JP2010184340A - Processing method for lens and grinding device - Google Patents

Processing method for lens and grinding device Download PDF

Info

Publication number
JP2010184340A
JP2010184340A JP2009031762A JP2009031762A JP2010184340A JP 2010184340 A JP2010184340 A JP 2010184340A JP 2009031762 A JP2009031762 A JP 2009031762A JP 2009031762 A JP2009031762 A JP 2009031762A JP 2010184340 A JP2010184340 A JP 2010184340A
Authority
JP
Japan
Prior art keywords
grinding
lens
grindstone
axis
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009031762A
Other languages
Japanese (ja)
Inventor
Yoshiki Komatsu
義樹 小松
Naoto Mizumoto
直人 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2009031762A priority Critical patent/JP2010184340A/en
Priority to KR1020100005927A priority patent/KR20100092873A/en
Priority to CN201010115372A priority patent/CN101804593A/en
Priority to TW099104274A priority patent/TW201029797A/en
Publication of JP2010184340A publication Critical patent/JP2010184340A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/0031Machines having several working posts; Feeding and manipulating devices
    • B24B13/0037Machines having several working posts; Feeding and manipulating devices the lenses being worked by different tools, e.g. for rough-grinding, fine-grinding, polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/0043Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor the workpieces being deformed during the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/005Blocking means, chucks or the like; Alignment devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0023Other grinding machines or devices grinding machines with a plurality of working posts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • B24B41/061Work supports, e.g. adjustable steadies axially supporting turning workpieces, e.g. magnetically, pneumatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens processing method and a grinding device eliminating the need for a centering machine. <P>SOLUTION: A bi-axial grinding machine provided with a grinding stone shaft attached with a grinding stone for rough grinding and a grinding stone shaft attached with a grinding stone for precise grinding is used. A lens material is charged in a first bi-axial grinding machine 10a and rough grinding and precise grinding of a first surface are performed. Subsequently, the lens material is conveyed to a second bi-axial grinding machine 10b, and rough grinding, precise grinding and outer periphery processing of a second surface are performed by the second bi-axial grinding machine 10b. A holder 12a of the first bi-axial grinding machine 10a is made to a holder with a chuck structure, and a holder of the second bi-axial grinding machine is made to a holder with a suction structure. The second bi-axial grinding machine retains the lens material making the roughly ground surface as reference, and since rough grinding, precise grinding and outer periphery processing of the second surface are performed while keeping the retaining, centering of the lens material is made possible by outer periphery processing. Thereafter, polishing of the first surface and the second surface is performed, and washing of the polished lens is finally performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、レンズの加工方法及び研削装置に関し、レンズ球面の粗研削工程、精研削工程及び研磨工程並びに芯出し工程を備えたレンズ加工に適用される上記方法及び装置に関するものである。   The present invention relates to a lens processing method and a grinding apparatus, and relates to the above-described method and apparatus applied to lens processing including a rough grinding process, a fine grinding process and a polishing process, and a centering process of a lens spherical surface.

レンズの加工には、レンズの両球面(以下、「第1面」と「第2面」と言う。)それぞれの粗研削、精研削及び研磨(ポリシング)と、芯出し(芯取)のための外周加工とが必要であり、これらの加工工程を行うのに複数の機械が用いられている。従来は、粗研削機のカップ砥石で第1面と第2面の粗研削を行い、精研削機のペレット皿で第1面と第2面の精研削を行い、研磨機の研磨皿で第1面と第2面の研磨を行い、芯取機で外周加工を行った後、外周加工の際に使用した油性の研削液を洗い流すための洗浄を行う、という工程で加工されていた。   The lens is processed for rough grinding, fine grinding and polishing (polishing) and centering (centering) of both spherical surfaces (hereinafter referred to as “first surface” and “second surface”) of the lens. And a plurality of machines are used to perform these processing steps. Conventionally, the first and second surfaces are roughly ground with a cup grinder of a rough grinder, the first and second surfaces are finely ground with a pellet pan of a fine grinder, and the first with a polishing pan of a grinder. The first surface and the second surface are polished, the outer periphery is processed by a centering machine, and then the cleaning is performed to wash away the oil-based grinding liquid used in the outer periphery processing.

粗研削は、一般にCG加工(球面創成加工)と呼ばれる研削方法で行われている。すなわち、鉛直方向のワーク軸の上端に設けたレンズホルダにレンズ素材を装着し、下端にレンズ素材の表面と円接触(正確にはレンズ周縁からはみ出す円で接触)する下向きカップ状の砥石を装着した砥石軸を研削しようとするレンズ表面の曲率に合わせて傾斜させ、カップ砥石とレンズ表面との接触円が丁度レンズの軸中心を通る位置に砥石軸を位置決めする。そしてワーク軸と砥石軸を回転し、サーボモータでワーク軸に上方向へ切削送りをかけて、レンズ表面に対するカップ砥石の公転と自転との合成運動により、レンズ球面を創成加工するというものである。粗研削用のカップ砥石としては、番手が100〜350番程度の粒度の砥石が用いられている。   Rough grinding is generally performed by a grinding method called CG processing (spherical surface generation processing). That is, the lens material is mounted on the lens holder provided at the upper end of the vertical workpiece axis, and the downward cup-shaped grindstone that is in circular contact with the surface of the lens material (exactly in contact with the circle protruding from the lens periphery) is mounted at the lower end. The grindstone shaft is tilted according to the curvature of the lens surface to be ground, and the grindstone shaft is positioned at a position where the contact circle between the cup grindstone and the lens surface passes through the center of the lens axis. Then, the workpiece shaft and the grinding wheel shaft are rotated, the workpiece is fed upward by a servo motor, and the spherical surface of the lens is created by the combined motion of the revolution and rotation of the cup grinding stone with respect to the lens surface. . As a cup grindstone for rough grinding, a grindstone having a particle size of about 100 to 350 is used.

一方、精研削は、ペレット皿の球面をレンズに転写する加工で、揺動台に軸支した砥石軸の下端に加工するレンズ球面の曲率に応じたペレット皿を装着し、ワーク軸の上端のレンズホルダに粗研削済のレンズ素材を装着する。そして、揺動台の揺動中心とレンズ球面の曲率中心とを一致させた状態で、エアシリンダなどでレンズ表面ををペレット皿に一定圧で押付けて、ワーク軸1の回転と砥石軸25a、25bの回転及び往復揺動との合成運動により、レンズの表面を研削するというものである。   Precision grinding, on the other hand, is a process of transferring the spherical surface of the pellet dish to the lens. A pellet dish corresponding to the curvature of the lens spherical surface to be processed is attached to the lower end of the grindstone shaft that is pivotally supported on the rocking table, and the upper end of the workpiece axis is mounted. Mount the lens material that has been ground to the lens holder. Then, in a state where the rocking center of the rocking table and the center of curvature of the lens spherical surface coincide with each other, the lens surface is pressed against the pellet pan with a constant pressure with an air cylinder or the like, and the rotation of the work shaft 1 and the grindstone shaft 25a, The surface of the lens is ground by the combined motion of the rotation of 25b and the reciprocating swing.

従来、レンズ素材の粗研削と精研削は、個別の機械で行われていたが、本願出願人は、同一機台上に粗研削用の砥石軸と精研削用の砥石軸とを設けて、ワークを持替えることなく粗研削と精研削とを連続して行うことができるレンズの球面研削方法及び装置(以下、「2軸研削機」と言う。)を提案している(特許文献1)。当該提案した装置を用いるレンズ加工は、2軸研削機のカップ砥石とペレット皿で第1面の粗研削と精研削を続けて行い、次にレンズ素材を機台上で反転して、第2面の粗研削と精研削を行い、次にレンズ素材を研磨機に搬送して研磨皿で第1面と第2面の研磨を行い、次にレンズ素材を芯取機に搬送して外周加工を行った後、加工済レンズを洗浄機に搬送して洗浄を行う、という工程で加工される。   Conventionally, rough grinding and fine grinding of lens materials have been performed by separate machines, but the applicant of the present application provides a grinding wheel shaft for rough grinding and a grinding stone shaft for fine grinding on the same machine stand, A lens spherical grinding method and apparatus (hereinafter referred to as “biaxial grinding machine”) capable of continuously performing rough grinding and fine grinding without changing the workpiece is proposed (Patent Document 1). . Lens processing using the proposed apparatus is performed by continuing rough grinding and fine grinding of the first surface with a cup grindstone and pellet pan of a biaxial grinding machine, then reversing the lens material on the machine base, Perform rough grinding and fine grinding of the surface, then transfer the lens material to the polishing machine, polish the first and second surfaces with the polishing dish, then transfer the lens material to the centering machine and process the outer circumference Then, the processed lens is processed by being transported to a cleaning machine and cleaned.

2軸研削機を用いるレンズ加工によれば、加工機の種類を1台(各面の精研削を2工程で行う従来加工においては2台)少なくすることができ、機械間でのレンズ搬送も1搬送(又は2搬送)少なくでき、搬送先の機械へのレンズ素材装填に伴う位置決め誤差の発生機会も少なくなることから、レンズ加工の精度と生産性の向上を図ることができる。   According to lens processing using a biaxial grinding machine, the number of types of processing machines can be reduced by one (two in the conventional processing in which fine grinding of each surface is performed in two steps), and the conveyance of lenses between machines is also possible. One conveyance (or two conveyances) can be reduced, and the occurrence of positioning errors associated with the loading of the lens material into the conveyance destination machine is reduced. Therefore, the accuracy and productivity of lens processing can be improved.

