JP2010185146A - Structural coloring fiber assembly, and method for producing the same - Google Patents

Structural coloring fiber assembly, and method for producing the same Download PDF

Info

Publication number
JP2010185146A
JP2010185146A JP2009028067A JP2009028067A JP2010185146A JP 2010185146 A JP2010185146 A JP 2010185146A JP 2009028067 A JP2009028067 A JP 2009028067A JP 2009028067 A JP2009028067 A JP 2009028067A JP 2010185146 A JP2010185146 A JP 2010185146A
Authority
JP
Japan
Prior art keywords
fiber
fiber assembly
structural color
fibers
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009028067A
Other languages
Japanese (ja)
Other versions
JP5275073B2 (en
Inventor
Takashi Tarao
隆 多羅尾
Masaaki Kawabe
雅章 川部
Tatsuro Nakamura
達郎 中村
Kazuya Miyamoto
和也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Seiko PMC Corp
Original Assignee
Japan Vilene Co Ltd
Seiko PMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd, Seiko PMC Corp filed Critical Japan Vilene Co Ltd
Priority to JP2009028067A priority Critical patent/JP5275073B2/en
Publication of JP2010185146A publication Critical patent/JP2010185146A/en
Application granted granted Critical
Publication of JP5275073B2 publication Critical patent/JP5275073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new structural coloring fiber assembly colorable by utilizing transmitted light, and exhibiting sufficient coloring intensity, and to provide a method for producing the fiber assembly. <P>SOLUTION: The structural coloring fiber assembly substantially includes fibers having a 0.7-1.6 μm average fiber diameter, and a plurality of grooves extending in the fiber axis direction on the fiber surface. The method for production includes directly accumulating the fibers obtained by spinning a dope containing a polymer and a good solvent and poor solvent for the polymer by an electrospinning method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、家電、家具、車、建材(壁、天井など)、衣類、スポーツ用品、包装材(包装紙、リボン、テープなど)、インテリア材(カーテン、アートフラワー材料など)などに使用できる、透過光によって発色する繊維集合体、及びその製造方法に関する。   The present invention can be used for home appliances, furniture, cars, building materials (walls, ceilings, etc.), clothing, sports equipment, packaging materials (wrapping paper, ribbons, tapes, etc.), interior materials (curtains, art flower materials, etc.), The present invention relates to a fiber aggregate that develops color by transmitted light and a method for producing the same.

例えば、モルフォチョウや熱帯魚は色素を有していないにも拘らず、鮮やかに発色している。これは体表面の微細構造によって、特定の波長の光を反射することで生じている。このような発色は構造発色と言われている。   For example, morpho butterflies and tropical fish are vividly colored despite having no pigment. This is caused by reflecting light of a specific wavelength due to the fine structure of the body surface. Such coloring is called structural coloring.

このような構造発色を人工的に作る研究がなされている。例えば、特許文献1には、「エレクトロスプレーデポジション法により形成された、平均繊維径が100nm〜1μmの透明繊維の堆積物又は平均繊維径が100nm〜1μmの透明繊維と平均粒子径が100nm〜1μmの透明粒子との堆積物からなる光の反射・干渉機能によって可視光領域の波長の着色光を発する構造発色性材料」(請求項1)が提案されている。しかしながら、この構造発色性材料は光の反射・干渉機能を発揮させるために、実際には基体が必要である(請求項2、実施例など)ため、包装材やインテリア材など、意匠性として透過光を必要とする場合には、利用することができなかった。   Researches have been made to artificially produce such structural colors. For example, Patent Document 1 states that “a deposit of transparent fibers having an average fiber diameter of 100 nm to 1 μm formed by an electrospray deposition method or transparent fibers having an average fiber diameter of 100 nm to 1 μm and an average particle diameter of 100 nm to A “structural color-developing material that emits colored light having a wavelength in the visible light region by a light reflection / interference function composed of a deposit with 1 μm transparent particles” has been proposed. However, since this structural color-developing material actually requires a substrate in order to exhibit the light reflection / interference function (Claim 2, Example, etc.), it is transparent as a design property for packaging materials and interior materials. When light was needed, it could not be used.

また、特許文献2には、「繊維の集合体で構成された材料であって、前記繊維はセラミックスからなり、かつ、平均繊維径が50nm以上1000nm以下であり、可視領域の波長の着色光を発する構造発色材料」(請求項1)が提案されている。この構造発色材料は可視光の透過によって発色するものである([0008]、実施例など)。しかしながら、この構造発色材料は実施例1において、波長約490nmの透過率が約3.1%であることを開示している(図3)ように、発色強度が弱く、実用的ではなかった。   Patent Document 2 states that “a material composed of an aggregate of fibers, wherein the fibers are made of ceramics, have an average fiber diameter of 50 nm to 1000 nm, and emit colored light having a wavelength in the visible region. "Structural coloring materials that emit" (Claim 1) have been proposed. This structural coloring material is colored by transmission of visible light ([0008], Examples, etc.). However, as disclosed in Example 1 that the transmittance at a wavelength of about 490 nm is about 3.1% in FIG. 1 (FIG. 3), this structural color-developing material has a low color intensity and is not practical.

特開2006−22463号公報JP 2006-22463 A 特開2008−75217号公報JP 2008-75217 A

本発明の課題は、従来技術のこれらの問題点を解決し、透過光を利用して発色させることができ、且つ、充分な発色強度を示す新規の構造発色繊維集合体、及びその製造方法を提供することにある。   An object of the present invention is to solve these problems of the prior art, and to develop a novel structural color fiber assembly capable of color development using transmitted light and exhibiting sufficient color development intensity, and a method for producing the same. It is to provide.

