JP2010187034A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2010187034A
JP2010187034A JP2010126112A JP2010126112A JP2010187034A JP 2010187034 A JP2010187034 A JP 2010187034A JP 2010126112 A JP2010126112 A JP 2010126112A JP 2010126112 A JP2010126112 A JP 2010126112A JP 2010187034 A JP2010187034 A JP 2010187034A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
disposed
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010126112A
Other languages
Japanese (ja)
Inventor
Koichi Tachibana
浩 一 橘
Chie Hongo
郷 智 恵 本
Hajime Nako
古 肇 名
Shinya Nunogami
上 真 也 布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010126112A priority Critical patent/JP2010187034A/en
Publication of JP2010187034A publication Critical patent/JP2010187034A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of preventing impurities from being diffused in an active layer. <P>SOLUTION: A laser diode includes: an n-type GaN buffer layer 2 formed on an n-type GaN substrate 1; an n-type clad layer 3 formed thereupon; an n-type guide layer 4 formed thereupon; the active layer 5 formed thereupon; a p-type first guide layer 6 formed thereupon; an overflow prevention layer 7 formed thereupon; an impurity diffusion prevention layer 8 formed thereupon; a p-type GaN second guide layer 9 formed thereupon; and a p-type clad layer 10 formed thereupon. The impurity diffusion prevention layer 8 composed of In<SB>y</SB>Ga<SB>1-y</SB>N is provided in the vicinity of the active layer 5 so that p-type impurities present in the p-type clad layer 10, p-type second guide layer 9, etc., can be accumulated in the impurity diffusion prevention layer 8 and are not diffused in the active layer 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、窒化ガリウム(GaN)を含む半導体装置に関する。   The present invention relates to a semiconductor device containing gallium nitride (GaN).

窒化ガリウム(GaN)系半導体はワイドバンドギャップを有する半導体であり、その特徴を活かし、高輝度の紫外〜青色・緑色発光ダイオードや青紫色レーザダイオードなどが研究・開発されている。また、高周波かつ高出力のGaN系トランジスタなどが作製されている。   Gallium nitride (GaN) -based semiconductors are semiconductors having a wide band gap, and high-intensity ultraviolet to blue / green light-emitting diodes and blue-violet laser diodes have been researched and developed by taking advantage of the characteristics. In addition, high-frequency and high-power GaN-based transistors and the like have been produced.

GaN系は電子や正孔の有効質量がGaAs系よりも大きいため、透明キャリア密度が大きくなる。よって、必然的にGaN系レーザにおけるしきい値電流密度はGaAs系レーザにおけるそれよりも大きくなる。GaN系レーザにおけるしきい値電流密度の代表的な値としては1〜3kAcm-2程度である。 Since the effective mass of electrons and holes is larger in the GaN system than in the GaAs system, the transparent carrier density is increased. Therefore, the threshold current density in the GaN-based laser is inevitably larger than that in the GaAs-based laser. A typical value of the threshold current density in the GaN laser is about 1 to 3 kAcm −2 .

このように、GaN系レーザは、しきい値電流密度が大きいため、キャリア(特に電子)のオーバーフローを抑制することが極めて重要である。GaN系レーザでは、電子のオーバーフローを抑制するために、p型不純物がドープされたGaAlN層が活性層近傍に設けられることが多い(非特許文献1、非特許文献2参照)。   Thus, since the GaN-based laser has a large threshold current density, it is extremely important to suppress overflow of carriers (particularly electrons). In a GaN-based laser, a GaAlN layer doped with a p-type impurity is often provided in the vicinity of an active layer in order to suppress an overflow of electrons (see Non-Patent Document 1 and Non-Patent Document 2).

しかしながら、実際の素子構造を結晶成長する上で、ガイド層の材料として用いられるInGaNとGaN・GaAlNとでは成長温度が異なる。InGaNが成長温度700〜800℃前後であるのに対して、GaN・GaAlNは成長温度が1000〜1100℃である。すなわち、InGaNを成長した後に、一旦成長を中断し昇温過程を経て、GaN・GaAlNを成長することになる。この昇温過程において、熱ダメージによる欠陥が結晶成長層に導入されてしまうことが分かった。このような欠陥が導入された層が活性層近傍にあると、素子の寿命が低下するおそれがある。したがって、欠陥が導入された層を活性層から遠ざけることが、高信頼性素子を実現する上で重要な事項である。   However, in crystal growth of an actual device structure, the growth temperature differs between InGaN and GaN · GaAlN used as the material of the guide layer. InGaN has a growth temperature of around 700 to 800 ° C., whereas GaN · GaAlN has a growth temperature of 1000 to 1100 ° C. That is, after the growth of InGaN, the growth is temporarily interrupted and a temperature rising process is performed to grow GaN · GaAlN. It was found that defects due to thermal damage were introduced into the crystal growth layer during this temperature raising process. If the layer in which such a defect is introduced is in the vicinity of the active layer, the lifetime of the device may be reduced. Therefore, it is an important matter to realize a highly reliable element that the layer in which the defect is introduced is kept away from the active layer.

また、p型不純物がドープされたGaAlN層が活性層のごく近傍に設けられている場合、p型不純物による自由キャリア損失が発生し、逆にしきい値電流密度が上昇してしまう。また、p型不純物が活性層に拡散するおそれがあり、この場合、損失が増大して、しきい値電流密度も増大してしまう。たとえレーザダイオードの通電初期段階でp型不純物の活性層への拡散が抑えられていたとしても、定光出力下の寿命試験を行ううちに、活性層への不純物拡散が起こり、その結果しきい値電流密度の増大を招き、最終的にはレーザダイオードとして使用不能となってしまうおそれがある。このように、p型不純物の活性層への拡散はデバイスの信頼性にも関わる重大な問題である。
中村修二他、「InGaN-Based Multi-Quantum-Well-Structure Laser Diodes」、Japanese Journal of Applied Physics、1996年1月15日、第35巻、第1B号、pp.L74−L76. M. Hansen他、「Higher efficiency InGaN laser diodes with an improved quantum well capping configuration」、Applied Physics Letters、2002年11月25日、第81巻、第22号、pp.4275−4277.
Further, when a GaAlN layer doped with a p-type impurity is provided in the very vicinity of the active layer, free carrier loss due to the p-type impurity occurs, and the threshold current density increases. Further, the p-type impurity may diffuse into the active layer. In this case, the loss increases and the threshold current density also increases. Even if the diffusion of p-type impurities into the active layer is suppressed at the initial stage of energization of the laser diode, the impurity diffusion into the active layer occurs during the lifetime test under constant light output, resulting in a threshold value. An increase in current density may be caused, and there is a possibility that the laser diode may eventually become unusable. Thus, the diffusion of p-type impurities into the active layer is a serious problem related to device reliability.
Nakamura Shuji et al., “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Japanese Journal of Applied Physics, January 15, 1996, Vol. L74-L76. M. Hansen et al., “Higher efficiency InGaN laser diodes with an improved quantum well capping configuration”, Applied Physics Letters, November 25, 2002, vol. 4275-4277.

本発明は、不純物の活性層への拡散を防止可能な半導体装置を提供するものである。   The present invention provides a semiconductor device capable of preventing diffusion of impurities into an active layer.

本発明の一態様によれば、活性層と、
p型のGaNを含む第1半導体層と、
前記活性層と前記第1半導体層との間に配置されるIn1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と、
前記活性層と前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層との間、および前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記第1半導体層との間のいずれか一方に配置されるp型のGaNを含む第2半導体層と、
前記第1半導体層と前記活性層との間に配置され、前記In1−x−y1GaxAly1N(0≦x<1、0<y1≦1)層、前記第1半導体層、および第2半導体層よりも小さいバンドギャップを有し、かつ前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層、前記第1半導体層、および第2半導体層よりも格子定数が大きい、Iny2Ga1-y2N(0<y2≦1)層と、を備えることを特徴とする半導体装置が提供される。
According to one aspect of the present invention, an active layer;
a first semiconductor layer comprising p-type GaN;
An In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer disposed between the active layer and the first semiconductor layer;
Between the active layer and the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, and the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) a second semiconductor layer containing p-type GaN disposed between the first semiconductor layer and the first semiconductor layer;
The In 1-x-y1 GaxAl y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, the first semiconductor layer, and the second layer are disposed between the first semiconductor layer and the active layer. The In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, the first semiconductor layer, and the second semiconductor layer having a smaller band gap than the semiconductor layer And a In y2 Ga 1-y2 N (0 <y2 ≦ 1) layer having a larger lattice constant than the semiconductor device.