研削時にレンズ素材を保持するホルダについては、爪でレンズ素材の外周を把持するチャック構造とレンズ素材の下面を真空吸着して保持する吸着構造とが知られている。後者の構造では、吸着したレンズ素材がホルダ上で滑らないようにする必要があるが、レンズ素材の吸着面が粗研削しただけの面であると、ホルダの支持部との間の形状誤差に起因する真空漏れが生じて、充分な保持力が得られず、高速研削ができない。一方、芯取機では、両面を研磨仕上げされたレンズ素材を上下の円環状のエッジで挟むことによりレンズの芯出しをした状態で保持する構造が採用されている。   As for a holder for holding a lens material during grinding, a chuck structure for holding the outer periphery of the lens material with a nail and a suction structure for holding the lower surface of the lens material by vacuum suction are known. In the latter structure, it is necessary to prevent the adsorbed lens material from slipping on the holder, but if the adsorbing surface of the lens material is just a rough ground surface, there will be a shape error between the holder and the support part. Due to the vacuum leakage, sufficient holding force cannot be obtained and high speed grinding cannot be performed. On the other hand, the centering machine employs a structure in which a lens material whose both surfaces are polished is sandwiched between upper and lower annular edges and held in a centered state.

特開2006−297520号公報JP 2006-297520 A

この発明は、芯取機を不要にしたレンズ加工方法及び研削装置を提供することにより、レンズ加工における粗研削から研磨済レンズの洗浄に至る加工工程を簡素化し、使用する機械の種類も少なくすることにより、レンズ加工における生産性の向上と設備コストの低減を図ることを課題としている。   The present invention provides a lens processing method and a grinding apparatus that do not require a centering machine, thereby simplifying the processing steps from rough grinding to cleaning of a polished lens in lens processing, and reducing the types of machines to be used. Therefore, it is an object to improve productivity in lens processing and reduce equipment costs.

この発明の加工方法を含むレンズ加工では、第1面の粗研削と精研削を行った後、機械を替えて第2面の粗研削と精研削及び外周加工を行い、その後、第1面及び第2面の研磨を行い、最後に研磨済レンズの洗浄を行う。   In lens processing including the processing method of the present invention, after rough grinding and fine grinding of the first surface, the machine is changed to perform rough grinding, fine grinding and peripheral processing of the second surface, and then the first surface and The second surface is polished, and finally the polished lens is cleaned.

この発明の加工方法を含むレンズ加工では、2台の2軸研削機10a、10bと、研磨機20と、洗浄機30とで、粗研削から研磨済レンズの洗浄までのレンズ加工を行う。芯取機は用いない。まずレンズ素材を第1の2軸研削機10aに装填して第1面の粗研削と精研削とを行い、次にレンズ素材を第2の2軸研削機10bに搬送し、第2の2軸研削機10bで第2面の粗研削と精研削と外周加工とを行う。第1の2軸研削機10aのホルダ12aは、チャック構造のホルダとし、第2の2軸研削機のホルダは、吸着構造のホルダとする。チャック構造のホルダ12aは、第1面の粗研削に耐える充分な素材保持力を備えている。第2の2軸研削機では、ホルダ12bに吸着されるレンズ素材の第1面が精研削されているので、ホルダ12bの支持部32a、34b、34cとの間の気密性が確保され、第2面の粗研削に必要な素材保持力が得られる。   In the lens processing including the processing method of the present invention, the lens processing from rough grinding to cleaning of the polished lens is performed by the two biaxial grinding machines 10a and 10b, the polishing machine 20, and the cleaning machine 30. A centering machine is not used. First, the lens material is loaded into the first biaxial grinding machine 10a to perform rough grinding and fine grinding of the first surface, and then the lens material is transported to the second biaxial grinding machine 10b. The shaft grinding machine 10b performs rough grinding, fine grinding, and outer periphery processing on the second surface. The holder 12a of the first biaxial grinding machine 10a is a chuck structure holder, and the second biaxial grinding machine holder is an adsorption structure holder. The chuck-structure holder 12a has a sufficient material holding force that can withstand rough grinding of the first surface. In the second biaxial grinding machine, since the first surface of the lens material adsorbed to the holder 12b is precisely ground, airtightness between the support portions 32a, 34b, and 34c of the holder 12b is ensured, and the first A material holding force necessary for rough grinding of two surfaces can be obtained.

第2の2軸研削機で行うこの発明の加工方法では、第2面の研削とレンズの外周加工とを行う。レンズ素材の第1面は精研削済であり、第2の2軸研削機はこの精研削済の面を基準としてレンズ素材を保持しており、その保持を保ったまま第2面の粗研削及び精研削並びに外周加工を行うので、当該外周加工によりレンズ素材の芯出しが可能である。第2面の粗研削と精研削は、当然この順序で行われるが、外周加工は、どこの段階で行っても良い。一般的には、第2面の精研削の後、外周加工を行う。外周加工は、粗研削用のカップ砥石3aの外筒面で行えばよいが、砥石軸を3軸にして、第3砥石軸に外周加工専用の砥石を装着して行うようにしても良い。   In the processing method of the present invention performed by the second biaxial grinding machine, the second surface is ground and the outer periphery of the lens is processed. The first surface of the lens material is finely ground, and the second biaxial grinding machine holds the lens material on the basis of this finely ground surface, and the rough grinding of the second surface is performed while maintaining the lens material. In addition, since the fine grinding and the outer periphery processing are performed, the lens material can be centered by the outer periphery processing. Naturally, the rough grinding and the fine grinding of the second surface are performed in this order, but the outer peripheral machining may be performed at any stage. Generally, after the second surface is precisely ground, the outer periphery is processed. The outer periphery processing may be performed on the outer cylindrical surface of the rough grinding cup grindstone 3a, but the grindstone shaft may be three and the third grindstone shaft may be equipped with a grindstone dedicated to outer periphery processing.

第2の2軸研削機での加工が終了したレンズ素材は、研磨機20に搬送され、第1面と第2面の研磨を行い、最後に洗浄機30で加工済レンズを洗浄する。最終工程が水性の加工液を用いる研磨であるため、洗浄工程を簡素化することができる。   The lens material that has been processed by the second biaxial grinding machine is conveyed to the polishing machine 20 to polish the first surface and the second surface, and finally the processed lens is cleaned by the cleaning machine 30. Since the final process is polishing using an aqueous processing liquid, the cleaning process can be simplified.

上記の加工方法における第2の2軸研削機は、回転ワーク軸1と、回転ワーク軸1の先端に装着されてレンズ球面の曲率中心をその回転中心軸線上にして当該球面を吸着保持するレンズホルダ12bと、前記先端に対向してその対向端に工具ホルダ29a、29bを装着する互いに平行な複数の回転砥石軸25a、25bと、この回転砥石軸25a、25b又は回転ワーク軸1を回転砥石軸25a、25bと交叉する方向に移動させるX移動台22と、前記回転中心軸線上に設定された揺動中心Pを通る当該回転中心軸線及びX移動台22の移動方向と直交する軸回りに回転砥石軸25a、25b又は回転ワーク軸1を揺動させる揺動台23と、前記先端と前記揺動中心Pとを近接離隔させるZ移動台13と、このZ移動台とX移動台22との移動位置及び揺動台23の揺動位置を制御する制御器5とを備えており、工具ホルダ29a、29bの一方に粗研削用の砥石3aを装着し、他方に精研削用の砥石3bを装着することにより、同一機台上でレンズ素材を掴み替えることなく、レンズ素材球面の粗研削と精研削及びレンズの芯出しのための外周研削を行うことができるものである。   The second biaxial grinding machine in the above processing method is a rotating work shaft 1 and a lens which is attached to the tip of the rotating work shaft 1 and holds the spherical surface by suction with the center of curvature of the lens spherical surface on the rotation center axis. A holder 12b, a plurality of parallel rotating grindstone shafts 25a, 25b, which are mounted on the opposite ends of the holder 12b and mounted with tool holders 29a, 29b, and the rotating grindstone shafts 25a, 25b or the rotating workpiece shaft 1 are rotated with a grindstone. An X moving table 22 that moves in a direction crossing the shafts 25a and 25b, and an axis perpendicular to the moving center axis passing through the swing center P set on the rotating center axis and the moving direction of the X moving table 22 A swing table 23 that swings the rotating grindstone shafts 25a and 25b or the rotary workpiece shaft 1, a Z moving table 13 that moves the tip and the swing center P close to each other, and the Z moving table and the X moving table 22 And a controller 5 for controlling the moving position and the swinging position of the swinging base 23. A grindstone 3a for rough grinding is mounted on one of the tool holders 29a and 29b, and a grindstone 3b for fine grinding is mounted on the other. By mounting, it is possible to perform rough grinding and fine grinding of the lens material spherical surface and outer periphery grinding for centering the lens without re-holding the lens material on the same machine base.