本発明は、
[1]平均繊維径が0.7〜1.6μmであり、繊維表面に繊維軸方向に伸びる複数の溝を有する繊維から実質的になる構造発色繊維集合体、
[2]繊維が一方向に配向している、[1]の構造発色繊維集合体、
[3]ポリマーと前記ポリマーに対する良溶媒及び貧溶媒とを含む紡糸原液を静電紡糸法により紡糸した繊維を直接集積させることを特徴とする、[1]又は[2]の構造発色繊維集合体の製造方法
に関する。
The present invention
[1] A structural color fiber assembly having an average fiber diameter of 0.7 to 1.6 μm and substantially comprising fibers having a plurality of grooves extending in the fiber axis direction on the fiber surface;
[2] The structural color fiber assembly according to [1], wherein the fibers are oriented in one direction,
[3] A structurally colored fiber assembly according to [1] or [2], wherein fibers obtained by spinning a spinning stock solution containing a polymer and a good solvent and a poor solvent for the polymer by an electrostatic spinning method are directly accumulated. It relates to the manufacturing method.

本発明の構造発色繊維集合体は、平均繊維径が0.7〜1.6μmであり、且つ、繊維表面に溝を有することにより、透過光により充分に発色することができる。
また、本発明の好適態様である、繊維が一方向に配向している構造発色繊維集合体では、繊維が一方向に配向していることによって、入射角度によって発色が異なる。
The structural color fiber assembly of the present invention has an average fiber diameter of 0.7 to 1.6 μm and has a groove on the fiber surface, so that it can sufficiently color by transmitted light.
Further, in the structural color fiber assembly in which the fibers are oriented in one direction, which is a preferred embodiment of the present invention, the color development varies depending on the incident angle because the fibers are oriented in one direction.

実施例4で製造した本発明の構造発色繊維集合体シートの繊維表面の、図面に代わる、走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph which replaces drawing of the fiber surface of the structural coloring fiber assembly sheet | seat of this invention manufactured in Example 4. FIG. 実施例6で製造した本発明の構造発色繊維集合体シートの繊維表面の、図面に代わる、SEM写真である。It is a SEM photograph instead of drawing of the fiber surface of the structural color fiber assembly sheet of the present invention manufactured in Example 6.

本発明の構造発色繊維集合体は、平均繊維径が0.7〜1.6μmであり、繊維表面に繊維軸方向に伸びる複数の溝を有する繊維(以下、構造発色繊維と称する)から実質的になる。
本明細書において、「構造発色繊維から実質的になる」とは、構造発色繊維集合体を形成する構成繊維の主体が構造発色繊維であって、且つ、構造発色繊維集合体が所望の構造発色を示す限り、特に限定されるものではないが、例えば、構造発色繊維集合体の構成繊維の60%以上、好ましくは80%以上、より好ましくは100%を占めることを意味する。
The structural color fiber assembly of the present invention has an average fiber diameter of 0.7 to 1.6 μm and is substantially composed of fibers having a plurality of grooves extending in the fiber axis direction on the fiber surface (hereinafter referred to as structural color fibers). become.
In this specification, “consisting essentially of structural coloring fibers” means that the main constituent fibers forming the structural coloring fiber aggregate are structural coloring fibers, and the structural coloring fiber aggregate has a desired structural coloring. Although it is not particularly limited, it means that, for example, 60% or more, preferably 80% or more, more preferably 100% of the constituent fibers of the structural color fiber assembly.

本明細書における用語「平均繊維径」とは、40点における繊維径の算術平均値を意味する。また、「繊維径」とは、顕微鏡写真を元に計測した値を意味する。なお、構造発色繊維は、繊維表面に溝を有するため、写真上、凹凸が観察されるが、写真における最外周部間の長さを繊維径とする。   The term “average fiber diameter” in this specification means an arithmetic average value of fiber diameters at 40 points. The “fiber diameter” means a value measured based on a micrograph. In addition, since the structural color fiber has grooves on the fiber surface, irregularities are observed on the photograph, but the length between the outermost peripheral parts in the photograph is the fiber diameter.

本発明の構造発色繊維集合体を構成する構造発色繊維の平均繊維径は、0.7〜1.6μmである。後述する実施例のデータから、本発明の構造発色繊維集合体は、透過スペクトルに関して平均繊維径の約51〜54%の波長にピークをもち、発色する。可視光の波長は380〜800nm程度であるため、平均繊維径は0.7μm(=0.38/0.54)〜1.6μm(=0.8/0.51)であれば、発色する。   The average fiber diameter of the structural color fibers constituting the structural color fiber assembly of the present invention is 0.7 to 1.6 μm. From the data of Examples described later, the structural color fiber assembly of the present invention has a peak at a wavelength of about 51 to 54% of the average fiber diameter with respect to the transmission spectrum, and develops color. Since the wavelength of visible light is about 380 to 800 nm, color development occurs when the average fiber diameter is 0.7 μm (= 0.38 / 0.54) to 1.6 μm (= 0.8 / 0.51). .

構造発色繊維の材料としては、前記特定範囲の平均繊維径を与えることができ、且つ、繊維表面に繊維軸方向に伸びる複数の溝を形成することができるポリマー材料である限り、特に限定されるものではなく、例えば、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体などのフッ素化ポリマー;ポリエチレン、ポリプロピレンなどのオレフィン系ポリマー;ナイロン6などのナイロン系ポリマー;ポリエチレンテレフタレートなどのポリエステル系ポリマー;ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリメタクリル酸メチル、ポリアクリルアミドなどのアクリル系ポリマー;ポリ塩化ビニル、ポリビニルアルコール、セルロース、ポリビニルピロリドン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリスチレン、ポリ乳酸、ポリウレタン、これらの共重合体や混合物なども使用可能である。   The material of the structural coloring fiber is particularly limited as long as it is a polymer material that can give an average fiber diameter in the specific range and can form a plurality of grooves extending in the fiber axis direction on the fiber surface. For example, fluorinated polymers such as polyvinylidene fluoride and polyvinylidene fluoride-hexafluoropropylene copolymer; olefin polymers such as polyethylene and polypropylene; nylon polymers such as nylon 6; polyester polymers such as polyethylene terephthalate Acrylic polymers such as polyacrylonitrile, polyacrylonitrile-methacrylate copolymer, polymethyl methacrylate, polyacrylamide; polyvinyl chloride, polyvinyl alcohol, cellulose, polyvinyl pyrrolidone, polyethylene Side, polypropylene oxide, polystyrene, polylactic acid, polyurethane, and copolymers thereof and mixtures may also be used.