また、本発明の一態様によれば、活性層と、
p型のGaNを含む第1半導体層と、
前記活性層と前記第1半導体層との間に配置されるIn1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と、
前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記第1半導体層との間に配置されるp型のGaNを含む第2半導体層と、
前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記活性層との間に配置されるp型のInx3Ga1-x3N(0≦x3<1、x2>x3)の第3半導体層と、
前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記第2半導体層との間、および前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記第3半導体層との間の少なくとも一方に配置されたIny2Ga1-y2N(0<y2≦1)層と、を備えることを特徴とする半導体装置が提供される。
Moreover, according to one aspect of the present invention, an active layer;
a first semiconductor layer comprising p-type GaN;
An In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer disposed between the active layer and the first semiconductor layer;
A second semiconductor layer containing p-type GaN disposed between the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer and the first semiconductor layer; ,
A p-type In x3 Ga 1 -x3 N (0 ≦ 0) disposed between the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer and the active layer. a third semiconductor layer of x3 <1, x2>x3);
The In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer and the second semiconductor layer, and the In 1-x-y1 Ga x Al y1 N ( And an In y2 Ga 1-y2 N (0 <y2 ≦ 1) layer disposed in at least one of the layer between the 0 ≦ x <1, 0 <y1 ≦ 1) layer and the third semiconductor layer. A semiconductor device is provided.

本発明によれば、不純物拡散防止層を設けることにより、第1導電型の不純物が活性層に拡散しなくなり、デバイスの特性が向上する。   According to the present invention, the provision of the impurity diffusion preventing layer prevents the first conductivity type impurity from diffusing into the active layer, thereby improving the device characteristics.

以下、図面を参照しながら、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は本発明の第1の実施形態に係る半導体装置の断面図であり、半導体発光素子、より具体的にはレーザダイオードの断面構造を示している。図1のレーザダイオードは、n型GaN基板1上に形成されるn型GaNバッファ層2と、その上に形成されるn型クラッド層3と、その上に形成されるn型ガイド層4と、その上に形成される活性層5と、その上に形成されるp型第1ガイド層6と、その上に形成されるGaxAl1-xN(0<x≦1)層(オーバーフロー防止層)7と、その上に形成されるInyGa1-yN(0<y≦1)層(不純物拡散防止層)8と、その上に形成されるp型GaN第2ガイド層9と、その上に形成されるp型クラッド層10と、その上に形成されるp型コンタクト層11とを備えている。なお、オーバーフロー防止層はより一般的にIn1−x−yGaAlN(0≦x<1,0<y≦1)に拡張することもできる。
(First embodiment)
FIG. 1 is a cross-sectional view of a semiconductor device according to the first embodiment of the present invention, showing a cross-sectional structure of a semiconductor light emitting element, more specifically, a laser diode. 1 includes an n-type GaN buffer layer 2 formed on an n-type GaN substrate 1, an n-type cladding layer 3 formed thereon, and an n-type guide layer 4 formed thereon. The active layer 5 formed thereon, the p-type first guide layer 6 formed thereon, and the Ga x Al 1-x N (0 <x ≦ 1) layer (overflow) formed thereon Prevention layer) 7, In y Ga 1-y N (0 <y ≦ 1) layer (impurity diffusion prevention layer) 8 formed thereon, and p-type GaN second guide layer 9 formed thereon. A p-type cladding layer 10 formed thereon, and a p-type contact layer 11 formed thereon. Incidentally, the overflow preventing layer can also be extended to more general In 1-x-y Ga x Al y N (0 ≦ x <1,0 <y ≦ 1).

不純物拡散防止層8のInの組成比は、オーバーフロー防止層7とガイド層6,9のInの組成比よりも高く設定されている。後述する不純物拡散目安として、不純物拡散防止層8のInの組成比は2〜10%、好ましくは3〜8%、オーバーフロー防止層7とガイド層6,9のInの組成比は2%以下である。一般に、Inの組成比が大きいほど、屈折率が大きくなりバンドギャップが小さくなる。不純物拡散防止層8のIn組成が小さいと不純物拡散防止の効果を得ることが難しくなる。また、発効効率の観点から、不純物拡散防止層8のIn組成比は活性層の量子井戸層のIn組成比より小さくすることが望ましい。   The In composition ratio of the impurity diffusion preventing layer 8 is set higher than the In composition ratio of the overflow preventing layer 7 and the guide layers 6 and 9. As a guideline for impurity diffusion described later, the In composition ratio of the impurity diffusion prevention layer 8 is 2 to 10%, preferably 3 to 8%, and the In composition ratio of the overflow prevention layer 7 and the guide layers 6 and 9 is 2% or less. is there. Generally, the greater the In composition ratio, the greater the refractive index and the smaller the band gap. If the In composition of the impurity diffusion preventing layer 8 is small, it is difficult to obtain the effect of preventing impurity diffusion. Further, from the viewpoint of effective efficiency, it is desirable that the In composition ratio of the impurity diffusion preventing layer 8 is smaller than the In composition ratio of the quantum well layer of the active layer.

p型クラッド層10は凸部を有し、凸部の最上面にはp型GaNコンタクト層11が形成され、凸部の側壁部と凸部以外のp型クラッド層10の表面部分には絶縁層12が形成されている。p型GaNコンタクト層11の上にはp型電極13が形成され、n型GaN基板1の裏面側にはn型電極14が形成されている。   The p-type cladding layer 10 has a convex portion, a p-type GaN contact layer 11 is formed on the uppermost surface of the convex portion, and insulation is provided on the side wall portion of the convex portion and the surface portion of the p-type cladding layer 10 other than the convex portion. Layer 12 is formed. A p-type electrode 13 is formed on the p-type GaN contact layer 11, and an n-type electrode 14 is formed on the back side of the n-type GaN substrate 1.

図1のレーザダイオードは、オーバーフロー防止層7とp型GaN第2ガイド層9の間に不純物拡散防止層8を設けている。この不純物拡散防止層8は、p型GaNガイド層9やp型クラッド層10等の内部に存在するp型不純物を吸収する作用を行い、これにより、p型不純物が活性層に拡散されなくなる。なお、不純物拡散防止層8をp型クラッド層10に近接して配置しても十分に不純物拡散防止の効果を得ることができるが、不純物拡散防止層8を活性層5に近づけた方が不純物拡散防止の効果をより向上させることができる。その理由は、活性層5とp型クラッド層10との間に存在する一つ又は複数のp型半導体層のうちなるべく多くのp型半導体層に含まれるp型不純物の拡散を防止することができるためである。しかしながら、不純物拡散防止層8を活性層5に接して設けた場合は、活性層5の量子井戸層の方が不純物拡散防止層8よりもバンドギャップが小さいので、不純物拡散防止層8でp型不純物が十分に吸収されずに活性層5中へp型不純物が拡散してしまう場合があり好ましくない。   In the laser diode of FIG. 1, an impurity diffusion prevention layer 8 is provided between the overflow prevention layer 7 and the p-type GaN second guide layer 9. The impurity diffusion preventing layer 8 functions to absorb p-type impurities existing inside the p-type GaN guide layer 9 and the p-type cladding layer 10, so that the p-type impurities are not diffused into the active layer. Even if the impurity diffusion preventing layer 8 is disposed close to the p-type cladding layer 10, the effect of preventing impurity diffusion can be sufficiently obtained. However, the impurity diffusion preventing layer 8 is more likely to be closer to the active layer 5 than the impurity diffusion preventing layer 8. The effect of preventing diffusion can be further improved. The reason is to prevent the diffusion of p-type impurities contained in as many p-type semiconductor layers as possible among one or a plurality of p-type semiconductor layers existing between the active layer 5 and the p-type cladding layer 10. This is because it can. However, when the impurity diffusion preventing layer 8 is provided in contact with the active layer 5, the quantum well layer of the active layer 5 has a smaller band gap than the impurity diffusion preventing layer 8. Since the impurities are not sufficiently absorbed, p-type impurities may diffuse into the active layer 5, which is not preferable.

