移動装置のステージから取り外した半導体ウェーハ1の裏面に別の剥離補助板7を着脱自在に粘着固定し、中間品6の剥離を容易にしても良い。   When the auxiliary peeling plate 7 is adhesively fixed, another intermediate auxiliary plate 7 may be detachably attached to the back surface of the semiconductor wafer 1 removed from the stage of the moving device to facilitate the peeling of the intermediate product 6. .

上記製造方法によれば、インゴットをワイヤソーにより切断するのではなく、接触加工の限界を超えることのできるレーザ光線2により、半導体ウェーハ1を薄く形成して剥離するので、厚さ0.1mm以下の薄い半導体ウェーハをも短時間で容易に製造することができ、しかも、薄い半導体ウェーハを得ることができるので、無駄が少なく、製品率を著しく向上させることができる。   According to the above manufacturing method, the ingot is not cut with a wire saw, but the semiconductor wafer 1 is thinly formed and peeled off by the laser beam 2 that can exceed the limit of contact processing, so that the thickness is 0.1 mm or less. A thin semiconductor wafer can be easily manufactured in a short time, and since a thin semiconductor wafer can be obtained, there is little waste and the product rate can be significantly improved.

また、前工程の段階から薄い半導体ウェーハを容易に製造することができるので、半導体ウェーハにバックグラインド処理を長時間施す必要がなく、微細な研削カスが半導体ウェーハの回路パターンを汚染するおそれもない。また、半導体ウェーハ1やインゴットが硬度の大きいシリコンカーバイト製の場合にも、薄い半導体ウェーハを容易に製造することが可能になる。さらに、中間品6を指等で剥離するのではなく、中間品6の全表面に剥離補助板7を粘着固定して剥離するので、中間品6全体を均一に剥離し、損傷部分のない半導体ウェーハを得ることが可能になる。   In addition, since a thin semiconductor wafer can be easily manufactured from the stage of the previous process, there is no need to subject the semiconductor wafer to a back grinding process for a long time, and there is no possibility that fine grinding residue contaminates the circuit pattern of the semiconductor wafer. . Further, even when the semiconductor wafer 1 or the ingot is made of silicon carbide having a high hardness, a thin semiconductor wafer can be easily manufactured. Further, the intermediate product 6 is not peeled off with fingers or the like, but the peeling auxiliary plate 7 is peeled and fixed to the entire surface of the intermediate product 6, so that the entire intermediate product 6 is peeled uniformly, and there is no damaged part. It becomes possible to obtain a wafer.

さて、本実施形態においては集光レンズ3を使用するが、開口数が大きい集光レンズ3を使用する場合には、レーザ光線2の焦点の集光スポットが小さくなるので、半導体ウェーハ1の内部に加工領域5を連続形成するためには、レーザ光線2の照射回数を増やす必要がある。   In the present embodiment, the condensing lens 3 is used. However, when the condensing lens 3 having a large numerical aperture is used, the condensing spot at the focal point of the laser beam 2 becomes small. In order to continuously form the processing region 5, it is necessary to increase the number of times of irradiation with the laser beam 2.

そこで、本実施形態においては図3に示すように、厚い半導体ウェーハ1の表面と集光レンズ3との間に、レーザ光線2用の収差増強材である収差増強ガラス板10を介在させ、この収差増強ガラス板10を介在させた状態でレーザ光線2を照射することにより、レーザ光線2の照射回数を減少させるようにしている。
収差増強ガラス板10は、特に限定されるものではないが、例えば厚いカバーガラスやスライドガラス等が使用される。
Therefore, in the present embodiment, as shown in FIG. 3, an aberration-enhancing glass plate 10 that is an aberration-enhancing material for the laser beam 2 is interposed between the surface of the thick semiconductor wafer 1 and the condenser lens 3. By irradiating the laser beam 2 with the aberration-enhancing glass plate 10 interposed, the number of times of irradiation with the laser beam 2 is reduced.
The aberration-enhancing glass plate 10 is not particularly limited. For example, a thick cover glass or a slide glass is used.

このように本実施形態によれば、レーザ光線2を単に照射するのではなく、収差増強ガラス板10を介在して集光スポットを拡大し、集光スポットの間隔を大きくするので、上記効果の他、レーザ光線2の照射回数の削減が大いに期待できるのは明らかである。   As described above, according to the present embodiment, the laser beam 2 is not simply irradiated, but the condensing spots are enlarged through the aberration-enhancing glass plate 10 to increase the interval between the condensing spots. In addition, it is obvious that the number of times of irradiation with the laser beam 2 can be greatly reduced.