構造発色繊維の繊維表面の溝は、繊維軸方向に伸びていれば良く、幅、深さ等は特に限定しない。また、繊維軸に平行である必要はない。   The groove on the fiber surface of the structural color fiber is not particularly limited as long as it extends in the fiber axis direction. Moreover, it is not necessary to be parallel to the fiber axis.

本発明の構造発色繊維集合体では、構造発色繊維が一方向に配向していると、入射角度によって発色が異なる。
本明細書において「一方向に配向している」とは、下記の測定及び算出により決定される「繊維配向の標準偏差値」が30以下であることを意味する。前記「繊維配向の標準偏差値」の測定・算出方法は、例えば、特開2004−183131号公報に記載されており、具体的には、繊維集合体の電子顕微鏡写真上に直線を引いた場合に形成される、繊維と前記直線とのなす角度(同じ回転方向にて測定)を100点について測定し、その測定の結果得られる角度の標準偏差値を「繊維配向の標準偏差値」とする。
In the structural color fiber assembly of the present invention, when the structural color fibers are oriented in one direction, the color development varies depending on the incident angle.
In this specification, “oriented in one direction” means that the “standard deviation value of fiber orientation” determined by the following measurement and calculation is 30 or less. The measurement / calculation method of the “standard deviation value of fiber orientation” is described in, for example, Japanese Patent Application Laid-Open No. 2004-183131. Specifically, when a straight line is drawn on an electron micrograph of a fiber assembly The angle formed by the fiber and the straight line (measured in the same rotational direction) is measured for 100 points, and the standard deviation value of the angle obtained as a result of the measurement is defined as the “standard deviation value of fiber orientation”. .

このような一方向に配向した構造発色繊維集合体は、例えば、特開2004−183131号公報に記載されているように、繊維の集積体を200m/min.以上の速さで移動させることにより製造できる。   Such a structure-colored fiber assembly oriented in one direction is, for example, described in Japanese Patent Application Laid-Open No. 2004-183131, in which an aggregate of fibers is 200 m / min. It can be manufactured by moving at the above speed.

本発明の構造発色繊維集合体は、これに限定されるものではないが、本発明の製造方法により製造することができる。
本発明の製造方法では、ポリマーと前記ポリマーに対する良溶媒及び貧溶媒とを含む紡糸原液を用いること以外は、周知の静電紡糸法に従って、静電紡糸法により紡糸した繊維を直接集積させる。例えば、特開2005−194675号公報、特開2003−073964号公報、特開2006−112023号公報等に記載されているように、1つ又は2つ以上のノズルから紡糸原液を吐出するとともに、電界を作用させ、繊維化した後にシリンダ、コンベア等に集積する方法によって実施できる。
The structural color fiber assembly of the present invention is not limited to this, but can be produced by the production method of the present invention.
In the production method of the present invention, fibers spun by an electrospinning method are directly accumulated according to a well-known electrospinning method, except that a spinning solution containing a polymer and a good solvent and a poor solvent for the polymer is used. For example, as described in JP-A-2005-194675, JP-A-2003-073964, JP-A-2006-112023 and the like, the spinning dope is discharged from one or two or more nozzles, It can be carried out by a method in which an electric field is applied and the fibers are made into fibers and then accumulated on a cylinder, a conveyor or the like.

本発明の製造方法で用いる良溶媒は、構造発色繊維の材料として使用するポリマーを溶解することができる溶媒であれば良く、特に限定されるものではない。より具体的には、ポリマーとしてポリアクリルアミドを用いる場合には、良溶媒として、例えば、水を用いることができる。   The good solvent used in the production method of the present invention is not particularly limited as long as it is a solvent that can dissolve the polymer used as the material of the structural color fiber. More specifically, when polyacrylamide is used as the polymer, for example, water can be used as the good solvent.

本発明の製造方法で用いる貧溶媒は、良溶媒よりもポリマーの溶解性が悪く、良溶媒と混和し、かつ良溶媒よりも沸点の高い溶媒であれば良く、特に限定されるものではない。貧溶媒は良溶媒よりも沸点が高いことによって、良溶媒が揮発しても残存し、貧溶媒が揮発する際に繊維の体積を収縮させ、繊維表面に皺を発生させやすい。
ポリマーとしてポリアクリルアミドを使用し、良溶媒として水(沸点:100℃)を用いる場合には、貧溶媒として、例えば、ジメチルホルムアミド(DMF、沸点:152℃)、ジメチルアセトアミド(沸点:165℃)、N−メチルピロリドン(沸点:202℃)を用いることができる。
The poor solvent used in the production method of the present invention is not particularly limited as long as it has a lower polymer solubility than the good solvent, is miscible with the good solvent, and has a higher boiling point than the good solvent. Since the poor solvent has a boiling point higher than that of the good solvent, it remains even if the good solvent volatilizes, and when the poor solvent volatilizes, the volume of the fiber is contracted and wrinkles are easily generated on the fiber surface.
When polyacrylamide is used as the polymer and water (boiling point: 100 ° C.) is used as the good solvent, examples of the poor solvent include dimethylformamide (DMF, boiling point: 152 ° C.), dimethylacetamide (boiling point: 165 ° C.), N-methylpyrrolidone (boiling point: 202 ° C.) can be used.

本発明の製造方法により、本発明の構造発色繊維集合体を製造できる理由について、本発明者は、次のように推測している。なお、本発明は、以下の推測に限定されるものではない。
まず、紡糸原液が紡糸されると、まず、良溶媒が揮発し、主としてポリマーと貧溶媒から構成されることになる。この主としてポリマーと貧溶媒からなる繊維は貧溶媒であるが故に繊維表面が固化しやすい。
この繊維表面が固化した状態で飛翔を続け、繊維内部に残っている貧溶媒が揮発する際に繊維の体積が小さくなるように収縮するが、既に繊維表面が固化しているため、繊維表面に皺が発生する。
この繊維が飛翔している時には電界の作用を受けているため、収縮の際に、電界方向、つまり、繊維軸方向に延伸力が働き、繊維表面に繊維軸方向に伸びる複数の溝が形成される。
The inventor presumes the reason why the structural color fiber assembly of the present invention can be manufactured by the manufacturing method of the present invention as follows. Note that the present invention is not limited to the following estimation.
First, when the spinning dope is spun, first, the good solvent is volatilized and is mainly composed of a polymer and a poor solvent. Since the fiber mainly composed of a polymer and a poor solvent is a poor solvent, the fiber surface is easily solidified.
When the fiber surface is solidified, it continues to fly, and when the poor solvent remaining inside the fiber volatilizes, it shrinks so that the volume of the fiber becomes small, but since the fiber surface is already solidified, Habits occur.
When this fiber is flying, it receives the action of an electric field, so that when it contracts, stretching force acts in the direction of the electric field, that is, in the fiber axis direction, and a plurality of grooves extending in the fiber axis direction are formed on the fiber surface. The

