JP2000196143A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JP2000196143A
JP2000196143A JP36871898A JP36871898A JP2000196143A JP 2000196143 A JP2000196143 A JP 2000196143A JP 36871898 A JP36871898 A JP 36871898A JP 36871898 A JP36871898 A JP 36871898A JP 2000196143 A JP2000196143 A JP 2000196143A
Authority
JP
Japan
Prior art keywords
layer
type
buffer layer
side buffer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36871898A
Other languages
Japanese (ja)
Inventor
Mototaka Tanetani
元隆 種谷
Takeshi Kamikawa
剛 神川
Yuichi Mori
裕一 毛利
Masafumi Kondo
雅文 近藤
Eiji Yamada
英司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP36871898A priority Critical patent/JP2000196143A/en
Publication of JP2000196143A publication Critical patent/JP2000196143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance emission intensity and make excellent in monochromaticity by a method wherein an active layer is sandwiched between both specific buffer layers in contact with them, and the thickness of buffer layers are each prescribed. SOLUTION: An Si-doped n-type AlGaN low-temperature buffer layer 102 is grown on the (0001) surface of an n-type SiC substrate 101 as thick as 50 nm, and an Si-doped GaN clad layer 103 is grown thereon. Then, an Si-doped n-type In0.2Ga0.8N n-side buffer layer 104, an In0.35Ga0.65N single quantum well active layer 105, and an Mg-doped p-type buffer layer 106 are grown. It is preferable that the p-side buffer layer 106 is formed as thick as 3 to 25 nm so as to improve a semiconductor light emitting element in emission intensity. The InGaN n-side buffer layer 104 and the p-side buffer layer 106 are provided on both upper and down sides of the active layer 105, where the light emitting efficiency and monochromaticity can be improved by making the thickness of n-side buffer layer 104 3 to 25 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子に
関し、特に窒化ガリウム系材料による可視波長の光を効
率よく発する半導体発光素子および低閾値電流を有し、
高信頼性を実現する半導体レーザ素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light-emitting device, and more particularly, to a semiconductor light-emitting device having a gallium nitride-based material that efficiently emits visible wavelength light and a low threshold current.
The present invention relates to a semiconductor laser device realizing high reliability.

【0002】[0002]

【従来の技術】窒化ガリウム系半導体発光素子は紫外か
ら黄色の広い範囲に渡る光を発光可能であり光情報処理
や表示装置用光源として重要である。
2. Description of the Related Art A gallium nitride based semiconductor light emitting device can emit light in a wide range from ultraviolet to yellow and is important as a light source for optical information processing and display devices.

【0003】(従来例1)従来の窒化物系(GaN系)
半導体発光素子として、特開平8ー330630号公報
による発光ダイオード(LED)の断面構造図を図10
に示す。本従来例構造は、サファイア基板1001、5
0nm厚のGaNバッファ層1002、4μm厚のSi
ドープのn型GaN第2クラッド層1003、50nm
厚のSiドープのn型In0.01Ga0.99N第1クラッド
1004、2.5nm厚のノンドープn型In0.30Ga
0.70N単一量子井戸活性層1005、5nm厚のMgド
ープp型In0.01Ga0.99N第1クラッド層1006、
0.1μm厚のMgドープp型Al0.3Ga0.7N第2ク
ラッド層1007、0.5μm厚のMgドープp型Ga
Nコンタクト層1008からなる積層体より構成されて
おり、100μm角の領域で表面に露出されたn型Ga
Nクラッド層1003上にはn型電極1010が、p型
GaNコンタクト層1008上にはp型電極1011と
パッド電極1012が形成されている。このようにして
作成された発光素子を250μm角(100μm角のn
型電極1010形成部を除く)の大きさのLEDとして
動作させたところ、20mAにおける光出力は1.5m
Wであった。また、その発光スペクトルのピーク波長は
465nmであり、半値全幅は23nmであった。
(Conventional example 1) Conventional nitride-based (GaN-based)
FIG. 10 is a cross-sectional structural view of a light emitting diode (LED) disclosed in Japanese Patent Application Laid-Open No. 8-330630 as a semiconductor light emitting device.
Shown in The structure of this conventional example is composed of sapphire substrates 1001, 5
0 nm thick GaN buffer layer 1002, 4 μm thick Si
Doped n-type GaN second cladding layer 1003, 50 nm
N-type thick Si-doped In 0.01 Ga 0.99 N first cladding 1004,2.5nm thick undoped n-type an In 0.30 Ga
0.70 N single quantum well active layer 1005, 5 nm thick Mg-doped p-type In 0.01 Ga 0.99 N first cladding layer 1006,
0.1 μm thick Mg-doped p-type Al 0.3 Ga 0.7 N second cladding layer 1007, 0.5 μm thick Mg-doped p-type Ga
N-type Ga which is constituted by a laminate comprising an N-contact layer 1008 and is exposed on the surface in a region of 100 μm square.
An n-type electrode 1010 is formed on the N-cladding layer 1003, and a p-type electrode 1011 and a pad electrode 1012 are formed on the p-type GaN contact layer 1008. The light-emitting device thus prepared is used for a 250 μm square (100 μm square n
(Excluding the forming part of the mold electrode 1010), the light output at 20 mA was 1.5 m
W. The peak wavelength of the emission spectrum was 465 nm, and the full width at half maximum was 23 nm.

【0004】(従来例2)従来のGaN系半導体レーザ
の構造を図11に示す。1100がサファイア基板、1
101はn型GaNコンタクト層、1102はn型Al
GaNクラッド層、1103はn型GaNガイド層、1
105は多重量子井戸活性層、1107はp型AlGa
N保護層、1108はp型GaNガイド層、1109は
p型AlGaNクラッド層、1110はp型GaNコン
タクト層、1111はメサストライプ、1112はSi
2絶縁膜、1120はp型電極、1121はn型電極
である。
(Conventional Example 2) FIG. 11 shows a structure of a conventional GaN-based semiconductor laser. 1100 is a sapphire substrate, 1
101 is an n-type GaN contact layer, 1102 is an n-type Al
GaN clad layer, 1103 is n-type GaN guide layer, 1
105 is a multiple quantum well active layer and 1107 is a p-type AlGa
N protective layer, 1108 is a p-type GaN guide layer, 1109 is a p-type AlGaN cladding layer, 1110 is a p-type GaN contact layer, 1111 is a mesa stripe, 1112 is Si
An O 2 insulating film, 1120 is a p-type electrode, and 1211 is an n-type electrode.

【0005】本従来例素子の閾値電流は78mA、微分
効率は0.85W/Aであった。また、室温での35m
W光出力時の駆動電流値は120mAと大きく、35m
W出力時の駆動電圧も5.3Vと高くかった。本比較例
素子を、60℃、35mWの条件下で信頼性試験を実施
したところ、レーザ素子寿命は35時間以下と短かかっ
た。さらに、10mAの電流を流した時の前端面からの
光出力パワーは0.3mWであり、ゲインスペクトルの
半値全幅は19nmとであった。
The threshold current of the device of the prior art was 78 mA, and the differential efficiency was 0.85 W / A. 35m at room temperature
The drive current value at the time of W light output is as large as 120 mA, and is 35 m
The drive voltage at the time of W output was also as high as 5.3V. When a reliability test was performed on this comparative example device under the conditions of 60 ° C. and 35 mW, the laser device life was as short as 35 hours or less. Further, when a current of 10 mA was passed, the optical output power from the front end face was 0.3 mW, and the full width at half maximum of the gain spectrum was 19 nm.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来技
術によるGaN系半導体発光素子においては、LEDの
場合、光出力が1.5mWと小さく、また発光スペクト
ルの半値全幅が23nmと広く、単色性が悪いという問
題があった。
As described above, in the GaN-based semiconductor light-emitting device according to the prior art, in the case of an LED, the light output is as small as 1.5 mW, the full width at half maximum of the emission spectrum is as wide as 23 nm, and a monochromatic light is emitted. There was a problem of poor sex.

【0007】また、半導体レーザの場合は、閾値電流値
が78mAと高く、駆動電流が120mAと100mA
を越えたることより、駆動電圧も5.3Vと高くなり、
その結果素子寿命が35時間と実用的な時間(5000
時間以上)を得ることが出来なかった。
In the case of a semiconductor laser, the threshold current value is as high as 78 mA, and the driving currents are 120 mA and 100 mA.
, The driving voltage also increases to 5.3 V,
As a result, the element life is 35 hours, which is a practical time (5000 hours).
For more than an hour).

【0008】[0008]

【課題を解決するための手段】本願の請求項1に記載の
半導体発光素子は、n型GaN系クラッド層と、Ina
Ga1-aN量子井戸層(0.15≦a≦1)からなる活
性層と、p型GaN系コンタクト層と含む窒化ガリウム
系半導体発光素子において、活性層はInxGa1-xN−
n側緩衝層(0.03≦x≦a−0.1)とInyGa
1-yN−p側緩衝層(0.03≦y≦a−0.15)の
両方に接するように挟まれて形成されており、Inx
1-xN−n側緩衝層とInyGa1-yN−p側緩衝層の
層厚はそれぞれ3nm以上25nm以下であることを特
徴とする。
The device according to claim 1 application of the means for solving the problem] includes an n-type GaN-based cladding layer, an In a
In a gallium nitride based semiconductor light emitting device including a Ga 1-a N quantum well layer (0.15 ≦ a ≦ 1) and a p-type GaN-based contact layer, the active layer is In x Ga 1-x N−.
n-side buffer layer (0.03 ≦ x ≦ a-0.1) and In y Ga
It is formed so as to be in contact with both of the 1-y Np side buffer layers (0.03 ≦ y ≦ a−0.15), and In x G
The layer thicknesses of the a 1-x N-n side buffer layer and the In y Ga 1-y N-p side buffer layer are each 3 nm or more and 25 nm or less.

【0009】本願の請求項2に記載の半導体発光素子
は、前記活性層はn型GaN系クラッド層に近い側から
InaGa1-aN第1量子井戸層、Inb1Ga1-b1N第1
バリア層、InaGa1-aN第2量子井戸層、Inb2Ga
1-b2N第2バリア層・・・InbnGa1-bnN第nバリア
層、InaGa1-aN第n+1量子井戸層(ただし、nは
1以上の整数)の順に形成された多重量子井戸活性層で
あり、InxGa1-xN−n側緩衝層の組成は0.03≦
x≦a−0.1、b1−0.02≦x≦b1+0.02
であり、InyGa1-yN−p側緩衝層の組成は0.03
≦y≦a−0.15、bn−0.02≦y≦bn+0.
02であることを特徴とする。
According to a second aspect of the present invention, in the semiconductor light emitting device, the active layer is an In a Ga 1 -a N first quantum well layer, an In b1 Ga 1 -b 1 N from a side close to the n-type GaN-based cladding layer. First
Barrier layer, In a Ga 1-a N second quantum well layer, In b2 Ga
1-b2 N second barrier layer ··· In bn Ga 1-bn N n-th barrier layer, In a Ga 1-a N (n + 1) th quantum well layer (where, n is an integer of 1 or more) formed in this order It is a multiple quantum well active layer, and the composition of the In x Ga 1-x Nn side buffer layer is 0.03 ≦
x ≦ a−0.1, b1−0.02 ≦ x ≦ b1 + 0.02
The composition of the In y Ga 1-y Np side buffer layer is 0.03
≦ y ≦ a−0.15, bn−0.02 ≦ y ≦ bn + 0.
02.

【0010】本願の請求項3に記載の半導体発光素子
は、上記量子井戸層の層数が4層以下であり、上記バリ
ア層の層数が3層以下であることを特徴とする。
A semiconductor light emitting device according to a third aspect of the present invention is characterized in that the number of the quantum well layers is four or less and the number of the barrier layers is three or less.

【0011】本願の請求項4に記載の半導体発光素子
は、上記バリア層の全てと、上記n側緩衝層と、上記p
側緩衝層の、In混晶比が同一(x=b1=b2=・・
・=bn=y)であることを特徴とする。
The semiconductor light-emitting device according to claim 4 of the present application provides the semiconductor light-emitting device, wherein all of the barrier layers, the n-side buffer layer,
The side buffer layers have the same In mixed crystal ratio (x = b1 = b2 =...).
. = Bn = y).

【0012】本願の請求項5に記載の半導体発光素子
は、上記p側緩衝層の層厚が6.5nm以上25nm以
下であることを特徴とする。
A semiconductor light emitting device according to a fifth aspect of the present invention is characterized in that the thickness of the p-side buffer layer is 6.5 nm or more and 25 nm or less.

【0013】本願の請求項6に記載の半導体発光素子
は、上記n側緩衝層にはn型不純物が濃度5×1016
-3以上1×1020cm-3以下の範囲綯内にドーピング
され、かつ上記p側緩衝層にはp型不純物が濃度1×1
17cm-3以上5×1021cm-3以下の範囲内にドーピ
ングされていることを特徴とする。
According to the semiconductor light emitting device of the present invention, the n-side buffer layer contains an n-type impurity at a concentration of 5 × 10 16 c.
m- 3 or more and 1 × 10 20 cm −3 or less The p-side buffer layer is doped with a p-type impurity at a concentration of 1 × 1
It is characterized by being doped within a range from 0 17 cm −3 to 5 × 10 21 cm −3 .

