JP2010188302A - Three-way catalyst for cleaning exhaust gas - Google Patents

Three-way catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2010188302A
JP2010188302A JP2009036746A JP2009036746A JP2010188302A JP 2010188302 A JP2010188302 A JP 2010188302A JP 2009036746 A JP2009036746 A JP 2009036746A JP 2009036746 A JP2009036746 A JP 2009036746A JP 2010188302 A JP2010188302 A JP 2010188302A
Authority
JP
Japan
Prior art keywords
catalyst
layer
exhaust gas
barium sulfate
way catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036746A
Other languages
Japanese (ja)
Inventor
Hisashi Kuno
央志 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009036746A priority Critical patent/JP2010188302A/en
Publication of JP2010188302A publication Critical patent/JP2010188302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-way catalyst for cleaning exhaust gas capable of reducing sulfur poisoning while securing high catalytic activity by suppressing reaction between catalytic noble metal and barium. <P>SOLUTION: The three-way catalyst for cleaning exhaust gas has a catalyst coating layer 10 which comprises a lower layer 2 containing barium sulfate and an upper layer 1 containing no barium sulfate on a base material 3. The three-way catalyst for cleaning exhaust gas is effective even when being applied only to the exhaust gas inflow side of a catalyst device such as honeycomb. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硫黄による被毒を低減した排気ガス浄化用三元触媒に関する。   The present invention relates to a three-way catalyst for exhaust gas purification with reduced sulfur poisoning.

硫黄被毒は、燃料またはエンジンオイルに含まれる硫黄分が、燃焼の過程において触媒の活性点に付着し、触媒貴金属の触媒反応を阻害する現象である。   Sulfur poisoning is a phenomenon in which sulfur contained in fuel or engine oil adheres to the active site of the catalyst during the combustion process and inhibits the catalytic reaction of the catalyst noble metal.

その対策として、燃料中の硫黄濃度を制限する規制など、硫黄分を減らす政策はとられているが、燃料またはエンジンオイルの硫黄分を完全に除去することは非常に困難であるため、触媒での対策も必要である。   As a countermeasure, there is a policy to reduce the sulfur content, such as regulations that limit the sulfur concentration in the fuel, but it is very difficult to completely remove the sulfur content of the fuel or engine oil. This measure is also necessary.

従来から、硫黄被毒を防止または低減するために、触媒の硫黄分を吸着する元素として、アルカリ土類金属、希土類金属、ニッケル、鉄などを触媒に添加する等の手段が取られてきた。   Conventionally, in order to prevent or reduce sulfur poisoning, means such as addition of alkaline earth metals, rare earth metals, nickel, iron and the like as elements to adsorb the sulfur content of the catalyst have been taken.

しかし、上記の成分は、貴金属と反応して合金を形成したり、貴金属の電荷を変化させたりして、活性を低下させるという問題があった。   However, the above-described components have a problem that the activity is lowered by reacting with the noble metal to form an alloy or changing the charge of the noble metal.

また、アルカリ土類金属の添加方法として、炭酸塩を用いた場合、水溶性であるために触媒コート層を形成した後に、その上に添加されていた。   In addition, as a method for adding an alkaline earth metal, when carbonate is used, it is water-soluble, so that it is added on the catalyst coat layer after it is formed.