本発明の製造方法では、良溶媒と貧溶媒との沸点差は10℃以上あるのが好ましい。貧溶媒による繊維表面固化効果が得られやすいためである。また、貧溶媒の沸点が高すぎると、繊維の飛翔中に揮発しないため、210℃以下であるのが好ましい。   In the production method of the present invention, the difference in boiling point between the good solvent and the poor solvent is preferably 10 ° C. or more. It is because the fiber surface solidification effect by a poor solvent is easy to be obtained. Further, if the boiling point of the poor solvent is too high, it does not volatilize during the flight of the fiber, so that the temperature is preferably 210 ° C. or lower.

貧溶媒の混合溶媒中における重量比率は良溶媒と貧溶媒との組み合わせによって異なるため、特に限定するものではないが、1〜50wt%であるのが好ましい。例えば、ポリアクリルアミドを水(良溶媒)とDMF(貧溶媒)に溶解させる場合、貧溶媒であるDMFは混合溶媒中、30〜45wt%であるのが好ましい。   Since the weight ratio of the poor solvent in the mixed solvent varies depending on the combination of the good solvent and the poor solvent, it is not particularly limited, but is preferably 1 to 50 wt%. For example, when polyacrylamide is dissolved in water (good solvent) and DMF (poor solvent), the poor solvent DMF is preferably 30 to 45 wt% in the mixed solvent.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.

《実施例1》
攪拌機、温度計、還流冷却管、及び窒素ガス導入管を付した1リットル四つ口フラスコに水507.4g、50%アクリルアミド水溶液184.3g、5%メタリルスルホン酸ナトリウム水溶液2.9gを仕込み、30%硫酸水溶液でpH2.5に調整した。次いで、窒素ガス雰囲気下、60℃に昇温し、5%2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(和光純薬工業株式会社製、V−50)水溶液3.5gを加え、85℃まで昇温した。昇温から1時間後に更に5%2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(和光純薬工業株式会社製、V−50)水溶液4.7gを加え、その1時間30分後に水220.1gを加え反応を停止した。固形分10.2%、pH3.4、粘度(25℃、ブルックフィールド回転粘度計使用)2,300mPa・sのポリアクリルアミド水溶液を得た。
重量平均分子量をGPC−MALLSで測定したところ、50万であった。
このポリアクリルアミド水溶液はそのまま、若しくは水を減圧下で留去し高濃度化してから使用した。
Example 1
A 1-liter four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet tube was charged with 507.4 g of water, 184.3 g of 50% acrylamide aqueous solution, and 2.9 g of 5% sodium methallylsulfonate solution. The pH was adjusted to 2.5 with a 30% aqueous sulfuric acid solution. Next, the temperature was raised to 60 ° C. in a nitrogen gas atmosphere, and 3.5 g of 5% 2,2′-azobis (2-methylpropionamidine) dihydrochloride (W-50 Pure Chemical Industries, Ltd., V-50) aqueous solution was added. In addition, the temperature was raised to 85 ° C. 1 hour after the temperature rise, 4.7 g of 5% 2,2′-azobis (2-methylpropionamidine) dihydrochloride (Wako Pure Chemical Industries, Ltd., V-50) aqueous solution was added, and the time was 1 hour 30 minutes. Later, 220.1 g of water was added to stop the reaction. A polyacrylamide aqueous solution having a solid content of 10.2%, a pH of 3.4, and a viscosity (25 ° C., using Brookfield rotary viscometer) of 2,300 mPa · s was obtained.
It was 500,000 when the weight average molecular weight was measured by GPC-MALLS.
The polyacrylamide aqueous solution was used as it was or after the water was distilled off under reduced pressure to increase the concentration.

10wt%に調整したポリアクリルアミド(重量平均分子量50万)水溶液に、貧溶媒としてDMF(沸点:152℃)を加え、ポリマー濃度が6wt%となるように紡糸原液を調製した。DMFの混合溶媒中における重量比率[{DMF/(水+DMF)}×100(%)]は42.5wt%であった。
特開2005−194675号公報に開示の静電紡糸装置と同じ装置にて、吐出量0.5g/hr、ノズルとドラムの距離10cm、ドラムの周速:1m/min.、印加電圧+13kV、紡糸雰囲気の温湿度25℃/15%RHの条件で静電紡糸を行い、目付1g/mの構造発色繊維集合体シートを作製した。
DMF (boiling point: 152 ° C.) was added as a poor solvent to a polyacrylamide (weight average molecular weight 500,000) aqueous solution adjusted to 10 wt% to prepare a spinning dope so that the polymer concentration was 6 wt%. The weight ratio [{DMF / (water + DMF)} × 100 (%)] in the mixed solvent of DMF was 42.5 wt%.
In the same apparatus as the electrostatic spinning apparatus disclosed in JP-A-2005-194675, the discharge rate is 0.5 g / hr, the distance between the nozzle and the drum is 10 cm, and the peripheral speed of the drum is 1 m / min. Electrostatic spinning was performed under the conditions of applied voltage +13 kV and temperature and humidity of the spinning atmosphere of 25 ° C./15% RH to produce a structural color fiber assembly sheet having a basis weight of 1 g / m 2 .