本発明者は、GaN、GaAlNおよびInGaNからなる積層膜に対して二次イオン質量分析法(SIMS:Secondary Ion-microprobe Mass Spectrometry)を用いてp型不純物(例えばMg)のドーピングプロファイルを調べた。その結果、ドーピング濃度が一定になるように設計したにもかかわらず、SIMSのマトリクス効果を考慮に入れても、InGaNにおけるMg濃度が最も高いことがわかった。図2はこの結果を示す図であり、図2の特性線図aは横軸を上記積層膜の深さ位置、縦軸をMg濃度としたものである。また、特性線図bは横軸を上記積層膜の深さ位置、縦軸をバンドギャップエネルギーとしたものである。   The inventor investigated the doping profile of a p-type impurity (for example, Mg) by using secondary ion mass spectrometry (SIMS) for a laminated film made of GaN, GaAlN, and InGaN. As a result, it was found that the Mg concentration in InGaN was the highest even when the matrix effect of SIMS was taken into consideration even though the doping concentration was designed to be constant. FIG. 2 is a diagram showing the results. In the characteristic diagram a of FIG. 2, the horizontal axis represents the depth position of the laminated film, and the vertical axis represents the Mg concentration. In the characteristic diagram b, the horizontal axis is the depth position of the laminated film, and the vertical axis is the band gap energy.

図2の特性線図aからわかるように、不純物拡散防止層8のMg濃度が最も高くなっている。また、特性線図bからわかるように、不純物拡散防止層8のバンドギャップエネルギーが最も小さい。   As can be seen from the characteristic diagram a in FIG. 2, the Mg concentration of the impurity diffusion preventing layer 8 is the highest. Further, as can be seen from the characteristic diagram b, the band gap energy of the impurity diffusion preventing layer 8 is the smallest.

InGaNのMg濃度が高い原因として、InGaNはGaNやGaAlNに対して格子定数が大きく(より厳密にはc軸方向の格子定数が大きく)、Mgが膜中に取り込まれやすいためと考えられる。   The reason for the high Mg concentration of InGaN is that InGaN has a larger lattice constant than GaN and GaAlN (strictly, the lattice constant in the c-axis direction is large), and Mg is easily taken into the film.

図2からわかるように、上記積層膜中の各層のMg濃度とバンドギャップエネルギーは互いに相関関係にある。したがって、図1のレーザダイオードにおいても、InyGa1-yNからなる不純物拡散防止層8の材料を、その両面に配置されるオーバーフロー防止層7とp型GaN第2ガイド層9よりもバンドギャップエネルギーの小さい材料にすれば、p型GaN第2ガイド層9やp型クラッド層10などに含まれるp型不純物を不純物拡散防止層8の内部に蓄積することができる。言い換えると、不純物拡散防止層8のc軸方向の格子定数を、その両面に配置されるオーバーフロー防止層7とp型GaN第2ガイド層9のc軸方向の格子定数よりも大きくすることにより、p型不純物を不純物拡散防止層8の内部に蓄積することができる。 As can be seen from FIG. 2, the Mg concentration and the band gap energy of each layer in the laminated film have a correlation with each other. Therefore, in the laser diode of FIG. 1 as well, the material of the impurity diffusion prevention layer 8 made of In y Ga 1-y N is used in a band more than the overflow prevention layer 7 and the p-type GaN second guide layer 9 disposed on both sides thereof. If a material having a small gap energy is used, p-type impurities contained in the p-type GaN second guide layer 9 and the p-type cladding layer 10 can be accumulated in the impurity diffusion prevention layer 8. In other words, by making the lattice constant in the c-axis direction of the impurity diffusion prevention layer 8 larger than the lattice constant in the c-axis direction of the overflow prevention layer 7 and the p-type GaN second guide layer 9 disposed on both surfaces thereof, P-type impurities can be accumulated inside the impurity diffusion preventing layer 8.

そこで、本実施形態では、p型不純物がドープされたオーバーフロー防止層7の上に、バンドギャップのより小さなInyGa1-yN層からなる不純物拡散防止層8を配置して、この層の内部にp型不純物を蓄積し、p型不純物が活性層に拡散されないようにする。 Therefore, in this embodiment, an impurity diffusion prevention layer 8 composed of an In y Ga 1-y N layer having a smaller band gap is disposed on the overflow prevention layer 7 doped with p-type impurities, A p-type impurity is accumulated therein so that the p-type impurity is not diffused into the active layer.

図3および図4は図1のレーザダイオードの製造工程を示す工程図である。まず、n型GaN基板1上に、n型不純物がドープされたn型GaNバッファ層2を結晶成長する(図3(a))。結晶成長には、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)が用いられる。この他、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)により結晶成長させてもよい。n型不純物には、SiやGeなどを用いることができるが、ここではSiを用いるものとする。   3 and 4 are process diagrams showing the manufacturing process of the laser diode of FIG. First, an n-type GaN buffer layer 2 doped with an n-type impurity is crystal-grown on the n-type GaN substrate 1 (FIG. 3A). For the crystal growth, for example, metal organic chemical vapor deposition (MOCVD) is used. In addition, the crystal may be grown by molecular beam epitaxy (MBE). For the n-type impurity, Si, Ge, or the like can be used, but Si is used here.

次に、n型GaNバッファ層2の上に、アンドープGa0.9Al0.1N層とn型不純物が1×1018cm-3程度ドープされたGaN層とからなる超格子のn型クラッド層3を成長させる(図3(b))。n型クラッド層3の材料には特に制限はなく、例えばGa0.95Al0.05Nの厚膜を用いてもよい。あるいは、Ga0.9Al0.1N層とGaN層の両方にn型不純物をドープしてn型クラッド層3を形成してもよい。 Next, on the n-type GaN buffer layer 2, a superlattice n-type cladding layer 3 comprising an undoped Ga 0.9 Al 0.1 N layer and a GaN layer doped with n-type impurities of about 1 × 10 18 cm −3 is formed. Grow (FIG. 3B). The material of the n-type cladding layer 3 is not particularly limited, and for example, a thick film of Ga 0.95 Al 0.05 N may be used. Alternatively, the n-type cladding layer 3 may be formed by doping an n-type impurity in both the Ga 0.9 Al 0.1 N layer and the GaN layer.

次に、n型クラッド層3の上に、n型不純物が1×1018cm-3程度ドープされた膜厚0.1μm程度のGaNからなるn型ガイド層4を成長させる。あるいは、n型ガイド層4として、膜厚0.1μm程度のIn0.01Ga0.99Nを用いてもよい。n型GaNバッファ層2、n型クラッド層3およびn型ガイド層4を成長させる際の成長温度はいずれも1000〜1100℃である。 Next, an n-type guide layer 4 made of GaN having a thickness of about 0.1 μm doped with n-type impurities of about 1 × 10 18 cm −3 is grown on the n-type cladding layer 3. Alternatively, In 0.01 Ga 0.99 N having a thickness of about 0.1 μm may be used as the n-type guide layer 4. The growth temperatures for growing the n-type GaN buffer layer 2, the n-type cladding layer 3, and the n-type guide layer 4 are all 1000 to 1100 ° C.