次に、図4ないし図6は本発明の第2の実施形態を示すもので、この場合には、半導体ウェーハの中間品6を剥離開始領域9から剥離する前に、厚い半導体ウェーハ1の表面や周面を一部除去し、剥離開始領域9の側面(周面)に加工領域5を露出させて中間品6の剥離を容易化するようにしている。   Next, FIGS. 4 to 6 show a second embodiment of the present invention. In this case, before the intermediate product 6 of the semiconductor wafer is peeled from the peeling start region 9, the surface of the thick semiconductor wafer 1 is shown. In addition, a part of the peripheral surface is removed, and the processing region 5 is exposed on the side surface (peripheral surface) of the separation start region 9 to facilitate the separation of the intermediate product 6.

加工領域5を露出させる方法としては、半導体ウェーハ1の表面から加工領域5までの深さを集光レンズ3の位置や屈折率から予測し、半導体ウェーハ1の周面にレーザ光線2を照射して一部除去する方法、半導体ウェーハ1の表面をダイヤモンドカッタやレーザーアブレーション等の手段により一部除去する方法等があげられる。その他の部分については、上記実施形態と略同様であるので説明を省略する。   As a method for exposing the processing region 5, the depth from the surface of the semiconductor wafer 1 to the processing region 5 is predicted from the position and refractive index of the condenser lens 3, and the peripheral surface of the semiconductor wafer 1 is irradiated with the laser beam 2. And a method of partially removing the surface of the semiconductor wafer 1 by means such as diamond cutter or laser ablation. The other parts are substantially the same as those in the above embodiment, and thus description thereof is omitted.

本実施形態における効果を具体的に説明すると、一般的に集光されたレーザ光線2は、半導体ウェーハ1の表面で屈折し、大気中の焦点よりも深い位置で集光スポットを形成する(図4参照)。このため、半導体ウェーハ1の外部から表面にレーザ光線2を移して照射すると、大気中の焦点の集光スポットは、半導体ウェーハ1の内部でより深い位置に急速に移動することとなる。したがって、剥離開始領域9の側面に加工領域5が露出せず、中間品6の剥離が困難になるおそれがある。   The effect in the present embodiment will be specifically described. Generally, the focused laser beam 2 is refracted on the surface of the semiconductor wafer 1 to form a focused spot at a position deeper than the focal point in the atmosphere (FIG. 4). For this reason, when the laser beam 2 is transferred to the surface from the outside of the semiconductor wafer 1 and irradiated, the focused spot in the atmosphere rapidly moves to a deeper position inside the semiconductor wafer 1. Therefore, the processing region 5 is not exposed on the side surface of the separation start region 9, and the intermediate product 6 may be difficult to separate.

本実施形態によれば、厚い半導体ウェーハ1の周面を一部除去(図5参照)したり、厚い半導体ウェーハ1の表面を一部除去(図6参照)し、剥離開始領域9の側面に加工領域5を露出させ、剥離作業の基点とするので、中間品6を円滑かつ容易に剥離することができるのは明らかである。   According to the present embodiment, a part of the peripheral surface of the thick semiconductor wafer 1 is removed (see FIG. 5), or a part of the surface of the thick semiconductor wafer 1 is removed (see FIG. 6). It is clear that the intermediate product 6 can be peeled smoothly and easily because the processing region 5 is exposed and used as a base point of the peeling work.

以下、本発明に係る半導体ウェーハの製造方法の実施例を比較例と共に説明する。   Hereinafter, an example of a manufacturing method of a semiconductor wafer concerning the present invention is described with a comparative example.