ワーク軸1の先端に装着されたレンズホルダ12bの吸着部32a、32b、32cは、ワーク軸1の軸心に設けた通孔に連通され、当該通孔を通ってワーク軸1の下端部に装着された回転継手に連通され、当該回転継手に接続された真空源に連通されており、当該真空源からレンズホルダ12bにレンズ素材を吸着するための真空圧が供給される。   The suction portions 32a, 32b, and 32c of the lens holder 12b attached to the tip of the work shaft 1 are communicated with a through hole provided in the shaft center of the work shaft 1 and pass through the through hole to the lower end of the work shaft 1. It communicates with the mounted rotary joint, and communicates with a vacuum source connected to the rotary joint, and a vacuum pressure for adsorbing the lens material to the lens holder 12b is supplied from the vacuum source.

上記の2軸研削機において、精研削用の砥石3bとしてレンズ球面と円で接触するカップ砥石を用いるときは、精研削用カップ砥石の摩耗が大きい。そこで砥石の摩耗を補正する補正手段を設けておくことが望ましい。この補正は、砥石の磨耗量として与えられる定数Δtと前記回転ワーク軸と回転砥石軸との成す角度をθとして、X移動台22とZ移動台13とをそれぞれ、Δx=Δt×tanθ、Δz=Δt×1/cosθで演算される(Δx)、(Δz)だけ補正移動させる補正移動手段を制御器5に登録することにより実現できる。   In the above-described biaxial grinding machine, when a cup grindstone that contacts the lens spherical surface with a circle is used as the grindstone 3b for fine grinding, the wear of the cup grindstone for fine grinding is large. Therefore, it is desirable to provide correction means for correcting wear of the grindstone. In this correction, the constant Δt given as the wear amount of the grindstone and the angle formed by the rotating work shaft and the rotating grindstone shaft are θ, and the X moving table 22 and the Z moving table 13 are respectively set to Δx = Δt × tan θ, Δz. This can be realized by registering in the controller 5 correction moving means for correcting and moving by (Δx) and (Δz) calculated by = Δt × 1 / cos θ.

この発明では、レンズ素材の第1面4aを研削するときは、レンズ素材の外周を把持して粗研削時の加工反力に耐える力でレンズ素材を保持し、第2面4bを研削するときは、精研削済の第1面4aを吸着で保持することにより、第2面の粗研削時の加工反力に耐える力でレンズ素材を保持可能にすると共に、レンズ素材の外周加工が同一機台上で可能となり、レンズ素材の第2面の研削と芯取とを一台の機械で行うことを可能にしている。   In this invention, when the first surface 4a of the lens material is ground, the lens material is held with a force that can withstand the reaction force during rough grinding by gripping the outer periphery of the lens material, and the second surface 4b is ground. Makes it possible to hold the lens material with a force that can withstand the processing reaction force during rough grinding of the second surface by holding the finely ground first surface 4a by suction, and the peripheral processing of the lens material is the same machine It becomes possible on a table, and grinding and centering of the second surface of the lens material can be performed by a single machine.

そして、第1面4aが精研削まで加工してあり、球面形状がほぼ仕上がっている。その面を吸着するため、第1面4aの球心に合った位置で2面目の球面加工ができる。そのため、吸着を外さずに外周加工を行えば、芯取り加工となる。すなわち、レンズ素材の精研削済の面を円環状のエッジ34cないし当該面と同一形状に加工した支持面32a、34bを備えた吸着ホルダ12bで保持して反対側の面の精研削までの加工を行うので、レンズ側とホルダ側の面形状に誤差がなく、面粗さも小さいので、吸着ホルダのリークが防げ、強固な吸着保持力が得られると共に、研削段階で精度の高い芯出しが可能になる。   The first surface 4a is processed up to fine grinding, and the spherical shape is almost finished. Since the surface is adsorbed, spherical processing of the second surface can be performed at a position that matches the sphere center of the first surface 4a. Therefore, if the outer periphery is processed without removing the suction, the centering process is performed. In other words, the finely ground surface of the lens material is held by the suction edge holder 12b provided with the annular edge 34c or the support surfaces 32a and 34b processed into the same shape as the surface, and processing until the fine grinding of the opposite surface is performed. Since there is no error in the surface shape of the lens side and the holder side, and the surface roughness is small, leakage of the suction holder can be prevented, strong suction retention force can be obtained, and high-precision centering is possible at the grinding stage become.

従って、この発明により、芯取機を用いることなく、かつ加工済レンズの洗浄機の構造ないし動作を簡素化することが可能なレンズ加工が可能になる。また、機械間でのレンズ素材の搬送や掴み替えの回数が低減され、工程短縮による加工能率の向上が図れる。更に、第2の2軸研削機において、レンズ素材の精研削済の第1面を基準にして、第2面の粗研削と精研削及び芯出し加工となる外周加工を、同一機械上でレンズ素材を掴み替えることなく一連の加工として行うことができるので、高い精度でのレンズ加工を実現でき、レンズ素材の機械替えないし保持替え時に生ずる位置決めの狂いによる不良品の発生も低減できる。   Therefore, according to the present invention, it is possible to perform lens processing without using a centering machine and capable of simplifying the structure or operation of the processed lens cleaning machine. In addition, the number of times the lens material is transported and repositioned between machines is reduced, and the processing efficiency can be improved by shortening the process. Further, in the second two-axis grinding machine, the outer surface machining, which is rough grinding, fine grinding and centering of the second surface, is performed on the same machine with the first ground surface of the lens material as a reference. Since it can be performed as a series of processing without changing the material, it is possible to realize lens processing with high accuracy, and to reduce the occurrence of defective products due to misalignment that occurs when the lens material is mechanically changed or held.

この発明のレンズの加工方法を示す模式図Schematic diagram showing the processing method of the lens of the present invention この発明の研削装置の一例を示す側面図Side view showing an example of the grinding apparatus of the present invention レンズ素材の外周を把持するレンズホルダの一例を示す断面側面図Cross-sectional side view showing an example of a lens holder that holds the outer periphery of a lens material レンズ素材の精研削済の面を保持するレンズホルダの一例を示す断面側面図Cross-sectional side view showing an example of a lens holder that holds a finely ground surface of a lens material レンズ素材の精研削済の面を保持するレンズホルダの他の例を示す断面側面図Sectional side view showing another example of a lens holder for holding a finely ground surface of a lens material レンズ素材の精研削済の面を保持するレンズホルダの更に他の例を示す断面側面図Sectional side view showing still another example of a lens holder for holding a finely ground surface of a lens material 研削個数と砥石磨耗量の関係を示すテーブルの例を示す図The figure which shows the example of the table which shows the relationship between the number of grinding and the amount of grinding wheel wear 砥石の摩耗補正の原理を説明した説明図Explanatory drawing explaining the principle of grinding wheel wear correction レンズ球面の計測方法の一例を示す模式的な側面図Schematic side view showing an example of a lens spherical surface measurement method

図1は、この発明の方法によるレンズの加工工程の一例を模式的に示した図である。図1では、第1面と第2面の精研削を精研削用カップ砥石で行い、外周加工を粗研削用のカップ砥石で行う形態のものを示している。図において、10aは第1の2軸研削機、10bは第2の2軸研削機、20は研磨機、30は洗浄機であり、4はレンズ素材、4aはその第1面、4bは第2面、4cはレンズ素材の外周、3aは粗研削用カップ砥石、3bは精研削用カップ砥石、12aは第1の2軸研削機10aのチャック構造の素材ホルダ(以下、「チャック」と言う。)、12bは第2の2軸研削機10bの吸着構造の素材ホルダ(以下、「吸着ホルダ」と言う。)である。   FIG. 1 is a diagram schematically showing an example of a lens processing step according to the method of the present invention. FIG. 1 shows a configuration in which fine grinding of the first surface and the second surface is performed with a fine grinding cup grindstone, and outer periphery processing is performed with a rough grinding cup grindstone. In the figure, 10a is a first biaxial grinding machine, 10b is a second biaxial grinding machine, 20 is a polishing machine, 30 is a washing machine, 4 is a lens material, 4a is the first surface, and 4b is the first surface. 2 surface, 4c is the outer periphery of the lens material, 3a is a rough grinding cup grindstone, 3b is a fine grinding cup grindstone, 12a is a material holder of the chuck structure of the first biaxial grinding machine 10a (hereinafter referred to as "chuck"). , 12b is a material holder (hereinafter referred to as “suction holder”) having a suction structure of the second biaxial grinding machine 10b.