平均繊維径は770nmであり、走査型電子顕微鏡(SEM)により繊維表面の観察を行ったところ、繊維の表面には繊維軸方向に伸びる溝が多数形成されていた。
構造発色繊維集合体シートの透過スペクトルを測定(島津製作所製、分光光度計UV−3100Sを使用、試料を2cm×6cmとなるように枠に貼り付け、光の入射角90°で測定)したところ、波長410nmにピークを持ち、ピークトップの透過率は24%であった。構造発色繊維集合体シートの透過光は、強い青色の構造色を示した。
The average fiber diameter was 770 nm. When the fiber surface was observed with a scanning electron microscope (SEM), many grooves extending in the fiber axis direction were formed on the fiber surface.
When the transmission spectrum of the structural color fiber assembly sheet was measured (manufactured by Shimadzu Corporation, using a spectrophotometer UV-3100S, the sample was attached to a frame so as to be 2 cm × 6 cm, and measured at an incident angle of light of 90 °) And had a peak at a wavelength of 410 nm, and the transmittance at the peak top was 24%. The transmitted light of the structural color fiber assembly sheet showed a strong blue structural color.

《実施例2》
ポリマー濃度が6.5wt%となるようにDMFを加えたこと以外は、実施例1と同様にして目付1g/mの構造発色繊維集合体シートを作製した。DMFの混合溶媒中における重量比率は37.5wt%であった。
Example 2
A structural color fiber assembly sheet having a basis weight of 1 g / m 2 was produced in the same manner as in Example 1 except that DMF was added so that the polymer concentration was 6.5 wt%. The weight ratio of DMF in the mixed solvent was 37.5 wt%.

平均繊維径は650nmであり、SEMにより繊維表面の観察を行ったところ、繊維の表面には繊維軸方向に伸びる溝が多数形成されていた。
構造発色繊維集合体シートの透過スペクトルを測定したところ、波長350nmにピークを持ち、ピークトップの透過率は20%であった。構造発色繊維集合体シートの透過光は、強い紫色の構造色を示した。
The average fiber diameter was 650 nm, and the fiber surface was observed by SEM. As a result, many grooves extending in the fiber axis direction were formed on the fiber surface.
When the transmission spectrum of the structural color fiber assembly sheet was measured, it had a peak at a wavelength of 350 nm, and the transmittance at the peak top was 20%. The transmitted light of the structural color fiber assembly sheet showed a strong purple structural color.

《実施例3》
DMFに代えて、ポリマー濃度が6.5wt%となるようにジメチルアセトアミド(沸点:165℃)を加えたこと以外は、実施例2と同様にして目付1g/mの構造発色繊維集合体シートを作製した。ジメチルアセトアミドの混合溶媒中における重量比率は37.5wt%であった。
Example 3
A structural color fiber assembly sheet having a basis weight of 1 g / m 2 in the same manner as in Example 2 except that dimethylacetamide (boiling point: 165 ° C.) was added so that the polymer concentration was 6.5 wt% instead of DMF. Was made. The weight ratio of dimethylacetamide in the mixed solvent was 37.5 wt%.

平均繊維径は660nmであり、SEMにより繊維表面の観察を行ったところ、繊維の表面には繊維軸方向に伸びる溝が多数形成されていた。
構造発色繊維集合体シートの透過スペクトルを測定したところ、波長345nmにピークを持ち、ピークトップの透過率は21%であった。構造発色繊維集合体シートの透過光は、強い紫色の構造色を示した。
The average fiber diameter was 660 nm, and when the fiber surface was observed by SEM, many grooves extending in the fiber axis direction were formed on the fiber surface.
When the transmission spectrum of the structural color fiber assembly sheet was measured, it had a peak at a wavelength of 345 nm and the transmittance at the peak top was 21%. The transmitted light of the structural color fiber assembly sheet showed a strong purple structural color.

《実施例4》
実施例1で合成したポリアクリルアミド(重量平均分子量50万)に代えて、以下の手順に従って合成したポリアクリルアミド(重量平均分子量360万)の10wt%水溶液を用いたこと以外は、実施例1と同様にして、目付1g/mの構造発色繊維集合体シートを作製した。
Example 4
Instead of the polyacrylamide synthesized in Example 1 (weight average molecular weight 500,000), a 10 wt% aqueous solution of polyacrylamide (weight average molecular weight 3.6 million) synthesized according to the following procedure was used, as in Example 1. Thus, a structural color fiber assembly sheet having a basis weight of 1 g / m 2 was produced.

攪拌機、温度計、還流冷却管、及び窒素ガス導入管を付した1リットル四つ口フラスコに水512.1g、50%アクリルアミド水溶液184.3g、1%メチレンビスアクリルアミド水溶液5.0g、5%メタリルスルホン酸ナトリウム水溶液9.9gを仕込み、30%硫酸水溶液でpH2.5に調整した。次いで、窒素ガス雰囲気下、60℃に昇温し、5%過硫酸アンモニウム水溶液3.0gを加え、85℃まで昇温した。昇温から1時間後に更に5%過硫酸アンモニウム水溶液4.0gを加え、その2時間後に水214.7gを加え反応を停止した。固形分10.5%、pH3.5、粘度(25℃、ブルックフィールド回転粘度計使用)1,400mPa・sのポリマー溶液を得た。
重量平均分子量をGPC−MALLSで測定したところ、360万であった。
In a 1 liter four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet tube, water 512.1 g, 50% acrylamide aqueous solution 184.3 g, 1% methylenebisacrylamide aqueous solution 5.0 g, 5% meta 9.9 g of sodium rilsulfonate aqueous solution was charged and adjusted to pH 2.5 with 30% sulfuric acid aqueous solution. Next, the temperature was raised to 60 ° C. in a nitrogen gas atmosphere, 3.0 g of 5% ammonium persulfate aqueous solution was added, and the temperature was raised to 85 ° C. One hour after the temperature rise, 4.0 g of 5% ammonium persulfate aqueous solution was further added, and after 2 hours, 214.7 g of water was added to stop the reaction. A polymer solution having a solid content of 10.5%, a pH of 3.5, and a viscosity (at 25 ° C., using a Brookfield rotational viscometer) of 1,400 mPa · s was obtained.
When the weight average molecular weight was measured by GPC-MALLS, it was 3.6 million.