特許文献1に、セリウム・ジルコニウム複合酸化物と、触媒貴金属と、サポート材とを含み、サポート材が硫酸バリウム粒子である三元触媒が開示されている。複合酸化物は硫酸バリウム粒子に直接担持され、触媒貴金属は硫酸バリウム粒子に直接または複合酸化物を介して間接的に担持される。硫酸バリウムが熱安定性が高くシンタリングし難いため、複合酸化物のシンタリングが抑制され、触媒貴金属のシンタリングや複合酸化物への埋没が回避される。しかし、硫黄被毒の低減についてはなんら考慮されておらず、硫酸バリウム中のバリウムと触媒貴金属との反応による合金の形成や貴金属の電荷の変化による活性低下についても考慮されていない。   Patent Document 1 discloses a three-way catalyst containing a cerium-zirconium composite oxide, a catalyst noble metal, and a support material, and the support material is barium sulfate particles. The composite oxide is supported directly on the barium sulfate particles, and the catalyst noble metal is supported directly on the barium sulfate particles or indirectly through the composite oxide. Since barium sulfate has high thermal stability and is difficult to sinter, sintering of the composite oxide is suppressed, and sintering of the catalyst noble metal and embedding in the composite oxide are avoided. However, no consideration is given to the reduction of sulfur poisoning, and neither the formation of an alloy by the reaction of barium in barium sulfate with a catalytic noble metal or the decrease in activity due to a change in the charge of the noble metal is considered.

特許文献2に、NOx吸蔵層に硫黄吸蔵層としてバリウムを含ませた排気ガス浄化用触媒が開示されている。しかし、この場合も、NOx吸蔵層中のPt、Pd等の触媒貴金属との反応による合金の形成や貴金属の電荷の変化による活性低下が避けられない。   Patent Document 2 discloses an exhaust gas purification catalyst in which barium is contained as a sulfur storage layer in a NOx storage layer. However, in this case as well, the formation of an alloy due to the reaction with the catalytic noble metal such as Pt and Pd in the NOx occlusion layer and the decrease in activity due to the change in the charge of the noble metal cannot be avoided.

特許第4200768号Japanese Patent No. 4200768 特開2000−110551号公報JP 2000-110551 A

本発明は、触媒貴金属とバリウムとの反応を抑制して、高い触媒活性を確保しつつ硫黄被毒を低減できる排気ガス浄化用三元触媒を提供することを目的とする。   An object of the present invention is to provide a three-way catalyst for purifying exhaust gas that can suppress sulfur poisoning while ensuring a high catalytic activity by suppressing the reaction between catalytic noble metal and barium.

上記の目的を達成するために、本発明によれば、基材上に、硫酸バリウムを含む下層と硫酸バリウムを含まない上層とから成る触媒コート層を備えたことを特徴とする排ガス浄化用三元触媒が提供される。   In order to achieve the above object, according to the present invention, there is provided an exhaust gas purifying device characterized in that a catalyst coat layer comprising a lower layer containing barium sulfate and an upper layer not containing barium sulfate is provided on a substrate. An original catalyst is provided.

本発明の触媒は、バリウムを含まない触媒コート層上層においては、バリウムと触媒貴金属とが相互に反応することがないため、それに対応して、合金化や触媒金属の電荷の変化による触媒活性の低下を生ずることなく、バリウムを含む触媒コート層下層により硫黄吸着能を発揮して硫黄被毒を低減できる。   Since the catalyst of the present invention does not react with each other in the upper layer of the catalyst coat layer that does not contain barium, the catalytic activity due to alloying or the change in the charge of the catalyst metal is correspondingly reduced. Without causing a reduction, the sulfur adsorption ability can be reduced by the lower layer of the catalyst coat layer containing barium to reduce sulfur poisoning.

また、下層のバリウムを水への溶解度が低い硫酸塩として用いるので、触媒コート層上層の形成前に、基材上に触媒コート層下層を形成しておくことができる。   Moreover, since the lower layer barium is used as a sulfate having low solubility in water, the lower layer of the catalyst coat layer can be formed on the substrate before the upper layer of the catalyst coat layer is formed.

本発明の触媒は触媒装置(ハニカム等)の排ガス流入側にのみ適用しても有効である。   The catalyst of the present invention is effective even when applied only to the exhaust gas inflow side of a catalyst device (honeycomb or the like).