レンズ素材4は、まず第1の2軸研削機10aのチャック12aに第1面4aを上にして装填され、第1面4aの粗研削(第1図(a))と精研削(同図(b))とが行われる。次に、第1面を精研削済のレンズ素材が、第2面を上にして、第2の2軸研削機10bの吸着ホルダ12bに装填され、第2面4bの粗研削(同図(c))と精研削(同図(d))とが行われ、更に、吸着ホルダ12bによるレンズ素材の保持を維持したまま、粗研削用砥石3aの外筒面によるレンズ外周側面の研削加工(同図(e))と同じ粗研削用砥石3aの先端による外周端面の研削加工(同図(f))が行われる。上記のレンズ外周側面の研削加工(同図(e))が結果的に当該レンズの芯出し加工になる。   The lens material 4 is first loaded on the chuck 12a of the first biaxial grinding machine 10a with the first surface 4a facing upward, and the first surface 4a is roughly ground (FIG. 1 (a)) and finely ground (FIG. 1). (b)) is performed. Next, a lens material whose first surface has been finely ground is loaded into the suction holder 12b of the second biaxial grinding machine 10b with the second surface up, and the second surface 4b is roughly ground (see FIG. c)) and fine grinding ((d) in the figure), and further, grinding of the lens outer peripheral surface by the outer cylindrical surface of the rough grinding wheel 3a while maintaining the holding of the lens material by the suction holder 12b ( The grinding process of the outer peripheral end face by the tip of the rough grinding wheel 3a (FIG. 5 (e)) is performed. The above-described grinding process (FIG. (E)) of the outer peripheral side surface of the lens results in the centering process of the lens.

第2の2軸研削機10bで加工されたレンズ素材は、研磨機20に搬送され、従来公知の方法により、第1面と第2面の研磨が行われて、レンズの加工が終了する。加工済レンズは、研磨機20から洗浄機30に搬送され、研磨機20の加工液が洗い流される。なお、洗浄機30は、図1では独立の機械としているが、研磨機20に付設することもでき、この場合には、研磨機20から洗浄機30への搬送は不要となる。   The lens material processed by the second biaxial grinding machine 10b is conveyed to the polishing machine 20, where the first surface and the second surface are polished by a conventionally known method, and the lens processing is completed. The processed lens is conveyed from the polishing machine 20 to the cleaning machine 30, and the processing liquid of the polishing machine 20 is washed away. Although the cleaning machine 30 is an independent machine in FIG. 1, the cleaning machine 30 can be attached to the polishing machine 20. In this case, conveyance from the polishing machine 20 to the cleaning machine 30 is not necessary.

図1に示した各機械のうち、研磨機20及び洗浄機30は、従来公知の機械を使用できる。精研削をペレット皿で行う2軸研削機は、特許文献1に記載されている。図1では、精研削をカップ砥石で行う2軸研削機を例示しているので、以下、粗研削及び精研削を共にカップ砥石で行う2軸研削機の一例について、その側面図を示す図2を参照して説明する。   Among the machines shown in FIG. 1, conventionally known machines can be used as the polishing machine 20 and the washing machine 30. A biaxial grinding machine that performs fine grinding with a pellet pan is described in Patent Document 1. Since FIG. 1 illustrates a biaxial grinding machine that performs fine grinding with a cup grindstone, a side view of an example of a biaxial grinding machine that performs both rough grinding and fine grinding with a cup grindstone will be described below. Will be described with reference to FIG.

図2において、1はワーク軸、11はワーク軸1駆動用の電動機、12a、12bはワーク軸1の先端(上端)に設けられたレンズホルダ、13はワーク軸1を軸支している昇降台(Z方向移動台)である。23は揺動中心P回りに揺動する揺動台、21は揺動台23上に設けたガイド、22はガイド21に沿って移動するX移動台(X方向移動台)である。X移動台22には、2本の砥石軸25a、25bが互いに平行に軸支されている。ガイド21は、この2本の砥石軸25a、25bと直交する方向に設けられている。   In FIG. 2, 1 is a work shaft, 11 is an electric motor for driving the work shaft 1, 12a and 12b are lens holders provided at the tip (upper end) of the work shaft 1, and 13 is a lift that supports the work shaft 1. It is a table (Z-direction moving table). Reference numeral 23 denotes a swing base that swings around the swing center P, 21 denotes a guide provided on the swing base 23, and 22 denotes an X moving base (X direction moving base) that moves along the guide 21. Two grindstone shafts 25a and 25b are supported on the X moving table 22 in parallel with each other. The guide 21 is provided in a direction orthogonal to the two grindstone shafts 25a and 25b.

第1の2軸研削機10aのレンズホルダ12aは、図3に示すように、レンズ素材4の外周4cを把持する爪31を備えたチャック構造のホルダである。第2の2軸研削機10bのレンズホルダ12bは、図4〜6に示すように、精研削済の第1面4aを吸着する吸着部32a、32b、32cを備えた吸着構造のホルダである。ここで、図4の吸着ホルダは、その吸着部32aを精研削済の第1面4aと同一形状としたもので、当該吸着部32aに摩擦係数の高い材質を用いたシート状のパッド33を貼付けることもある。一方、図5の吸着ホルダ12bは、吸着部32bの周縁部34bを精研削済の第1面4aの周縁部と同一形状に加工し、中央部分を真空溜りとなる浅い凹部に形成した構造である。また、図6の吸着ホルダ12bは、第1面4aの周縁部を支える円環状のエッジ34cを備えた構造であり、当該円環状のエッジの内側が吸着部32cとなっている。吸着部の中央の孔35は、ワーク軸1の軸心に設けた通孔に連通され、当該ワーク軸の下端に装着した図示しない回転継手を介して真空源に連通されている。図4、5の吸着ホルダ12bの支持面32a、34bは、これを装着する第2の2軸研削機の砥石軸25bにエンドミルを装着し、制御器5に支持面加工用のプログラムを登録して、NC加工するのが好ましく、そのような方法により、精研削済の第1面4aに隙間なく密着する支持面32a、34bを備えた吸着ホルダ12bを得ることができ、重研削や高速研削にも耐える高い保持力が得られる。   As shown in FIG. 3, the lens holder 12 a of the first biaxial grinding machine 10 a is a chuck structure holder that includes a claw 31 that holds the outer periphery 4 c of the lens material 4. As shown in FIGS. 4 to 6, the lens holder 12 b of the second biaxial grinding machine 10 b is a holder having a suction structure including suction portions 32 a, 32 b, and 32 c that suction the finely ground first surface 4 a. . Here, the suction holder of FIG. 4 has the suction portion 32a having the same shape as the finely grounded first surface 4a, and a sheet-like pad 33 made of a material having a high friction coefficient is provided on the suction portion 32a. Sometimes pasted. On the other hand, the suction holder 12b in FIG. 5 has a structure in which the peripheral portion 34b of the suction portion 32b is processed into the same shape as the peripheral portion of the first surface 4a that has been precisely ground, and the central portion is formed as a shallow concave portion that serves as a vacuum reservoir. is there. Further, the suction holder 12b of FIG. 6 has a structure including an annular edge 34c that supports the peripheral portion of the first surface 4a, and the inside of the annular edge is the suction portion 32c. The hole 35 at the center of the suction portion is communicated with a through hole provided in the axis of the work shaft 1 and is communicated with a vacuum source via a rotary joint (not shown) attached to the lower end of the work shaft. 4 and 5, the support surfaces 32a and 34b of the suction holder 12b are mounted with an end mill on the grindstone shaft 25b of the second biaxial grinding machine to which the suction holder 12b is mounted, and a program for supporting surface processing is registered in the controller 5. NC processing is preferable, and by such a method, it is possible to obtain the suction holder 12b having the support surfaces 32a and 34b that are in close contact with the finely grounded first surface 4a without any gaps, and can perform heavy grinding or high-speed grinding. High holding power can be obtained.

砥石軸25a、25bの下端(ワークホルダに向く軸端)には、工具ホルダ29a、29bが設けられ、その一方29aに粗研削用の粗研削用カップ砥石3aが装着され、他方29bには、精研削用のカップ砥石3bが装着されている。各砥石軸25a、25bには、砥石軸駆動用の電動機26a、26bが接続されている。   Tool holders 29a and 29b are provided at the lower ends (shaft ends facing the work holder) of the grindstone shafts 25a and 25b, and a rough grinding cup grindstone 3a for rough grinding is mounted on one of the 29a, and the other 29b includes A cup grindstone 3b for fine grinding is mounted. The grindstone shafts 25a and 25b are connected to electric motors 26a and 26b for driving the grindstone shaft.

カップ砥石3a、3bは、加工しようとするレンズ素材の表面と砥石とが、砥石の回転中心軸を中心とする円弧で接触する砥石である。粗研削用カップ砥石3aは、砥石粒度の番手が100〜350番のカップ砥石であり、精研削用のカップ砥石3bは、砥石粒度の番手が1500〜2500番のカップ砥石である。精研削の次工程の研磨で行われるレンズ表面の取り代(加工によって削り取られるレンズ表面の光軸方向の厚さ)は、10〜50ミクロンである。精研削の表面粗さやレンズの曲率誤差が研磨時の取り代の範囲からはみ出すと、加工されたレンズは不良品となる。そのため、精研削ではサブミクロン台の表面粗さの加工を行う必要があり、そのためには1500〜2500番程度の番手の砥石を用いる必要がある。   The cup grindstones 3a and 3b are grindstones in which the surface of the lens material to be processed and the grindstone are in contact with each other with an arc centering on the rotation center axis of the grindstone. The coarse grinding cup grindstone 3a is a cup grindstone having a grindstone particle size of 100 to 350, and the fine grinding cup grindstone 3b is a grindstone particle size of 1500 to 2500 cup grindstone. The machining allowance of the lens surface (thickness in the direction of the optical axis of the lens surface scraped off by processing) performed in polishing in the next process of fine grinding is 10 to 50 microns. If the surface roughness of precision grinding or the curvature error of the lens protrudes from the range of machining allowance during polishing, the processed lens becomes a defective product. Therefore, it is necessary to process the surface roughness on the sub-micron level in precision grinding, and for that purpose, it is necessary to use a grindstone with a number of about 1500 to 2500.