先ず、XYステージに厚さ0.625mmの半導体ウェーハを搭載し、この半導体ウェーハの表面に、レーザ光線を焦点距離が2mmで開口数が0.8の集光レンズを介して照射した。
レーザ光線として、波長1064μm、パルス幅200n秒、1パルス当たりの照射エネルギーが5μJのレーザ光線を選択した。このレーザ光線は、半導体ウェーハの表面XY方向に1パルス当たり1μピッチで照射した。また、集光レンズには、0.15mmの厚さを有する市販のカバーガラスを収差増強材として取り付けた。
First, a 0.625 mm thick semiconductor wafer was mounted on an XY stage, and the surface of the semiconductor wafer was irradiated with a laser beam through a condenser lens having a focal length of 2 mm and a numerical aperture of 0.8.
A laser beam having a wavelength of 1064 μm, a pulse width of 200 nsec, and an irradiation energy of 5 μJ per pulse was selected as the laser beam. This laser beam was irradiated at a pitch of 1 μm per pulse in the surface XY direction of the semiconductor wafer. In addition, a commercially available cover glass having a thickness of 0.15 mm was attached to the condenser lens as an aberration enhancing material.

レーザ光線の照射に際しては、半導体ウェーハの表面に集光レンズの焦点を結ばせた後、集光レンズを半導体ウェーハ側に0.1mm移動(DEFOCUS)させ、レーザ光線1パルス当たり1μピッチでXY方向に半導体ウェーハを移動させ、半導体ウェーハの内部に二次元の加工領域を半導体ウェーハの表面に平行に形成することにより、薄い半導体ウェーハの中間品を形成した。   When irradiating the laser beam, after the focusing lens is focused on the surface of the semiconductor wafer, the focusing lens is moved 0.1 mm toward the semiconductor wafer (DEFOCUS), and the laser beam is pulsed at 1 μ pitch in the XY direction. A thin semiconductor wafer intermediate product was formed by moving the semiconductor wafer and forming a two-dimensional processing region inside the semiconductor wafer parallel to the surface of the semiconductor wafer.

次いで、集光レンズを半導体ウェーハから0.03mm離し、レーザ光線の照射エリアの1辺を1パルス当たり1μピッチでレーザ光線を1回照射した(重複照射)。レーザ光線を照射したら、照射エリアを含むよう半導体ウェーハを劈開し、劈開面を顕微鏡で観察した。すると、加工領域が形成されているのを確認した。   Next, the condensing lens was separated from the semiconductor wafer by 0.03 mm, and one side of the laser beam irradiation area was irradiated once with 1 μm pitch per pulse (overlapping irradiation). When the laser beam was irradiated, the semiconductor wafer was cleaved so as to include the irradiation area, and the cleavage plane was observed with a microscope. Then, it confirmed that the process area | region was formed.

次いで、半導体ウェーハの表裏面に、厚さ3mmのアクリル板をシアノアクリレート系の接着剤を介してそれぞれ接着し、加工領域の露出面側から一対のアクリル板を剥離したところ、加工領域を境に薄い半導体ウェーハの中間品が剥離した。   Next, an acrylic plate having a thickness of 3 mm was bonded to the front and back surfaces of the semiconductor wafer via a cyanoacrylate adhesive, and the pair of acrylic plates were peeled off from the exposed surface side of the processing region. An intermediate product of a thin semiconductor wafer was peeled off.

重複照射を省略し、その他は実施例1と同様とした。レーザ光線を照射したら、照射エリアを含むよう半導体ウェーハを劈開し、劈開面を顕微鏡で観察したところ、加工領域が形成されているのを確認した。   Overlapping irradiation was omitted, and the others were the same as in Example 1. When the laser beam was irradiated, the semiconductor wafer was cleaved so as to include the irradiation area, and the cleavage plane was observed with a microscope, and it was confirmed that a processing region was formed.

半導体ウェーハの表裏面に、厚さ3mmのアクリル板を接着剤を介してそれぞれ接着し、加工領域の露出面側から一対のアクリル板を剥離したところ、加工領域を境に薄い中間品の一部が剥離した。   A 3mm thick acrylic plate is bonded to the front and back surfaces of a semiconductor wafer with an adhesive, and a pair of acrylic plates are peeled off from the exposed surface of the processing area. Peeled off.

比較例1Comparative Example 1

レーザ光線と集光レンズをそれぞれ変更し、その他は実施例1と同様とした。レーザ光線として、波長1050μm、パルス幅500f秒、1パルス当たりの照射エネルギーが3μJのレーザ光線を選択した。また、集光レンズは、焦点距離を1.8mm、開口数を0.8とした。   The laser beam and the condensing lens were changed, and the others were the same as in Example 1. A laser beam having a wavelength of 1050 μm, a pulse width of 500 fsec, and an irradiation energy of 3 μJ per pulse was selected as the laser beam. Further, the condenser lens has a focal length of 1.8 mm and a numerical aperture of 0.8.

レーザ光線の照射後、照射エリアを含むよう半導体ウェーハを劈開し、劈開面を顕微鏡で観察したところ、加工領域が形成されていなかった。
また、半導体ウェーハの表裏面に、厚さ3mmの鋼板をバックグラインド用ワックスを介してそれぞれ接着し、その後、一対の鋼板を剥離したが、鋼板のみが剥離し、半導体ウェーハを二枚に割ることができなかった。
After irradiation with the laser beam, the semiconductor wafer was cleaved so as to include the irradiation area, and the cleavage plane was observed with a microscope. As a result, no processing region was formed.
In addition, a steel plate with a thickness of 3 mm was bonded to the front and back surfaces of the semiconductor wafer via a backgrinding wax, and then a pair of steel plates was peeled off. However, only the steel plates were peeled off, and the semiconductor wafer was divided into two. I could not.

比較例2Comparative Example 2

レーザ光線のパルス幅を60n秒に変更し、その他は実施例1と同様とした。レーザ光線の照射後、照射エリアを含むよう半導体ウェーハを劈開し、劈開面を顕微鏡観察したが、加工領域の確認ができなかった。
また、半導体ウェーハの表裏面に、厚さ3mmのアクリル板をシアノアクリレート系の接着剤を介してそれぞれ接着し、その後、一対のアクリル板を剥離したが、アクリル板のみが剥離し、半導体ウェーハを二枚に割ることができなかった。
The pulse width of the laser beam was changed to 60 ns, and the others were the same as in Example 1. After irradiation with the laser beam, the semiconductor wafer was cleaved so as to include the irradiated area, and the cleaved surface was observed with a microscope, but the processing region could not be confirmed.
In addition, an acrylic plate having a thickness of 3 mm was bonded to the front and back surfaces of the semiconductor wafer via a cyanoacrylate adhesive, and then the pair of acrylic plates was peeled off. I couldn't split it into two.

1 厚い半導体ウェーハ(半導体)
2 レーザ光線
3 集光レンズ(集光手段)
4 集光点
5 加工領域
6 中間品
7 剥離補助板(剥離補助基材)
8 シート
9 剥離開始領域
10 収差増強ガラス板(収差増強材)
1 Thick semiconductor wafer (semiconductor)
2 Laser beam 3 Condensing lens (Condensing means)
4 Focusing point 5 Processing area 6 Intermediate product 7 Peeling auxiliary plate (Peeling auxiliary base material)
8 Sheet 9 Peeling start area 10 Aberration enhancing glass plate (aberration enhancing material)

Claims (4)

半導体の表面にレーザ光線を集光手段を介して照射することにより、半導体ウェーハを製造する半導体ウェーハの製造方法であって、
半導体の表面と集光手段との間にレーザ光線用の収差増強材を介在し、この状態でレーザ光線を照射して半導体の内部に集光点を形成し、半導体と集光点とを相対的に移動させ、半導体の内部に加工領域を半導体の表面に平行に形成することにより、半導体ウェーハの中間品を形成し、その後、加工領域を境に中間品を剥離開始領域から剥離して半導体ウェーハを得ることを特徴とする半導体ウェーハの製造方法。
A semiconductor wafer manufacturing method for manufacturing a semiconductor wafer by irradiating the surface of the semiconductor with a laser beam through a condensing means,
A laser beam aberration enhancing material is interposed between the surface of the semiconductor and the focusing means, and in this state, a laser beam is irradiated to form a focusing point inside the semiconductor, and the semiconductor and the focusing point are relative to each other. The semiconductor product is formed in parallel with the surface of the semiconductor to form an intermediate product of the semiconductor wafer, and then the intermediate product is separated from the separation start region with the processing region as a boundary. A method for producing a semiconductor wafer, comprising obtaining a wafer.
中間品の剥離開始領域に対するレーザ光線の照射量を、剥離開始領域以外の他領域に対するレーザ光線の照射量の2倍以上とする請求項1記載の半導体ウェーハの製造方法。   2. The method of manufacturing a semiconductor wafer according to claim 1, wherein the amount of laser beam irradiation to the peeling start region of the intermediate product is at least twice the amount of laser beam irradiation to other regions other than the peeling start region. 中間品を剥離開始領域から剥離する前に、半導体の一部を除去して剥離開始領域の側面に加工領域を露出させる請求項1又は2記載の半導体ウェーハの製造方法。   3. The method of manufacturing a semiconductor wafer according to claim 1, wherein a part of the semiconductor is removed and a processing region is exposed on a side surface of the separation start region before the intermediate product is separated from the separation start region. 半導体と中間品のうち、少なくとも中間品の表面に剥離補助基材を固定し、この剥離補助基材と共に中間品を剥離して半導体ウェーハを得る請求項1、2、又は3記載の半導体ウェーハの製造方法。   The semiconductor wafer according to claim 1, 2, or 3, wherein a semiconductor substrate is obtained by fixing a peeling auxiliary base material on at least a surface of the intermediate product between the semiconductor and the intermediate product, and peeling the intermediate product together with the peeling auxiliary base material. Production method.
JP2009036033A 2009-02-19 2009-02-19 Manufacturing method of semiconductor wafer Active JP5601778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036033A JP5601778B2 (en) 2009-02-19 2009-02-19 Manufacturing method of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036033A JP5601778B2 (en) 2009-02-19 2009-02-19 Manufacturing method of semiconductor wafer

Publications (2)

Publication Number Publication Date
JP2010188385A true JP2010188385A (en) 2010-09-02
JP5601778B2 JP5601778B2 (en) 2014-10-08

Family

ID=42815015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036033A Active JP5601778B2 (en) 2009-02-19 2009-02-19 Manufacturing method of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP5601778B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049161A (en) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk Method of cutting workpiece
JP2013171949A (en) * 2012-02-20 2013-09-02 Tokyo Ohka Kogyo Co Ltd Method and device for separating support
JP2016068131A (en) * 2014-09-30 2016-05-09 ファナック株式会社 Laser processing device capable of expanding convergence diameter
KR20160098054A (en) * 2015-02-09 2016-08-18 가부시기가이샤 디스코 Wafer producing method
JP2016201575A (en) * 2016-08-30 2016-12-01 国立大学法人埼玉大学 Manufacturing method for single crystal substrate
JP2016213502A (en) * 2016-08-30 2016-12-15 国立大学法人埼玉大学 Manufacturing method of single-crystal substrate
JP2017024039A (en) * 2015-07-21 2017-02-02 株式会社ディスコ Wafer thinning method
KR20170033995A (en) * 2015-09-18 2017-03-28 영남대학교 산학협력단 Thin film silicon substrate and method of fabricating the same
KR101811319B1 (en) * 2015-09-24 2017-12-27 한양대학교 에리카산학협력단 Fabrication method for ultrathin silicon using stealth laser scribing
KR101863195B1 (en) 2017-02-20 2018-05-31 영남대학교 산학협력단 Method and apparatus of fabricating for thin film silicon substrate
JP2019069870A (en) * 2017-10-06 2019-05-09 国立大学法人埼玉大学 Substrate manufacturing method
WO2019216506A1 (en) * 2018-05-09 2019-11-14 한국기계연구원 Ultrathin silicon substrate and manufacturing method therefor
CN113690182A (en) * 2020-05-18 2021-11-23 株式会社迪思科 Method of manufacturing substrate and system for manufacturing substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266433A (en) * 1985-09-19 1987-03-25 Mitsubishi Electric Corp Optical head device
JP2005277136A (en) * 2004-03-25 2005-10-06 Sharp Corp Method and apparatus of manufacturing substrate
JP2007130675A (en) * 2005-11-11 2007-05-31 Seiko Epson Corp Laser scribing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266433A (en) * 1985-09-19 1987-03-25 Mitsubishi Electric Corp Optical head device
JP2005277136A (en) * 2004-03-25 2005-10-06 Sharp Corp Method and apparatus of manufacturing substrate
JP2007130675A (en) * 2005-11-11 2007-05-31 Seiko Epson Corp Laser scribing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049161A (en) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk Method of cutting workpiece
JP2013171949A (en) * 2012-02-20 2013-09-02 Tokyo Ohka Kogyo Co Ltd Method and device for separating support
US10112377B2 (en) 2012-02-20 2018-10-30 Tokyo Ohka Kogyo Co., Ltd. Supporting member separation method and supporting member separation apparatus
US9656349B2 (en) 2014-09-30 2017-05-23 Fanuc Corporation Laser processing apparatus capable of increasing focused beam diameter
JP2016068131A (en) * 2014-09-30 2016-05-09 ファナック株式会社 Laser processing device capable of expanding convergence diameter
KR20160098054A (en) * 2015-02-09 2016-08-18 가부시기가이샤 디스코 Wafer producing method
KR102361278B1 (en) 2015-02-09 2022-02-10 가부시기가이샤 디스코 Wafer producing method
JP2017024039A (en) * 2015-07-21 2017-02-02 株式会社ディスコ Wafer thinning method
KR20170033995A (en) * 2015-09-18 2017-03-28 영남대학교 산학협력단 Thin film silicon substrate and method of fabricating the same
KR102427002B1 (en) 2015-09-18 2022-07-29 영남대학교 산학협력단 Thin film silicon substrate and method of fabricating the same
KR101811319B1 (en) * 2015-09-24 2017-12-27 한양대학교 에리카산학협력단 Fabrication method for ultrathin silicon using stealth laser scribing
JP2016213502A (en) * 2016-08-30 2016-12-15 国立大学法人埼玉大学 Manufacturing method of single-crystal substrate
JP2016201575A (en) * 2016-08-30 2016-12-01 国立大学法人埼玉大学 Manufacturing method for single crystal substrate
KR101863195B1 (en) 2017-02-20 2018-05-31 영남대학교 산학협력단 Method and apparatus of fabricating for thin film silicon substrate
JP2019069870A (en) * 2017-10-06 2019-05-09 国立大学法人埼玉大学 Substrate manufacturing method
KR102043059B1 (en) * 2018-05-09 2019-12-02 한국기계연구원 An Ultrathin Silicon Substrate and a Method for manufacturing of the same
WO2019216506A1 (en) * 2018-05-09 2019-11-14 한국기계연구원 Ultrathin silicon substrate and manufacturing method therefor
CN113690182A (en) * 2020-05-18 2021-11-23 株式会社迪思科 Method of manufacturing substrate and system for manufacturing substrate
JP2021182622A (en) * 2020-05-18 2021-11-25 株式会社ディスコ Method of producing substrate and system for producing substrate
KR20210142559A (en) * 2020-05-18 2021-11-25 가부시기가이샤 디스코 Method of producing a substrate and system for producing a substrate
JP7156590B2 (en) 2020-05-18 2022-10-19 株式会社ディスコ Method for manufacturing substrate and system for manufacturing substrate
KR102590744B1 (en) * 2020-05-18 2023-10-19 가부시기가이샤 디스코 Method of producing a substrate and system for producing a substrate
CN113690182B (en) * 2020-05-18 2024-06-14 株式会社迪思科 Method of manufacturing a substrate and system for manufacturing a substrate