排ガス浄化触媒ハニカムの斜視図である。It is a perspective view of an exhaust gas purification catalyst honeycomb. 本発明の触媒の断面構造を示す(A)横断面図、(B)縦断面図、(C)別の態様の縦断面図である。It is (A) cross-sectional view which shows the cross-section of the catalyst of this invention, (B) longitudinal cross-sectional view, (C) longitudinal cross-sectional view of another aspect. 実施例1、2および比較例1、2の各触媒によるHC,NOx、COに対する浄化率を比較して示すグラフである。It is a graph which compares and shows the purification rate with respect to HC, NOx, and CO by each catalyst of Examples 1 and 2 and Comparative Examples 1 and 2. 下層への硫酸バリウム添加量と(A)HC、(B)NOx、(C)COの浄化率との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of barium sulfate to a lower layer, and the purification rate of (A) HC, (B) NOx, and (C) CO.

図を参照して本発明の実施形態を説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1に、排気ガス浄化触媒の基材となるセラミックハニカムであり、円筒形の内部に設けた多数の貫通孔の内壁に触媒コート層を形成して用いる。   FIG. 1 shows a ceramic honeycomb serving as a base material for an exhaust gas purification catalyst, in which a catalyst coat layer is formed on the inner walls of a large number of through holes provided in a cylindrical shape.

図2に、上下2層から成る本発明の触媒コート層を形成した状態を示す。図2(A)は、図1の円筒形ハニカムの半径方向の横断面を示し、図2(B)、(C)は図1の円筒形ハニカムの軸方向の縦断面を示す。図2(A)に示すように、触媒コート層10は、貫通孔内に露出している上層1(硫酸バリウムを含まない)と、その下にある下層2(硫酸バリウムを含む)とから成り、セラミックから成る基材(図示せず)は触媒コート層10(直接には下層2)の外側全体を取り囲んでいる。図2(B)はハニカム全長に亘って触媒コート層10が上下2層構造の場合、図2(C)はハニカム全長のうち排ガス流入側の半長が上下2層構造、それより下流側は上層のみの1層構造の触媒コート層である場合を示す。   FIG. 2 shows a state in which the catalyst coat layer of the present invention comprising two upper and lower layers is formed. 2A shows a cross section in the radial direction of the cylindrical honeycomb in FIG. 1, and FIGS. 2B and 2C show longitudinal cross sections in the axial direction of the cylindrical honeycomb in FIG. As shown in FIG. 2A, the catalyst coat layer 10 is composed of an upper layer 1 (not including barium sulfate) exposed in the through-hole and a lower layer 2 (including barium sulfate) located thereunder. A substrate made of ceramic (not shown) surrounds the entire outside of the catalyst coat layer 10 (directly the lower layer 2). 2 (B) shows a case where the catalyst coat layer 10 has an upper and lower two-layer structure over the entire length of the honeycomb. FIG. 2 (C) shows a half length on the exhaust gas inflow side of the entire honeycomb length, and an upper and lower two-layer structure. The case where the catalyst coat layer has a single-layer structure consisting of only the upper layer is shown.

〔実施例1〕
(1)下層コート層の形成
(1-1)下層コート用スラリーの作成
ジルコニア(第一稀元素化学工業(株)製、ZrO:90wt%、Y:10wt%)に、Pdが1.7wt%になるように硝酸Pd薬液を含浸担持し、乾燥、焼成した。
[Example 1]
(1) Formation of lower layer coat layer (1-1) Preparation of slurry for lower layer coat Pd is added to zirconia (manufactured by Daiichi Elemental Chemical Co., Ltd., ZrO 2 : 90 wt%, Y 2 O 3 : 10 wt%). The Pd nitrate chemical solution was impregnated and supported so as to be 1.7 wt%, dried and fired.

得られたPd担持触媒26gとγアルミナ(サソール社製、Al:96wt%、La:4wt%)を30.6g、更に硫酸バリウム9gを加え、混合した。 26 g of the obtained Pd-supported catalyst and 3γ g of γ-alumina (manufactured by Sasol, Al 2 O 3 : 96 wt%, La 2 O 3 : 4 wt%) and 9 g of barium sulfate were added and mixed.