得られた構造発色繊維集合体シートの平均繊維径は720nmであり、SEMにより繊維表面の観察を行ったところ、図1に示すように、繊維の表面には繊維軸方向に伸びる溝が多数形成されていた。
構造発色繊維集合体シートの透過スペクトルを測定したところ、波長380nmにピークを持ち、ピークトップの透過率は31%であった。構造発色繊維集合体シートの透過光は、強い紫色の構造色を示した。
The resulting structural color fiber assembly sheet has an average fiber diameter of 720 nm, and the surface of the fiber was observed by SEM. As shown in FIG. 1, a number of grooves extending in the fiber axis direction were formed on the surface of the fiber. It had been.
When the transmission spectrum of the structural color fiber assembly sheet was measured, it had a peak at a wavelength of 380 nm and the transmittance at the peak top was 31%. The transmitted light of the structural color fiber assembly sheet showed a strong purple structural color.

《実施例5》
実施例1で合成したポリアクリルアミド(重量平均分子量50万)の13wt%水溶液に、貧溶媒としてDMFを加え、ポリマー濃度が8wt%となるように紡糸原液を調製した。DMFの混合溶媒中における重量比率は41.9wt%であった。
特開2005−194675号公報に開示の静電紡糸装置と同じ装置にて、吐出量0.5g/hr、ノズルとドラムの距離12cm、ドラムの周速:1m/min.、印加電圧+13kV、紡糸雰囲気の温湿度25℃/15%RHの条件で静電紡糸を行い、目付1g/mの構造発色繊維集合体シートを作製した。
Example 5
DMF was added as a poor solvent to the 13 wt% aqueous solution of polyacrylamide (weight average molecular weight 500,000) synthesized in Example 1 to prepare a spinning dope so that the polymer concentration was 8 wt%. The weight ratio of DMF in the mixed solvent was 41.9 wt%.
In the same apparatus as the electrostatic spinning apparatus disclosed in JP-A-2005-194675, the discharge amount is 0.5 g / hr, the distance between the nozzle and the drum is 12 cm, and the peripheral speed of the drum is 1 m / min. Electrostatic spinning was performed under the conditions of applied voltage +13 kV and temperature and humidity of the spinning atmosphere of 25 ° C./15% RH to produce a structural color fiber assembly sheet having a basis weight of 1 g / m 2 .

平均繊維径は980nmであり、SEMにより繊維表面の観察を行ったところ、繊維の表面には繊維軸方向に伸びる溝が多数形成されていた。
構造発色繊維集合体シートの透過スペクトルを測定したところ、波長500nmにピークを持ち、ピークトップの透過率は22%であった。構造発色繊維集合体シートの透過光は、強い緑色の構造色を示した。
The average fiber diameter was 980 nm, and the fiber surface was observed by SEM. As a result, many grooves extending in the fiber axis direction were formed on the fiber surface.
When the transmission spectrum of the structural color fiber assembly sheet was measured, it had a peak at a wavelength of 500 nm, and the transmittance at the peak top was 22%. The transmitted light of the structural color fiber assembly sheet showed a strong green structural color.

《実施例6》
実施例1で合成したポリアクリルアミド(重量平均分子量50万)の15wt%水溶液に、貧溶媒としてDMFを加え、ポリマー濃度が9.5wt%となるように紡糸原液を調製した。DMFの混合溶媒中における重量比率は40.5wt%であった。
特開2005−194675号公報に開示の静電紡糸装置と同じ装置にて、吐出量0.5g/hr、ノズルとドラムの距離13cm、ドラムの周速:1m/min.、印加電圧+13kV、紡糸雰囲気の温湿度25℃/15%RHの条件で静電紡糸を行い、目付1g/mの構造発色繊維集合体シートを作製した。
Example 6
DMF was added as a poor solvent to a 15 wt% aqueous solution of polyacrylamide (weight average molecular weight 500,000) synthesized in Example 1 to prepare a spinning dope so that the polymer concentration was 9.5 wt%. The weight ratio of DMF in the mixed solvent was 40.5 wt%.
In the same apparatus as the electrostatic spinning apparatus disclosed in JP-A-2005-194675, the discharge amount is 0.5 g / hr, the distance between the nozzle and the drum is 13 cm, and the peripheral speed of the drum is 1 m / min. Electrostatic spinning was performed under the conditions of applied voltage +13 kV and temperature and humidity of the spinning atmosphere of 25 ° C./15% RH to produce a structural color fiber assembly sheet having a basis weight of 1 g / m 2 .

平均繊維径は1150nmであり、SEMにより繊維表面の観察を行ったところ、図2に示すように、繊維の表面には繊維軸方向に伸びる溝が多数形成されていた。
構造発色繊維集合体シートの透過スペクトルを測定したところ、波長570nmにピークを持ち、ピークトップの透過率は23%であった。構造発色繊維集合体シートの透過光は、強い黄色の構造色を示した。
The average fiber diameter was 1150 nm, and the surface of the fiber was observed by SEM. As shown in FIG. 2, many grooves extending in the fiber axis direction were formed on the surface of the fiber.
When the transmission spectrum of the structural color fiber assembly sheet was measured, it had a peak at a wavelength of 570 nm, and the transmittance at the peak top was 23%. The transmitted light of the structural color fiber assembly sheet showed a strong yellow structural color.

《実施例7》
ドラムの周速を1000m/minとしたこと以外は、実施例1と同様に静電紡糸を行い、繊維が1方向に配向した構造発色繊維集合体シートを作製した。
Example 7
Except that the peripheral speed of the drum was set to 1000 m / min, electrostatic spinning was performed in the same manner as in Example 1 to produce a structural color fiber assembly sheet in which the fibers were oriented in one direction.

平均繊維径は750nmであり、SEMにより繊維表面の観察を行ったところ、繊維の表面には繊維軸方向に伸びる溝が多数形成されていた。
この構造発色繊維集合体シートを構成する繊維の長軸方向に対する光の入射角を90°、60°、45°、30°と変化させて、構造発色繊維集合体シートの透過スペクトルを測定したところ、透過光のピーク波長はそれぞれ400、430、490、560nmであった。また、光の入射角を変えるにしたがって、構造色は青−緑−黄色に変化した。
The average fiber diameter was 750 nm, and when the fiber surface was observed by SEM, many grooves extending in the fiber axis direction were formed on the fiber surface.
The transmission spectrum of the structural color fiber assembly sheet was measured by changing the incident angle of light with respect to the major axis direction of the fibers constituting the structural color fiber assembly sheet to 90 °, 60 °, 45 °, and 30 °. The peak wavelengths of transmitted light were 400, 430, 490, and 560 nm, respectively. The structural color changed to blue-green-yellow as the incident angle of light was changed.