一方、このような番手の高い(粒度の細かい)砥石は、番手の低い粗研削用の砥石(100〜350番程度)に比べて非常に磨耗しやすい。砥石やレンズの材質によっても異なるが、レンズ1個の加工で0.5ミクロンというオーダの磨耗量である。カップ砥石によるCG加工では、砥石が磨耗すると、加工されるレンズ表面の曲率半径が大きくなる。従って砥石の磨耗により加工されるレンズの曲率半径が許容される精度内となるように、頻繁に砥石とレンズ素材の相対位置関係を補正しなければならない。   On the other hand, such a high-numbered (fine-grained) grindstone is very easily worn compared to a low-numbered coarse grinding grindstone (about 100 to 350). Although it depends on the material of the grindstone and the lens, the amount of wear is on the order of 0.5 microns when processing one lens. In CG processing using a cup grindstone, when the grindstone is worn, the radius of curvature of the lens surface to be processed increases. Therefore, it is necessary to frequently correct the relative positional relationship between the grindstone and the lens material so that the radius of curvature of the lens processed by the abrasion of the grindstone is within an allowable accuracy.

実施例の装置では、この補正を行うために、制御器5に、所定の加工個数毎のカップ砥石3の砥石軸方向の磨耗量Δtを示すテーブル54(図7)と、当該Δtを用いたX移動台22と昇降台13の補正量の計算式
Δx=Δt×tanθ
Δz=Δt×1/cosθ
とを登録している。
In the apparatus of the embodiment, in order to perform this correction, a table 54 (FIG. 7) showing the wear amount Δt of the cup grindstone 3 in the grindstone axis direction for each predetermined number of machining and the Δt are used for the controller 5. Calculation formula of correction amount of X moving table 22 and lifting table 13 Δx = Δt × tan θ
Δz = Δt × 1 / cosθ
And are registered.

図7の磨耗量Δtを示すテーブル54は、新たな精研削用のカップ砥石3bを装着してからのレンズの加工数5、10、15・・・に応じて、その直前の5個を加工する間に生じた砥石の砥石軸方向の磨耗量Δtを例えば3(単位ミクロン)、2.7、2.5・・・のように計測して得たものである。   The table 54 showing the amount of wear Δt in FIG. 7 is processed in accordance with the number of processed lenses 5, 10, 15... After mounting a new precision grinding cup 3b. This is obtained by measuring the wear amount Δt of the grindstone generated in the grinding wheel axis direction as 3 (unit micron), 2.7, 2.5.

図2に戻って、ワーク軸1は、フレーム2に昇降自在に案内された昇降台13に軸支されており、この昇降台と一体のブラケット14がZ軸サーボモータ17で駆動されるZ軸送りねじ18に螺合している。揺動台23は、B軸サーボモータ37で揺動駆動されている。X移動台22は、揺動台23に搭載したX軸サーボモータ27で回転駆動される送りねじ28に螺合している。5はこれらのサーボモータを制御するNC装置であり、51、52及び53は、サーボアンプ、19はZ軸サーボモータ17の電流制御器である。   Returning to FIG. 2, the work shaft 1 is pivotally supported by a lifting platform 13 guided so as to be movable up and down on the frame 2, and a bracket 14 integrated with the lifting platform is driven by a Z-axis servomotor 17. The feed screw 18 is screwed. The oscillating table 23 is oscillated by a B-axis servo motor 37. The X moving table 22 is screwed to a feed screw 28 that is rotationally driven by an X-axis servo motor 27 mounted on the swing table 23. Reference numeral 5 denotes an NC device that controls these servomotors, 51, 52, and 53 are servo amplifiers, and 19 is a current controller of the Z-axis servomotor 17.

次に、図2の装置でレンズの研削加工を行う手順を説明する。まず、粗研削用カップ砥石3aを装着した砥石軸25aが揺動台23の揺動中心Pを通る位置をX移動台22の移動原点に設定し、研削するレンズ球面の曲率に対応する角度θに揺動台23を傾斜させ、粗研削用カップ砥石3aとレンズ球面との接触円がレンズの光軸を通る位置にX移動台22の位置を設定し、削り代に応じたワーク軸1の研削完了位置をZ軸の原点に設定する。そして、レンズ素材4をレンズホルダ12に装填し、ワーク軸1の回転による粗研削用カップ砥石3aの公転と、砥石軸25aの回転による粗研削用カップ砥石3aの自転とにより、レンズホルダ12で保持されたにレンズ素材4の球面創成を行う。   Next, a procedure for grinding a lens with the apparatus of FIG. 2 will be described. First, a position where the grindstone shaft 25a mounted with the rough grinding cup grindstone 3a passes the rocking center P of the rocking table 23 is set as the moving origin of the X moving table 22, and an angle θ corresponding to the curvature of the lens spherical surface to be ground is set. The position of the X moving table 22 is set at a position where the contact circle between the rough grinding cup grindstone 3a and the lens spherical surface passes through the optical axis of the lens. Set the grinding completion position to the Z-axis origin. Then, the lens material 4 is loaded into the lens holder 12, and the lens holder 12 is rotated by the revolution of the rough grinding cup grindstone 3a by the rotation of the work shaft 1 and the rotation of the rough grinding cup grindstone 3a by the rotation of the grindstone shaft 25a. The spherical surface of the lens material 4 is created while being held.

次に、砥石軸25bが揺動台23の揺動中心Pを通る位置をX移動台22の移動原点に設定し、研削するレンズ球面の曲率に対応する角度θに揺動台23を傾斜させ、カップ砥石3bとレンズ球面との接触円がレンズの光軸を通る位置(図8のQ1)にX移動台22の位置を設定し、削り代に応じたワーク軸1の研削完了位置をZ軸の原点に設定する。そして、ワーク軸1の回転によるカップ砥石3bの公転と、砥石軸25bの回転によるカップ砥石3bの自転とにより、レンズホルダ12で保持されたに粗研削済レンズ素材4の精研削を行う。   Next, the position where the grindstone shaft 25b passes through the swing center P of the swing table 23 is set as the movement origin of the X shift table 22, and the swing table 23 is tilted to an angle θ corresponding to the curvature of the lens spherical surface to be ground. The position of the X moving table 22 is set at a position (Q1 in FIG. 8) where the contact circle between the cup grindstone 3b and the lens spherical surface passes through the optical axis of the lens, and the grinding completion position of the work shaft 1 according to the machining allowance is set to Z. Set to the axis origin. The coarse grinding-finished lens material 4 held by the lens holder 12 is finely ground by the revolution of the cup grindstone 3b by the rotation of the work shaft 1 and the rotation of the cup grindstone 3b by the rotation of the grindstone shaft 25b.

レンズの研削により、カップ砥石3bが磨耗量Δtだけ磨耗すると、カップ砥石3bとレンズ球面との接触円はレンズの光軸を通る位置からずれてくる(図8のQ2)そこで、精研削用のカップ砥石3bを新たな砥石に交換したときに、補正タイミングをカウントするカウンタをリセットし、上記方法によるレンズの加工数が5、10、15・・・に達する毎に、登録されたテーブルを参照してΔtを読み込み、上述した式に基づいて演算したΔx及びΔzだけ、精研削時のX移動台22及び昇降台13を移動させる。   When the cup grindstone 3b is worn by the wear amount Δt by grinding the lens, the contact circle between the cup grindstone 3b and the lens spherical surface is displaced from the position passing through the optical axis of the lens (Q2 in FIG. 8). When the cup grindstone 3b is replaced with a new grindstone, the counter that counts the correction timing is reset, and the registered table is referenced each time the number of processed lenses reaches 5, 10, 15,. Then, Δt is read, and the X moving table 22 and the lifting table 13 are moved by Δx and Δz calculated based on the above-described formula.

この補正動作により、図1に示すように、カップ砥石のΔtの磨耗により生じたレンズ素材4とカップ砥石3bとの接触円のX方向のずれΔxと、Z方向のずれΔzとが補正されて、磨耗後のカップ砥石3bとレンズ球面との接触円がレンズの光軸を通る位置に復帰し(図8のQ3)、磨耗によるレンズ表面の曲率の誤差とレンズの厚さの誤差とが共に補正される。   By this correction operation, as shown in FIG. 1, the deviation Δx in the X direction and the deviation Δz in the Z direction of the contact circle between the lens material 4 and the cup grinding stone 3b caused by the wear of the cup grinding stone Δt are corrected. The contact circle between the cup grindstone 3b after wear and the lens spherical surface returns to the position passing through the optical axis of the lens (Q3 in FIG. 8), and both the error of the curvature of the lens surface and the error of the lens thickness due to wear are both present. It is corrected.