次に、n型ガイド層4の上に、膜厚3.5nm程度のアンドープのIn0.1Ga0.9N層からなる量子井戸層と、この量子井戸を挟んでその両面に膜厚7nm程度のアンドープのIn0.01Ga0.99N層からなるバリア層とを交互に積層した多重量子井戸(MQW:Multiple Quantum Well)構造の活性層5を形成する(図3(c))。この場合の成長温度は700〜800℃である。 Next, on the n-type guide layer 4, a quantum well layer composed of an undoped In 0.1 Ga 0.9 N layer having a thickness of about 3.5 nm, and an undoped layer having a thickness of about 7 nm on both sides of the quantum well are sandwiched. An active layer 5 having a multiple quantum well (MQW) structure in which barrier layers made of In 0.01 Ga 0.99 N layers are alternately stacked is formed (FIG. 3C). The growth temperature in this case is 700 to 800 ° C.

次に、活性層5の上に、In0.005Ga0.995Nからなるp型第1ガイド層6を成長させる。膜厚は90nm程度あればよい。p型第1ガイド層6はアンドープ、もしくはp型不純物であるMgを1×1017cm-3程度以上5×1018cm-3程度以下ドープしても良い。活性層の下に配置されるn型ガイド層5がGaNまたはInx1Ga1-x1N(0<x1<1)で、かつ活性層が、Inx2Ga1-x2N(0<x2≦1)を含む量子井戸と、Inx3Ga1-x3N(0≦x3<1、x2>x3)を含むバリア層と、を有する単一または多重量子井戸構造の場合、p型第1ガイド層6は、Inx4Ga1-x4N(0≦x4<1、x3>x4)である。 Next, a p-type first guide layer 6 made of In 0.005 Ga 0.995 N is grown on the active layer 5. The film thickness may be about 90 nm. The p-type first guide layer 6 may be undoped or doped with Mg, which is a p-type impurity, from about 1 × 10 17 cm −3 to about 5 × 10 18 cm −3 . The n-type guide layer 5 disposed under the active layer is GaN or In x1 Ga 1-x1 N (0 <x1 <1), and the active layer is In x2 Ga 1-x2 N (0 <x2 ≦ 1) ) And a barrier layer containing In x3 Ga 1-x 3N (0 ≦ x3 <1, x2> x3), the p-type first guide layer 6 in the case of a single or multiple quantum well structure Is In x4 Ga 1 -x4 N (0 ≦ x4 <1, x3> x4).

次に、p型第1ガイド層6の上に、Mgが4×1018cm-3程度以上5×1019cm-3程度以下ドープされた膜厚10nm程度のGa0.8Al0.2N層を成長させる。このGa0.8Al0.2N層は、電子のオーバーフローを防止するために設けられるため、オーバーフロー防止層7とも呼ばれる。p型第1ガイド層6とオーバーフロー防止層7を成長させる際の成長温度は1000〜1100℃である。 Next, a Ga 0.8 Al 0.2 N layer having a thickness of about 10 nm doped with Mg of about 4 × 10 18 cm −3 to about 5 × 10 19 cm −3 is grown on the p-type first guide layer 6. Let This Ga 0.8 Al 0.2 N layer is also referred to as an overflow prevention layer 7 because it is provided to prevent the overflow of electrons. The growth temperature for growing the p-type first guide layer 6 and the overflow prevention layer 7 is 1000 to 1100 ° C.

次に、オーバーフロー防止層7の上に、InyGa1-yN(0<y≦1)からなる不純物拡散防止層8を成長させる(図3(d))。Inの組成yは例えば、y=0.02、膜厚は例えば3nmである。この膜厚は例えば1〜15nm、好ましくは1〜10nmとする。
膜厚が薄いと不純物拡散防止の効果を得ることが難しくなり、膜厚が厚いと光強度分布が変化していまい好ましくない。不純物拡散防止層8を成長させる際の成長温度は700〜800℃がよいが、Inの組成が低い場合(例えば3%以下の場合)、1000〜1100℃でもよい。不純物拡散防止層8は、Mgが1×1017cm-3程度以上1×1019cm-3程度以下ドープされていても良い。
Next, an impurity diffusion prevention layer 8 made of In y Ga 1-y N (0 <y ≦ 1) is grown on the overflow prevention layer 7 (FIG. 3D). The In composition y is, for example, y = 0.02, and the film thickness is, for example, 3 nm. This film thickness is, for example, 1 to 15 nm, preferably 1 to 10 nm.
If the film thickness is thin, it is difficult to obtain the effect of preventing impurity diffusion, and if the film thickness is thick, the light intensity distribution is not preferable. The growth temperature for growing the impurity diffusion prevention layer 8 is preferably 700 to 800 ° C., but may be 1000 to 1100 ° C. when the In composition is low (for example, 3% or less). The impurity diffusion preventing layer 8 may be doped with Mg of about 1 × 10 17 cm −3 to about 1 × 10 19 cm −3 .

次に、InyGa1-yN層の上に、Mgが2×1018cm-3程度以上5×1019cm-3程度以下ドープされたp型GaN第2ガイド層9を成長させる。この層の膜厚は例えば0.05μmである。次に、p型GaN第2ガイド層9の上に、アンドープGa0.9Al0.1N層とMgが1×1019cm-3程度以上5×1019cm-3程度以下ドープされたGaNとからなる超格子構造のp型クラッド層10を成長させる。p型クラッド層10の材料は特に限定されず、例えばGa0.95Al0.05Nからなるp型不純物がドープされた厚膜(膜厚0.6μm程度)でもよい。あるいは、Ga0.9Al0.1NとGaNの両方にp型不純物をドープしてもよい。次に、p型クラッド層10の上に、p型不純物がドープされた膜厚0.1μmのGaN層からなるp型GaNコンタクト層11を形成する(図4(a))。GaN層の代わりに、p型不純物がドープされたInGaAlN層でもよい。p型GaN第2ガイド層9、p型クラッド層10およびp型コンタクト層11を成長させる際の成長温度は1000〜1100℃である。 Next, a p-type GaN second guide layer 9 doped with Mg of about 2 × 10 18 cm −3 to about 5 × 10 19 cm −3 is grown on the In y Ga 1-y N layer. The thickness of this layer is, for example, 0.05 μm. Next, on the p-type GaN second guide layer 9, an undoped Ga 0.9 Al 0.1 N layer and Mg doped with about 1 × 10 19 cm −3 or more and about 5 × 10 19 cm −3 or less are formed. A p-type cladding layer 10 having a superlattice structure is grown. The material of the p-type cladding layer 10 is not particularly limited, and may be, for example, a thick film (film thickness of about 0.6 μm) doped with p-type impurities made of Ga 0.95 Al 0.05 N. Alternatively, it may be doped with p-type impurity to both Ga 0.9 Al 0.1 N and GaN. Next, a p-type GaN contact layer 11 made of a GaN layer having a thickness of 0.1 μm doped with p-type impurities is formed on the p-type cladding layer 10 (FIG. 4A). Instead of the GaN layer, an InGaAlN layer doped with a p-type impurity may be used. The growth temperature for growing the p-type GaN second guide layer 9, the p-type cladding layer 10 and the p-type contact layer 11 is 1000 to 1100 ° C.

図3および図4(a)までの工程に従って結晶成長を行ったウエハに対してデバイスプロセスを行うことにより、最終的にレーザダイオードが作製される。リソグラフィおよびドライエッチングにより、p型コンタクト層11とp型クラッド層10の一部を除去して、凸部を有するリッジ構造を作製する(図4(b))。また、凸部の側壁部分と凸部以外のp型クラッド層10の表面部分には絶縁層12を形成する(図4(c))。   By performing a device process on the wafer on which crystal growth has been performed according to the steps up to FIGS. 3 and 4A, a laser diode is finally manufactured. A part of the p-type contact layer 11 and the p-type cladding layer 10 is removed by lithography and dry etching to produce a ridge structure having a convex portion (FIG. 4B). Further, an insulating layer 12 is formed on the side wall portion of the convex portion and the surface portion of the p-type cladding layer 10 other than the convex portion (FIG. 4C).