《比較例1》
実施例1で合成したポリアクリルアミド(重量平均分子量50万)の10wt%水溶液を用いて、特開2005−194675号公報に開示の静電紡糸装置と同じ装置にて、吐出量0.5g/hr、ノズルとドラムの距離10cm、ドラムの周速:1m/min.、印加電圧+13kV、紡糸雰囲気の温湿度25℃/15%RHの条件で静電紡糸を行い、目付1g/mの繊維集合体シートを作製した。
<< Comparative Example 1 >>
Using a 10 wt% aqueous solution of polyacrylamide (weight average molecular weight 500,000) synthesized in Example 1, the same apparatus as the electrostatic spinning apparatus disclosed in Japanese Patent Application Laid-Open No. 2005-194675 has a discharge rate of 0.5 g / hr. The distance between the nozzle and the drum is 10 cm, the peripheral speed of the drum is 1 m / min. Electrospinning was performed under the conditions of applied voltage +13 kV and temperature and humidity of the spinning atmosphere of 25 ° C./15% RH to produce a fiber assembly sheet having a basis weight of 1 g / m 2 .

平均繊維径は150nmであり、SEMにより繊維表面の観察を行ったところ、繊維表面に溝は観察されなかった。
繊維集合体シートの透過スペクトルを測定したところ、可視部にピークは見られず、構造色は観察されなかった。
The average fiber diameter was 150 nm, and when the fiber surface was observed by SEM, no groove was observed on the fiber surface.
When the transmission spectrum of the fiber assembly sheet was measured, no peak was observed in the visible portion, and no structural color was observed.

《比較例2》
ポリマー濃度が7.5wt%となるようにDMFを加えたこと以外は、実施例1と同様にして繊維集合体シートを作製した。DMFの混合溶媒中における重量比率は27wt%であった。
<< Comparative Example 2 >>
A fiber assembly sheet was produced in the same manner as in Example 1 except that DMF was added so that the polymer concentration was 7.5 wt%. The weight ratio of DMF in the mixed solvent was 27 wt%.

平均繊維径は400nmであり、SEMにより繊維表面の観察を行ったところ、繊維の表面には繊維軸方向に伸びる溝が多数形成されていた。
繊維集合体シートの透過スペクトルを測定したところ、可視部にピークは見られず、構造色は観察されなかった。
The average fiber diameter was 400 nm, and the fiber surface was observed by SEM. As a result, many grooves extending in the fiber axis direction were formed on the fiber surface.
When the transmission spectrum of the fiber assembly sheet was measured, no peak was observed in the visible portion, and no structural color was observed.

《比較例3》
実施例1で合成したポリアクリルアミド(重量平均分子量50万)の10wt%水溶液に、ポリマー濃度が5.5wt%となるようにDMFを加えたところ、液が白濁し、静電紡糸法により繊維化することができなかった。DMFの混合溶媒中における重量比率は47.6wt%であった。
<< Comparative Example 3 >>
When DMF was added to a 10 wt% aqueous solution of polyacrylamide (weight average molecular weight 500,000) synthesized in Example 1 so that the polymer concentration became 5.5 wt%, the liquid became cloudy and was made into fibers by an electrospinning method. I couldn't. The weight ratio of DMF in the mixed solvent was 47.6 wt%.

《比較例4》
実施例4で合成したポリアクリルアミド(重量平均分子量360万)の10wt%水溶液に、貧溶媒としてエタノール(沸点:78℃)を加え、ポリマー濃度が6wt%となるように紡糸原液を調製した。エタノールの混合溶媒中における重量比率は42.5wt%であった。
実施例1と同じ条件で静電紡糸を行ったが、紡糸原液が固化されないままドラムに捕集され、繊維を作製することができなかった。
<< Comparative Example 4 >>
Ethanol (boiling point: 78 ° C.) was added as a poor solvent to a 10 wt% aqueous solution of polyacrylamide (weight average molecular weight 3.6 million) synthesized in Example 4 to prepare a spinning dope so that the polymer concentration was 6 wt%. The weight ratio of ethanol in the mixed solvent was 42.5 wt%.
Electrospinning was carried out under the same conditions as in Example 1, but the spinning solution was collected on the drum without solidification, and fibers could not be produced.

《比較例5》
実施例1で作製した構造発色繊維集合体シートを温度60℃に加熱した湯浴上で30秒間保持し、水蒸気処理を行った。
水蒸気処理後の繊維集合体シート構成繊維の繊維径は840nmであり、SEMにより繊維表面の観察を行ったところ、繊維表面に溝は観察されなかった。また、繊維集合体シートの透過スペクトルを測定したところ、可視部にピークは観察されなかった。
<< Comparative Example 5 >>
The structural color fiber assembly sheet produced in Example 1 was kept on a hot water bath heated to 60 ° C. for 30 seconds and subjected to steam treatment.
The fiber diameter of the fiber assembly sheet-constituting fiber after the steam treatment was 840 nm, and when the fiber surface was observed by SEM, no groove was observed on the fiber surface. Moreover, when the transmission spectrum of the fiber assembly sheet was measured, no peak was observed in the visible part.

本発明の構造発色繊維集合体は、例えば、家電、家具、車、建材(壁、天井など)、衣類、スポーツ用品、包装材(包装紙、リボン、テープなど)、インテリア材(カーテン、アートフラワー材料など)などの用途に利用することができる。   The structural coloring fiber assembly of the present invention includes, for example, home appliances, furniture, cars, building materials (walls, ceilings, etc.), clothing, sports equipment, packaging materials (wrapping paper, ribbons, tapes, etc.), interior materials (curtains, art flowers, etc.) It can be used for applications such as materials.