ここで、精研削をカップ砥石で行う方法の長所について説明する。従来のレンズ加工では、精研削をペレット皿で行っている。しかし、ペレット皿は加工しようとするレンズ球面の曲率に合せた曲面(凸レンズを加工するときは凹曲面)とした基板に多数の小さな砥石板を貼り付けた構造であるため、加工するレンズ表面の曲率が変わる毎にその曲率に合ったペレット皿に交換しなければならず、加工するレンズの種類毎に専用のペレット皿を準備しなければならない。   Here, the advantages of the method of performing precision grinding with a cup grindstone will be described. In conventional lens processing, fine grinding is performed with a pellet dish. However, since the pellet dish has a structure in which a large number of small grindstone plates are attached to a substrate that has a curved surface (or a concave curved surface when processing a convex lens) that matches the curvature of the lens spherical surface to be processed, Each time the curvature changes, it must be replaced with a pellet dish that matches the curvature, and a dedicated pellet dish must be prepared for each type of lens to be processed.

これに対してカップ砥石によるCG加工(球面創成加工)では、レンズの光軸に対するカップ砥石の回転中心軸の角度θを変えることによって、加工しようとするレンズ表面の曲率に対応することができるため、1種類のカップ砥石で曲率の異なる多種類のレンズ表面の加工を行うことができる。   On the other hand, in CG processing (spherical surface creation processing) using a cup grindstone, the angle θ of the rotation center axis of the cup grindstone with respect to the optical axis of the lens can be changed to correspond to the curvature of the lens surface to be processed. One type of cup grindstone can be used to process many types of lens surfaces with different curvatures.

このように、この発明のレンズ加工方法において、精研削をカップ砥石で行う方法が好ましいが、精研削をペレット皿で行うレンズ加工においても、この発明の方法を採用することができる。その場合の第1及び第2の2軸研削機10a、10bとしては、例えば特許文献1で提案されている球面研削装置を用いてやればよい。また、上記の例では、芯出し加工となるレンズ素材の外周加工を粗研削用のカップ砥石で行っているが、砥石軸が3本の2軸研削機を用い、3本の砥石軸に粗研削用のカップ砥石、精研削用のカップ砥石及び外周加工用の砥石をそれぞれ装着して、外周加工を専用の砥石で行う方法も良い方法である。   As described above, in the lens processing method of the present invention, a method in which fine grinding is performed with a cup grindstone is preferable. However, the method of the present invention can also be employed in lens processing in which fine grinding is performed with a pellet dish. In this case, as the first and second biaxial grinding machines 10a and 10b, for example, a spherical grinding apparatus proposed in Patent Document 1 may be used. In the above example, the outer periphery of the lens material used for centering is performed with a rough grinding cup grindstone. However, a three-shaft grinder with three grindstone shafts is used to roughly grind the three grindstone shafts. A method in which a cup grindstone for grinding, a cup grindstone for fine grinding, and a grindstone for peripheral processing are respectively mounted and the peripheral processing is performed with a dedicated grindstone is also a good method.

次に、上記実施例に記載したカップ砥石によるレンズ素材の精研削時における砥石摩耗の補正についての詳細を説明する。従来の粗研削においては、粗研削用のカップ砥石の磨耗に基づく誤差の補正を次のように行っている。すなわち、定期的に、あるいは所定個数のレンズ加工毎に加工されたレンズを抜き取り、図9に示すように、測定縁の径Lが既知のリング状の台61と接触子62とで粗研削済レンズ素材4を挟んで、厚さh(光軸方向の高さ。図には表面と裏面の高さが示されている。)をマイクロメータで測定し、その測定値とマスタ(基準レンズ)の値との偏差を研削装置の制御器に入力する。制御器は、予め登録された所定の演算式によって補正量を演算し、砥石の磨耗による曲率半径Rの誤差を打ち消すように、ワーク軸に対する砥石軸の角度θを補正する。   Next, details of correction of grinding wheel wear during precise grinding of the lens material with the cup grinding wheel described in the above embodiment will be described. In conventional rough grinding, error correction based on wear of a cup grinding wheel for rough grinding is performed as follows. That is, the lens processed periodically or every predetermined number of lenses is extracted, and, as shown in FIG. 9, as shown in FIG. The thickness h (the height in the optical axis direction. The height of the front and back surfaces is shown in the figure) is measured with a micrometer across the lens material 4, and the measured value and the master (reference lens) The deviation from this value is input to the controller of the grinding machine. The controller calculates the correction amount by a predetermined arithmetic expression registered in advance, and corrects the angle θ of the grindstone axis with respect to the workpiece axis so as to cancel the error of the curvature radius R due to the wear of the grindstone.

ところがこの補正方法を精研削用のカップ砥石の磨耗に適応すると、次のような問題が生じた。第1は、精研削用の砥石の磨耗が粗研削用の砥石の磨耗に比べて遥かに大きいため、その補正をするために頻繁にレンズの抜取り検査を行わなければならず、オペレータの作業負担が非常に大きくなる。   However, when this correction method is applied to the wear of a cup grinding wheel for fine grinding, the following problems occur. First, since the wear of the grinding wheel for fine grinding is much larger than the wear of the grinding wheel for rough grinding, a lens sampling inspection must be performed frequently in order to compensate for this, and the operator's work load Becomes very large.

第2に、砥石の磨耗量が大きいときは、レンズの中心厚さの誤差についても補正をしなければならないが、上記従来の補正は、ワークの曲率半径のみの補正となり、ワーク中心厚に関して別の補正を行う必要がある。   Secondly, when the wear amount of the grindstone is large, the lens center thickness error must also be corrected. However, the above-mentioned conventional correction is only for the curvature radius of the workpiece, and is different with respect to the workpiece center thickness. Need to be corrected.

第3に、ワーク軸に対する砥石軸の角度θの補正では、砥石の磨耗形状が加工終了時のレンズ表面の曲面形状と一致しないため、従来のように砥石軸の角度θを調整して補正すると、レンズ表面と砥石の接触点がずれて(砥石とレンズ表面との接触線が砥石の回転中心を中心とする円弧からずれる)加工されたレンズ表面が球面にならないなどの問題が発生した。これらの問題は、精研削用のカップ砥石の磨耗量が粗研削用のそれに比べて遥かに大きいことに起因して生じたものである。   Third, in the correction of the angle θ of the grindstone axis with respect to the workpiece axis, the wear shape of the grindstone does not match the curved surface shape of the lens surface at the end of processing. The contact point between the lens surface and the grindstone shifts (the contact line between the grindstone and the lens surface deviates from an arc centered on the rotation center of the grindstone), and the processed lens surface does not become a spherical surface. These problems are caused by the wear amount of the cup grindstone for fine grinding being much larger than that for the rough grinding.

上記の問題は、次のようにして解決することができる。すなわち、砥石及び加工するレンズの種類に応じて、その加工量(加工個数又は加工時間)と砥石磨耗量との関係を試験加工により予め計測し、両者の関係式又は両者の関係を示すテーブルを予め制御器5に登録しておく。そして、所定個数又は所定時間のレンズ加工毎に当該演算式ないしテーブルを参照して予測される砥石の磨耗量(砥石軸方向の磨耗寸法)Δtを予測する。そして、この予測した磨耗量Δtに対してX移動台22を
Δx=Δt×tanθ
昇降台の移動量Δzを
Δz=Δt×1/cosθ
で演算されるΔx、Δzだけ補正移動させる。補正方向は、図1に示すように、磨耗後の砥石とレンズ球面との接触円が磨耗した砥石で研削されているレンズの中心Wを通るようになる方向である。
The above problem can be solved as follows. That is, according to the type of the grinding wheel and the lens to be processed, the relationship between the processing amount (the number of processing or the processing time) and the grinding wheel wear amount is measured in advance by test processing, and a relational expression between them or a table indicating the relationship between the two is obtained. Register in advance in the controller 5. Then, for each predetermined number of lenses or a predetermined time of lens processing, a grindstone wear amount (abrasion dimension in the grindstone axis direction) Δt predicted with reference to the calculation formula or table is predicted. Then, the X moving table 22 is set to Δx = Δt × tanθ with respect to the predicted wear amount Δt.
The movement amount Δz of the lifting platform is expressed as follows: Δz = Δt × 1 / cosθ
The correction movement is performed by Δx and Δz calculated in step (1). As shown in FIG. 1, the correction direction is a direction in which the contact circle between the worn grindstone and the lens spherical surface passes through the center W of the lens ground by the worn grindstone.

上記手段を採用することにより、磨耗が大きい精研削用のカップ砥石の磨耗による補正をオペレータの手を煩わすことなく頻繁に自動補正することが可能になり、また補正操作によって加工される球面の形状が不安定になるという現象も回避することができた。更に上記補正によれば、砥石磨耗によるレンズ表面の曲率の誤差と、中心部におけるレンズ厚さの誤差の両方を同時に補正することができ、高い加工精度が要求される精研削を磨耗の大きいカップ砥石を用いて行うことが可能になる。   By adopting the above-mentioned means, it becomes possible to correct automatically due to the wear of the cup grinding stone for fine grinding with high wear without frequently bothering the operator, and the shape of the spherical surface processed by the correction operation It was also possible to avoid the phenomenon that became unstable. Furthermore, according to the above correction, it is possible to simultaneously correct both an error in the curvature of the lens surface due to wear of the grinding wheel and an error in the lens thickness at the center portion, and a cup with high wear for precision grinding that requires high machining accuracy. It becomes possible to carry out using a grindstone.

すなわち、上記実施例におけるレンズ素材の精研削では、昇降位置をNC制御されるワーク軸1の先端に保持された粗研削済レンズ素材4を、当該ワーク軸の軸心を通る揺動中心P回りの揺動角をNC制御される揺動台23に、砥石軸25a、25bの軸直角方向の移動位置をNC制御されるX移動台22を介して、軸支された砥石軸25a、25bの前記ワーク軸先端との対向端に装着した回転砥石で精研削する、上記精研削において、上記回転砥石として、加工しようとするレンズの表面と円接触する砥石であって、番手が1500〜2500番のカップ砥石3bを用い、研削するレンズ球面の曲率に対応する角度に前記砥石軸を傾斜させ、砥石3bとレンズ球面との接触円がレンズの中心を通る位置にX移動台22の位置を設定した状態でワーク軸1の回転と砥石軸25bの回転とにより、粗研削済レンズ素材4の精研削を行う。   That is, in the fine grinding of the lens material in the above embodiment, the roughly ground lens material 4 held at the tip of the workpiece shaft 1 whose lift position is NC controlled is moved around the oscillation center P passing through the axis of the workpiece shaft. Of the grinding wheel shafts 25a and 25b, which are pivotally supported by the rocking table 23 controlled by the NC, and the X-moving table 22 which controls the movement position of the grinding wheel shafts 25a and 25b in the direction perpendicular to the axis. In the above precision grinding, the grinding wheel that makes a circular contact with the surface of the lens to be processed is used as the rotary grinding wheel, and the count is 1500-2500. Using the cup grindstone 3b, the grindstone axis is inclined at an angle corresponding to the curvature of the lens spherical surface to be ground, and the position of the X moving table 22 is set at a position where the contact circle between the grindstone 3b and the lens spherical surface passes through the center of the lens. State In the the rotation of the rotary grindstone shaft 25b of the work shaft 1 performs precise grinding of the rough grinding completion lens material 4.

上記のレンズの精研削方法においては、NC制御装置に、レンズの加工量と砥石の磨耗量との関係を表す演算式又はその関係を示すテーブルを登録し、レンズの連続加工時において、所定の加工量毎に当該演算式又はテーブルを参照して、当該時点における砥石の磨耗量Δtを求め、求めた磨耗量Δtに対してX移動台22とワーク軸の高さとをそれぞれ、Δx=Δt×tanθ、Δz=Δt×1/cosθで演算されるΔx、Δzだけ補正移動させたあと、次のレンズの加工を行うことが好ましい。   In the above-described precision grinding method of the lens, an arithmetic expression representing the relationship between the processing amount of the lens and the abrasion amount of the grindstone or a table indicating the relationship is registered in the NC control device, With reference to the calculation formula or table for each processing amount, the wear amount Δt of the grindstone at the time is obtained, and the X moving table 22 and the height of the work shaft are respectively set to Δx = Δt × with respect to the obtained wear amount Δt. It is preferable to perform the next lens processing after correcting and moving by Δx and Δz calculated by tan θ and Δz = Δt × 1 / cos θ.

1 ワーク軸
3a 粗研削用のカップ砥石
3b 精研削用のカップ砥石
4 レンズ素材
12a チャック構造のレンズホルダ
12b 吸着構造のレンズホルダ
13 昇降台(Z方向移動台)
22 X移動台(X方向移動台)
23 揺動台
25a 粗研削用の砥石軸
25b 精研削用の砥石軸
1 Work axis
3a Cup grinding wheel for rough grinding
3b Cup grinding wheel for precision grinding 4 Lens material
12a Lens holder with chuck structure
12b Lens holder with suction structure
13 Lifting platform (Z-direction moving platform)
22 X moving table (X direction moving table)
23 Swing base
25a Wheel axis for rough grinding
25b Wheel axis for precision grinding

Claims (6)

第1面の粗研削と精研削が終了したレンズ素材の当該第1面を当該第1面の曲率中心を中心軸線上で保持する吸着ホルダで吸着保持し、粗研削用砥石による当該レンズ素材の第2面の粗研削と、当該第2面の精研削と、当該レンズ素材の外周加工とを、前記吸着保持を維持した状態で行うことを特徴とする、レンズの加工方法。   The first surface of the lens material that has been subjected to rough grinding and fine grinding of the first surface is sucked and held by a suction holder that holds the center of curvature of the first surface on the central axis, and the lens material is roughened by a rough grinding wheel. A method of processing a lens, characterized in that rough grinding of the second surface, precise grinding of the second surface, and outer periphery processing of the lens material are performed while maintaining the suction and holding. 粗研削用カップ砥石を装着した第1の回転砥石軸と、前記精研削をするための砥石を装着した第2の回転砥石軸と、前記吸着ホルダを装着した回転ワーク軸とを備えた球面研削機を用い、前記吸着ホルダは、精研削後の前記第1面の曲率中心を前記回転ワーク軸の回転中心軸線上で保持する、請求項1記載のレンズの加工方法。   Spherical grinding comprising a first rotating grindstone shaft equipped with a rough grinding cup grindstone, a second rotating grindstone shaft equipped with the grindstone for fine grinding, and a rotating work shaft equipped with the suction holder The lens processing method according to claim 1, wherein the suction holder holds the center of curvature of the first surface after precise grinding on the rotation center axis of the rotary work shaft. 前記第2面の精研削を、加工するレンズ素材の表面と円接触するカップ砥石であって、粒度の番手が1500〜2500番の砥石で行うことを特徴とする、請求項1又は2記載のレンズの加工方法。   The precision grinding of the second surface is a cup grindstone that is in circular contact with the surface of the lens material to be processed, and the grindstone having a particle size of 1500 to 2500 is performed according to claim 1 or 2. Lens processing method. 前記レンズ素材の外周加工を、前記粗研削用砥石で行うことを特徴とする、請求項1、2又は3記載のレンズの加工方法。   The lens processing method according to claim 1, wherein the outer periphery of the lens material is processed by the rough grinding wheel. 回転ワーク軸1と、
この回転ワーク軸の先端に装着されてレンズ球面の曲率中心をその回転中心軸線上にしてその球面を吸着保持するレンズホルダ12bと、
前記先端に対向してその対向端に工具ホルダ29a、29bを装着する互いに平行な複数の回転砥石軸25a、25bと、
この回転砥石軸又は回転ワーク軸を当該回転砥石軸と交叉する方向に移動させるX移動台22と、
前記回転中心軸線上に設定された揺動中心Pを通る当該回転中心軸線及び前記X移動台の移動方向と直交する軸回りに前記回転砥石軸又は回転ワーク軸を揺動させる揺動台23と、
前記先端と前記揺動中心Pとを近接離隔さぜるZ移動台13と、
このZ移動台と前記X移動台との移動位置及び前記揺動台の揺動位置を制御する制御器5とを備え、
前記工具ホルダの一方に粗研削用の砥石3aを装着し、他方に精研削用の砥石3bを装着することにより、レンズ素材球面の粗研削と精研削と及びレンズの芯出しのための外周研削を可能にしたレンズの研削装置。
A rotating workpiece axis 1;
A lens holder 12b that is attached to the tip of the rotating workpiece shaft and holds the spherical surface by suction with the center of curvature of the lens spherical surface on the rotational center axis;
A plurality of parallel grindstone shafts 25a, 25b that are opposed to the tip and are mounted with tool holders 29a, 29b at opposite ends,
An X moving table 22 for moving the rotating grindstone axis or the rotating workpiece axis in a direction crossing the rotating grindstone axis;
An oscillating table 23 for oscillating the rotating grindstone axis or rotating workpiece axis about an axis orthogonal to the rotational center axis passing through the oscillation center P set on the rotation center axis and the moving direction of the X moving table; ,
A Z-moving base 13 that closely separates the tip and the swing center P;
A controller 5 for controlling the moving position of the Z moving table and the X moving table and the swing position of the swing table;
By mounting a grinding wheel 3a for rough grinding on one side of the tool holder and mounting a grinding wheel 3b for fine grinding on the other side, outer peripheral grinding for rough grinding and fine grinding of the lens material spherical surface and centering of the lens is performed. Lens grinding device that makes it possible.
前記制御器が、砥石の磨耗量として与えられる定数Δtと前記回転ワーク軸と回転砥石軸との成す角度をθとして、X移動台22とZ移動台13とをそれぞれ、Δx=Δt×tanθ、Δz=Δt×1/cosθで演算されるΔx、Δzだけ補正移動させる補正移動手段を備えている、請求項5記載のレンズの研削装置。   The controller sets the constant Δt given as the amount of wear of the grindstone and the angle formed by the rotating work shaft and the rotating grindstone shaft as θ, and sets the X moving table 22 and the Z moving table 13 to Δx = Δt × tan θ, 6. The lens grinding apparatus according to claim 5, further comprising correction moving means for correcting and moving by Δx and Δz calculated by Δz = Δt × 1 / cos θ.
JP2009031762A 2009-02-13 2009-02-13 Processing method for lens and grinding device Pending JP2010184340A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009031762A JP2010184340A (en) 2009-02-13 2009-02-13 Processing method for lens and grinding device
KR1020100005927A KR20100092873A (en) 2009-02-13 2010-01-22 Processing method and grinding apparatus for lens
CN201010115372A CN101804593A (en) 2009-02-13 2010-02-10 Processing method and grinding apparatus for lens
TW099104274A TW201029797A (en) 2009-02-13 2010-02-11 Lens processing method and grinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031762A JP2010184340A (en) 2009-02-13 2009-02-13 Processing method for lens and grinding device

Publications (1)

Publication Number Publication Date
JP2010184340A true JP2010184340A (en) 2010-08-26

Family

ID=42606629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031762A Pending JP2010184340A (en) 2009-02-13 2009-02-13 Processing method for lens and grinding device

Country Status (4)

Country Link
JP (1) JP2010184340A (en)
KR (1) KR20100092873A (en)
CN (1) CN101804593A (en)
TW (1) TW201029797A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104476355A (en) * 2014-12-09 2015-04-01 上海现代先进超精密制造中心有限公司 Angle adjusting device and method for machining silicon carbide 45-degree reflecting mirrors
CN104942817A (en) * 2014-03-31 2015-09-30 亚企睦自动设备有限公司 Suction nozzle structure and adsorption method
WO2015162789A1 (en) * 2014-04-25 2015-10-29 株式会社コジマエンジニアリング Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
JP2016093866A (en) * 2014-11-14 2016-05-26 オリンパス株式会社 Processing device for optical element, grindstone member and processing method for optical element

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229082B (en) * 2011-06-03 2013-01-16 中国兵器工业第二〇五研究所 Manufacturing method of wedge-shaped lens
US20140347750A1 (en) * 2011-12-01 2014-11-27 Hoya Corporation Centering method, centering apparatus, and lens positioning unit
CN102490103B (en) * 2011-12-16 2014-06-04 北京创思工贸有限公司 Meniscus lens and processing method therefor
CN103372799A (en) * 2012-04-16 2013-10-30 豪雅光电科技(苏州)有限公司 Centering device for lens
CN102658515A (en) * 2012-04-26 2012-09-12 宁波斯达弗液压传动有限公司 Fixture special for machining spherical surfaces by using grinding machine and using method of fixture
CN102896568B (en) * 2012-09-12 2015-05-06 常州市佳明光电元件有限公司 Aspheric surface processing device and processing method
CN103111630B (en) * 2013-01-29 2014-12-10 苏州大学 Machining method of curved surface prism Fery prism
CN103144005A (en) * 2013-03-19 2013-06-12 西安交通大学苏州研究院 Surface contact polishing device and method for spherical or planar optical element
CN103737451B (en) * 2014-01-08 2016-01-13 中国科学院长春光学精密机械与物理研究所 The emery wheel original position automatic shaping grinding and milling processing method of off-axis aspheric surface speculum
CN105598749A (en) * 2015-11-09 2016-05-25 长春博启光学玻璃制造有限公司 Machining method and machining equipment for full-equal-thickness hemispheric and super-hemispheric sapphire fairing
KR101655720B1 (en) * 2016-02-02 2016-09-07 민병직 Apparatus for chamfering of lens
CN106392799B (en) * 2016-11-16 2019-08-13 中国人民解放军第五七一九工厂 A kind of aero-engine bridle end face profiling polishing prosthetic device
KR102165876B1 (en) * 2018-05-30 2020-10-14 아이오솔루션(주) Lens rotary grinding system and the automatic grinding method using the system
CN110509117A (en) * 2019-09-04 2019-11-29 刘光华 Eyeglass grinding method and eyeglass
CN113084649A (en) * 2021-05-13 2021-07-09 沈阳仪表科学研究院有限公司 Vertical double-grinding-head grinding method for aspheric optical element and adopted processing device
CN113458909B (en) * 2021-06-08 2022-06-07 大连理工大学 Optical lens double-side polishing method
CN113927407B (en) * 2021-09-22 2024-01-05 南京茂莱光学科技股份有限公司 Machining device and machining method suitable for machining multiple lens blanks into fine grinding finished products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198757A (en) * 1989-01-23 1990-08-07 Olympus Optical Co Ltd Grinding method for lens
JPH0425366A (en) * 1990-05-21 1992-01-29 Matsushita Electric Ind Co Ltd Curved face working device
JP2003150216A (en) * 2001-11-15 2003-05-23 Ikegai Corp Curved surface machining system and method for work
JP2006297520A (en) * 2005-04-19 2006-11-02 Nakamura Tome Precision Ind Co Ltd Multi-axis spherical grinding device and grinding method
JP2007513785A (en) * 2003-12-10 2007-05-31 エシロール アンテルナショナル(コンパニー ジェネラル ドプティク) Pneumatic fixed support device for optical lenses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501872B2 (en) * 1988-06-23 1996-05-29 富士電機株式会社 Method for converting inert gas of fuel electrode when fuel cell is shut down

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198757A (en) * 1989-01-23 1990-08-07 Olympus Optical Co Ltd Grinding method for lens
JPH0425366A (en) * 1990-05-21 1992-01-29 Matsushita Electric Ind Co Ltd Curved face working device
JP2003150216A (en) * 2001-11-15 2003-05-23 Ikegai Corp Curved surface machining system and method for work
JP2007513785A (en) * 2003-12-10 2007-05-31 エシロール アンテルナショナル(コンパニー ジェネラル ドプティク) Pneumatic fixed support device for optical lenses
JP2006297520A (en) * 2005-04-19 2006-11-02 Nakamura Tome Precision Ind Co Ltd Multi-axis spherical grinding device and grinding method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942817A (en) * 2014-03-31 2015-09-30 亚企睦自动设备有限公司 Suction nozzle structure and adsorption method
KR20150113806A (en) * 2014-03-31 2015-10-08 아키무 가부시키가이샤 Nozzle structure and absorption method
KR101662776B1 (en) 2014-03-31 2016-10-05 아키무 가부시키가이샤 Nozzle structure and absorption method
WO2015162789A1 (en) * 2014-04-25 2015-10-29 株式会社コジマエンジニアリング Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
KR20160147748A (en) * 2014-04-25 2016-12-23 가부시키가이샤 고지마 엔지니어링 Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
JPWO2015162789A1 (en) * 2014-04-25 2017-04-13 株式会社コジマエンジニアリング Lens centering method, lens processing method, and spherical core processing machine for spherical core processing machine
EP3135431A4 (en) * 2014-04-25 2018-07-04 Kojima Engineering Co., Ltd. Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
US10124459B2 (en) 2014-04-25 2018-11-13 Kojima Engineering Co., Ltd. Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
KR102125392B1 (en) 2014-04-25 2020-06-22 가부시키가이샤 고지마 엔지니어링 Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
JP2016093866A (en) * 2014-11-14 2016-05-26 オリンパス株式会社 Processing device for optical element, grindstone member and processing method for optical element
CN104476355A (en) * 2014-12-09 2015-04-01 上海现代先进超精密制造中心有限公司 Angle adjusting device and method for machining silicon carbide 45-degree reflecting mirrors

Also Published As

Publication number Publication date
CN101804593A (en) 2010-08-18
KR20100092873A (en) 2010-08-23
TW201029797A (en) 2010-08-16

Similar Documents

Publication Publication Date Title
JP2010184340A (en) Processing method for lens and grinding device
US7189149B2 (en) Method of truing chamfering grindstone and chamfering device
JP4456520B2 (en) Multi-axis spherical grinding apparatus and grinding method
KR102450002B1 (en) Substrate processing system, substrate processing method and computer storage medium
JP2013119123A (en) Grinding device
TW201436944A (en) Method of adjusting profile of a polishing member used in a polishing apparatus, and polishing apparatus
CN110809816A (en) Grinding device, grinding method, and computer storage medium
KR102287125B1 (en) Grinding apparatus
KR20000076987A (en) Method and apparatus for grinding a workpiece
KR20220034162A (en) Substrate processing apparatus, substrate processing system and substrate processing method
JPH09216152A (en) End face grinding device and end face grinding method
US11400563B2 (en) Processing method for disk-shaped workpiece
JP5154884B2 (en) Continuous lens processing method
KR20200070103A (en) Method for processing disk-like workpiece
JP2011245571A (en) Machining device
JP3465074B2 (en) Grinding method and grinding system
JP2014226767A (en) Wafer chamfer device and wafer chamfer method
JP2012240176A (en) Grinding apparatus, and grinding method
JP7170748B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
KR100573035B1 (en) A wafer shaping apparatus and a method for shaping the wafer by the same
CN110900313B (en) Substrate grinding device and substrate grinding method
TWI327092B (en)
TW202346024A (en) Grinding device and wafer grinding method capable of uniformizing the grinding time and amount of each chuck table
JP2021133428A (en) Surface grinding device
CN113001394A (en) Substrate processing apparatus, substrate processing method, and substrate polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008