次に、Mgが3×1019cm-3程度以上1×1022cm-3程度以下ドープされたp型GaNコンタクト層11と絶縁層12の上にp型電極13を形成するとともに、n−GaN基板の裏面側にn型電極14を形成する。 Next, a p-type electrode 13 is formed on the p-type GaN contact layer 11 and the insulating layer 12 doped with about 3 × 10 19 cm −3 or more and about 1 × 10 22 cm −3 or less of Mg, and n− An n-type electrode 14 is formed on the back side of the GaN substrate.

レーザダイオードの端面は劈開により形成され、光取り出し面とは反対側の面には高反射率のコーティングが施される。   The end surface of the laser diode is formed by cleaving, and the surface opposite to the light extraction surface is coated with a high reflectance.

p型クラッド層10とp型GaNコンタクト層11とからなる凸部積層構造は、紙面に垂直な方向に延伸しており、共振器となる。   The convex laminated structure composed of the p-type cladding layer 10 and the p-type GaN contact layer 11 extends in a direction perpendicular to the paper surface and becomes a resonator.

なお、凸部積層構造は、図1に示すような断面が垂直側壁を有する矩形に限らず、メサ型の斜面を有する台形状の凸部でもよい。p型コンタクト層11の幅(リッジ幅)は約2μmであり、共振器長としては例えば600μmにすればよい。   The convex laminated structure is not limited to a rectangle having a vertical side wall as shown in FIG. 1, but may be a trapezoidal convex having a mesa-shaped slope. The width (ridge width) of the p-type contact layer 11 is about 2 μm, and the resonator length may be 600 μm, for example.

凸部の側壁部と凸部以外のp型クラッド層10の表面部分には、凸部を挟み込むように絶縁層12からなる電流ブロック層が形成されている。この電流ブロック層によりレーザダイオードの横モードが制御される。電流ブロック層の膜厚は設計により任意に選択できるが、0.3μm〜0.8μm程度の値、例えば0.5μm程度に設定すればよい。   A current blocking layer made of an insulating layer 12 is formed on the side wall portion of the convex portion and the surface portion of the p-type cladding layer 10 other than the convex portion so as to sandwich the convex portion. The current blocking layer controls the transverse mode of the laser diode. The thickness of the current blocking layer can be arbitrarily selected according to the design, but may be set to a value of about 0.3 μm to 0.8 μm, for example, about 0.5 μm.

電流ブロック層の材料としては、例えばAlN膜、Ga0.8Al0.2N膜等の高比抵抗半導体膜、プロトンを照射した半導体膜、シリコン酸化膜(SiO2膜)、SiO2膜とZrO2膜からなる多層膜などが用いられる。すなわち、電流ブロック層の材料としては、活性層5に用いられる窒化物系III−V族化合物半導体よりも屈折率が低いものであれば種々の材料が採用可能である。 Examples of the material for the current blocking layer include a high resistivity semiconductor film such as an AlN film, a Ga 0.8 Al 0.2 N film, a semiconductor film irradiated with protons, a silicon oxide film (SiO 2 film), a SiO 2 film, and a ZrO 2 film. A multilayer film or the like is used. That is, as the material of the current blocking layer, various materials can be adopted as long as the refractive index is lower than that of the nitride III-V compound semiconductor used for the active layer 5.

また、本実施形態に係るレーザダイオードは、リッジ導波路型によるレーザ構造でなくてもよく、例えば埋め込み型レーザ構造の場合は、絶縁膜の代わりに、n型GaNやn型GaAlNなどのn型半導体層を用いてpn接合分離により電流ブロック層として機能させてもよい。   Further, the laser diode according to the present embodiment may not have a ridge waveguide type laser structure. For example, in the case of a buried laser structure, an n-type such as n-type GaN or n-type GaAlN is used instead of an insulating film. A semiconductor layer may be used to function as a current blocking layer by pn junction isolation.

p型GaNコンタクト層11の上には、例えばパラジウム−白金−金(Pd/Pt/Au)の複合膜からなるp型電極13が形成される。例えば、Pd膜は膜厚0.05μm、Pt膜は膜厚0.05μm、Au膜は膜厚1.0μmである。   On the p-type GaN contact layer 11, a p-type electrode 13 made of a composite film of palladium-platinum-gold (Pd / Pt / Au), for example, is formed. For example, the Pd film has a thickness of 0.05 μm, the Pt film has a thickness of 0.05 μm, and the Au film has a thickness of 1.0 μm.

一方、n型GaN基板1の裏面側には、例えばチタン−白金−金(Ti/Pt/Au)の複合膜からなるn型電極14が形成される。n型電極14の材料としては、例えば膜厚0.05μmのTi膜、膜厚0.05μmのPt膜および膜厚1.0μmのAu膜が用いられる。   On the other hand, an n-type electrode 14 made of, for example, a composite film of titanium-platinum-gold (Ti / Pt / Au) is formed on the back side of the n-type GaN substrate 1. As a material of the n-type electrode 14, for example, a Ti film having a thickness of 0.05 μm, a Pt film having a thickness of 0.05 μm, and an Au film having a thickness of 1.0 μm are used.

図3および図4の製法により作製されるレーザダイオードは、電流−光出力特性でのしきい値電流が平均で35mAである。オーバーフロー防止層7の上に不純物拡散防止層8を設けないレーザダイオードの場合も、しきい値電流は平均で約35mA程度であった。これにより、不純物拡散防止層8の有無によりレーザダイオードの初期特性に差がないことがわかる。   The laser diode manufactured by the manufacturing method of FIGS. 3 and 4 has an average threshold current of 35 mA in the current-light output characteristics. In the case of a laser diode in which the impurity diffusion prevention layer 8 is not provided on the overflow prevention layer 7, the threshold current is about 35 mA on average. This shows that there is no difference in the initial characteristics of the laser diode depending on the presence or absence of the impurity diffusion preventing layer 8.

次に、本発明者は、光出力を一定にした状態での寿命を測定する通電試験を行った。この通電試験では、光出力50mW、動作温度75℃で、レーザダイオードを連続発振させ、動作電流の上昇率を調べた。動作電流が初期値の20%上昇した時間をレーザダイオードの寿命として定義する。この定義に従って、図1のレーザダイオードの寿命を測定したところ、上昇率の変化から推定して1000時間以上であった。一方、不純物拡散防止層8を設けないレーザダイオードの寿命は200〜300時間であった。   Next, the present inventor conducted an energization test for measuring the lifetime in a state where the light output was constant. In this energization test, a laser diode was continuously oscillated at an optical output of 50 mW and an operating temperature of 75 ° C., and the rate of increase in operating current was examined. The time when the operating current has increased by 20% of the initial value is defined as the lifetime of the laser diode. When the lifetime of the laser diode of FIG. 1 was measured according to this definition, it was 1000 hours or more as estimated from the change in the rate of increase. On the other hand, the lifetime of the laser diode without the impurity diffusion preventing layer 8 was 200 to 300 hours.

このような寿命の差が生じた理由について説明する。不純物拡散防止層8がない場合、通電試験の最中に、p型クラッド層10やp型第2ガイド層9内のp型不純物(例えばMg)が徐々に不純物の少ない活性層5に向かって拡散を始める。活性層5にp型不純物が拡散すると、自由キャリア損失が生じるため、レーザダイオードにおけるしきい値電流が上昇する。また、しきい値電流以上での電流変化量に対する光出力変化量の比を示すスロープ効率が下がる。したがって、光出力を一定にしようとする場合に動作電流が上昇することになる。   The reason why such a difference in life has occurred will be described. When the impurity diffusion preventing layer 8 is not provided, during the energization test, p-type impurities (for example, Mg) in the p-type cladding layer 10 and the p-type second guide layer 9 gradually move toward the active layer 5 with less impurities. Start spreading. When p-type impurities are diffused in the active layer 5, free carrier loss occurs, so that the threshold current in the laser diode increases. In addition, the slope efficiency indicating the ratio of the light output change amount to the current change amount above the threshold current is lowered. Therefore, the operating current increases when trying to keep the light output constant.