【0014】本願の請求項7に記載の半導体発光素子
は、上記n側緩衝層の上記活性層と反対の側に傾斜組成
層からなるn型光ガイド層と、該n型光ガイド層の上記
活性層の反対側にAlを含むn型AlGaN系クラッド
層を有し、かつ上記n型光ガイド層は活性層から遠ざか
るにつれてAl組成が増加するか、またはIn組成が減
少する傾斜組成層からなることを特徴とする。
According to a seventh aspect of the present invention, in the semiconductor light emitting device, an n-type light guide layer composed of a graded composition layer is provided on a side of the n-side buffer layer opposite to the active layer; An n-type AlGaN-based cladding layer containing Al is provided on the opposite side of the active layer, and the n-type light guide layer comprises a gradient composition layer in which the Al composition increases or the In composition decreases as the distance from the active layer increases. It is characterized by the following.

【0015】本願の請求項8に記載の半導体発光素子
は、上記p型緩衝層の上記活性層と反対の側に傾斜組成
層からなるp型光ガイド層を有し、該p型光ガイド層の
上記活性層の反対側にAlを含むp型AlGaN系クラ
ッド層とを有し、かつ上記p型光ガイド層は活性層から
遠ざかるにつれてAl組成が増加するか、またはIn組
成が減少する傾斜組成層からなることを特徴とする。
The semiconductor light emitting device according to claim 8 of the present application has a p-type light guide layer made of a graded composition layer on a side of the p-type buffer layer opposite to the active layer, and the p-type light guide layer A p-type AlGaN-based cladding layer containing Al on the opposite side of the active layer, and the p-type light guide layer has a gradient composition in which the Al composition increases or the In composition decreases as the distance from the active layer increases It is characterized by comprising a layer.

【0016】本願の請求項9に記載の半導体発光素子
は、上記n型およびp型光ガイド層のいずれかが、上記
活性層から遠ざかるにつれてIn組成が減少する第1ガ
イド層と、上記活性層から遠ざかるにつれてAl組成が
増加する第2ガイド層から構成され、第1ガイド層が第
2ガイド層より上記活性層に近い側に形成されてなるこ
とを特徴とする。
The semiconductor light emitting device according to claim 9, wherein one of the n-type and p-type light guide layers has a first guide layer whose In composition decreases with increasing distance from the active layer; And a second guide layer whose Al composition increases as the distance from the first guide layer increases, wherein the first guide layer is formed closer to the active layer than the second guide layer.

【0017】[0017]

【発明の実施の形態】本発明を実施した素子について説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A device embodying the present invention will be described.

【0018】(実施例1)図1に本発明を実施したIn
GaAlN系半導体発光素子(LED)の断面構造図を
示す。101はn型SiC基板、102は50nm厚の
Siドープのn型AlGaN低温バッファ層、103は
3μm厚のSiドープのn型GaNクラッド層、104
は25nm厚のSiドープのn型In0.2Ga0.8N−n
側緩衝層、105は活性層で、この実施例ではは2nm
厚のアンドープのIn0.35Ga0.65N単一量子井戸活性
層としている。106は7nm厚のMgドープのp型I
0. 2Ga0.8N−p側緩衝層、107は30nm厚のM
gドープのp型GaAlN保護層、108は0.3μm
厚のMgドープのp型GaNコンタクト層、109はp
型半透明電極、110はp型パッド電極、111はn型
電極である。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention.
1 shows a cross-sectional structural view of a GaAlN-based semiconductor light emitting device (LED). 101 is an n-type SiC substrate, 102 is a 50 nm-thick Si-doped n-type AlGaN low-temperature buffer layer, 103 is a 3 μm-thick Si-doped n-type GaN cladding layer, 104
Is a 25 nm thick Si-doped n-type In 0.2 Ga 0.8 N-n
Side buffer layer, 105 is an active layer, 2 nm in this embodiment.
The thickness is a thick undoped In 0.35 Ga 0.65 N single quantum well active layer. 106 is a 7 nm thick Mg-doped p-type I
n 0. 2 Ga 0.8 N-p-side buffer layer, 107 of 30nm thickness M
g-doped p-type GaAlN protective layer, 108 μm
Thick Mg-doped p-type GaN contact layer, 109 is p-type
A semi-transparent electrode, 110 is a p-type pad electrode, and 111 is an n-type electrode.

【0019】次に本実施形態素子の作製方法について説
明する。まず通常の有機金属気相成長(MOCVD)法
により、(0001)面n型SiC基板101上に、基
板温度550℃で50nm厚のSiドープのn型AlG
aN低温バッファ層102を成長させた後、基板温度を
1100℃に昇温し、Siドープのn型GaNクラッド
層103を成長させる。次に、基板温度を760℃まで
降温させた後、Siドープのn型In0.2Ga0.8N−n
側緩衝層104、In0.35Ga0.65N単一量子井戸の活
性層105、Mgドープのp型のp側緩衝層106、を
成長させる。続いて、基板温度を1050℃に上昇さ
せ、Mgドープのp型GaAlN保護層107、p型G
aNコンタクト層108を形成した。最後に、n型Si
C基板101の裏面を研削し基板厚さを120μmにま
で薄くした後、通常の蒸着法によりウェハーの成長表面
側にNiからなるp型半透明電極109と、その上のチ
ップ中央部に100μm直径のAuからなるp型パッド
電極110、n型SiC基板101の裏面にn型電極1
11を形成し、250μm角の大きさにスクライブによ
りチップを切り出し、LEDを作製した。
Next, a method of manufacturing the device of this embodiment will be described. First, a 50 nm thick Si-doped n-type AlG is formed on a (0001) plane n-type SiC substrate 101 at a substrate temperature of 550 ° C. by a normal metal organic chemical vapor deposition (MOCVD) method.
After growing the aN low-temperature buffer layer 102, the substrate temperature is raised to 1100 ° C. to grow the Si-doped n-type GaN cladding layer 103. Next, after lowering the substrate temperature to 760 ° C., the Si-doped n-type In 0.2 Ga 0.8 N-n
A side buffer layer 104, an active layer 105 of In 0.35 Ga 0.65 N single quantum well, and a p-type p-side buffer layer 106 doped with Mg are grown. Subsequently, the substrate temperature was increased to 1050 ° C., and the Mg-doped p-type GaAlN protective layer 107 and p-type G
An aN contact layer 108 was formed. Finally, n-type Si
After grinding the back surface of the C substrate 101 to reduce the substrate thickness to 120 μm, a p-type translucent electrode 109 made of Ni is formed on the growth surface side of the wafer by a normal vapor deposition method, and a 100 μm diameter P-type pad electrode 110 made of Au, and n-type electrode 1 on the back surface of n-type SiC substrate 101
11 was formed, and a chip was cut out by scribing to a size of 250 μm square to produce an LED.

【0020】本実施形態によるLEDに20mAの順方
向電流を流したところ、波長465nmでの発光が観測
され、一つのチップから光出力が6.1mWと従来技術
によるLEDの約4倍の発光効率が確認できた。また、
上記実施形態素子の発光スペクトルの半値全幅は16n
mであり、従来技術によるLEDでの25nmに比べて
飛躍的に狭くなった。このように、発光スペクトルの半
値全幅が狭まることにより単色性が改良された。
When a forward current of 20 mA was applied to the LED according to the present embodiment, light emission at a wavelength of 465 nm was observed, and the light output from one chip was 6.1 mW, which is about four times the luminous efficiency of the conventional LED. Was confirmed. Also,
The full width at half maximum of the emission spectrum of the device of the embodiment is 16n.
m, which is dramatically narrower than 25 nm for the LED according to the prior art. Thus, the monochromaticity was improved by reducing the full width at half maximum of the emission spectrum.

【0021】図2に上述のLEDと同様の構造および方
法により作製したLEDにおいて、n側緩衝層104の
厚みと組成、およびp側緩衝層106の組成を固定し、
p側緩衝層106の厚さのみを0nmから25nmまで
変化させた場合の発光スペクトルの半値全幅と発光強度
の測定結果を示す。従来例LEDの発光強度を1とする
と、p側緩衝層106を挿入しない(すなわちn側緩衝
層104のみの)LEDの発光強度もほぼ1であり、従
来例素子からの改善は見られなかった。一方、3nm厚
のp側緩衝層106を使用することにより、活性層の上
下に接してInGaNからなるn側緩衝層104、p側
緩衝層106を形成することとなり、その結果3.3倍
の発光強度が得れらることが分かった。また、p側緩衝
層106の厚さが6.5nmから13nmの範囲が最も
望ましく、LEDで発光強度の増大効果は最大となり、
従来素子の約4倍が得られた。さらに、p側緩衝層10
6の厚みを25nmまで増加させた素子では、発光強度
は従来素子の2倍程度の改善が確認できた。さらにp側
緩衝層の厚さのみを増加させ30nmとしたところ、I
nGaN−p側緩衝層106自体の熱分解による結晶欠
陥の増加と光透過率の減少が観測され、これに伴い発光
強度も従来例素子と同等以下に低減した。30nmより
厚い厚さとした場合には、さらにこの減少が顕著とな
り、発光強度はさらに低下した。
In FIG. 2, in the LED manufactured by the same structure and method as the above-mentioned LED, the thickness and composition of the n-side buffer layer 104 and the composition of the p-side buffer layer 106 are fixed.
The measurement results of the full width at half maximum of the emission spectrum and the emission intensity when only the thickness of the p-side buffer layer 106 is changed from 0 nm to 25 nm are shown. Assuming that the light emission intensity of the conventional example LED is 1, the light emission intensity of the LED in which the p-side buffer layer 106 is not inserted (that is, only the n-side buffer layer 104) is almost 1, and there is no improvement from the conventional example element. . On the other hand, by using the p-side buffer layer 106 having a thickness of 3 nm, the n-side buffer layer 104 and the p-side buffer layer 106 made of InGaN are formed in contact with the upper and lower sides of the active layer. It was found that emission intensity could be obtained. Further, the thickness of the p-side buffer layer 106 is most preferably in the range of 6.5 nm to 13 nm, and the effect of increasing the light emission intensity in the LED is maximized.
Approximately four times that of the conventional device was obtained. Further, the p-side buffer layer 10
In the device in which the thickness of No. 6 was increased to 25 nm, the emission intensity was confirmed to be about twice as large as that of the conventional device. Further, when only the thickness of the p-side buffer layer was increased to 30 nm, I
An increase in crystal defects and a decrease in light transmittance due to the thermal decomposition of the nGaN-p-side buffer layer 106 itself were observed, and the emission intensity was reduced to be equal to or less than that of the conventional device. When the thickness was more than 30 nm, the decrease was further remarkable, and the emission intensity was further reduced.

【0022】一方、発光波長465nmでの発光スペク
トルの半値全幅は、n側緩衝層104のみを使用した場
合(図2のp側緩衝層106の厚さが0nmの場合)、
および3nm厚のp側緩衝層106を挿入した場合に
は、活性層の上下ともに緩衝層を使用しない従来例素子
とほぼ同等の23nmと広かった。一方、p側緩衝層1
06を6.5nm厚から25nm厚の範囲にした場合は
半値全幅が16nmから18nmと、p側緩衝層106
を使用しないLEDに比べて50%から60%にまで低
減できた。また、その時の465nm波長での発光スペ
クトルの半値全幅は、p側緩衝層106が6.5nm〜
25nm厚の場合と同様に16nmから18nmと狭か
ったが、従来素子やp側緩衝層106の厚さが25nm
以下の場合には観測出来なかった波長500nm付近に
半値全幅が100nm以上ある別の発光が観測されるよ
うになり、逆に色純度が低下する望ましくない現象が生
じた。これは、p側緩衝層106の結晶性低下に伴う活
性層105の劣化が原因と推察される。
On the other hand, the full width at half maximum of the emission spectrum at an emission wavelength of 465 nm is obtained when only the n-side buffer layer 104 is used (when the thickness of the p-side buffer layer 106 in FIG. 2 is 0 nm).
When the p-side buffer layer 106 having a thickness of 3 nm was inserted, the width was 23 nm, which was almost the same as that of the conventional device using no buffer layer both above and below the active layer. On the other hand, the p-side buffer layer 1
When 06 is in the range of 6.5 nm to 25 nm thick, the full width at half maximum is 16 nm to 18 nm, and the p-side buffer layer 106
Was reduced from 50% to 60% as compared with the LED not using. At this time, the full width at half maximum of the emission spectrum at the wavelength of 465 nm is 6.5 nm to p-side buffer layer 106.
As in the case of the 25 nm-thickness, it was as narrow as 16 to 18 nm, but the thickness of the conventional element and the p-side buffer layer 106 was 25 nm.
In the following cases, another light emission having a full width at half maximum of 100 nm or more was observed near the wavelength of 500 nm, which could not be observed. This is presumed to be due to the deterioration of the active layer 105 due to the decrease in crystallinity of the p-side buffer layer 106.

【0023】以上のことより、p側緩衝層106の厚さ
としては、発光強度の向上を目的とした場合には3nm
以上25nm以下とすることが望ましく、さらに、p側
緩衝層106の厚さを6.5nm以上25nm以下とす
ることにより、単色性の改善効果も合わせて発揮するこ
とができた。
As described above, the thickness of the p-side buffer layer 106 should be 3 nm in order to improve the emission intensity.
It is desirable that the thickness be at least 25 nm or less. Further, by setting the thickness of the p-side buffer layer 106 at 6.5 nm or more and 25 nm or less, an effect of improving monochromaticity can also be exhibited.