得られた混合粉末を水に分散させ、アルミナバインダーと混合粉末が1:19の重量比率になるようにアルミナバインダーを加え、ミリングを行い下層用スラリーとした。   The obtained mixed powder was dispersed in water, an alumina binder was added so that the weight ratio of the alumina binder and the mixed powder was 1:19, and milling was performed to obtain a slurry for the lower layer.

得られた下層用スラリー中の硫酸バリウム量は10g/Lである。   The amount of barium sulfate in the obtained lower layer slurry is 10 g / L.

(1-2)基材への下層コート層の形成
得られた下層用スラリーをセラミックハニカム((株)デンソー製、セル密度600cell/inch、壁厚3mil、φ103mm×L105mm)に塗布し、乾燥、焼成して、下層コート層2を形成した。
(1-2) Formation of lower layer coat layer on substrate The obtained lower layer slurry was applied to a ceramic honeycomb (manufactured by Denso Corporation, cell density 600 cell / inch 2 , wall thickness 3 mil, φ103 mm × L105 mm) and dried. The lower coat layer 2 was formed by firing.

(2)上層コート層の形成
(2-1)上層コート用スラリーの作成
セリア−ジルコニア−イットリア−ランタナ粉末(CeO:20wt%、ZrO:70wt%、Y:5wt%、La:5wt%)に、Rhが0.2wt%になるように硝酸Rh薬液を含浸担持し、乾燥、焼成した。
(2) Formation of upper layer coating layer (2-1) Preparation of slurry for upper layer coating Ceria-zirconia-yttria-lantana powder (CeO 2 : 20 wt%, ZrO 2 : 70 wt%, Y 2 O 3 : 5 wt%, La 2 O 3 : 5 wt%) was impregnated and supported with a Rh nitric acid chemical solution so that Rh was 0.2 wt%, dried and fired.

得られたRh担持触媒44gとγアルミナ(サソール社製、Al:96wt%、La:4wt%)44gを混合し、水に分散させた。更に、アルミナバインダーと混合粉末を1:1.9の重量比率で混合し、水を加えて上層用スラリーとした。 44 g of the obtained Rh-supported catalyst and 44 g of γ-alumina (manufactured by Sasol, Al 2 O 3 : 96 wt%, La 2 O 3 : 4 wt%) were mixed and dispersed in water. Further, the alumina binder and the mixed powder were mixed at a weight ratio of 1: 1.9, and water was added to obtain an upper layer slurry.

(2-2)基材への上層コート層の形成
得られた上層コート用スラリーを、前述の下層コート層を形成したハニカムに、所定量を上部から投入し、下部から吸引することにより下層コート上に塗布し、乾燥、焼成して、上層コート層2を形成した。
(2-2) Formation of upper layer coat layer on base material The obtained upper layer coat slurry is poured into the honeycomb having the lower layer coat layer described above from the upper part and sucked from the lower part to coat the lower layer. The upper coat layer 2 was formed by applying the solution on top, drying and firing.

〔実施例2〕
(1)下層コート層の形成
(1-1)下層コート用スラリーの作成
ジルコニア(第一稀元素化学工業(株)製、ZrO:90wt%、Y:10wt%)に、Pdが3.34wt%になるように硝酸Pd薬液を含浸担持し、乾燥、焼成した。
[Example 2]
(1) Formation of lower layer coat layer (1-1) Preparation of slurry for lower layer coat Pd is added to zirconia (manufactured by Daiichi Elemental Chemical Co., Ltd., ZrO 2 : 90 wt%, Y 2 O 3 : 10 wt%). 3. Pd nitrate Pd chemical solution was impregnated and supported so as to be 3.34 wt%, dried and fired.