一方、本実施形態のように不純物拡散防止層8を設けた場合、不純物拡散防止層8にp型不純物が蓄積されて、活性層5へのp型不純物の拡散を抑制できる。このため、寿命が長くなり、信頼性の高いレーザダイオードを提供できる。   On the other hand, when the impurity diffusion prevention layer 8 is provided as in the present embodiment, p-type impurities are accumulated in the impurity diffusion prevention layer 8 and diffusion of the p-type impurities into the active layer 5 can be suppressed. For this reason, the lifetime can be extended and a highly reliable laser diode can be provided.

図1のレーザダイオードは、オーバーフロー防止層7とp型GaN第2ガイド層9の間に不純物拡散防止層8を設けているが、図5に示すように、オーバーフロー防止層7とp型第1ガイド層6の間に不純物拡散防止層8を設けてもよい。図5の場合、オーバーフロー防止層7内のp型不純物も確実に不純物拡散防止層8に蓄積できる。   In the laser diode of FIG. 1, an impurity diffusion prevention layer 8 is provided between the overflow prevention layer 7 and the p-type GaN second guide layer 9, but as shown in FIG. An impurity diffusion preventing layer 8 may be provided between the guide layers 6. In the case of FIG. 5, the p-type impurity in the overflow prevention layer 7 can also be reliably accumulated in the impurity diffusion prevention layer 8.

このように、本実施形態では、活性層5に近接してInyGa1-yNからなる不純物拡散防止層8を設けるため、p型クラッド層10やp型第2ガイド層9などの内部に存在するp型不純物を不純物拡散防止層8に蓄積でき、p型不純物が活性層5に拡散しなくなる。
このため、レーザダイオードの寿命を延ばすことができ、信頼性向上が図れる。
Thus, in this embodiment, the impurity diffusion prevention layer 8 made of In y Ga 1-y N is provided in the vicinity of the active layer 5, so that the inside of the p-type cladding layer 10, the p-type second guide layer 9, etc. P-type impurities can be accumulated in the impurity diffusion preventing layer 8, and the p-type impurities do not diffuse into the active layer 5.
For this reason, the life of the laser diode can be extended and the reliability can be improved.

(第2の実施形態)
第2の実施形態は、レーザダイオードの構造が第1の実施形態とは異なるものである。
(Second Embodiment)
The second embodiment is different from the first embodiment in the structure of the laser diode.

図6は第2の実施形態に係るレーザダイオードの断面図である。図6のレーザダイオードは、図1のp型第1ガイド層6とp型GaN第2ガイド層9を一層にまとめたp型GaNガイド層21を有する。このガイド層は、活性層5とオーバーフロー防止層7の間に配置されている。すなわち、図6のレーザダイオードは、n型GaN基板1上に形成されるn型GaNバッファ層2と、その上に形成されるn型クラッド層3と、その上に形成されるn型ガイド層4と、その上に形成される活性層5と、その上に形成されるp型GaNガイド層21と、その上に形成されるGa0.8Al0.2N層(オーバーフロー防止層7)と、その上に形成されるInyGa1-yN(0<y≦1)層(不純物拡散防止層8)と、その上に形成されるp型クラッド層10とを備えている。 FIG. 6 is a cross-sectional view of a laser diode according to the second embodiment. The laser diode of FIG. 6 has a p-type GaN guide layer 21 in which the p-type first guide layer 6 and the p-type GaN second guide layer 9 of FIG. This guide layer is disposed between the active layer 5 and the overflow prevention layer 7. 6 includes an n-type GaN buffer layer 2 formed on an n-type GaN substrate 1, an n-type cladding layer 3 formed thereon, and an n-type guide layer formed thereon. 4, an active layer 5 formed thereon, a p-type GaN guide layer 21 formed thereon, a Ga 0.8 Al 0.2 N layer (overflow prevention layer 7) formed thereon, and And an In y Ga 1-y N (0 <y ≦ 1) layer (impurity diffusion prevention layer 8) formed thereon, and a p-type cladding layer 10 formed thereon.

図6のレーザダイオードでは、p型クラッド層10内のp型不純物を不純物拡散防止層8に蓄積できるため、活性層5へのp型不純物の拡散を防止できる。   In the laser diode of FIG. 6, the p-type impurities in the p-type cladding layer 10 can be accumulated in the impurity diffusion preventing layer 8, so that the p-type impurities can be prevented from diffusing into the active layer 5.

図6では、不純物拡散防止層8をオーバーフロー防止層7とp型クラッド層10の間に配置しているが、図7に示すように不純物拡散防止層8をp型GaNガイド層21とオーバーフロー防止層7の間に配置してもよい。   In FIG. 6, the impurity diffusion prevention layer 8 is disposed between the overflow prevention layer 7 and the p-type cladding layer 10. However, as shown in FIG. 7, the impurity diffusion prevention layer 8 and the p-type GaN guide layer 21 are prevented from overflowing. It may be arranged between the layers 7.

図7のレーザダイオードでは、p型クラッド層10だけでなく、オーバーフロー防止層7内のp型不純物も不純物拡散防止層8に蓄積できる。   In the laser diode of FIG. 7, not only the p-type cladding layer 10 but also the p-type impurities in the overflow prevention layer 7 can be accumulated in the impurity diffusion prevention layer 8.

図6および図7のレーザダイオードにおいて、p型GaNガイド層21とオーバーフロー防止層7の積層順序を入れ替えてもよい。この場合、図8または図9のようなレーザダイオードが得られる。図8のレーザダイオードでは、p型クラッド層10とp型GaNガイド層21の間に不純物拡散防止層8が配置されており、図9のダイオードでは、p型GaNガイド層21とオーバーフロー防止層7の間に不純物拡散防止層8が配置されている。   In the laser diode of FIGS. 6 and 7, the stacking order of the p-type GaN guide layer 21 and the overflow prevention layer 7 may be switched. In this case, a laser diode as shown in FIG. 8 or FIG. 9 is obtained. In the laser diode of FIG. 8, the impurity diffusion prevention layer 8 is disposed between the p-type cladding layer 10 and the p-type GaN guide layer 21, and in the diode of FIG. 9, the p-type GaN guide layer 21 and the overflow prevention layer 7 are provided. An impurity diffusion preventing layer 8 is disposed between the two layers.

このように、図6〜図9のいずれの構造の場合でも、不純物拡散防止層8にp型不純物を蓄積できるため、活性層へのp型不純物の拡散を防止でき、レーザダイオードの寿命を延ばすことができる。   As described above, in any of the structures shown in FIGS. 6 to 9, since the p-type impurity can be accumulated in the impurity diffusion preventing layer 8, the diffusion of the p-type impurity into the active layer can be prevented and the life of the laser diode is extended. be able to.

上述した第1および第2の実施形態では、p型不純物にはMgを用いたが、Znなどを用いてもよい。   In the first and second embodiments described above, Mg is used as the p-type impurity, but Zn or the like may be used.

また、第1および第2の実施形態では、レーザダイオードに不純物拡散防止層8を設ける例を説明したが、本発明はレーザダイオードだけでなく、発光ダイオードや光検出器などの光デバイスや、トランジスタ(例えば、HBT(Heterojunction Bipolar Transistor))などの電子デバイスにも適用可能である。   In the first and second embodiments, the example in which the impurity diffusion preventing layer 8 is provided in the laser diode has been described. However, the present invention is not limited to the laser diode, but also an optical device such as a light emitting diode or a photodetector, a transistor It can also be applied to electronic devices such as (for example, HBT (Heterojunction Bipolar Transistor)).