【0024】次に、p側緩衝層106とn側緩衝層10
4の組成を上記の実施例のまま固定し、n側緩衝層10
4の厚さのみを変化させて作製したLEDの発光特性を
調べた結果を説明する。図3にその結果を示す。なお、
発光強度については従来例素子を1として表現した。n
側緩衝層104の厚さを0nm(すなわちp側緩衝層1
06のみとした場合)には、発光強度は従来例素子の1
%以下と極端に低下し、かつp側緩衝層106の結晶欠
陥の増加と光透過率の低減が顕著となった。このため、
発光スペクトルの半値全幅を測定することは不可能であ
った。しかし、n側緩衝層104を3nm厚導入したと
ころその強度は従来例素子の1.3倍と改善され、さら
にその厚みを5nm、13nm、25nmと増加させた
それぞれのLEDでは、発光強度が従来例素子の約2倍
と改善されることが分かった。さらに、n側緩衝層10
4の厚さを30nm以上とした場合には従来例素子と同
等以下の発光強度しか得ることは出来なかった。この理
由は、上述のp側緩衝層106の厚みを30nm以上と
した場合と同様であると推測される。
Next, the p-side buffer layer 106 and the n-side buffer layer 10
4 was fixed as in the above example, and the n-side buffer layer 10 was fixed.
The result of examining the light emission characteristics of the LED manufactured by changing only the thickness of No. 4 will be described. FIG. 3 shows the result. In addition,
The emission intensity was expressed as 1 for the conventional device. n
The thickness of the side buffer layer 104 is set to 0 nm (that is, the p-side buffer layer 1).
06 only), the emission intensity is 1
% Or less, and the crystal defects of the p-side buffer layer 106 increased and the light transmittance decreased significantly. For this reason,
It was not possible to measure the full width at half maximum of the emission spectrum. However, when the n-side buffer layer 104 was introduced with a thickness of 3 nm, the intensity was improved to 1.3 times that of the device of the conventional example, and the light emission intensity of each of the LEDs whose thickness was increased to 5 nm, 13 nm, and 25 nm was the same. It was found that the improvement was about twice that of the example device. Further, the n-side buffer layer 10
When the thickness of Sample No. 4 was set to 30 nm or more, only a light emission intensity equal to or less than that of the conventional device could be obtained. The reason is presumed to be the same as in the case where the thickness of the p-side buffer layer 106 is set to 30 nm or more.

【0025】また、n側緩衝層104の厚さを3nm以
上とすることにより、465nmの発光における発光ス
ペクトルの半値全幅は16nmから18nmと従来例素
子に比べて飛躍的に狭くすることができた。従って、こ
の範囲の厚さの素子では、単色性の良い発光を得ること
ができた。このn側緩衝層104の厚さをさらに厚くし
ても発光スペクトルの半値全幅は狭いまま維持された
が、上記のように発光強度は従来例素子よりも低下し、
これに伴い、550nm付近の半値全幅が100nm以
上もある不要な発光が発生した。このため、n側緩衝層
104の厚さを30nm以上とした場合にも単色性は従
来素子よりも低下することが分かった。以上より、活性
層105に接してその上下にInGaNのn側緩衝層1
04、p側緩衝層106を導入した素子で、n側緩衝層
104の厚さは3nm以上25nm以下とすることによ
り従来例素子に比較して、発光効率の向上と単色性の改
善ができることが分かった。
Further, by setting the thickness of the n-side buffer layer 104 to 3 nm or more, the full width at half maximum of the emission spectrum at 465 nm emission can be drastically reduced from 16 nm to 18 nm as compared with the conventional device. . Therefore, with the element having a thickness in this range, light emission with good monochromaticity could be obtained. Even if the thickness of the n-side buffer layer 104 was further increased, the full width at half maximum of the emission spectrum was kept narrow, but the emission intensity was lower than that of the conventional device as described above,
Along with this, unnecessary light emission having a full width at half maximum near 550 nm of 100 nm or more was generated. For this reason, it was found that even when the thickness of the n-side buffer layer 104 was set to 30 nm or more, the monochromaticity was lower than that of the conventional device. As described above, the n-side buffer layer 1 of InGaN is in contact with and above and below the active layer 105.
04, in the device into which the p-side buffer layer 106 is introduced, by setting the thickness of the n-side buffer layer 104 to 3 nm or more and 25 nm or less, it is possible to improve the luminous efficiency and the monochromaticity as compared with the conventional device. Do you get it.

【0026】次に、n側緩衝層104、p側緩衝層10
6の組成を変化させてその効果を確認した結果について
図4を用いて説明する。n側緩衝層104、p側緩衝層
106の厚さをそれぞれ10nmに固定し、n型Inx
Ga1-xN−n側緩衝層104の組成xを0.2に固定
したまま、p型InyGa1-yN−p側緩衝層106の組
成yを、0.01、0.03、0.1、0.2、0.2
5、0.3と変化させた。図4においても発光強度は従
来例素子の場合を1として表現した。y=0.01の場
合には発光強度、半値全幅とも従来例素子からの変化は
認められなかった。y=0.03にしたLEDでは、発
光強度は従来素子の3.5倍と改善が認められ、かつ発
光スペクトルの半値全幅も17nmと従来素子よりも狭
く単色性が改善された。0.1≦y≦0.2の素子では
発光強度は従来例素子の4倍に改善され、かつ、発光ス
ペクトルの半値全幅も18nm以下と狭いものが実現で
き、従来例素子に比較して単色性も改善が認められた。
さらに、y=0.25およびy=0.3とした場合に
は、活性層105での発光以外の波長415nmにピー
クを有する発光が混入し、所望の465nmでの発光の
強度は従来例素子と同等かそれ以下に低下した。言うま
でもなく、このように40nmも発光波長が異なる2波
長発光する素子の単色性は従来例素子よりも低下する。
これはy≧0.25の場合には、効率よく量子井戸構造
の活性層105に注入されるべき電子が、p型のp側緩
衝層106にも漏れ出るため、p側緩衝層106自体で
の発光(ピーク波長415nmの発光)が観測されたも
のと理解できる。すなわち、p側緩衝層106はp型で
あるため、p側緩衝層106にはn型n側緩衝層104
から注入される電子を活性層105に有効に閉じ込める
機能が必要である。このため、p側緩衝層106の混晶
比yは、活性層105の禁制帯幅よりp側緩衝層106
の禁制帯幅が伝導帯側で十分に広いことが望ましく、図
4の結果より、InGaN系材料の場合には禁制帯幅の
差として0.3eV以上あれば充分であることが分か
る。すなわち、p側緩衝層106の混晶比yは活性層1
05のIn混晶比(aとする)に対して、y≦a−0.
15であることを表しており、活性層105自体の混晶
比を変更する場合にはこの基準でp側緩衝層106の混
晶比yの上限値が決定されることが必要となる。したが
って、上記の実施例においてはa=0.35であるた
め、p側緩衝層106の混晶比を0.03≦y≦0.2
とすることにより、従来例素子に比べて発光効率が高
く、単色性の改善されれたLEDを実現することが可能
であることが分かる。
Next, the n-side buffer layer 104 and the p-side buffer layer 10
The result of confirming the effect by changing the composition of No. 6 will be described with reference to FIG. The thickness of each of the n-side buffer layer 104 and the p-side buffer layer 106 was fixed to 10 nm, and the n-type In x
With the composition x of the Ga 1-x N-n-side buffer layer 104 fixed at 0.2, the composition y of the p-type In y Ga 1-y N-p-side buffer layer 106 was changed to 0.01, 0.03 , 0.1, 0.2, 0.2
It was changed to 5, 0.3. Also in FIG. 4, the emission intensity is expressed as 1 in the case of the conventional device. When y = 0.01, no change was observed in the emission intensity and the full width at half maximum from the conventional device. In the LED with y = 0.03, the emission intensity was improved to 3.5 times that of the conventional device, and the full width at half maximum of the emission spectrum was 17 nm, which was narrower than that of the conventional device, and monochromaticity was improved. In the device of 0.1 ≦ y ≦ 0.2, the emission intensity is improved to four times that of the device of the prior art, and the full width at half maximum of the emission spectrum can be as narrow as 18 nm or less. Improvement was also observed in the properties.
Further, when y = 0.25 and y = 0.3, light emission having a peak at a wavelength of 415 nm other than the light emission in the active layer 105 is mixed, and the desired light emission intensity at 465 nm is smaller than that of the conventional device. Decreased to the same level or less. Needless to say, the monochromaticity of the device emitting two wavelengths having different emission wavelengths as much as 40 nm is lower than that of the conventional device.
This is because, when y ≧ 0.25, electrons to be efficiently injected into the active layer 105 having the quantum well structure leak to the p-type p-side buffer layer 106. (Emission at a peak wavelength of 415 nm) was observed. That is, since the p-side buffer layer 106 is p-type, the p-side buffer layer 106 has the n-type n-side buffer layer 104.
A function to effectively confine electrons injected from the active layer 105 into the active layer 105 is required. Therefore, the mixed crystal ratio y of the p-side buffer layer 106 is smaller than the forbidden band width of the active layer 105.
Is desirably sufficiently wide on the conduction band side, and it can be seen from the results of FIG. 4 that in the case of an InGaN-based material, a difference of 0.3 eV or more is sufficient as the difference in the forbidden band width. That is, the mixed crystal ratio y of the p-side buffer layer 106 is
05 with respect to the In mixed crystal ratio (assumed to be a), y ≦ a−0.
This means that the upper limit value of the mixed crystal ratio y of the p-side buffer layer 106 needs to be determined based on this criterion when changing the mixed crystal ratio of the active layer 105 itself. Therefore, in the above embodiment, since a = 0.35, the mixed crystal ratio of the p-side buffer layer 106 is set to 0.03 ≦ y ≦ 0.2.
By doing so, it can be seen that it is possible to realize an LED with higher luminous efficiency and improved monochromaticity as compared with the element of the conventional example.

【0027】同様に、実施例1におけるn側緩衝層10
4とp側緩衝層106の厚みをそれぞれ10nmに変更
したまま固定し、p側緩衝層106の混晶比をy=0.
2も固定して、n側緩衝層104のみの混晶比:xを
0.01、0.03、0.1、0.2、0.25、0.
3と変化させた。図5においても発光強度は従来例素子
の場合を1として表現した。x=0.01の場合には発
光強度、半値全幅とも従来例素子からの変化は認められ
なかった。x=0.03にしたLEDでは、発光強度は
従来素子の3.3倍と改善が認められ、かつ発光スペク
トルの半値全幅も19nmと従来素子よりも狭く単色性
が改善された。0.1≦x≦0.2の素子では発光強度
は従来例素子の約4倍に改善され、かつ、発光スペクト
ルの半値全幅も18nm以下と狭いものが実現でき、従
来例素子に比較して単色性も改善が認められた。さら
に、x=0.25とした場合にも、発光強度は従来素子
の3.1倍への改善が見られ、かつ発光スペクトルの半
値全幅も16nmと単色性の改善も確認できた。しか
し、x=0.3とした場合には、活性層105での発光
以外の波長415nmにピークを有する発光が混入し、
所望の465nmでの発光の強度は従来例素子と同等か
それ以下に低下した。言うまでもなく、このように40
nmも発光波長が異なる2波長発光する素子の単色性は
従来例素子よりも低下する。これはx≧0.3の場合に
は、効率よく量子井戸構造の活性層105に注入される
べき正孔が、n型n側緩衝層104にも漏れ出るため、
n側緩衝層104自体での発光(ピーク波長415nm
の発光)が観測されたものと理解できる。すなわち、n
側緩衝層104はn型であるため、p型のp側緩衝層1
06から注入される正孔を活性層105に有効に閉じ込
める機能が必要である。このため、n側緩衝層104の
混晶比xは、活性層105の禁制帯幅よりn側緩衝層1
04の禁制帯幅が価電子帯側で十分に広いことが望まし
く、図5の結果より、InGaN系材料の場合には禁制
帯幅の差として0.19eV以上あれば充分であること
が分かる。すなわち、n側緩衝層104の混晶比xは活
性層105のIn混晶比(aとする)に対して、x≦a
−0.1であることが肝要であり、活性層105自体の
混晶比を変更する場合にもこの基準でn側緩衝層104
の混晶比xの上限値が決定されることが必要となる。し
たがって、上記の実施例においてはa=0.35である
ため、n側緩衝層104の混晶比を0.03≦y≦0.
25とすることにより、従来例素子に比べて発光効率が
高く、単色性の改善されれたLEDを実現することが可
能であることが分かる。
Similarly, the n-side buffer layer 10 in the first embodiment
4 and the thickness of the p-side buffer layer 106 were fixed at 10 nm, respectively, and the mixed crystal ratio of the p-side buffer layer 106 was set to y = 0.
2 is also fixed, and the mixed crystal ratio of only the n-side buffer layer 104: x is set to 0.01, 0.03, 0.1, 0.2, 0.25,.
Changed to 3. Also in FIG. 5, the emission intensity is expressed as 1 in the case of the conventional example. When x = 0.01, no change was observed in the emission intensity and the full width at half maximum from the conventional device. In the LED with x = 0.03, the emission intensity was 3.3 times as large as that of the conventional device, and the full width at half maximum of the emission spectrum was 19 nm, which was narrower than that of the conventional device, and monochromaticity was improved. In the device of 0.1 ≦ x ≦ 0.2, the emission intensity is improved to about four times that of the device of the prior art, and the full width at half maximum of the emission spectrum can be realized as narrow as 18 nm or less. The monochromaticity was also improved. Further, even when x = 0.25, the emission intensity was improved to 3.1 times that of the conventional device, and the full width at half maximum of the emission spectrum was also 16 nm, indicating an improvement in monochromaticity. However, when x = 0.3, light emission having a peak at a wavelength of 415 nm other than light emission from the active layer 105 is mixed, and
The desired emission intensity at 465 nm was reduced to a level equal to or lower than that of the conventional device. Needless to say, 40
The monochromaticity of an element that emits light at two wavelengths different from each other in nm is lower than that of a conventional element. This is because, when x ≧ 0.3, holes to be efficiently injected into the active layer 105 having the quantum well structure leak to the n-type n-side buffer layer 104.
Light emission (peak wavelength 415 nm) from the n-side buffer layer 104 itself
Can be understood as having been observed. That is, n
Since the side buffer layer 104 is n-type, the p-type buffer layer 1
It is necessary to have a function of effectively confining holes injected from the active layer 105 into the active layer 105. Therefore, the mixed crystal ratio x of the n-side buffer layer 104 is smaller than the forbidden band width of the active layer 105 by the n-side buffer layer 1.
It is desirable that the forbidden band of No. 04 is sufficiently wide on the valence band side, and from the results of FIG. 5, it can be seen that the difference of the forbidden band of 0.19 eV or more is sufficient for the InGaN-based material. That is, the mixed crystal ratio x of the n-side buffer layer 104 is smaller than the In mixed crystal ratio (a) of the active layer 105 by x ≦ a
-0.1 is important, and even when changing the mixed crystal ratio of the active layer 105 itself, the n-side buffer layer 104
It is necessary to determine the upper limit of the mixed crystal ratio x. Therefore, in the above embodiment, since a = 0.35, the mixed crystal ratio of the n-side buffer layer 104 is set to 0.03 ≦ y ≦ 0.
By setting to 25, it can be seen that an LED with higher luminous efficiency and improved monochromaticity can be realized as compared with the element of the conventional example.