Also Published As

Publication number Publication date
JP5601778B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5601778B2 (en) Manufacturing method of semiconductor wafer
JP3762409B2 (en) Substrate dividing method
JP6004338B2 (en) Single crystal substrate manufacturing method and internal modified layer forming single crystal member
JP5015294B2 (en) Semiconductor substrate and cutting method thereof
JP5875122B2 (en) Single crystal substrate manufacturing method and internal modified layer forming single crystal member
JP5875121B2 (en) Method for producing single crystal substrate and method for producing internal modified layer-forming single crystal member
JP3624909B2 (en) Laser processing method
JP5312761B2 (en) Cutting method
JP5843393B2 (en) Single crystal substrate manufacturing method, single crystal substrate, and internal modified layer forming single crystal member manufacturing method
JP6004339B2 (en) Internal stress layer forming single crystal member and single crystal substrate manufacturing method
JP4703983B2 (en) Cutting method
JP6032789B2 (en) Method for manufacturing single crystal processed member and method for manufacturing single crystal substrate
JP2015119076A (en) Internal processing layer formation single crystal member and manufacturing method therefor
JP2011060862A (en) Substrate slicing method
JP2014019120A (en) Method of manufacturing single crystal member for forming internal processing layer
JP5561666B2 (en) Substrate slicing method
JP5177992B2 (en) Processing object cutting method
JP2005012203A (en) Laser machining method
JP2005294656A (en) Substrate manufacturing method and apparatus thereof
JP2005096459A (en) Laser machining method
JP6202695B2 (en) Single crystal substrate manufacturing method
JP6202696B2 (en) Single crystal substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5601778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250