得られたPd担持触媒13gとγアルミナ(サソール社製、Al:96wt%、La:4wt%)を15g、更に硫酸バリウム9gを加え、混合した。 13 g of the obtained Pd-supported catalyst and 15 g of γ-alumina (manufactured by Sasol, Al 2 O 3 : 96 wt%, La 2 O 3 : 4 wt%) and 9 g of barium sulfate were added and mixed.

得られた混合粉末を水に分散させ、アルミナバインダーと混合粉末が1:19の重量比率になるようにアルミナバインダーを加え、ミリングを行い下層用スラリーとした。   The obtained mixed powder was dispersed in water, an alumina binder was added so that the weight ratio of the alumina binder and the mixed powder was 1:19, and milling was performed to obtain a slurry for the lower layer.

(1-2)基材への下層コート層の形成
得られた下層用スラリーをセラミックハニカム((株)デンソー製、セル密度600cell/inch、壁厚3mil、φ103mm×L105mm)に塗布し、乾燥、焼成して、下層コート層2を形成した。その際、スラリー投入側の反対側から吸引したときに、スラリーがハニカム全長(105mm)の50%(52.5mm)まで覆うように調整して塗布し、乾燥、焼成した。
(1-2) Formation of lower layer coat layer on substrate The obtained lower layer slurry was applied to a ceramic honeycomb (manufactured by Denso Corporation, cell density 600 cell / inch 2 , wall thickness 3 mil, φ103 mm × L105 mm) and dried. The lower coat layer 2 was formed by firing. At that time, the slurry was applied so as to cover up to 50% (52.5 mm) of the total length of the honeycomb (105 mm) when sucked from the opposite side of the slurry charging side, dried and fired.

(2)上層コート層の形成
実施例1と同様に、上層コート用スラリーを作成し、下層コート層形成済の基材に塗布、乾燥、焼成した上層コート層を形成した。
(2) Formation of upper layer coating layer In the same manner as in Example 1, an upper layer coating slurry was prepared, and an upper layer coating layer applied, dried and fired on a base material on which a lower layer coating layer had been formed was formed.

〔実施例3〕〜〔実施例9〕
下層コート用スラリー中の硫酸バリウム量を種々に変えた以外は実施例1と同様にして、触媒を作成した。
[Example 3] to [Example 9]
A catalyst was prepared in the same manner as in Example 1 except that the amount of barium sulfate in the lower layer coating slurry was variously changed.

〔比較例1〕
下層コート層に硫酸バリウムを添加しない以外は実施例1と同様にして触媒を作成した。
[Comparative Example 1]
A catalyst was prepared in the same manner as in Example 1 except that barium sulfate was not added to the lower coat layer.

〔比較例2〕
下層コート層に硫酸バリウムを添加せず、上層コート用スラリーの作成時にRh担持触媒とγアルミナを混合する際に、更に硫酸バリウムを9g添加した。それ以外は、実施例1と同様にして触媒を作成した。
[Comparative Example 2]
Barium sulfate was not added to the lower coat layer, and 9 g of barium sulfate was further added when the Rh-supported catalyst and γ-alumina were mixed during the preparation of the upper layer coating slurry. Otherwise, the catalyst was prepared in the same manner as in Example 1.

表1に、実施例1〜9、比較例1〜2の触媒における硫酸バリウムの配合状況をまとめて示す。   In Table 1, the compounding situation of the barium sulfate in the catalyst of Examples 1-9 and Comparative Examples 1-2 is shown collectively.

Figure 2010188302
Figure 2010188302

<特性評価>
《排ガス浄化率》
硫黄被毒の影響を調べるために、硫黄分を50ppm含むガソリンを用いて耐久試験を行った。
<Characteristic evaluation>
<Exhaust gas purification rate>
In order to investigate the influence of sulfur poisoning, an endurance test was conducted using gasoline containing 50 ppm of sulfur.

試験温度は触媒入りガス温度900℃とし、試験時間は100hrとした。   The test temperature was a catalyst-containing gas temperature of 900 ° C., and the test time was 100 hours.