【0028】なお、上記実施例ではn側緩衝層104、
p側緩衝層106へはp型不純物、n型不純物のドーピ
ングを行ったが、これらの層の不純物の添加量には関係
なくLEDの発光スペクトルの半値全幅を狭くする効果
は認められ単色性の改善を実現することが可能である
が、発光強度を従来素子と比較して2倍以上にするため
には、n側緩衝層104のSi濃度が5×1016cm-3
以上1×1020cm-3以下の範囲、p側緩衝層106の
Mg濃度は1×1017cm-3以上5×1021cm-3以下
の範囲であることが必要であった。これらの不純物濃度
範囲より不純物を多くドーピングした場合には、n側緩
衝層104、p側緩衝層106の結晶性の悪化または活
性層105への不純物の熱拡散により、LEDの発光強
度は従来素子よりも小さくなった。また、上記の不純物
濃度の範囲より少ないドーピング濃度の素子において
は、電子や正孔が効率的に活性層105に注入されるこ
とが阻害され発光強度は従来素子よりも低下した。本実
施例ではドーピングするn型不純物としてSiを、p型
不純物としてMgを選択したが、n型不純物としてはS
e、Sn、Te、Ge等の元素が、またp型不純物とし
てはZn、Cd、C等の元素が使用可能である。
In the above embodiment, the n-side buffer layer 104,
Although the p-side buffer layer 106 was doped with p-type impurities and n-type impurities, the effect of narrowing the full width at half maximum of the emission spectrum of the LED was recognized regardless of the amount of impurities added to these layers. Although it is possible to achieve improvement, the Si concentration of the n-side buffer layer 104 must be 5 × 10 16 cm −3 in order to make the emission intensity twice or more as compared with the conventional device.
More than 1 × 10 20 cm -3 range, Mg concentration in the p-side buffer layer 106 was required to be in the range of 1 × 10 17 cm -3 or more 5 × 10 21 cm -3 or less. When the impurity is doped more than these impurity concentration ranges, the light emission intensity of the LED is reduced due to the deterioration of the crystallinity of the n-side buffer layer 104 and the p-side buffer layer 106 or the thermal diffusion of the impurity to the active layer 105. Smaller than. Further, in a device having a doping concentration lower than the above impurity concentration range, the efficient injection of electrons and holes into the active layer 105 was inhibited, and the emission intensity was lower than that of the conventional device. In this embodiment, Si is selected as the n-type impurity to be doped and Mg is selected as the p-type impurity.
Elements such as e, Sn, Te, and Ge can be used, and elements such as Zn, Cd, and C can be used as the p-type impurities.

【0029】上記の実施例では、活性層105はIn
0.35Ga0.65N単一量子井戸層としたが、混晶比として
は0.15≦a≦1の範囲内が望ましく、n側、p側緩
衝層の挿入による発光強度の増加と単色性の向上を図る
ことができる。さらに、量子井戸構造の活性層105の
厚さとしては1nm以上5nm以下の範囲が望ましく、
n側およびp側緩衝層を挿入することによる発光強度の
増加と単色性の向上を確認できた。さらに、発光強度を
従来素子の2倍以上とするためには活性層の厚さを1n
m以上3nm以下とすることが最も望ましかった。
In the above embodiment, the active layer 105 is made of In
Although the single quantum well layer is 0.35 Ga 0.65 N, the mixed crystal ratio is desirably in the range of 0.15 ≦ a ≦ 1, and the emission intensity and the monochromaticity are improved by inserting the n-side and p-side buffer layers. Can be achieved. Further, the thickness of the active layer 105 having the quantum well structure is desirably in the range of 1 nm to 5 nm,
It was confirmed that the emission intensity and the monochromaticity were improved by inserting the n-side and p-side buffer layers. Further, in order to make the emission intensity twice or more that of the conventional device, the thickness of the active layer must be 1 n.
It was most desirable that the thickness be not less than m and not more than 3 nm.

【0030】以上のように、単一量子井戸構造の活性層
105を有するLEDにおいて、活性層105の上下に
直接InGaNのn側緩衝層104、p側緩衝層106
を接触させることにより、発光強度が大きくかつ発光ス
ペクトルの半値全幅の狭く単色性の良いLEDを実現す
ることができた。上記説明のように、このn側緩衝層1
04、p側緩衝層106は片方のみの挿入ではまったく
効果がないが、活性層105の上下両方に挿入すること
により顕著なLEDの特性改善が認められることより、
活性層105の結晶性、および/または活性層105と
n側緩衝層104、p側緩衝層106との界面の平坦性
が改善されたものと推察される。
As described above, in the LED having the active layer 105 having a single quantum well structure, the n-side buffer layer 104 and the p-side buffer layer 106 of InGaN are directly above and below the active layer 105.
By contacting with, an LED having high emission intensity, a narrow full width at half maximum of the emission spectrum, and good monochromaticity could be realized. As described above, this n-side buffer layer 1
04, the p-side buffer layer 106 has no effect when only one of them is inserted. However, when the p-side buffer layer 106 is inserted on both the upper and lower sides of the active layer 105, a remarkable improvement in LED characteristics is recognized.
It is presumed that the crystallinity of the active layer 105 and / or the flatness of the interface between the active layer 105 and the n-side buffer layer 104 and the p-side buffer layer 106 have been improved.

【0031】なお、本実施例では基板としてn型SiC
基板を用いたが、その他の基板としては、p型SiC、
c面やa面サファイア、n型またはp型GaN等、一般
的にGaN系結晶の成長が可能であるものは適用可能で
あることは言うまでもない。
In this embodiment, n-type SiC is used as the substrate.
Although a substrate was used, p-type SiC,
It goes without saying that a material that can generally grow a GaN-based crystal, such as c-plane or a-plane sapphire, n-type or p-type GaN, is applicable.

【0032】(実施例2)次に本発明を半導体レーザに
適用した例を図6の断面構造図を用いて説明する。20
1はn型GaN基板、202はn型AlGaNクラッド
層、203はGaNのn型ガイド層、204はn型In
GaNからなるn側緩衝層、205は多重量子井戸構造
の活性層、206はp型InGaNからなるp側緩衝
層、207はp型AlGaN保護層、208はGaNか
らなるp型ガイド層、209はAlGaNからなるp型
クラッド層、210はp型GaNコンタクト層、211
はメサストライプ、212はn型AlGaN電流狭窄
層、213はp型GaN第2コンタクト層、220はp
型電極、221はn型電極である。
(Embodiment 2) Next, an example in which the present invention is applied to a semiconductor laser will be described with reference to the sectional structural view of FIG. 20
1 is an n-type GaN substrate, 202 is an n-type AlGaN cladding layer, 203 is an GaN n-type guide layer, and 204 is n-type In.
An n-side buffer layer made of GaN, 205 is an active layer having a multiple quantum well structure, 206 is a p-side buffer layer made of p-type InGaN, 207 is a p-type AlGaN protective layer, 208 is a p-type guide layer made of GaN, and 209 is P-type cladding layer made of AlGaN, 210 is a p-type GaN contact layer, 211
Is a mesa stripe, 212 is an n-type AlGaN current confinement layer, 213 is a p-type GaN second contact layer, and 220 is p-type GaN.
The mold electrode 221 is an n-type electrode.

【0033】次に本実施例素子の作製方法について説明
する。まず、(0001)面n型GaN基板201上
に、通常の分子線エピタキシ(MBE)法により、基板
温度950℃にてSiドープn型Al0.1Ga0.9Nクラ
ッド層202を厚さ0.5μm、SiドープGaNのn
型ガイド層203を厚さ0.1μm、成長させる。次に
基板温度を710℃にまで下げ、Siドープn型In
0.05Ga0.95N−n側緩衝層204を厚さ20nm、
2.5nm厚のIn0.2Ga0.8N量子井戸層2層
とそれらに挟まれた5nm厚のIn0.05Ga0.95Nバリ
ア層1層から構成された多重量子井戸構造の活性層20
5、Mgドープp型In0.05Ga0.95N−p側緩衝層2
06、を成長させる。続いて、基板温度を950℃に上
昇させながらMgドープp型Al0.1Ga0.9N保護層2
07を厚さ40nm、基板温度950℃にてMgドープ
GaNのp型ガイド層208を厚さ0.1μm、Mgド
ープp型Al0.1Ga0.9Nクラッド層209を厚さ0.
4μm、Mgドープp型GaNコンタクト層210を
0.3μmを成長させる。
Next, a method of manufacturing the device of this embodiment will be described. First, a Si-doped n-type Al 0.1 Ga 0.9 N cladding layer 202 having a thickness of 0.5 μm is formed on a (0001) plane n-type GaN substrate 201 at a substrate temperature of 950 ° C. by a normal molecular beam epitaxy (MBE) method. N of Si-doped GaN
The mold guide layer 203 is grown to a thickness of 0.1 μm. Next, the substrate temperature is lowered to 710 ° C., and the Si-doped n-type In
0.05 Ga 0.95 N-n side buffer layer 204 is 20 nm thick,
Active layer of multiple quantum well structure composed of 2.5 nm In0.2Ga0.8N quantum well layer 2 layer having a thickness and In 0.05 Ga 0.95 N barrier layers one layer of 5nm thickness sandwiched them 20
5. Mg-doped p-type In 0.05 Ga 0.95 Np side buffer layer 2
06 is grown. Subsequently, while increasing the substrate temperature to 950 ° C., the Mg-doped p-type Al 0.1 Ga 0.9 N protective layer 2 is formed.
07 with a thickness of 40 nm, a substrate temperature of 950 ° C., a Mg-doped GaN p-type guide layer 208 having a thickness of 0.1 μm, and a Mg-doped p-type Al 0.1 Ga 0.9 N cladding layer 209 having a thickness of 0.1 μm.
A 4 μm, 0.3 μm Mg-doped p-type GaN contact layer 210 is grown.

【0034】次に、通常のフォトリソグラフィ技術とド
ライエッチング技術により、GaN系結晶の<1−10
0>方向に平行に幅2μm、高さ0.7μmのメサスト
ライプ211を形成した。メサストライプ211の両側
ではp型ガイド層208に達するまでエッチングしたこ
ととなる。続いて、このメサストライプ211領域外の
部分に、通常のMOCVD法による選択成長により、基
板温度900℃にてSiドープn型Al0.1Ga0.9N電
流狭窄層212を厚さ0.4μm、Mgドープp型Ga
N第2コンタクト層213を厚さ0.3μm成長させ
た。n型GaN基板201の厚さを50μmにまで薄く
研磨した後、成長層表面全面にp型電極220を、基板
裏面全面にn型電極221を形成した。次に、上記のメ
サストライプ211に垂直な(1−100)面にてGa
N系結晶を劈開することにより長さ650μmのレーザ
共振器を形成した。また、裏端面には70%の反射率を
有する酸化チタン膜とフッ化マグネシウムの誘電体多層
膜を(図示せず)、前端面には反射率12%シリコン窒
化膜を形成し、最後にスクライブにより個々のチップを
切り出しレーザ素子とした。
Next, the GaN-based crystal is made to be <1-10 by a usual photolithography technique and a dry etching technique.
A mesa stripe 211 having a width of 2 μm and a height of 0.7 μm was formed in parallel with the 0> direction. On both sides of the mesa stripe 211, etching is performed until the p-type guide layer 208 is reached. Subsequently, the mesa stripe 211 outside of the area of the portion, by selective growth by conventional MOCVD method, a thickness of 0.4μm Si-doped n-type Al 0.1 Ga 0.9 N current blocking layer 212 at a substrate temperature of 900 ° C., Mg-doped p-type Ga
The N second contact layer 213 was grown to a thickness of 0.3 μm. After the n-type GaN substrate 201 was polished to a thickness of 50 μm, a p-type electrode 220 was formed on the entire surface of the growth layer, and an n-type electrode 221 was formed on the entire back surface of the substrate. Next, Ga is applied to the (1-100) plane perpendicular to the mesa stripe 211 described above.
A laser resonator having a length of 650 μm was formed by cleaving the N-based crystal. A dielectric multilayer film of titanium oxide and magnesium fluoride having a reflectance of 70% (not shown) is formed on the back end surface, and a silicon nitride film having a reflectance of 12% is formed on the front end surface. , Individual chips were cut out to obtain laser elements.

【0035】このようにして作製されたレーザ素子の特
性を測定したところ、閾値電流24mA、微分発光効率
0.97W/Aと、低閾値でかつ効率の高いレーザ発振
が得られた。また、光出力35mW時の室温での動作電
流値は60mA、動作電圧は4.3Vであった。さら
に、本実施例におけるレーザ素子を60℃雰囲気、35
mW光出力の条件下で信頼性試験を施したところ、MT
TF値(以下、レーザ素子寿命と呼ぶ)として1350
0時間が得られることが分かった。
When the characteristics of the laser device thus manufactured were measured, a threshold current of 24 mA and a differential luminous efficiency of 0.97 W / A were obtained, and a low threshold and high efficiency laser oscillation were obtained. The operating current value at room temperature when the optical output was 35 mW was 60 mA, and the operating voltage was 4.3 V. Further, the laser device in this embodiment was set in a 60 ° C.
When a reliability test was performed under the conditions of mW light output, MT
1350 as TF value (hereinafter referred to as laser element life)
It was found that 0 hours were obtained.

【0036】一方、10mAの電流をこの実施例素子に
流し、前端面からの光出力を測定したところ、発光パワ
ーとしては0.8mWが得られた。また、この時の発光
ゲインスペクトル(LEDでの発光スペクトルに相当)
を測定したところ、スペクトルの半値全幅は12nmと
非常に狭かった。
On the other hand, a current of 10 mA was passed through the device of this example, and the light output from the front end face was measured. As a result, a light emission power of 0.8 mW was obtained. The emission gain spectrum at this time (corresponding to the emission spectrum of the LED)
Was measured, the full width at half maximum of the spectrum was very narrow at 12 nm.

【0037】本実施例素子の特性と従来例2のレーザ素
子の特性を比較すると明らかなように、上下のn側緩衝
層204、p側緩衝層206を挿入することにより、活
性層205でのゲインスペクトルの半値全幅が従来例素
子の74%と狭くなり、かつ発光強度が2.7倍増加し
たことが分かる。よって、この2つの効果の相乗作用に
より、波長当たりにおける光出力は3.6倍も向上でき
たこととなり、レーザ発振の閾値電流を従来素子の半分
以下に効果的に低減させることができたものと推察され
る。また、実施例2の駆動電圧の低減は駆動電流が上記
の効果により60mAだけ低減できたことにより、レー
ザ素子の直列抵抗分で消費されていた電圧分が低減でき
たものである。この、駆動電流の低減と駆動電圧の低減
により、35mW光出力時のレーザ素子への投入電力は
従来例素子の640mWに対し、本実施例では260m
Wと半分以下に低減できた。このことが、レーザ素子内
部での発熱を抑制でき、高温動作における長期信頼性を
確保できるに至ったものである。
As is clear from the comparison between the characteristics of the device of the present embodiment and the characteristics of the laser device of the conventional example 2, by inserting the upper and lower n-side buffer layers 204 and p-side buffer layers 206, the active layer 205 It can be seen that the full width at half maximum of the gain spectrum is as narrow as 74% of the device of the conventional example, and the emission intensity is increased by 2.7 times. Therefore, by the synergistic effect of these two effects, the light output per wavelength can be improved by 3.6 times, and the threshold current of laser oscillation can be effectively reduced to less than half of the conventional device. It is inferred. In the second embodiment, the drive voltage is reduced because the drive current can be reduced by 60 mA by the above-described effect, and the voltage consumed by the series resistance of the laser element can be reduced. Due to the reduction of the drive current and the drive voltage, the input power to the laser device at the time of 35 mW light output is 260 mW in the present embodiment, compared to 640 mW of the conventional device.
W was reduced to less than half. As a result, heat generation inside the laser element can be suppressed, and long-term reliability in high-temperature operation can be ensured.

【0038】以上のように、n側緩衝層204とp側緩
衝層206を多重量子井戸構造の活性層205の量子井
戸層に接触させて形成することにより、発光効率の向上
と、発光スペクトル(レーザ素子の場合ゲインスペクト
ル)の半値全幅を狭くすることができ、ひいては、低閾
値電流、低駆動電流、低駆動電圧、長寿命の窒化物系半
導体レーザ素子を得ることが可能となった。なお、上記
の実施例2におけるn側緩衝層204、p側緩衝層20
6の望ましい厚みとn型不純物、p型不純物の望ましい
濃度はそれぞれ実施例1と同じであった。
As described above, by forming the n-side buffer layer 204 and the p-side buffer layer 206 in contact with the quantum well layer of the active layer 205 having a multiple quantum well structure, the luminous efficiency is improved and the emission spectrum ( The full width at half maximum of the gain spectrum of the laser device can be reduced, and a nitride semiconductor laser device having a low threshold current, a low drive current, a low drive voltage, and a long life can be obtained. Note that the n-side buffer layer 204 and the p-side buffer layer 20
The desirable thickness of No. 6 and the desirable concentrations of the n-type impurity and the p-type impurity were the same as in Example 1, respectively.

【0039】また、本実施例では発光層である活性層2
05として多重量子井戸(上記実施例では井戸層が2
層)を用いている。従って、n側緩衝層204およびp
側緩衝層206に接する量子井戸層は緩衝層と反対側は
バリア層に接している。ここで、実施例2の構造を基準
として、n側緩衝層204、p側緩衝層206の混晶比
x、yを0.05に固定して、バリア層の混晶比:bを
0.01、0.03、0.07、0.1と変化させた半
導体レーザを作製し、10mAの電流を流した時の前端
面からの光出力とゲインスペクトルの半値全幅を調べ
た。b=0.01および0.1の場合には、光出力のゲ
インスペクトルの半値全幅は24nmおよび26nm
と、上記の実施例とは格段に広いものとなり、これらの
レーザ素子の発振閾値電流も60mA以上と高くなっ
た。一方、b=0.03および0.07の場合には、ゲ
インスペクトルの半値全幅はb=0.05の実施例2の
場合の14nmよりは広いが、15nmから16nmと
従来例よりは十分に狭くなっていることが確認された。
これらのレーザ素子の発振閾値電流は30mA程度と小
さく、従来よりも格段の改善が見られた。
In this embodiment, the active layer 2 which is a light emitting layer is used.
05 is a multiple quantum well (in the above embodiment, the well layer is 2
Layer). Therefore, the n-side buffer layer 204 and p
The quantum well layer in contact with the side buffer layer 206 is in contact with the barrier layer on the side opposite to the buffer layer. Here, based on the structure of Example 2, the mixed crystal ratios x and y of the n-side buffer layer 204 and the p-side buffer layer 206 were fixed to 0.05, and the mixed crystal ratio: b of the barrier layer was set to 0.1. Semiconductor lasers having different values of 01, 0.03, 0.07, and 0.1 were fabricated, and the light output from the front end face when a current of 10 mA was passed and the full width at half maximum of the gain spectrum were examined. When b = 0.01 and 0.1, the full width at half maximum of the gain spectrum of the light output is 24 nm and 26 nm.
Thus, the above-described embodiment was significantly wider, and the oscillation threshold currents of these laser devices were also as high as 60 mA or more. On the other hand, when b = 0.03 and 0.07, the full width at half maximum of the gain spectrum is wider than 14 nm in the case of Example 2 where b = 0.05, but is 15 to 16 nm, which is more than the conventional example. It was confirmed that it became narrow.
The oscillation threshold current of these laser devices is as small as about 30 mA, and a remarkable improvement has been seen as compared with the prior art.

【0040】このように、低電流駆動が可能なGaN系
半導体レーザを得るには、n側緩衝層204、p側緩衝
層206の混晶比は、多重量子井戸におけるバリア層の
混晶比とほぼ同一であることが望ましく、その範囲はb
−0.02≦x≦b+0.02、またはb−0.02≦
y≦b+0.02であることが分かる。これは、量子井
戸を挟む両側のバリア層と緩衝層の材料をほぼ同一とす
ることにより、複数の量子井戸における結晶歪みの程度
を同一とし、InGaN系特有の現象であるピエゾ効果
による内部自己電界の大きさを各量子井戸層で同一と
し、結果として、各量子井戸層でのピエゾ効果の自己電
界による量子閉じ込めスターク効果の程度を均一とし、
発光のピーク波長を同一とする効果によるものであると
考えられる。すなわち、実施例1のLEDにおいて実証
したように、単一量子井戸の両側の緩衝層の混晶比は異
なっていても、単色性は向上する(レーザ素子における
ゲインスペクトルの半値全幅の狭くなる効果が発揮され
る)が、これらを多重量子井戸構造とした場合には、複
数の量子井戸層からの発光が全て重なって観測されるた
めに、個々の量子井戸層からの発光の半値全幅が15n
m程度と狭い場合にも、発光ピーク波長が数nmずれる
ことにより、全体として半値全幅が広がることとなる。
よって、本発明の単色性の向上を多重量子井戸構造を活
性層に有するレーザ素子やLEDに適用する場合には、
上記の混晶比の条件は、多重量子井戸層のバリア層の混
晶比を最下側の量子井戸層の直上のバリア層から順番に
成長方向に対してb1、b2、・・そして最も上方の量
子井戸層の下側に接するバリア層の混晶比はbnとする
と、b1−0.02≦x≦b1+0.02、bn−0.
02≦y≦bn+0.02であるようにすることが重要
である。さらに、多重量子井戸活性層を利用した場合の
最も望ましい形態はx=b1=b2=・・=bn=yで
あり、実施例2のように14nmのゲインスペクトルの
半値全幅が最も狭くなり、最も閾値電流が小さくなる。
これは上記の説明において理解できる。ただし、実施例
1でも述べたように緩衝層としての単色性改善の効果を
発揮させるためにはx≧0.03、y≧0.03が必要
であることは多重量子井戸構造活性層の場合においても
同様であった。
As described above, in order to obtain a GaN-based semiconductor laser that can be driven at a low current, the mixed crystal ratio of the n-side buffer layer 204 and the p-side buffer layer 206 must be equal to the mixed crystal ratio of the barrier layer in the multiple quantum well. It is desirable that they are almost the same, and the range is b
-0.02 ≦ x ≦ b + 0.02 or b−0.02 ≦
It can be seen that y ≦ b + 0.02. This is because the materials of the barrier layer and the buffer layer on both sides sandwiching the quantum well are almost the same, so that the degree of crystal distortion in the plurality of quantum wells is the same, and the internal self-electric field due to the piezo effect, which is a phenomenon peculiar to the InGaN system. Is the same in each quantum well layer, and as a result, the degree of the quantum confinement Stark effect due to the self-electric field of the piezo effect in each quantum well layer is made uniform,
This is considered to be due to the effect of making the peak wavelength of light emission the same. That is, as demonstrated in the LED of Example 1, even if the mixed crystal ratios of the buffer layers on both sides of the single quantum well are different, the monochromaticity is improved (the effect of narrowing the full width at half maximum of the gain spectrum in the laser device). However, when these have a multiple quantum well structure, the emission from each of the quantum well layers is observed in an overlapping manner, so that the full width at half maximum of the emission from each of the quantum well layers is 15n.
Even when it is as narrow as about m, the full width at half maximum is widened as a whole by shifting the emission peak wavelength by several nm.
Therefore, when the improvement of monochromaticity of the present invention is applied to a laser device or an LED having a multiple quantum well structure in an active layer,
The above conditions of the mixed crystal ratio are such that the mixed crystal ratio of the barrier layer of the multiple quantum well layer is set to b1, b2,. Assuming that the mixed crystal ratio of the barrier layer in contact with the lower side of the quantum well layer is bn, b1−0.02 ≦ x ≦ b1 + 0.02, bn−0.
It is important that 02 ≦ y ≦ bn + 0.02. Further, the most desirable form when the multiple quantum well active layer is used is x = b1 = b2 =... = Bn = y, and the full width at half maximum of the 14 nm gain spectrum becomes the narrowest as in the second embodiment. The threshold current decreases.
This can be seen in the above description. However, as described in the first embodiment, x ≧ 0.03 and y ≧ 0.03 are required to exhibit the effect of improving monochromaticity as a buffer layer. The same was true for.

【0041】また、2層以上の量子井戸層を有する多重
量子井戸構造を活性層とした場合には、実施例1の場合
とは異なり、n側緩衝層204、p側緩衝層206への
n型不純物、p型不純物のドーピングをしない場合に
は、従来例2と同等かそれ以上に閾値電流が上昇する現
象が観測された。これは、電子や正孔が最低でも一層の
バリア層を越えて複数の量子井戸層に達する必要がある
ため、多重量子井戸構造の直近である緩衝層までn型、
p型に制御する必要があるためと思われる。それぞれの
n側緩衝層204、p側緩衝層206への不純物ドーピ
ング濃度の望ましい範囲は、実施例1の単一量子井戸の
場合と同様に、n側緩衝層104のSi濃度が5×10
16cm-3以上1×1020cm-3以下の範囲、p側緩衝層
106のMg濃度は1×1017cm-3以上5×1021
-3以下の範囲であることが肝要であり、この範囲で作
製された半導体レーザの閾値電流は40mA以下と実用
上問題のない程度に小さくできた。またこの範囲におけ
るレーザ素子の素子寿命は60℃で5000時間以上と
充分に長い時間を確保できた。
When the active layer has a multiple quantum well structure having two or more quantum well layers, unlike the first embodiment, the n-side buffer layer 204 and the n-side buffer layer 206 When the doping with the p-type impurity and the p-type impurity was not performed, a phenomenon in which the threshold current increased to a value equal to or higher than that of the conventional example 2 was observed. This is because it is necessary for electrons and holes to reach a plurality of quantum well layers beyond at least one barrier layer.
This is probably because it is necessary to control the p-type. The desirable range of the impurity doping concentration in each of the n-side buffer layer 204 and the p-side buffer layer 206 is, as in the case of the single quantum well of the first embodiment, the case where the Si concentration of the n-side buffer layer 104 is 5 × 10 5
The range of 16 cm −3 to 1 × 10 20 cm −3 and the Mg concentration of the p-side buffer layer 106 is 1 × 10 17 cm −3 to 5 × 10 21 c.
It is important that the range is not more than m -3 , and the threshold current of the semiconductor laser manufactured in this range can be made as small as 40 mA or less, which is practically acceptable. In addition, the device life of the laser device in this range was 5,000 hours or more at 60 ° C., which was a sufficiently long time.

【0042】(実施例3)本実施例では多重量子井戸構
造活性層をLEDに適用した例を説明する。本構造はn
側緩衝層104を1×1018cm-3の濃度のSiをドー
ピングした厚さ10nmのIn0.05Ga0.95N層とした
こと、活性層105を厚さ2.0nmのIn0.55Ga
0.45N量子井戸層3層と該量子井戸層間に挿入されたI
0.05Ga0.95Nバリア層2層から構成される多重量子
井戸活性層としたこと、p側緩衝層106をMgが7×
1019cm-3の濃度でドーピングされた厚さ5nmのI
0.05Ga0.95N層としたこと以外は実施例1と同じ構
造である。本実施例LEDの光出力と発光スペクトルの
半値全幅は、n側緩衝層、p側緩衝層を使用しないLE
Dに比べて、それぞれ、3倍および80%と発光強度・
単色性とも改善が確認できた。
Embodiment 3 In this embodiment, an example in which an active layer having a multiple quantum well structure is applied to an LED will be described. This structure is n
The side buffer layer 104 is a 10 nm thick In 0.05 Ga 0.95 N layer doped with Si at a concentration of 1 × 10 18 cm −3 , and the active layer 105 is a 2.0 nm thick In 0.55 Ga
0.45 N quantum well layers and I inserted between the quantum well layers
The active layer was a multiple quantum well active layer composed of two layers of n 0.05 Ga 0.95 N barrier layers.
5 nm thick I doped at a concentration of 10 19 cm -3
The structure is the same as that of the first embodiment except that an n 0.05 Ga 0.95 N layer is used. The light output and full width at half maximum of the emission spectrum of the LED of this embodiment are LE values without using the n-side buffer layer and the p-side buffer layer.
D and 3 times and 80%, respectively.
Improvement was confirmed in both monochromaticity.

【0043】実施例2および実施例3のように緩衝層の
挿入により、多重量子井戸活性層を有する窒化物系半導
体発光素子の発光強度を大きくし、単色性を改善するこ
とが可能であり、半導体レーザに適用した場合には低電
流化、長寿命化が可能となるが、この場合の多重量子井
戸層の層数は2層以上4層以下である場合が最もその効
果が顕著であった。5層以上の量子井戸層を有する発光
素子においても単色性の向上は見られる場合もあるが、
各量子井戸層同志間での混晶比のずれや層厚のずれ、さ
らには結晶歪みの程度の違いにより、各量子井戸活性層
からの発光波長が互いに異なることが原因と思われる発
光スペクトルの広がりが発生し易くなるため、緩衝層の
挿入による単色性の向上の効果が顕著にならないものと
推察される。
By inserting the buffer layer as in the second and third embodiments, it is possible to increase the light emission intensity of the nitride semiconductor light emitting device having the multiple quantum well active layer and to improve the monochromaticity. When applied to a semiconductor laser, a low current and a long life can be achieved. In this case, the effect is most remarkable when the number of multiple quantum well layers is two or more and four or less. . Even in a light emitting device having five or more quantum well layers, improvement in monochromaticity may be observed,
It is thought that the emission wavelengths from the quantum well active layers differ from each other due to the misalignment of the mixed crystal ratio and the thickness difference between the quantum well layers and the difference in the degree of crystal distortion. It is presumed that the effect of improving the monochromaticity by the insertion of the buffer layer is not remarkable because the spread easily occurs.

【0044】(実施例4)本実施例は、実施例2と同様
の層構成ではあるが、個々の層の組成や厚み、不純物ド
ーピング濃度を下記の通りとした。実施例2と同じ工程
によりn型AlGaNクラッド層202まで形成の後、
n型ガイド層203をAl0.2Ga0.8Nから成長方向に
徐々にGaNまでAl混晶比が減少する0.15μm厚
のSiが9×1017cm-3ドーピングされた傾斜組成層
に、n側緩衝層204をSiが5×1017cm-3ドーピ
ングされた厚さ15nmのn型In0.06Ga0.94Nに、
活性層205をSiを1×1017cm-3の濃度でドープ
した厚さ2.0nmのIn0.18Ga0.82N単一量子井戸
層に、p側緩衝層206をMgを濃度3×1018cm-3
ドーピングされた厚さ5nmのIn0.03Ga0.97N層
に、p型ガイド層208をGaNからAl0.2Ga0.8
まで徐々にAl組成が増加するMgが5×1019cm-3
ドーピングされた厚さ0.15μmの傾斜組成層とし
た。これ以後は実施例2と同様の方法により、p型クラ
ッド層209とp型GaNコンタクト層210を形成し
た構成となっている半導体レーザ素子である。
(Embodiment 4) This embodiment has the same layer structure as the embodiment 2, but the composition, thickness and impurity doping concentration of each layer are as follows. After forming up to the n-type AlGaN cladding layer 202 by the same process as in Example 2,
The n-type guide layer 203 is formed on a graded composition layer doped with 0.15 μm thick Si of 9 × 10 17 cm −3, in which the Al mixed crystal ratio gradually decreases from Al 0.2 Ga 0.8 N to GaN in the growth direction. The buffer layer 204 is made of 15 nm thick n-type In 0.06 Ga 0.94 N doped with 5 × 10 17 cm −3 of Si,
The active layer 205 is a 2.0 nm thick In 0.18 Ga 0.82 N single quantum well layer doped with Si at a concentration of 1 × 10 17 cm −3 , and the p-side buffer layer 206 is a Mg concentration of 3 × 10 18 cm 3. -3
On the doped In 0.03 Ga 0.97 N layer having a thickness of 5 nm, a p-type guide layer 208 is formed from GaN to Al 0.2 Ga 0.8 N.
Mg whose Al composition gradually increases up to 5 × 10 19 cm −3
The doped graded composition layer was 0.15 μm thick. Thereafter, the semiconductor laser device has a configuration in which the p-type cladding layer 209 and the p-type GaN contact layer 210 are formed in the same manner as in the second embodiment.

【0045】本実施例素子では、閾値電流18mA、3
5mW出力時の室温での動作電流50mA、同駆動電圧
4.5V、60℃35mW条件で18000時間の寿命
が確認できた。これらの特性は、本構成のn側緩衝層2
04、p側緩衝層206を使用しない半導体レーザ素子
の場合の、閾値電流=59mA、35mW動作電流=1
02mA、動作電圧=5.2V、素子寿命=300時間
よりも格段の改善ができた。
In the device of this embodiment, the threshold current is 18 mA,
A life of 18,000 hours was confirmed under the conditions of an operating current of 50 mA at room temperature at the time of output of 5 mW, the same driving voltage of 4.5 V, and a temperature of 35 mW at 60 ° C. These characteristics are the same as those of the n-side buffer layer 2 of the present configuration.
04, threshold current = 59 mA, 35 mW operating current = 1 in the case of a semiconductor laser device not using the p-side buffer layer 206
02 mA, operating voltage = 5.2 V, and element life = 300 hours were significantly improved.

【0046】また、実施例2に対して、さらなる低電流
化、長寿命化が達成されているが、これは、n型ガイド
層203およびp型ガイド層208に傾斜組成層を適用
したことにより、n側緩衝層204およびp側緩衝層2
06と量子井戸構造の活性層205における、結晶格子
歪みが緩和された効果である。さらに、この傾斜組成の
n型ガイド層203、p型ガイド層208はもっとも堅
いAlGaNからなるn型クラッド層202およびp型
クラッド層209の結晶割れを低減する効果や、n側緩
衝層204、p側緩衝層206の結晶歪みを低減する効
果もあり、実施例2に比べて、本実施例素子では、素子
作製歩留まりを45%から78%へと改善させることが
できた。本実施例における傾斜組成のn型ガイド層20
3、p型ガイド層208は活性層205から遠ざかるに
つれてAlGaNのAl組成を増加させる形態とした
が、活性層205から遠ざかるにつれてInGaNのI
n組成を減少させる組成傾斜層で形成しても良い。さら
に、n型ガイド層203またはp型ガイド層208をA
sGa1-s-pInpNの4元系の半導体層とし、活性層
205に近い側から遠ざかるにつれてsが徐々に増加し
つつpが徐々に減少するようにしても良い。
Further, a lower current and a longer life are achieved as compared with the second embodiment. This is because the gradient composition layer is applied to the n-type guide layer 203 and the p-type guide layer 208. , N-side buffer layer 204 and p-side buffer layer 2
06 and the effect of reducing the crystal lattice distortion in the active layer 205 having the quantum well structure. Further, the n-type guide layer 203 and the p-type guide layer 208 having the gradient composition have the effect of reducing crystal cracking of the n-type clad layer 202 and the p-type clad layer 209 made of the hardest AlGaN, and the n-side buffer layer 204 and p-type There is also an effect of reducing the crystal strain of the side buffer layer 206, and the device fabrication yield of the device of this example was improved from 45% to 78% as compared with the device of Example 2. The n-type guide layer 20 having a gradient composition in this embodiment
3. The p-type guide layer 208 has a form in which the Al composition of AlGaN increases as the distance from the active layer 205 increases.
It may be formed of a composition gradient layer that reduces the n composition. Further, the n-type guide layer 203 or the p-type guide layer 208
A quaternary semiconductor layer of l s Ga 1-sp In p N may be used, and p may gradually decrease while s gradually increases as the distance from the side closer to the active layer 205 increases.

【0047】(実施例5)さらに別の実施例構造を図7
に示す。本実施例では、実施例2におけるn型ガイド層
203を、活性層205に遠い側から、活性層から遠ざ
かるにつれてAl組成がGaNからAl0.1Ga0.9Nま
で徐々に増加する傾斜組成層からなる0.1μm厚のn
型第2光ガイド層5032と、その上に活性層から遠ざ
かるにつれてIn組成がIn0.08Ga0.92NからGaN
まで徐々に減少するInGaN傾斜組成層からなる0.
1μm厚のn型第1光ガイド層5031とからなる2層
構成に変更した、この場合、素子特性は実施例4の場合
と変化は無かったが、素子の作製歩留まりは約85%と
さらなる改善が認められた。
(Embodiment 5) The structure of still another embodiment is shown in FIG.
Shown in In the present embodiment, the n-type guide layer 203 of the second embodiment is formed of a graded composition layer in which the Al composition gradually increases from GaN to Al 0.1 Ga 0.9 N from the side farther from the active layer 205 as the distance from the active layer increases. .1 μm thick n
-Type second optical guide layer 5032, and the In composition increases from In 0.08 Ga 0.92 N to GaN as the distance from the active layer increases.
Consisting of an InGaN graded composition layer that gradually decreases to
The structure was changed to a two-layer structure including the n-type first optical guide layer 5031 having a thickness of 1 μm. In this case, the device characteristics were not changed from those in Example 4, but the production yield of the device was further improved to about 85%. Was observed.

【0048】(実施例6)図8に異なる本発明の異なる
実施形態である半導体レーザ構造図を示す。本実施例で
は、実施例2におけるp型ガイド層208を、活性層2
05に近い側から、活性層から遠ざかるにつれてIn組
成がIn0.03Ga0.97NからGaNまで徐々に減少する
InGaN傾斜組成層からなる厚さ0.05μmのp型
第1光ガイド層6081と、その上に活性層から遠ざか
るにつれてAl組成がGaNからAl0.1Ga0.9Nまで
徐々に増加する傾斜組成層からなる0.1μm厚のp型
第2光ガイド層6082との2層構成に変更した。この
場合も、素子特性は実施例4の場合と変化は無かった
が、素子の作製歩留まりは約82%と改善が認められ
た。
(Embodiment 6) FIG. 8 shows a semiconductor laser structure according to a different embodiment of the present invention. In this embodiment, the p-type guide layer 208 of the second embodiment is replaced with the active layer 2.
05, a 0.05 μm thick p-type first optical guide layer 6081 comprising an InGaN graded composition layer in which the In composition gradually decreases from In 0.03 Ga 0.97 N to GaN as the distance from the active layer increases, The p-type second optical guide layer 6082 having a thickness of 0.1 μm and having a graded composition layer in which the Al composition gradually increases from GaN to Al 0.1 Ga 0.9 N as the distance from the active layer increases is changed to a two-layer structure. In this case as well, the device characteristics were not changed from those in Example 4, but the production yield of the device was improved to about 82%.

【0049】(実施例7)図9に別に実施例素子(半導
体レーザ素子)の構成を示す。本実施例では、実施例2
におけるn型ガイド層203を実施例5における傾斜組
成層2層5032、5031とし、かつ実施例2のp型
ガイド層208を実施例6における傾斜組成層2層60
81、6082とした。すなわち、n型光ガイド層、お
よびp型光ガイド層の両方を2層の傾斜組成層により構
成した。この場合の、素子特性は実施例4の場合と同様
の低電流、高信頼性の良好な特性を得られた。作製歩留
まりは実施例5および6よりも改善され、91%にまで
上昇した。
(Embodiment 7) FIG. 9 shows the configuration of an embodiment device (semiconductor laser device) separately. In this embodiment, the second embodiment
The n-type guide layer 203 in Example 2 is the two gradient composition layers 5032 and 5031 in Example 5, and the p-type guide layer 208 in Example 2 is the two gradient composition layer 60 in Example 6.
81 and 6082. That is, both the n-type light guide layer and the p-type light guide layer were composed of two graded composition layers. In this case, the device characteristics were as good as those of Example 4, such as low current and high reliability. Fabrication yield was improved over Examples 5 and 6, rising to 91%.

【0050】以上のように、種々の実施例を挙げて本発
明の実施形態を説明したが、本発明を上記実施例にのみ
とらわれるものではなく、下記のような場合において
も、同様の効果を得ることができる。 (1) 上記実施例とは異なり量子井戸活性層やバリア
層、クラッド層、ガイド層、コンタクト層、等の各層を
AlGaInNやGaInAsNによる4元混晶、また
はAlGaInNAsによる5元系の窒化物半導体材料
により構成した場合。 (2)上記実施例に量子井戸と緩衝層の間以外の部分に
さらに異なる層を挿入した場合。 (3)上記実施例と導電型を全て反転させた場合。
As described above, the embodiments of the present invention have been described with reference to the various embodiments. However, the present invention is not limited to the above-described embodiments, and similar effects can be obtained in the following cases. Obtainable. (1) Unlike the above embodiment, each layer such as a quantum well active layer, a barrier layer, a cladding layer, a guide layer, and a contact layer is formed of a quaternary mixed crystal of AlGaInN or GaInAsN, or a quinary nitride semiconductor material of AlGaInNAs. When configured with (2) A case where a different layer is inserted in a portion other than between the quantum well and the buffer layer in the above embodiment. (3) The case where the conductivity types are all inverted with respect to the above embodiment.

【0051】[0051]

【発明の効果】以上のように、本発明を適用することに
より、発光強度が大きく、単色性に優れた半導体発光素
子(LED)を実現することが可能となった。また、本
発明を窒化ガリウム系半導体レーザに適用することによ
り、閾値電流・動作電流が低く、高温高出力条件におけ
る信頼性の高いレーザ素子を得ることが出来るようにな
った。さらに、当該半導体レーザのガイド層に傾斜組成
層を適用することにより、さらなる低電流化や長寿命化
が実現でき、同時に作製歩留まりの向上を実現できた。
As described above, by applying the present invention, it is possible to realize a semiconductor light emitting device (LED) having a high luminous intensity and excellent monochromaticity. In addition, by applying the present invention to a gallium nitride based semiconductor laser, a laser device having low threshold current and operating current and having high reliability under high temperature and high output conditions can be obtained. Further, by applying the graded composition layer to the guide layer of the semiconductor laser, it is possible to further reduce the current and extend the life, and at the same time, to improve the production yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1におけるGaN系LEDの断面構造図
である。
FIG. 1 is a sectional structural view of a GaN-based LED according to a first embodiment.

【図2】実施例1における発光強度と発光スペクトル半
値全幅のp側緩衝層厚依存性を示すグラフである。
FIG. 2 is a graph showing the dependence of the emission intensity and the full width at half maximum of the emission spectrum on the p-side buffer layer thickness in Example 1.

【図3】実施例1における発光強度と発光スペクトル半
値全幅のn側緩衝層厚依存性を示すグラフである。
FIG. 3 is a graph showing the n-side buffer layer thickness dependence of the emission intensity and the full width at half maximum of the emission spectrum in Example 1.

【図4】実施例1における発光強度と発光スペクトル半
値全幅のp側緩衝層混晶比:y依存性を示すグラフであ
る。
FIG. 4 is a graph showing the dependence of the emission intensity and the full width at half maximum of the emission spectrum on the p-side buffer layer mixed crystal ratio: y in Example 1.

【図5】実施例1における発光強度と発光スペクトル半
値全幅のn側緩衝層混晶比:x依存性を示すグラフであ
る。
FIG. 5 is a graph showing the dependence of the emission intensity and the full width at half maximum of the emission spectrum on the n-side buffer layer mixed crystal ratio: x in Example 1.

【図6】本発明の実施例2による半導体レーザ素子の構
造図である。
FIG. 6 is a structural diagram of a semiconductor laser device according to a second embodiment of the present invention.

【図7】本発明の実施例5による半導体レーザ素子の構
造図である。
FIG. 7 is a structural diagram of a semiconductor laser device according to a fifth embodiment of the present invention.

【図8】本発明の実施例6による半導体レーザ素子の構
造図である。
FIG. 8 is a structural diagram of a semiconductor laser device according to Embodiment 6 of the present invention.

【図9】本発明の実施例7による半導体レーザ素子の構
造図である。
FIG. 9 is a structural diagram of a semiconductor laser device according to Example 7 of the present invention.

【図10】従来技術による半導体発光素子の断面構造図
である。
FIG. 10 is a sectional structural view of a conventional semiconductor light emitting device.

【図11】従来技術による半導体レーザ素子の断面構造
図である。
FIG. 11 is a sectional structural view of a semiconductor laser device according to a conventional technique.

【符号の説明】[Explanation of symbols]

101 n型SiC基板 102 AlGaN低温バッファ層 103 n型GaNクラッド層 104 n側緩衝層 105 活性層 106 p側緩衝層 107 p型GaAlN保護層 108 p型GaNコンタクト層 109 p型半透明電極 110 p型パッド電極 111 n型電極 201 n型GaN基板 202 n型AlGaNクラッド層 203 n型ガイド層 204 n側緩衝層 205 活性層 206 p側緩衝層 207 p型AlGaN保護層 208 p型ガイド層 209 p型クラッド層 210 p型GaNコンタクト層 211 メサストライプ 212 n型AlGaN電流狭窄層 213 p型GaN第2コンタクト層 220 p型電極 221 n型電極 5031 n型第1光ガイド層 5032 n型第2光ガイド層 6081 p型第1光ガイド層 6082 p型第2光ガイド層 1001、1100 サファイア基板 1002 GaNバファ層 1003 GaN第2クラッド層 1004 In0.01Ga0.99N第1クラッド層 1005 In0.30Ga0.70N単一量子井戸活性層 1006 p型In0.01Ga0.99N第1クラッド層 1007 p型Al0.3Ga0.7N第2クラッド層 1008 p型GaNコンタクト層 1010、1121 n型電極 1011、1120 p型電極 1012 パッド電極 1101 n型GaNコンタクト層 1102 n型AlGaNクラッド層 1103 n型GaNガイド層 1105 多重量子井戸活性層 1107 p型AlGaN保護層 1108 p型GaNガイド層 1109 p型AlGaNクラッド層 1110 p型GaNコンタクト層 1111 メサストライプ 1112 SiO2絶縁膜Reference Signs List 101 n-type SiC substrate 102 AlGaN low-temperature buffer layer 103 n-type GaN cladding layer 104 n-side buffer layer 105 active layer 106 p-side buffer layer 107 p-type GaAlN protective layer 108 p-type GaN contact layer 109 p-type translucent electrode 110 p-type Pad electrode 111 n-type electrode 201 n-type GaN substrate 202 n-type AlGaN cladding layer 203 n-type guide layer 204 n-side buffer layer 205 active layer 206 p-side buffer layer 207 p-type AlGaN protective layer 208 p-type guide layer 209 p-type clad Layer 210 p-type GaN contact layer 211 mesa stripe 212 n-type AlGaN current confinement layer 213 p-type GaN second contact layer 220 p-type electrode 221 n-type electrode 5031 n-type first light guide layer 5032 n-type second light guide layer 6081 p-type first light guide layer 6082 p-type second optical guide layer 1001, 1100 sapphire substrate 1002 GaN buffer layer 1003 GaN second cladding layer 1004 In 0.01 Ga 0.99 N first cladding layer 1005 In 0.30 Ga 0.70 N single quantum well active layer 1006 p-type In 0.01 Ga 0.99 N first cladding layer 1007 p-type Al 0.3 Ga 0.7 N second cladding layer 1008 p-type GaN contact layer 1010, 1121 n-type electrode 1011, 1120 p-type electrode 1012 pad electrode 1101 n-type GaN contact layer 1102 n-type AlGaN cladding Layer 1103 n-type GaN guide layer 1105 multiple quantum well active layer 1107 p-type AlGaN protective layer 1108 p-type GaN guide layer 1109 p-type AlGaN cladding layer 1110 p-type GaN contact layer 1111 mesa stripe 1112 SiO 2 Insulating film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 毛利 裕一 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 近藤 雅文 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 山田 英司 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5F041 AA03 AA11 CA05 CA33 CA34 CA46 CA60 CA65 CA83 CB11 FF01 FF16 5F073 AA11 AA45 AA55 AA74 AA83 CA07 CB02 CB07 CB08 CB19 DA05 DA32 EA23 EA28  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Mori 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Inside Sharp Corporation (72) Inventor Masafumi Kondo 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka (72) Inventor Eiji Yamada 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka F-term (reference) 5F041 AA03 AA11 CA05 CA33 CA34 CA46 CA60 CA65 CA83 CB11 FF01 FF16 5F073 AA11 AA45 AA55 AA74 AA83 CA07 CB02 CB07 CB08 CB19 DA05 DA32 EA23 EA28