また、上記各実施形態では、不純物拡散防止層8にp型不純物を蓄積する例を説明したが、n型不純物がドープされた正孔のオーバーフローを防止するオーバーフロー防止層とn型ガイド層が設けられる場合には、これらの層に隣接して形成される不純物拡散防止層の内部にn型不純物を蓄積してもよい。   In each of the above embodiments, an example in which p-type impurities are accumulated in the impurity diffusion prevention layer 8 has been described. However, an overflow prevention layer and an n-type guide layer for preventing overflow of holes doped with n-type impurities are provided. In such a case, n-type impurities may be accumulated inside the impurity diffusion prevention layer formed adjacent to these layers.

本発明の第1の実施形態に係る半導体装置の断面図。1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. 積層膜の深さとMg濃度との関係、および深さとバンドギャップエネルギーとの関係を示す図。The figure which shows the relationship between the depth of a laminated film, and Mg density | concentration, and the relationship between a depth and band gap energy. 図1のレーザダイオードの製造工程を示す工程図。FIG. 2 is a process diagram showing a manufacturing process of the laser diode of FIG. 1. 図3に続く工程図。Process drawing following FIG. オーバーフロー防止層7とp型第1ガイド層6の間に不純物拡散防止層8を設けた半導体装置の断面図。FIG. 6 is a cross-sectional view of a semiconductor device in which an impurity diffusion prevention layer 8 is provided between the overflow prevention layer 7 and the p-type first guide layer 6. 第2の実施形態に係るレーザダイオードの断面図。Sectional drawing of the laser diode which concerns on 2nd Embodiment. 不純物拡散防止層8をp型GaNガイド層21とオーバーフロー防止層7の間に配置したレーザダイオードの断面図。2 is a cross-sectional view of a laser diode in which an impurity diffusion prevention layer 8 is disposed between a p-type GaN guide layer 21 and an overflow prevention layer 7. FIG. p型クラッド層10とp型GaNガイド層21の間に不純物拡散防止層8が配置したレーザダイオードの断面図。2 is a cross-sectional view of a laser diode in which an impurity diffusion prevention layer 8 is disposed between a p-type cladding layer 10 and a p-type GaN guide layer 21. FIG. p型GaNガイド層21とオーバーフロー防止層7の間に不純物拡散防止層8を配置したレーザダイオードの断面図。2 is a cross-sectional view of a laser diode in which an impurity diffusion prevention layer 8 is disposed between a p-type GaN guide layer 21 and an overflow prevention layer 7. FIG.

1 n型GaN基板
2 n型GaNバッファ層
3 n型クラッド層
4 n型ガイド層
5 活性層
6 p型第1ガイド層
7 GaxAl1-xN(0<x≦1)層(オーバーフロー防止層)
8 InGa1−u−vAlN(0<u≦1,0<v≦1)層(不純物拡散防止層)
9 p型GaN第2ガイド層
10 p型クラッド層
11 p型コンタクト層
12 絶縁層
13 p側電極
14 n側電極
21 p型GaNガイド層
1 n-type GaN substrate 2 n-type GaN buffer layer 3 n-type cladding layer 4 n-type guide layer 5 active layer 6 p-type first guide layer 7 Ga x Al 1-x N (0 <x ≦ 1) layer (overflow prevention) layer)
8 In u Ga 1-uv Al v N (0 <u ≦ 1, 0 <v ≦ 1) layer (impurity diffusion preventing layer)
9 p-type GaN second guide layer 10 p-type cladding layer 11 p-type contact layer 12 insulating layer 13 p-side electrode 14 n-side electrode 21 p-type GaN guide layer

Claims (13)

活性層と、
p型のGaNを含む第1半導体層と、
前記活性層と前記第1半導体層との間に配置されるIn1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と、
前記活性層と前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層との間、および前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記第1半導体層との間のいずれか一方に配置されるp型のGaNを含む第2半導体層と、
前記第1半導体層と前記活性層との間に配置され、前記In1−x−y1GaxAly1N(0≦x<1、0<y1≦1)層、前記第1半導体層、および第2半導体層よりも小さいバンドギャップを有し、かつ前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層、前記第1半導体層、および第2半導体層よりも格子定数が大きい、Iny2Ga1-y2N(0<y2≦1)層と、を備えることを特徴とする半導体装置。
An active layer,
a first semiconductor layer comprising p-type GaN;
An In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer disposed between the active layer and the first semiconductor layer;
Between the active layer and the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, and the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) a second semiconductor layer containing p-type GaN disposed between the first semiconductor layer and the first semiconductor layer;
The In 1-x-y1 GaxAl y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, the first semiconductor layer, and the second layer are disposed between the first semiconductor layer and the active layer. The In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, the first semiconductor layer, and the second semiconductor layer having a smaller band gap than the semiconductor layer And an In y2 Ga 1 -y2 N (0 <y2 ≦ 1) layer having a larger lattice constant than the semiconductor device.
前記第2半導体層は、前記活性層と前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層との間に配置され、
当該第2半導体層と前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層との間に前記Iny2Ga1-y2N(0<y2≦1)層が配置されることを特徴とする請求項1に記載の半導体装置。
The second semiconductor layer is disposed between the active layer and the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer,
Between the second semiconductor layer and the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, the In y2 Ga 1-y2 N (0 <y2 ≦ 1). 2. The semiconductor device according to claim 1, wherein a layer is disposed.
前記Iny2Ga1-y2N(0<y2≦1)層におけるInの組成比は、前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層、第1半導体層、および第2半導体層、におけるInの組成比よりも高いことを特徴とする請求項1または2に記載の半導体装置。 The In composition ratio in the In y2 Ga 1-y2 N (0 <y2 ≦ 1) layer is the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, The semiconductor device according to claim 1, wherein the composition ratio of In is higher than that of In in the first semiconductor layer and the second semiconductor layer. 前記活性層は所定波長の光を発光し、
前記第1半導体層はp型クラッド層であり、
前記第2半導体層はp型ガイド層であることを特徴とする請求項1乃至3のいずれかに記載の半導体装置。
The active layer emits light of a predetermined wavelength,
The first semiconductor layer is a p-type cladding layer;
The semiconductor device according to claim 1, wherein the second semiconductor layer is a p-type guide layer.
前記活性層のp型ガイド層とは反対側に配置されGaNまたはInx3Ga1-x3N(0<x3<1)を含むn型ガイド層を備えることを特徴とする請求項4に記載の半導体装置。 5. The n-type guide layer including GaN or In x3 Ga 1-x3 N (0 <x3 <1), which is disposed on a side opposite to the p-type guide layer of the active layer. Semiconductor device. 前記活性層は、Inx1Ga1-x1N(0<x1≦1)を含む量子井戸と、Inx2Ga1-x2N(0≦x2<1、x1>x2)を含むバリア層と、を有する単一または多重量子井戸構造であることを特徴とする請求項1乃至5のいずれかに記載の半導体装置。 The active layer includes a quantum well including In x1 Ga 1-x1 N (0 <x1 ≦ 1) and a barrier layer including In x2 Ga 1-x2 N (0 ≦ x2 <1, x1> x2). 6. The semiconductor device according to claim 1, wherein the semiconductor device has a single or multiple quantum well structure. 活性層と、
p型のGaNを含む第1半導体層と、
前記活性層と前記第1半導体層との間に配置されるIn1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と、
前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記第1半導体層との間に配置されるp型のGaNを含む第2半導体層と、
前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記活性層との間に配置されるp型のInx3Ga1-x3N(0≦x3<1、x2>x3)の第3半導体層と、
前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記第2半導体層との間、および前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層と前記第3半導体層との間の少なくとも一方に配置されたIny2Ga1-y2N(0<y2≦1)層と、を備えることを特徴とする半導体装置。
An active layer,
a first semiconductor layer comprising p-type GaN;
An In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer disposed between the active layer and the first semiconductor layer;
A second semiconductor layer containing p-type GaN disposed between the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer and the first semiconductor layer; ,
A p-type In x3 Ga 1 -x3 N (0 ≦ 0) disposed between the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer and the active layer. a third semiconductor layer of x3 <1, x2>x3);
The In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer and the second semiconductor layer, and the In 1-x-y1 Ga x Al y1 N ( And an In y2 Ga 1-y2 N (0 <y2 ≦ 1) layer disposed in at least one of the layer between the 0 ≦ x <1, 0 <y1 ≦ 1) layer and the third semiconductor layer. A featured semiconductor device.
前記第2半導体層と前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層との間に前記Iny2Ga1-y2N(0<y2≦1)層が配置されることを特徴とする請求項7に記載の半導体装置。 Wherein said second semiconductor layer In 1-x-y1 Ga x Al y1 N (0 ≦ x <1,0 <y1 ≦ 1) wherein between the layers In y2 Ga 1-y2 N ( 0 <y2 ≦ 1 8. The semiconductor device according to claim 7, wherein a layer is disposed. 前記第3半導体層と前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層との間に前記Iny2Ga1-y2N(0<y2≦1)層が配置されることを特徴とする請求項7に記載の半導体装置。 Wherein said third semiconductor layer In 1-x-y1 Ga x Al y1 N (0 ≦ x <1,0 <y1 ≦ 1) wherein between the layers In y2 Ga 1-y2 N ( 0 <y2 ≦ 1 8. The semiconductor device according to claim 7, wherein a layer is disposed. 前記Iny2Ga1-y2N(0<y2≦1)層におけるInの組成比は、前記In1−x−y1GaAly1N(0≦x<1、0<y1≦1)層、第1半導体層、第2半導体層、および第3半導体層におけるInの組成比よりも高いことを特徴とする請求項7乃至9のいずれかに記載の半導体装置。 The In composition ratio in the In y2 Ga 1-y2 N (0 <y2 ≦ 1) layer is the In 1-x-y1 Ga x Al y1 N (0 ≦ x <1, 0 <y1 ≦ 1) layer, The semiconductor device according to claim 7, wherein the composition ratio is higher than the In composition ratio in the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer. 前記活性層は所定波長の光を発光し、前記第1半導体層はp型クラッド層であり、前記第2半導体層および第3半導体層はそれぞれp型ガイド層であることを特徴とする請求項7乃至10のいずれかに記載の半導体装置。   The active layer emits light of a predetermined wavelength, the first semiconductor layer is a p-type cladding layer, and the second and third semiconductor layers are each a p-type guide layer. The semiconductor device according to any one of 7 to 10. 前記活性層のp型ガイド層とは反対側に配置されGaNまたはInx4Ga1-x4N(0<x4<1)のn型ガイド層を備えることを特徴とする請求項11に記載の半導体装置。 12. The semiconductor according to claim 11, further comprising an n-type guide layer of GaN or In x4 Ga 1-x4 N (0 <x4 <1) disposed on a side opposite to the p-type guide layer of the active layer. apparatus. 前記活性層はInx1Ga1-x1N(0<x1≦1)を含む量子井戸と、Inx2Ga1-x2N(0≦x2<1、x1>x2)を含むバリア層と、を有する単一または多重量子井戸構造であることを特徴とする請求項7乃至11のいずれかに記載の半導体装置。 The active layer includes a quantum well containing In x1 Ga 1-x1 N (0 <x1 ≦ 1) and a barrier layer containing In x2 Ga 1-x2 N (0 ≦ x2 <1, x1> x2). 12. The semiconductor device according to claim 7, wherein the semiconductor device has a single or multiple quantum well structure.
JP2010126112A 2010-06-01 2010-06-01 Semiconductor device Pending JP2010187034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126112A JP2010187034A (en) 2010-06-01 2010-06-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126112A JP2010187034A (en) 2010-06-01 2010-06-01 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005247838A Division JP2007066981A (en) 2005-08-29 2005-08-29 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011156832A Division JP2011205148A (en) 2011-07-15 2011-07-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2010187034A true JP2010187034A (en) 2010-08-26