耐久試験に供した触媒を排気量2.4Lのガソリンエンジンに取り付け、A/F14.6、触媒入りガス温度400℃でのHC、NOx、COについて浄化率を測定した。実施例1、2および比較例1、2の触媒についての結果を図3に示す。   The catalyst subjected to the durability test was attached to a gasoline engine with a displacement of 2.4 L, and the purification rate was measured for HC, NOx, and CO at A / F 14.6 and a catalyst-containing gas temperature of 400 ° C. The results for the catalysts of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIG.

図3に示したように、本発明による実施例の触媒は比較例の触媒に比べて優れた浄化率を発揮している。硫酸バリウムを下層全体に含む実施例1(図2(B)の形態)と、下層のうちハニカムの上流側半長にのみ含む実施例2(図2(C)の形態)とは、ほぼ同等の優れた浄化率である。硫酸バリウムを上層にのみ含む比較例2は、硫酸バリウムを全く含まない比較例1よりは優れた浄化率を発揮しているが、本発明により硫酸バリウムを下層にのみ含む比較例1、2のいずれよりも劣っている。   As shown in FIG. 3, the catalyst of the example according to the present invention exhibits an excellent purification rate as compared with the catalyst of the comparative example. Example 1 (form of FIG. 2 (B)) which contains barium sulfate in the whole lower layer, and Example 2 (form of FIG. 2 (C)) which contains only the upper half length of a honeycomb among lower layers are substantially equivalent. Excellent purification rate. Comparative Example 2 containing barium sulfate only in the upper layer exhibits a purification rate superior to that of Comparative Example 1 containing no barium sulfate at all. It is inferior to either.

《硫酸バリウム量の影響》
図4に、下層への硫酸バリウム添加量と(A)HC、(B)NOx、(C)COについての浄化率との関係を示す。
<Effect of barium sulfate content>
FIG. 4 shows the relationship between the amount of barium sulfate added to the lower layer and the purification rate for (A) HC, (B) NOx, and (C) CO.

硫酸バリウムを全く含まない場合(比較例1)に比べて本発明により硫酸バリウムを下層のみに1〜80g/L含む場合(実施例1〜9)はいずれも浄化率が向上している。   As compared with the case where barium sulfate is not contained at all (Comparative Example 1), the purification rate is improved in all cases where Barium sulfate is contained only in the lower layer (Examples 1-9) according to the present invention (Examples 1-9).

上層のみに硫酸バリウムを10g/L含む場合(比較例2)を基準とすると、下層のみに硫酸バリウムを3g/L〜50g/L含む場合(実施例1〜6)が高い浄化率を発揮している。   Based on the case where 10 g / L of barium sulfate is contained only in the upper layer (Comparative Example 2), the case where 3 g / L to 50 g / L of barium sulfate is contained only in the lower layer (Examples 1 to 6) exhibits a high purification rate. ing.

本発明によれば、触媒貴金属とバリウムとの反応を抑制して、高い触媒活性を確保しつつ硫黄被毒を低減できる排気ガス浄化用三元触媒が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the three-way catalyst for exhaust gas purification | cleaning which can reduce sulfur poisoning can be provided, suppressing reaction with a catalyst noble metal and barium, ensuring high catalyst activity.

1 硫酸バリウムを含まない触媒コート層上層
2 硫酸バリウムを含む触媒コート層下層
3 触媒基材
1 Upper layer of catalyst coat layer not containing barium sulfate 2 Lower layer of catalyst coat layer containing barium sulfate 3 Catalyst base material

Claims (1)

基材上に、硫酸バリウムを含む下層と硫酸バリウムを含まない上層とから成る触媒コート層を備えたことを特徴とする排ガス浄化用三元触媒。   A three-way catalyst for purifying exhaust gas, comprising a catalyst coat layer comprising a lower layer containing barium sulfate and an upper layer not containing barium sulfate on a substrate.
JP2009036746A 2009-02-19 2009-02-19 Three-way catalyst for cleaning exhaust gas Pending JP2010188302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036746A JP2010188302A (en) 2009-02-19 2009-02-19 Three-way catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036746A JP2010188302A (en) 2009-02-19 2009-02-19 Three-way catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2010188302A true JP2010188302A (en) 2010-09-02

Family

ID=42814942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036746A Pending JP2010188302A (en) 2009-02-19 2009-02-19 Three-way catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2010188302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158656A1 (en) * 2015-03-27 2016-10-06 トヨタ自動車株式会社 Exhaust purification catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174866A (en) * 1996-12-19 1998-06-30 Toyota Central Res & Dev Lab Inc Catalyst for purifying waste gas
JPH11151439A (en) * 1997-11-20 1999-06-08 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JPH11210451A (en) * 1997-11-20 1999-08-03 Nissan Motor Co Ltd Exhaust emission control catalyst device of internal combustion engine
JP2001104785A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2002011350A (en) * 1999-05-24 2002-01-15 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2005530614A (en) * 2002-06-27 2005-10-13 エンゲルハード・コーポレーシヨン Multi-zone catalytic converter
JP2008012441A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Catalyst for cleaning gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174866A (en) * 1996-12-19 1998-06-30 Toyota Central Res & Dev Lab Inc Catalyst for purifying waste gas
JPH11151439A (en) * 1997-11-20 1999-06-08 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JPH11210451A (en) * 1997-11-20 1999-08-03 Nissan Motor Co Ltd Exhaust emission control catalyst device of internal combustion engine
JP2002011350A (en) * 1999-05-24 2002-01-15 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001104785A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2005530614A (en) * 2002-06-27 2005-10-13 エンゲルハード・コーポレーシヨン Multi-zone catalytic converter
JP2008012441A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Catalyst for cleaning gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158656A1 (en) * 2015-03-27 2016-10-06 トヨタ自動車株式会社 Exhaust purification catalyst
JP2016185531A (en) * 2015-03-27 2016-10-27 トヨタ自動車株式会社 Catalyst for cleaning exhaust gas

Similar Documents

Publication Publication Date Title
JP4682151B2 (en) Exhaust gas purification catalyst
JP5807782B2 (en) Exhaust gas purification catalyst
KR100870484B1 (en) Catalyst for purifying exhaust gases
US7306771B2 (en) Filter catalyst for purifying exhaust gases and its manufacturing method thereof
EP3581271A1 (en) Exhaust gas purification catalyst
JP5845234B2 (en) Exhaust gas purification catalyst
JP2008023501A (en) Catalyst for purifying exhaust gas
CN102049254B (en) Exhaust gas purification catalyst
WO2016125617A1 (en) Exhaust-gas cleaning catalyst
JP2009273961A (en) Exhaust purification catalyst, and method of producing the same
JP5709005B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5218092B2 (en) Exhaust gas purification catalyst
EP3730203B1 (en) Exhaust gas purification catalyst
JP6169379B2 (en) Gas purification catalyst for internal combustion engine
JP2009000648A (en) Exhaust gas cleaning catalyst
JP6540534B2 (en) Storage reduction type NOx catalyst
JP4797838B2 (en) Gas purification catalyst
JP6175275B2 (en) Exhaust gas purification catalyst
WO2012121388A1 (en) Method for producing catalyst, and catalyst
JP2013146706A (en) Catalyst for cleaning exhaust gas
JP6266215B2 (en) Gas purification catalyst for internal combustion engine
JP2010188302A (en) Three-way catalyst for cleaning exhaust gas
JP2005279437A (en) Catalyst for purifying exhaust gas
US20220234030A1 (en) Exhaust gas purification catalyst and exhaust gas purification system using the exhaust gas purification catalyst
WO2009119459A1 (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604