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 n型GaN系クラッド層と、InaGa
1-aN量子井戸層(0.15≦a≦1)からなる活性層
と、p型GaN系コンタクト層と含む窒化ガリウム系半
導体発光素子において、活性層はInxGa1-xN−n側
緩衝層(0.03≦x≦a−0.1)とInyGa1-y
−p側緩衝層(0.03≦y≦a−0.15)の両方に
接するように挟まれて形成されており、InxGa1-x
−n側緩衝層とInyGa1-yN−p側緩衝層の層厚はそ
れぞれ3nm以上25nm以下であることを特徴とする
半導体発光素子。
1. An n-type GaN-based cladding layer and In a Ga
In a gallium nitride based semiconductor light emitting device including a 1-a N quantum well layer (0.15 ≦ a ≦ 1) and a p-type GaN based contact layer, the active layer is In x Ga 1-x Nn. Side buffer layer (0.03 ≦ x ≦ a−0.1) and In y Ga 1-y N
Sandwiched in contact with both -p-side buffer layer (0.03 ≦ y ≦ a-0.15 ) is formed, In x Ga 1-x N
The semiconductor light emitting device characterized by thickness of -n-side buffer layer and In y Ga 1-y N- p -side buffer layer is 3nm or more 25nm or less, respectively.
【請求項2】 前記活性層はn型GaN系クラッド層に
近い側からInaGa1-aN第1量子井戸層、Inb1Ga
1-b1N第1バリア層、InaGa1-aN第2量子井戸層、
Inb2Ga1-b2N第2バリア層・・・InbnGa1-bn
第nバリア層、InaGa1-aN第n+1量子井戸層(た
だし、nは1以上の整数)の順に形成された多重量子井
戸活性層であり、InxGa1-xN−n側緩衝層の組成は
0.03≦x≦a−0.1、b1−0.02≦x≦b1
+0.02であり、InyGa1-yN−p側緩衝層の組成
は0.03≦y≦a−0.15、bn−0.02≦y≦
bn+0.02であることを特徴とする請求項1に記載
の半導体発光素子。
2. The method according to claim 1, wherein the active layer is formed of an In a Ga 1 -aN first quantum well layer and an In b1 Ga from the side close to the n-type GaN-based cladding layer.
1-b1 N first barrier layer, In a Ga 1-a N second quantum well layer,
Inb2Ga1 -b2N second barrier layer ... InbnGa1 -bnN
A multiple quantum well active layer formed in the order of an n - th barrier layer, an In a Ga 1-a N-th n + 1 quantum well layer (where n is an integer of 1 or more), and an In x Ga 1-x N-n side The composition of the buffer layer is 0.03 ≦ x ≦ a−0.1, b1−0.02 ≦ x ≦ b1
+0.02, and the composition of the In y Ga 1-y N-p side buffer layer is 0.03 ≦ y ≦ a−0.15, bn−0.02 ≦ y ≦
2. The semiconductor light emitting device according to claim 1, wherein bn + 0.02.
【請求項3】 上記量子井戸層の層数が4層以下であ
り、上記バリア層の層数が3層以下であることを特徴と
する請求項2に記載の半導体発光素子。
3. The semiconductor light emitting device according to claim 2, wherein the number of the quantum well layers is four or less, and the number of the barrier layers is three or less.
【請求項4】 上記バリア層の全てと、上記n側緩衝層
と、上記p側緩衝層の、In混晶比が同一(x=b1=
b2=・・・=bn=y)であることを特徴とする請求
項2に記載の半導体発光素子。
4. The In-crystal ratio of all of the barrier layers, the n-side buffer layer, and the p-side buffer layer is the same (x = b1 =
The semiconductor light emitting device according to claim 2, wherein b2 = ... = bn = y).
【請求項5】 上記p側緩衝層の層厚が6.5nm以上
25nm以下であることを特徴とする請求項1または2
に記載の半導体発光素子。
5. The method according to claim 1, wherein the thickness of the p-side buffer layer is 6.5 nm or more and 25 nm or less.
3. The semiconductor light emitting device according to item 1.
【請求項6】 上記n側緩衝層にはn型不純物が濃度5
×1016cm-3以上1×1020cm-3以下の範囲綯内に
ドーピングされ、かつ上記p側緩衝層にはp型不純物が
濃度1×1017cm-3以上5×1021cm-3以下の範囲
内にドーピングされていることを特徴とする請求項1ま
たは2に記載の半導体発光素子。
6. An n-type impurity having a concentration of 5 in the n-side buffer layer.
A range of from × 10 16 cm −3 to 1 × 10 20 cm −3 is doped into the filament, and a concentration of p-type impurity is 1 × 10 17 cm −3 to 5 × 10 21 cm − in the p-side buffer layer. 3. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is doped within a range of 3 or less.
【請求項7】 上記n側緩衝層の上記活性層と反対の側
に傾斜組成層からなるn型光ガイド層と、該n型光ガイ
ド層の上記活性層の反対側にAlを含むn型AlGaN
系クラッド層を有し、かつ上記n型光ガイド層は活性層
から遠ざかるにつれてAl組成が増加するか、またはI
n組成が減少する傾斜組成層からなることを特徴とする
請求項1または2に記載の半導体発光素子。
7. An n-type light guide layer comprising a graded composition layer on the opposite side of the n-side buffer layer from the active layer, and an n-type light guide layer containing Al on the opposite side of the active layer from the n-type light guide layer. AlGaN
And the n-type light guide layer has an Al composition that increases as the distance from the active layer increases.
3. The semiconductor light emitting device according to claim 1, comprising a graded composition layer having a reduced n composition.
【請求項8】 上記p型緩衝層の上記活性層と反対の側
に傾斜組成層からなるp型光ガイド層を有し、該p型光
ガイド層の上記活性層の反対側にAlを含むp型AlG
aN系クラッド層とを有し、かつ上記p型光ガイド層は
活性層から遠ざかるにつれてAl組成が増加するか、ま
たはIn組成が減少する傾斜組成層からなることを特徴
とする請求項1または2または7に記載の半導体発光素
子。
8. A p-type light guide layer comprising a graded composition layer on a side of the p-type buffer layer opposite to the active layer, and Al on a side of the p-type light guide layer opposite to the active layer. p-type AlG
3. The p-type optical guide layer comprising an aN-based cladding layer, and wherein the p-type light guide layer comprises a graded composition layer in which the Al composition increases or the In composition decreases as the distance from the active layer increases. Or a semiconductor light emitting device according to 7.
【請求項9】 上記n型およびp型光ガイド層のいずれ
かが、上記活性層から遠ざかるにつれてIn組成が減少
する第1ガイド層と、上記活性層から遠ざかるにつれて
Al組成が増加する第2ガイド層から構成され、第1ガ
イド層が第2ガイド層より上記活性層に近い側に形成さ
れてなることを特徴とする請求項7に記載の半導体発光
素子。
9. A first guide layer in which one of the n-type and p-type light guide layers has a reduced In composition as the distance from the active layer increases, and a second guide in which the Al composition increases as the distance from the active layer increases. The semiconductor light-emitting device according to claim 7, wherein the semiconductor light-emitting device is constituted by a layer, and the first guide layer is formed closer to the active layer than the second guide layer.
JP36871898A 1998-12-25 1998-12-25 Semiconductor light emitting element Pending JP2000196143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36871898A JP2000196143A (en) 1998-12-25 1998-12-25 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36871898A JP2000196143A (en) 1998-12-25 1998-12-25 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2000196143A true JP2000196143A (en) 2000-07-14

Family

ID=18492564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36871898A Pending JP2000196143A (en) 1998-12-25 1998-12-25 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2000196143A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083820A (en) * 2002-04-22 2003-11-01 엘지전자 주식회사 Method for manufacturing Nitride semiconductor light emitting device
US6683327B2 (en) 2001-11-13 2004-01-27 Lumileds Lighting U.S., Llc Nucleation layer for improved light extraction from light emitting devices
US6900067B2 (en) 2002-12-11 2005-05-31 Lumileds Lighting U.S., Llc Growth of III-nitride films on mismatched substrates without conventional low temperature nucleation layers
JP2005340625A (en) * 2004-05-28 2005-12-08 Nichia Chem Ind Ltd Nitride semiconductor laser device
WO2006022496A1 (en) * 2004-08-26 2006-03-02 Lg Innotek Co., Ltd Nitride semiconductor light emitting device and fabrication method thereof
JP2007281257A (en) * 2006-04-07 2007-10-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element
JP2010177651A (en) * 2009-02-02 2010-08-12 Rohm Co Ltd Semiconductor laser device
JP2011238913A (en) * 2010-04-22 2011-11-24 Imec Method of manufacturing light emitting diode
CN102487114A (en) * 2010-12-03 2012-06-06 武汉迪源光电科技有限公司 LED epitaxial structure
JP2013175790A (en) * 2000-12-28 2013-09-05 Sony Corp Semiconductor light-emitting element and manufacturing method of the same
JP2014103384A (en) * 2012-11-19 2014-06-05 Genesis Photonics Inc Nitride semiconductor structure and semiconductor light-emitting device
JP2014131019A (en) * 2012-11-27 2014-07-10 Nichia Chem Ind Ltd Nitride semiconductor laser element
US9640712B2 (en) 2012-11-19 2017-05-02 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9685586B2 (en) 2012-11-19 2017-06-20 Genesis Photonics Inc. Semiconductor structure
US9780255B2 (en) 2012-11-19 2017-10-03 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US10153394B2 (en) 2012-11-19 2018-12-11 Genesis Photonics Inc. Semiconductor structure
US10319879B2 (en) 2016-03-08 2019-06-11 Genesis Photonics Inc. Semiconductor structure
US10468549B2 (en) 2016-09-19 2019-11-05 Genesis Photonics Inc. Semiconductor device containing nitrogen
WO2023026858A1 (en) * 2021-08-24 2023-03-02 ヌヴォトンテクノロジージャパン株式会社 Nitride semiconductor light-emitting element
WO2023115302A1 (en) * 2021-12-21 2023-06-29 重庆康佳光电技术研究院有限公司 Red-light epitaxial layer and growth method therefor, red-light led chip, and display panel

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175790A (en) * 2000-12-28 2013-09-05 Sony Corp Semiconductor light-emitting element and manufacturing method of the same
US6683327B2 (en) 2001-11-13 2004-01-27 Lumileds Lighting U.S., Llc Nucleation layer for improved light extraction from light emitting devices
KR20030083820A (en) * 2002-04-22 2003-11-01 엘지전자 주식회사 Method for manufacturing Nitride semiconductor light emitting device
US6900067B2 (en) 2002-12-11 2005-05-31 Lumileds Lighting U.S., Llc Growth of III-nitride films on mismatched substrates without conventional low temperature nucleation layers
JP2005340625A (en) * 2004-05-28 2005-12-08 Nichia Chem Ind Ltd Nitride semiconductor laser device
WO2006022496A1 (en) * 2004-08-26 2006-03-02 Lg Innotek Co., Ltd Nitride semiconductor light emitting device and fabrication method thereof
US8723197B2 (en) 2004-08-26 2014-05-13 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device and method of manufacturing the same
US7812337B2 (en) 2004-08-26 2010-10-12 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device and fabrication method thereof
US8076684B2 (en) 2006-04-07 2011-12-13 Toyoda Gosei Co., Ltd. Group III intride semiconductor light emitting element
JP2007281257A (en) * 2006-04-07 2007-10-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element
JP2010177651A (en) * 2009-02-02 2010-08-12 Rohm Co Ltd Semiconductor laser device
JP2011238913A (en) * 2010-04-22 2011-11-24 Imec Method of manufacturing light emitting diode
CN102487114A (en) * 2010-12-03 2012-06-06 武汉迪源光电科技有限公司 LED epitaxial structure
US10147845B2 (en) 2012-11-19 2018-12-04 Genesis Photonics Inc. Semiconductor structure
USRE47088E1 (en) 2012-11-19 2018-10-16 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
JP2015222834A (en) * 2012-11-19 2015-12-10 新世紀光電股▲フェン▼有限公司 Nitride semiconductor structure and semiconductor light-emitting device
US9640712B2 (en) 2012-11-19 2017-05-02 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9685586B2 (en) 2012-11-19 2017-06-20 Genesis Photonics Inc. Semiconductor structure
JP2017135426A (en) * 2012-11-19 2017-08-03 新世紀光電股▲フェン▼有限公司 Nitride semiconductor structure and semiconductor light-emitting device
US9780255B2 (en) 2012-11-19 2017-10-03 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US10381511B2 (en) 2012-11-19 2019-08-13 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
JP2014103384A (en) * 2012-11-19 2014-06-05 Genesis Photonics Inc Nitride semiconductor structure and semiconductor light-emitting device
US10153394B2 (en) 2012-11-19 2018-12-11 Genesis Photonics Inc. Semiconductor structure
JP2014131019A (en) * 2012-11-27 2014-07-10 Nichia Chem Ind Ltd Nitride semiconductor laser element
US10319879B2 (en) 2016-03-08 2019-06-11 Genesis Photonics Inc. Semiconductor structure
US10468549B2 (en) 2016-09-19 2019-11-05 Genesis Photonics Inc. Semiconductor device containing nitrogen
WO2023026858A1 (en) * 2021-08-24 2023-03-02 ヌヴォトンテクノロジージャパン株式会社 Nitride semiconductor light-emitting element
WO2023115302A1 (en) * 2021-12-21 2023-06-29 重庆康佳光电技术研究院有限公司 Red-light epitaxial layer and growth method therefor, red-light led chip, and display panel

Similar Documents

Publication Publication Date Title
US7365369B2 (en) Nitride semiconductor device
JP4328366B2 (en) Semiconductor element
USRE46588E1 (en) Group III nitride LED with undoped cladding layer
KR101698629B1 (en) Nitride-semiconductor laser diode
JP4161603B2 (en) Nitride semiconductor device
JP4441563B2 (en) Nitride semiconductor laser device
EP1328050A2 (en) Semiconductor laser structure
US20040004223A1 (en) Nitride semiconductor device
JP2000196143A (en) Semiconductor light emitting element
JP2003101160A (en) Nitride semiconductor element
JP2007066981A (en) Semiconductor device
JP2002335052A (en) Nitride semiconductor element
JP2009027201A (en) Nitride semiconductor element
JPH11298090A (en) Nitride semiconductor element
JP4401610B2 (en) Nitride semiconductor laser device
JP2007214221A (en) Nitride semiconductor laser device
JPH11191639A (en) Nitride semiconductor device
JP2004104088A (en) Nitride semiconductor device
JP2010067927A (en) Nitride semiconductor light emitting element
JP4342134B2 (en) Nitride semiconductor laser device
JPH1146038A (en) Nitride semiconductor laser element and manufacture of the same
KR100511530B1 (en) The nitride semiconductor device
JP2011205148A (en) Semiconductor device
JP4254373B2 (en) Nitride semiconductor device
JPH11330614A (en) Nitride semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422