Family

ID=42767447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126112A Pending JP2010187034A (en) 2010-06-01 2010-06-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2010187034A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208814A (en) * 1998-11-12 2000-07-28 Sharp Corp Semiconductor light-emitting element
JP2001036196A (en) * 2000-01-01 2001-02-09 Nec Corp Gallium nitride light emitting element with p-type dopant material diffusion preventing layer
JP2003243772A (en) * 2002-02-19 2003-08-29 Sony Corp Semiconductor light emitting device and its manufacturing method
JP2004063537A (en) * 2002-07-25 2004-02-26 Sony Corp Semiconductor light emitting element, its manufacturing method, semiconductor device, and its manufacturing method
JP2004247563A (en) * 2003-02-14 2004-09-02 Sony Corp Semiconductor device
JP2004247503A (en) * 2003-02-13 2004-09-02 Toshiba Corp Nitride semiconductor device and method for manufacturing it
JP2006279023A (en) * 2005-03-03 2006-10-12 Matsushita Electric Ind Co Ltd Semiconductor device and fabrication method therefor
JP2007066981A (en) * 2005-08-29 2007-03-15 Toshiba Corp Semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208814A (en) * 1998-11-12 2000-07-28 Sharp Corp Semiconductor light-emitting element
JP2001036196A (en) * 2000-01-01 2001-02-09 Nec Corp Gallium nitride light emitting element with p-type dopant material diffusion preventing layer
JP2003243772A (en) * 2002-02-19 2003-08-29 Sony Corp Semiconductor light emitting device and its manufacturing method
JP2004063537A (en) * 2002-07-25 2004-02-26 Sony Corp Semiconductor light emitting element, its manufacturing method, semiconductor device, and its manufacturing method
JP2004247503A (en) * 2003-02-13 2004-09-02 Toshiba Corp Nitride semiconductor device and method for manufacturing it
JP2004247563A (en) * 2003-02-14 2004-09-02 Sony Corp Semiconductor device
JP2006279023A (en) * 2005-03-03 2006-10-12 Matsushita Electric Ind Co Ltd Semiconductor device and fabrication method therefor
JP2007066981A (en) * 2005-08-29 2007-03-15 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US8741686B2 (en) Semiconductor device
JP6044671B2 (en) Nitride semiconductor laser diode
EP1204150B1 (en) Method of forming a light-emitting semiconductor device including wafer bonded heterostructures
JP2008109092A (en) Semiconductor light emitting element
JP2003198045A (en) Semiconductor laser structure body
JP2007109885A (en) Semiconductor light-emitting device and manufacturing method thereof
JP2000196143A (en) Semiconductor light emitting element
JP4821385B2 (en) Group III nitride semiconductor optical device
JP2007214221A (en) Nitride semiconductor laser device
JP4889142B2 (en) Nitride semiconductor laser device
JP2004063537A (en) Semiconductor light emitting element, its manufacturing method, semiconductor device, and its manufacturing method
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JP2010067927A (en) Nitride semiconductor light emitting element
JP2011205148A (en) Semiconductor device
JP2003243772A (en) Semiconductor light emitting device and its manufacturing method
JP2001148540A (en) Semiconductor light-emitting device
JP2008205270A (en) Semiconductor laser device and manufacturing method thereof
JP4890509B2 (en) Manufacturing method of semiconductor light emitting device
JP2007049209A (en) Semiconductor optical device and manufacturing method thereof
JP2010187034A (en) Semiconductor device
JP4853133B2 (en) Semiconductor laser element
JP2005327908A (en) Semiconductor laser element
JP5236789B2 (en) Manufacturing method of semiconductor light emitting device
JP2001185817A (en) Nitride semiconductor and semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100611

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20100611

Free format text: JAPANESE INTERMEDIATE CODE: A871

A975 Report on accelerated examination

Effective date: 20100727

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Effective date: 20100730

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A131 Notification of reasons for refusal

Effective date: 20101210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110208

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110415

A521 Written amendment

Effective date: 20110715

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20110725

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110922