Claims (3)

平均繊維径が0.7〜1.6μmであり、繊維表面に繊維軸方向に伸びる複数の溝を有する繊維から実質的になる構造発色繊維集合体。   A structural color fiber assembly having an average fiber diameter of 0.7 to 1.6 μm and substantially comprising fibers having a plurality of grooves extending in the fiber axis direction on the fiber surface. 繊維が一方向に配向している、請求項1に記載の構造発色繊維集合体。   The structural color fiber assembly according to claim 1, wherein the fibers are oriented in one direction. ポリマーと前記ポリマーに対する良溶媒及び貧溶媒とを含む紡糸原液を静電紡糸法により紡糸した繊維を直接集積させることを特徴とする、請求項1又は2に記載の構造発色繊維集合体の製造方法。   3. The method for producing a structural color fiber assembly according to claim 1, wherein fibers obtained by spinning a spinning stock solution containing a polymer and a good solvent and a poor solvent for the polymer by an electrostatic spinning method are directly accumulated. .
JP2009028067A 2009-02-10 2009-02-10 Structure-colored fiber assembly and method for producing the same Expired - Fee Related JP5275073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028067A JP5275073B2 (en) 2009-02-10 2009-02-10 Structure-colored fiber assembly and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028067A JP5275073B2 (en) 2009-02-10 2009-02-10 Structure-colored fiber assembly and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010185146A true JP2010185146A (en) 2010-08-26
JP5275073B2 JP5275073B2 (en) 2013-08-28

Family

ID=42765970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028067A Expired - Fee Related JP5275073B2 (en) 2009-02-10 2009-02-10 Structure-colored fiber assembly and method for producing the same

Country Status (1)

Country Link
JP (1) JP5275073B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517801A (en) * 2011-12-07 2012-06-27 苏州大学 Method for preparing fiber film with structural color
CN107938163A (en) * 2017-12-19 2018-04-20 苏州中科纳福材料科技有限公司 The preparation method of magnetic induced self-assembled structures color fibre film
CN111074367A (en) * 2019-12-30 2020-04-28 江苏杜为新材料科技有限公司 Preparation method of structural color-producing silk

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107938175B (en) * 2017-11-28 2020-05-15 北京理工大学 Preparation method and application of high-orientation flexible luminous polarization composite fiber film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170510A (en) * 1986-01-22 1987-07-27 Toray Ind Inc Fiber having interference color
JPH03167306A (en) * 1989-11-22 1991-07-19 I C I Japan Kk Extra fine fibrous substance
JPH08234007A (en) * 1995-02-28 1996-09-13 Res Dev Corp Of Japan Opal-like deffractive color developing film
JP2003342828A (en) * 2002-05-24 2003-12-03 Nissan Motor Co Ltd Article having light-reflecting function and method for producing the same
WO2004088024A1 (en) * 2003-03-31 2004-10-14 Teijin Limited Nonwoven fabric and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170510A (en) * 1986-01-22 1987-07-27 Toray Ind Inc Fiber having interference color
JPH03167306A (en) * 1989-11-22 1991-07-19 I C I Japan Kk Extra fine fibrous substance
JPH08234007A (en) * 1995-02-28 1996-09-13 Res Dev Corp Of Japan Opal-like deffractive color developing film
JP2003342828A (en) * 2002-05-24 2003-12-03 Nissan Motor Co Ltd Article having light-reflecting function and method for producing the same
WO2004088024A1 (en) * 2003-03-31 2004-10-14 Teijin Limited Nonwoven fabric and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517801A (en) * 2011-12-07 2012-06-27 苏州大学 Method for preparing fiber film with structural color
CN107938163A (en) * 2017-12-19 2018-04-20 苏州中科纳福材料科技有限公司 The preparation method of magnetic induced self-assembled structures color fibre film
CN111074367A (en) * 2019-12-30 2020-04-28 江苏杜为新材料科技有限公司 Preparation method of structural color-producing silk

Also Published As

Publication number Publication date
JP5275073B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP6334748B2 (en) POLYVINYL ALCOHOL POLYMER FILM AND POLARIZING FILM
KR101190202B1 (en) Fabrication method of silicon carbide nanofiber using emulsion electrospinning and silicon carbide nanofiber fabricated thereby
JP5275073B2 (en) Structure-colored fiber assembly and method for producing the same
JP2007529645A (en) Active and adaptable photochromic fibers, fabrics and membranes
KR101122253B1 (en) The manufacturing method of superhydrophilic and superhydrophobic silica coating layer
CN110359128A (en) A kind of fibrous material, fiber gel, stretchable electrically conductive composite fibre with super-elasticity and frost resistance and preparation method thereof
KR100636851B1 (en) Acrylic Copolymer Composition and Manufacturing Method of Spinning Solution thereof
CN111712533B (en) Polyvinyl alcohol film, film roll, and method for producing film roll
JP6421332B2 (en) Transparent cellulose sheet and production method
CN112962164B (en) Preparation method and application of wet response color-changing fiber
JP2001146638A (en) Monofilament and method for producing the same
JPS61119707A (en) Acrylic fiber having excellent durability and color-developability and production thereof
JP2008088591A (en) Acrylic synthetic fiber and method for producing the same
KR101577911B1 (en) A method for preparing polyvinyl alcohol films by the heterogeneous surface saponification of polyvinyl acetate films
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP2021101053A (en) Modified cross-section fiber, method for producing the same, and nonwoven fabric and sound absorbing and insulating material containing modified cross-section fiber
KR102196188B1 (en) Nano-Coating Composition And Nano-Coating Method Using The Same
Enculescu et al. Dependence on the dye’s type and concentration of the emissive properties of electrospun dye-doped beaded nanofibers
JP2005120512A (en) Acrylic conjugate fiber having refreshing cool feeling and method for producing the same
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
KR102565814B1 (en) Process for Preparing Composite Particles of Cellulose Nanofiber and Polymer
JPS63145345A (en) Production of porous polyacrylonitrile material
KR20190084815A (en) Photonic crystal with perovskite and method for manufacturing the same
JPS61138710A (en) Production of acrylic yarn having improved durability
JP2006200062A (en) Acrylic fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees