JP2010182485A - Method and device for manufacturing slurry for electrode - Google Patents

Method and device for manufacturing slurry for electrode Download PDF

Info

Publication number
JP2010182485A
JP2010182485A JP2009023605A JP2009023605A JP2010182485A JP 2010182485 A JP2010182485 A JP 2010182485A JP 2009023605 A JP2009023605 A JP 2009023605A JP 2009023605 A JP2009023605 A JP 2009023605A JP 2010182485 A JP2010182485 A JP 2010182485A
Authority
JP
Japan
Prior art keywords
slurry
flow path
dew point
manufacturing
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009023605A
Other languages
Japanese (ja)
Other versions
JP5003695B2 (en
Inventor
Kazuhito Kato
和仁 加藤
Kazuhisa Takeda
和久 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009023605A priority Critical patent/JP5003695B2/en
Priority to PCT/IB2010/000204 priority patent/WO2010089650A1/en
Publication of JP2010182485A publication Critical patent/JP2010182485A/en
Application granted granted Critical
Publication of JP5003695B2 publication Critical patent/JP5003695B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for manufacturing slurry for an electrode preventing the degradation of characteristics due to mixing in of moisture in steps from kneading to storing. <P>SOLUTION: The method of manufacturing slurry SC for an electrode containing active material particles SX and resin SY includes a stirring step of making up dispersion slurry SC with the active material particles and the resin dispersed from each other by stirring, and a flowing storage step of flowing the dispersion slurry up to a storage part 103 to store it. Whichever site PS2 the dispersion slurry is to exist, the stirring step and the flowing storage step are to be carried out with a slurry temperature TS of the dispersion slurry and a member temperature TT of a member 110B for the dispersion slurry to be in contact with set higher than a dew-point temperature TG of an atmosphere PS2G at the site PS2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池の活物質層に用いる電極用スラリーの製造方法、及び、これを製造する電極用スラリーの製造装置に関する。   The present invention relates to a method for producing an electrode slurry used for an active material layer of a battery, and an electrode slurry producing apparatus for producing the same.

近年、ハイブリッド車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、二次電池が利用されている。
このような二次電池に用いる電極の製造において、特許文献1では、活物質(活物質粒子)、導電剤、結着材(樹脂)及び有機溶剤(溶剤)からなるスラリーを湿式混練する際に、水分露点−20℃以下の空気、窒素ガス又は希ガス雰囲気下で行う技術が挙げられている。このような雰囲気下で湿式混練すると、混練時の水分混入による活物質の分解反応の発生を抑制できる。
In recent years, secondary batteries have been used as power sources for driving portable electronic devices such as hybrid vehicles, notebook computers, and video camcorders.
In manufacturing an electrode used for such a secondary battery, Patent Document 1 discloses that when a slurry composed of an active material (active material particles), a conductive agent, a binder (resin), and an organic solvent (solvent) is wet-kneaded. In addition, there is a technique performed in an air, nitrogen gas or noble gas atmosphere having a moisture dew point of −20 ° C. or lower. When wet kneading is performed in such an atmosphere, the occurrence of a decomposition reaction of the active material due to water mixing during kneading can be suppressed.

国際公開番号 WO98/54774号International Publication Number WO 98/54774

しかしながら、特許文献1に記載の電極の製造方法では、混練時の水分混入については記載しているが、混練後のスラリーを流動させて容器等に貯留する場合については記載がない。しかるに、この混練後のスラリーに水分が混入した場合にも、水分による活物質の分解反応や結着材の固化など、水分混入によるスラリー(或いはこれを用いた電極)の特性低下を発生させる虞がある。特に、混練時に昇温したスラリーを、混練時或いは混練後に冷却すべく、混練機器や、容器,流動路をなす部材を冷却すると、結露を生じやすく、スラリーに水分が混入して、分解反応や固化など特性低下の不具合が発生し易い。   However, in the electrode manufacturing method described in Patent Document 1, the mixing of moisture at the time of kneading is described, but there is no description about the case where the kneaded slurry is fluidized and stored in a container or the like. However, even when water is mixed into the kneaded slurry, the characteristics of the slurry (or the electrode using the same) may be reduced due to water mixing, such as decomposition of the active material by water or solidification of the binder. There is. In particular, when the kneading equipment, the container, and the members forming the flow path are cooled in order to cool the slurry heated at the time of kneading or after kneading, condensation tends to occur and moisture is mixed into the slurry, causing decomposition reactions and Problems such as solidification are likely to occur.

本発明は、かかる問題に鑑みてなされたものであって、混練から貯留までの間の水分混入による分解反応や固化など、水分混入による特性低下を防止した電極用スラリーの製造方法を提供することを目的とする。また、水分によるスラリーの特性低下を防止しうる電極用スラリーの製造装置を提供することを目的とする。   The present invention has been made in view of such problems, and provides a method for producing a slurry for an electrode that prevents degradation of characteristics due to moisture mixing such as decomposition reaction and solidification due to moisture mixing from kneading to storage. With the goal. Moreover, it aims at providing the manufacturing apparatus of the slurry for electrodes which can prevent the characteristic fall of the slurry by a water | moisture content.

そして、その解決手段は、溶剤と活物質粒子と上記溶剤に溶解した樹脂とを含む電極用スラリーの製造方法であって、攪拌により、上記活物質粒子と上記樹脂とを互いに分散させた分散スラリーとする攪拌工程と、攪拌された上記分散スラリーを貯留部まで流動させて、上記貯留部で貯留する流動貯留工程と、を備え、上記攪拌工程及び上記流動貯留工程を、上記分散スラリーが存在することとなる場所の何れにおいても、当該場所における上記分散スラリーのスラリー温度、及び、この分散スラリーが接する部材の部材温度を、この場所において分散スラリーに接する雰囲気の露点温度よりも高い状態としつつ行う電極用スラリーの製造方法である。   The solution is a method for producing a slurry for an electrode comprising a solvent, active material particles, and a resin dissolved in the solvent, wherein the active material particles and the resin are dispersed with each other by stirring. And the fluid storage step of allowing the stirred dispersion slurry to flow to the storage portion and storing in the storage portion, wherein the dispersion slurry is present in the stirring step and the fluid storage step. At any place, the slurry temperature of the dispersion slurry and the member temperature of the member in contact with the dispersion slurry are set to be higher than the dew point temperature of the atmosphere in contact with the dispersion slurry at this place. It is a manufacturing method of the slurry for electrodes.

本発明の電極用スラリーの製造方法では、上述の攪拌工程と流動貯留工程とを備え、分散スラリーが存在することとなる場所の何れにおいても、分散スラリー及びこの分散スラリーが接する部材の温度を、雰囲気の露点温度(以下、単に露点ともいう)よりも高い状態で、攪拌工程及び流動貯留工程を行う。このため、分散スラリーが存在することとなる何れの場所においても、結露を防止して、攪拌工程及び流動貯留工程を行うことができる。従って、結露に起因する水分が分散スラリーに混入したことによる分解反応や固化など、水分混入による不具合を防止して、良好な特性の電極用スラリーを製造することができる。   In the manufacturing method of the slurry for electrodes of the present invention, the temperature of the dispersion slurry and the member in contact with the dispersion slurry is provided in any of the places where the dispersion slurry is present, including the stirring step and the flow storage step. The stirring step and the flow storage step are performed in a state higher than the dew point temperature of the atmosphere (hereinafter also simply referred to as dew point). For this reason, in any place where the dispersed slurry is present, condensation can be prevented and the stirring step and the flow storage step can be performed. Therefore, it is possible to prevent problems due to moisture mixing such as decomposition reaction and solidification caused by mixing of moisture due to condensation into the dispersed slurry, and to manufacture a slurry for electrodes having good characteristics.

なお、活物質粒子とは、例えば、LiNiO2、LiCoO2、LiNiCoMnO2等の正極活物質や、黒鉛粒子、低結晶性炭素等の負極活物質が挙げられる。また、樹脂としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリイミド、アクリル系バインダ等が挙げられる。溶剤としては、例えば、N−メチル−2−ピロリドン(NMP)、エチルアルコール、アセトン、メチルエチルケトン等が挙げられる。 Examples of the active material particles include positive electrode active materials such as LiNiO 2 , LiCoO 2 , and LiNiCoMnO 2 , and negative electrode active materials such as graphite particles and low crystalline carbon. Examples of the resin include polyvinylidene fluoride (PVDF), polyimide, and an acrylic binder. Examples of the solvent include N-methyl-2-pyrrolidone (NMP), ethyl alcohol, acetone, methyl ethyl ketone, and the like.

また、攪拌の手法としては、スラリー内で、これに含まれる溶剤に、活物質粒子、及び、溶剤に溶解した樹脂を分散させる手法であれば良く、例えば、プライミクス(株)社製のT.K.フィルミックスによる手法が挙げられる。また、流動貯留工程において、攪拌した分散スラリーを貯留部まで流動させるにあたり、分散スラリーが外気(室内の空気)に触れていても(オープンエア)良いし、逆に、攪拌工程を行う機器や流動路、貯留の容器等が閉じた空間をなして、外気と通じていなくても(クローズエア)良い。
また、電極スラリーとしては、分散スラリーをそのまま使用しても、さらに、他の物質を加えたり加工を施しても良い。
The stirring method may be any method as long as the active material particles and the resin dissolved in the solvent are dispersed in the solvent in the slurry. For example, T.A. K. A method by fill mix is mentioned. In addition, in the flow storage process, when the stirred dispersion slurry flows to the storage section, the dispersion slurry may be in contact with the outside air (indoor air) (open air). It is not necessary to form a closed space where the roads, storage containers, and the like are closed to communicate with the outside air (closed air).
Further, as the electrode slurry, the dispersed slurry may be used as it is, or another substance may be added or processed.

さらに、上述の電極用スラリーの製造方法であって、前記流動貯留工程は、前記分散スラリーを流動させつつ冷却する冷却工程を含む電極用スラリーの製造方法とすると良い。   Furthermore, it is a manufacturing method of the above-mentioned electrode slurry, The said fluid storage process is good to set it as the manufacturing method of the slurry for electrodes including the cooling process cooled while making the said dispersion | distribution slurry flow.

攪拌工程において、活物質粒子と樹脂とを分散させる際に、スラリーの温度が上昇することがある。このようにして、高温になった分散スラリーでは、熱によって樹脂が変質して固化が進行して、電極用スラリーの特性を低下させることがあるなど、分散スラリーを高温のままにしておくのは好ましくない。
これに対し、本発明の電極用スラリーの製造方法では、流動貯留工程が冷却工程を有する。このため、分散スラリーの流通時にこれを冷却することができる。従って、水分の混入のみならず、高温による特性の低下をも防止した電極用スラリーを製造できる。
In the stirring step, the temperature of the slurry may increase when the active material particles and the resin are dispersed. In this way, in the dispersion slurry that has become high temperature, the resin is denatured by heat and solidification proceeds, which may deteriorate the characteristics of the electrode slurry. It is not preferable.
On the other hand, in the manufacturing method of the slurry for electrodes of this invention, a fluid storage process has a cooling process. For this reason, this can be cooled at the time of distribution of a dispersion slurry. Therefore, it is possible to produce an electrode slurry that prevents not only the mixing of moisture but also deterioration of characteristics due to high temperature.

さらに、上述のいずれかの電極用スラリーの製造方法であって、前記流動貯留工程に先立って、前記分散スラリーが流動する流動路全体に亘ってドライエアを流通させて、上記流動路をなす部材のうち、少なくとも上記分散スラリーに接する部位を乾燥させる乾燥工程を備える電極用スラリーの製造方法とすると良い。   Further, in any one of the above-described methods for producing an electrode slurry, the dry air is circulated over the entire flow path through which the dispersed slurry flows prior to the flow storage step. Of these, a method for producing a slurry for an electrode comprising a drying step of drying at least a portion in contact with the dispersion slurry is preferable.

本発明の電極用スラリーの製造方法では、上述の乾燥工程を備える。このため、流動路をなす部材のうち、少なくとも分散スラリーに接する部位に付着していた水分の、分散スラリーへの混入を防止することができる。   In the manufacturing method of the slurry for electrodes of this invention, the above-mentioned drying process is provided. For this reason, it is possible to prevent the moisture adhering to at least the portion in contact with the dispersed slurry among the members forming the flow path from being mixed into the dispersed slurry.

さらに、上述の電極用スラリーの製造方法であって、前記乾燥工程は、前記流動路内に位置する流動路内雰囲気の雰囲気露点温度が、所定値以下となるまで、前記ドライエアを流通させる電極用スラリーの製造方法とすると良い。   Furthermore, in the method for manufacturing the electrode slurry described above, the drying step is for the electrode through which the dry air is circulated until an atmospheric dew point temperature of the atmosphere in the flow path located in the flow path becomes a predetermined value or less. A method for producing a slurry is preferable.

本発明の電極用スラリーの製造方法では、雰囲気露点が所定値以下となるまでドライエアを流通させる。このため、流動路における結露を確実に防止できる。   In the manufacturing method of the slurry for electrodes of the present invention, dry air is circulated until the atmospheric dew point becomes a predetermined value or less. For this reason, the dew condensation in a flow path can be prevented reliably.

さらに、上述の電極用スラリーの製造方法であって、前記乾燥工程は、前記流動路内雰囲気の流通を開閉するバルブを介して、前記流動路に接続された露点計により、上記バルブを閉じて前記雰囲気露点温度を計測する電極用スラリーの製造方法とすると良い。   Furthermore, in the method for producing the electrode slurry, the drying step is performed by closing the valve with a dew point meter connected to the flow path via a valve that opens and closes the circulation of the atmosphere in the flow path. A method for producing a slurry for an electrode that measures the atmospheric dew point temperature is preferable.

流動路内雰囲気の雰囲気露点を露点計で計測するにあたり、ドライエアを流通させたままで測定するよりも、流動路内雰囲気が露点計の周囲で動かない状態で露点を計測した方が、より安定して雰囲気露点を測定できる。
この知見を基に、本発明の電極用スラリーの製造方法では、流動路と露点計との間にバルブを設け、このバルブを介して、流動路に接続した露点計を用い、バルブを閉じて雰囲気露点を計測するので、より安定して雰囲気露点を計測することができる。
When measuring the dew point of the atmosphere in the flow path with a dew point meter, it is more stable to measure the dew point when the flow path atmosphere does not move around the dew point meter than to measure with the dry air circulating. To measure the atmospheric dew point.
Based on this knowledge, in the method for producing an electrode slurry of the present invention, a valve is provided between the flow path and the dew point meter, and a dew point meter connected to the flow path is connected through this valve, and the valve is closed. Since the atmospheric dew point is measured, the atmospheric dew point can be measured more stably.

さらに、他の解決手段は、溶剤と活物質粒子と上記溶剤に溶解した樹脂とを含む電極用スラリーの製造装置であって、上記溶剤、上記活物質粒子及び上記樹脂を含む処理前スラリーを攪拌して、上記活物質粒子と上記樹脂とを分散させた分散スラリーを形成する攪拌手段と、上記分散スラリーを流動させて上記攪拌手段から貯留部まで導く流動路をなす流動路部材と、を備え、上記攪拌手段及び上記流動路部材は、上記分散スラリーが存在することとなる場所の何れにおいても、当該場所における上記分散スラリーのスラリー温度及び、この分散スラリーが接する部材の部材温度を、この場所において分散スラリーに接する雰囲気の露点温度よりも高い状態としてなる電極用スラリーの製造装置である。   Further, another solution is an apparatus for producing a slurry for an electrode comprising a solvent, active material particles, and a resin dissolved in the solvent, wherein the pretreatment slurry containing the solvent, the active material particles, and the resin is stirred. And a stirring means for forming a dispersion slurry in which the active material particles and the resin are dispersed, and a flow path member that forms a flow path for causing the dispersion slurry to flow and leading from the stirring means to the storage section. The stirring means and the flow path member are configured so that the slurry temperature of the dispersion slurry in the place and the member temperature of the member in contact with the dispersion slurry are determined at any place where the dispersion slurry exists. Is a device for producing a slurry for electrodes that is higher than the dew point temperature of the atmosphere in contact with the dispersed slurry.

本発明の電極用スラリーの製造装置では、攪拌手段及び流動路部材のうち、分散スラリーが存在することとなる何れの場所においても、分散スラリー及びこの分散スラリーが接する部材の温度を、雰囲気の露点温度よりも高い状態にできる。このため、攪拌手段及び流動路部材の、分散スラリーが存在することとなる何れの場所においても結露を防止できる。従って、この装置によれば、水分の混入による分解反応や固化など、水分混入による特性低下を防止して、良好な特性の電極用スラリーを製造できる。   In the apparatus for producing an electrode slurry of the present invention, the temperature of the dispersed slurry and the member in contact with the dispersed slurry is set to the dew point of the atmosphere at any location where the dispersed slurry exists among the stirring means and the flow path member. Can be higher than temperature. For this reason, dew condensation can be prevented at any place where the dispersed slurry exists in the stirring means and the flow path member. Therefore, according to this apparatus, it is possible to prevent deterioration of characteristics due to water mixing such as decomposition reaction and solidification due to water mixing, and to manufacture an electrode slurry having good characteristics.

さらに、上述の電極用スラリーの製造装置であって、前記流動路部材は、前記分散スラリーを流動させつつ冷却する冷却手段を有する電極用スラリーの製造装置とすると良い。   Furthermore, in the above-described electrode slurry manufacturing apparatus, the flow path member may be an electrode slurry manufacturing apparatus having cooling means for cooling the dispersed slurry while flowing.

本発明の電極用スラリーの製造装置では、流動路部材は冷却手段を有している。このため、分散スラリーが流動路部材を流動する際、冷却手段を用いて分散スラリーを冷却することができる。従って、この装置によれば、水分混入を防止するのみならず、高温となることによる特性の低下を防止して、良好な特性の電極用スラリーを製造できる。   In the electrode slurry manufacturing apparatus of the present invention, the flow path member has a cooling means. For this reason, when the dispersed slurry flows through the flow path member, the dispersed slurry can be cooled using the cooling means. Therefore, according to this apparatus, it is possible not only to prevent moisture from being mixed, but also to prevent deterioration of characteristics due to high temperature, and to manufacture an electrode slurry having good characteristics.

さらに、上述のいずれかの電極用スラリーの製造装置であって、前記流動路全体に亘って、ドライエアを流通させるドライエア流通手段を備える電極用スラリーの製造装置とすると良い。   Furthermore, it is preferable that the electrode slurry manufacturing apparatus is any one of the above-described electrode slurry manufacturing apparatuses including dry air circulation means for circulating dry air over the entire flow path.

本発明の電極用スラリーの製造装置では、上述のドライエア流通手段を備える。このため、分散スラリーを流動させるのに先立ち、このドライエア流通手段を用いて、流動路全体に亘って、これを乾燥させることができる。また流動路のうち、少なくとも分散スラリーに接する雰囲気の露点を下げて、流動路内の結露を防止することができる。   The electrode slurry manufacturing apparatus of the present invention includes the above-described dry air circulation means. For this reason, prior to flowing the dispersed slurry, it can be dried over the entire flow path using this dry air circulation means. Further, at least the dew point of the atmosphere in contact with the dispersed slurry in the flow path can be lowered to prevent condensation in the flow path.

さらに、上述の電極用スラリーの製造装置であって、前記流動路内に位置する流動路内雰囲気の雰囲気露点温度を計測する露点計を備える電極用スラリーの製造装置とすると良い。   Furthermore, it is preferable to use the above-described electrode slurry manufacturing apparatus, which is an electrode slurry manufacturing apparatus including a dew point meter that measures the atmospheric dew point temperature of the atmosphere in the flow path located in the flow path.

本発明の電極用スラリーの製造装置では、露点計を備える。このため、例えば、流動路内雰囲気が、分散スラリーや流動路部材に触れても結露を生じない所定値以下となるまで、流動路部材にドライエアを流通させて、確実に流動路内雰囲気の雰囲気露点を下げるなど、適切な露点管理ができる。かくして、流動路内での結露を確実に防止することができる。   The electrode slurry manufacturing apparatus of the present invention includes a dew point meter. For this reason, for example, dry air is circulated through the flow path member until the atmosphere in the flow path becomes equal to or less than a predetermined value that does not cause condensation even when the dispersed slurry or the flow path member is touched. Appropriate dew point management is possible, such as lowering the dew point. Thus, it is possible to reliably prevent condensation in the flow path.

さらに、上述の電極用スラリーの製造装置であって、前記露点計は、前記流動路内雰囲気の流通を開閉するバルブを介して、前記流動路に接続されてなる電極用スラリーの製造装置とすると良い。   Further, in the electrode slurry manufacturing apparatus described above, the dew point meter is an electrode slurry manufacturing apparatus that is connected to the flow path via a valve that opens and closes the flow of the atmosphere in the flow path. good.

本発明の電極用スラリーの製造装置では、露点計が上述のバルブを介して流動路に接続されているので、露点の計測前はバルブを開け、計測の際にはバルブを閉じることで、流動路内雰囲気の雰囲気露点を安定して計測することができる。   In the electrode slurry manufacturing apparatus of the present invention, since the dew point meter is connected to the flow path via the above-described valve, the valve is opened before the dew point is measured, and the valve is closed during the measurement. The atmospheric dew point of the road atmosphere can be stably measured.

実施形態1にかかる製造装置の説明図である。It is explanatory drawing of the manufacturing apparatus concerning Embodiment 1. FIG. 実施形態1のフィルタ部の説明図である。3 is an explanatory diagram of a filter unit according to Embodiment 1. FIG. 実施形態1にかかる製造装置の部分断面図(図1のA部)である。It is a fragmentary sectional view (A section of Drawing 1) of a manufacturing device concerning Embodiment 1.

(実施形態1)
次に、本発明の実施形態1について、図面を参照しつつ説明する。
本実施形態1にかかる正極板用スラリーSCの製造方法及び正極板用スラリーSCの製造装置100について説明する。なお、正極板用スラリーSCは、正極基板に塗布して乾燥させれば電池の正極板の活物質層を構成する。
(Embodiment 1)
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
The manufacturing method 100 of the positive electrode plate slurry SC and the positive electrode plate slurry SC according to the first embodiment will be described. The positive electrode plate slurry SC forms an active material layer of the positive electrode plate of the battery when applied to the positive electrode substrate and dried.

まず、本実施形態1にかかる正極板用スラリーSCの製造装置100について、図1〜3を参照しつつ説明する。
この製造装置100は、攪拌タンク102と、第2流動路部材110Bと、ドライエア供給機構150と、露点計測機構140とを備える。また、これらのほかに、供給タンク101と、第1流動路部材110Aと、フィルタ部111と貯留タンク103とを備える。この製造装置100は、第1流動路部材110Aが供給タンク101の下側(図1中、下方)と攪拌タンク102の上側(図1中、上方)との間を接続し、第2流動路部材110Bが攪拌タンク102の下側(図1中、下方)に接続している。そして、第2流動路部材110Bの先端に位置し、図1中、下方に向く流出口110BEの下方に、貯留タンク103を配置している。また、第2流動路部材110Bの途中には、ドライエア供給機構150、露点計測機構140及びフィルタ部111がそれぞれ接続されている。
なお、この製造装置100において、供給タンク101、第1流動路部材110A、攪拌タンク102、第2流動路部材110B、ドライエア供給機構150、露点計測機構140及びフィルタ部111は、閉じた空間(クローズエア)をなしている。
First, the manufacturing apparatus 100 of the positive electrode slurry SC according to the first embodiment will be described with reference to FIGS.
The manufacturing apparatus 100 includes a stirring tank 102, a second flow path member 110B, a dry air supply mechanism 150, and a dew point measurement mechanism 140. In addition to these, a supply tank 101, a first flow path member 110A, a filter unit 111, and a storage tank 103 are provided. In the manufacturing apparatus 100, the first flow path member 110A connects the lower side (lower part in FIG. 1) of the supply tank 101 and the upper side (upper side in FIG. 1) of the stirring tank 102, and the second flow path member The member 110B is connected to the lower side (lower side in FIG. 1) of the stirring tank 102. And the storage tank 103 is arrange | positioned under the outflow port 110BE which is located in the front-end | tip of the 2nd flow path member 110B and faces below in FIG. Further, a dry air supply mechanism 150, a dew point measurement mechanism 140, and a filter unit 111 are connected to each other in the middle of the second flow path member 110B.
In the manufacturing apparatus 100, the supply tank 101, the first flow path member 110A, the stirring tank 102, the second flow path member 110B, the dry air supply mechanism 150, the dew point measurement mechanism 140, and the filter unit 111 are closed spaces (closed). Air).

このうち、供給タンク101は、内部に収容物を収容可能な円筒容器である(図1参照)。この内部には、正極活物質SX、溶剤SWに溶解した結着材SY及び導電助材SZを分散していない処理前スラリーSBを収容する。
また、管状の第1流動路部材110Aは、その内部に第1流動路PS1を含む(図1参照)。なお、第1流動路部材110Aには液送ポンプ170が配置されており、これを用いて、第1流動路PS1に流動体を流動させることができる。
Among these, the supply tank 101 is a cylindrical container which can accommodate a thing (refer FIG. 1). The pretreatment slurry SB in which the positive electrode active material SX, the binder SY dissolved in the solvent SW, and the conductive additive SZ are not dispersed is housed inside.
The tubular first flow path member 110A includes a first flow path PS1 therein (see FIG. 1). In addition, the liquid feed pump 170 is arrange | positioned at 110 A of 1st flow path members, A fluid can be made to flow into 1st flow path PS1 using this.

また、貯留タンク103は、内部に収容物を収容可能な円筒容器である(図1参照)。この貯留タンク103は、内部に収容物を攪拌可能なプロペラ形状の攪拌はね103Wを含む。
また、フィルタ部111は、図2に示すように、フィルタケース111Rの内側に、円板メッシュ形状のメッシュフィルタ部111A、円回転しながらメッシュフィルタ部111Aを擦るヘラ状のスクレイパー部111B、及び、スクレイパー部111Bを円回転させる回転軸部111Cを有する。このフィルタ部111は、第2流動路部材110Bのうち、貯留タンク103に流動体を流出する流出口110BEの手前に配置されている。
Moreover, the storage tank 103 is a cylindrical container which can accommodate a thing (refer FIG. 1). The storage tank 103 includes a propeller-shaped stirring splash 103W capable of stirring the contents therein.
Further, as shown in FIG. 2, the filter unit 111 includes a disk mesh-shaped mesh filter unit 111A, a spatula-shaped scraper unit 111B that rubs the mesh filter unit 111A while rotating in a circle, and a filter case 111R. It has a rotating shaft part 111C that rotates the scraper part 111B in a circle. This filter part 111 is arrange | positioned before the outflow port 110BE which flows out a fluid into the storage tank 103 among the 2nd flow path members 110B.

また、内部に流動体を一旦収容可能な円筒容器の攪拌タンク102は、プライミクス(株)社製のT.K.フィルミックスである。この攪拌タンク102は、攪拌タンク102のタンク内部PSTにおいて流動体を攪拌するプロペラ形状の攪拌はね102Wと、この攪拌はね102Wを回転させるモータ部102Mとを有する(図1参照)。このうち攪拌はね102Wは、大きな剪断力で内容物を攪拌する。   In addition, a stirring tank 102 of a cylindrical container that can once accommodate a fluid therein is manufactured by T.I. K. It is a fill mix. The stirring tank 102 includes a propeller-shaped stirring spring 102W that stirs the fluid in the tank inside PST of the stirring tank 102, and a motor unit 102M that rotates the stirring spring 102W (see FIG. 1). Among these, the stirring splash 102W stirs the contents with a large shearing force.

さらに、この攪拌タンク102は、この攪拌タンク102自体、さらには、これに一旦収容する流動体を冷却可能な第1冷却機構120を有する。
この第1冷却機構120は、冷媒(図示しない)を送り出すポンプ(図示しない)を含む本体部120Aと、本体部120Aに接続する管状の第1冷媒配管部120B,第2冷媒配管部120Dと、攪拌タンク102の外側を螺旋状に包囲してなる金属管状の螺旋配管部120Cとを含む(図1参照)。冷媒は、本体部120Aから第1冷媒配管部120Bを流れて、螺旋配管部120Cを通過している際に、攪拌タンク102を冷却する。螺旋配管部120Cを通過した冷媒は、第2冷媒配管部120Dを流れて、本体部120Aに戻る。
Further, the stirring tank 102 includes the first cooling mechanism 120 capable of cooling the stirring tank 102 itself and the fluid once stored in the stirring tank 102.
The first cooling mechanism 120 includes a main body part 120A including a pump (not shown) that sends out a refrigerant (not shown), a tubular first refrigerant pipe part 120B and a second refrigerant pipe part 120D connected to the main body part 120A, And a metal tubular spiral pipe portion 120C that spirally surrounds the outside of the stirring tank 102 (see FIG. 1). The refrigerant flows from the main body part 120A through the first refrigerant pipe part 120B and cools the agitation tank 102 while passing through the spiral pipe part 120C. The refrigerant that has passed through the spiral pipe portion 120C flows through the second refrigerant pipe portion 120D and returns to the main body portion 120A.

また、管状の第2流動路部材110Bは、この内部に第2流動路PS2を含む。また、この第2流動路部材110Bは、第2流動路PS2から分岐する第1分岐部110BP及び第2分岐部110BQと、次述する第2冷却機構130の冷却器130Cを螺旋状に包囲してなる金属管状の螺旋部110BZとを含む。   The tubular second flow path member 110B includes the second flow path PS2 therein. The second flow path member 110B spirally surrounds the first branch part 110BP and the second branch part 110BQ branched from the second flow path PS2 and the cooler 130C of the second cooling mechanism 130 described below. And a metal tubular spiral portion 110BZ.

さらに、この第2流動路部材110Bは、この第2流動路部材110B自体、さらにはこれに流動する流動体を冷却可能な第2冷却機構130を有する。
この第2冷却機構130は、冷媒(図示しない)を送り出すポンプ(図示しない)を含む本体部130Aと、本体部130Aに接続する管状の第1冷媒配管部130B,第2冷媒配管部130Dと、金属からなり、冷媒を内部で循環可能な円筒形状の冷却器130Cとを含む。冷媒は、本体部130Aから第1冷媒配管部130Bを流れて、冷却器130Cを通過している際に、第2流動路部材110Bの螺旋部110BZを冷却する。そして、冷却器130Cを循環した冷媒は、第2冷媒配管部130Dを流れて、本体部130Aに戻る。
Further, the second flow path member 110B includes a second cooling mechanism 130 that can cool the second flow path member 110B itself and a fluid flowing in the second flow path member 110B.
The second cooling mechanism 130 includes a main body portion 130A including a pump (not shown) that sends out a refrigerant (not shown), a tubular first refrigerant piping portion 130B and a second refrigerant piping portion 130D connected to the main body portion 130A, And a cylindrical cooler 130C made of metal and capable of circulating a refrigerant therein. The refrigerant flows through the first refrigerant pipe portion 130B from the main body portion 130A and cools the spiral portion 110BZ of the second flow path member 110B when passing through the cooler 130C. And the refrigerant | coolant which circulated through the cooler 130C flows through the 2nd refrigerant | coolant piping part 130D, and returns to 130 A of main body parts.

また、ドライエア供給機構150は、ドライエアDAを供給可能なドライエア供給機151、このドライエア供給機151と第2流動路部材110Bの第1分岐部110BPとの間を結ぶ、管状のドライエア配管152、及び、このドライエア配管152を開閉可能なバルブ153を有する。   The dry air supply mechanism 150 includes a dry air supply unit 151 that can supply dry air DA, a tubular dry air pipe 152 that connects the dry air supply unit 151 and the first branch portion 110BP of the second flow path member 110B, and The dry air pipe 152 has a valve 153 that can be opened and closed.

また、露点計測手段140は、露点計141、この露点計141と、第2流動路部材110Bの第2分岐部110BQとの間を結ぶ、管状の計測用配管142、及び、この計測用配管142を開閉可能なバルブ143を有する。   Further, the dew point measuring means 140 includes a dew point meter 141, a tubular measurement pipe 142 connecting the dew point meter 141 and the second branch part 110BQ of the second flow path member 110B, and the measurement pipe 142. Has a valve 143 that can be opened and closed.

なお、供給タンク101から第2流動路PS2までの間はクローズエアであるので、第1流動路PS1、攪拌タンク102及び第2流動路PS2の雰囲気の露点は、一様になっている。このため、露点計141による流動路内雰囲気PS2Gの露点を計測すれば、正極板用スラリーSCが存在することとなる場所(攪拌タンク102及び第2流動路PS2)の露点と見なすことができる。   In addition, since it is closed air from the supply tank 101 to 2nd flow path PS2, the dew point of the atmosphere of 1st flow path PS1, the stirring tank 102, and 2nd flow path PS2 is uniform. Therefore, if the dew point of the flow path atmosphere PS2G is measured by the dew point meter 141, it can be regarded as the dew point of the place (the stirring tank 102 and the second flow path PS2) where the positive electrode plate slurry SC is present.

また、本実施形態1の製造装置100では、ドライエア供給機構150及び露点計140を用いて、攪拌タンク102のタンク温度TF及び第2流動路部材110Bの部材温度TTを、計測した流動路内雰囲気PS2Gの雰囲気露点TGよりも高い状態にする。
具体的に、製造装置100では、雰囲気露点TGに対し、露点の所定値TKを設けている。雰囲気露点TGが所定値TK以下の場合には、第1冷却機構120及び第2冷却機構130を用いたとしても攪拌タンク102のタンク温度TF、及び、第2流動路部材110Bの部材温度TTが雰囲気露点TGよりも低くならないように、所定値TKを決めている。つまり、製造装置100において、(タンク温度TF,部材温度TT)>所定値TK≧雰囲気露点TGが成立する。なお、雰囲気露点TGが、露点の所定値TKよりも高ければ、ドライエア供給機構150を用いて雰囲気露点TGを所定値TK以下にする。
Moreover, in the manufacturing apparatus 100 of the first embodiment, the dry-air supply mechanism 150 and the dew point meter 140 are used to measure the tank temperature TF of the stirring tank 102 and the member temperature TT of the second flow path member 110B. The atmospheric dew point TG of PS2G is set higher.
Specifically, in the manufacturing apparatus 100, a dew point predetermined value TK is provided for the atmospheric dew point TG. When the atmospheric dew point TG is equal to or less than the predetermined value TK, the tank temperature TF of the stirring tank 102 and the member temperature TT of the second flow path member 110B are equal even if the first cooling mechanism 120 and the second cooling mechanism 130 are used. The predetermined value TK is determined so as not to be lower than the atmospheric dew point TG. That is, in the manufacturing apparatus 100, (tank temperature TF, member temperature TT)> predetermined value TK ≧ atmosphere dew point TG is established. If the atmospheric dew point TG is higher than the predetermined value TK of the dew point, the atmospheric dew point TG is set to be equal to or lower than the predetermined value TK using the dry air supply mechanism 150.

また、本実施形態1の正極板用スラリーSCは、後述するように、攪拌タンクにおいて昇温する。このため、攪拌タンク102での正極板用スラリーSCは第1冷却機構120で冷却されるが、この正極板用スラリーSCのスラリー温度TSは、攪拌タンク102のタンク温度TFよりも低くなることはない(スラリー温度TS>タンク温度TF)。さらに、第2流動路部材110Bでの正極板用スラリーSCは第2冷却機構130で冷却されるが、このスラリー温度TSは、第2流動路部材110Bの部材温度TTよりも低くなることはない(スラリー温度TS>部材温度TT)。   Moreover, the slurry SC for positive electrode plates of this Embodiment 1 heats up in a stirring tank so that it may mention later. For this reason, the positive electrode plate slurry SC in the stirring tank 102 is cooled by the first cooling mechanism 120, but the slurry temperature TS of the positive electrode plate slurry SC is lower than the tank temperature TF of the stirring tank 102. No (slurry temperature TS> tank temperature TF). Further, the positive electrode plate slurry SC in the second flow path member 110B is cooled by the second cooling mechanism 130, but the slurry temperature TS is never lower than the member temperature TT of the second flow path member 110B. (Slurry temperature TS> Member temperature TT).

以上より、正極板用スラリーSCが存在することとなる何れの場所(攪拌タンク102及び第2流動路部材110B)においても結露を防止できる。従って、本実施形態1にかかる製造装置100によれば、水分の混入による分解反応や固化など、水分混入による特性低下を防止して、良好な特性の正極板用スラリーSCを製造できる。   As described above, dew condensation can be prevented at any place (agitating tank 102 and second flow path member 110B) where the positive electrode slurry SC is present. Therefore, according to the manufacturing apparatus 100 according to the first embodiment, it is possible to manufacture a positive electrode plate slurry SC with good characteristics by preventing degradation of characteristics due to moisture mixing such as decomposition reaction and solidification due to moisture mixing.

また、本実施形態1にかかる正極板用スラリーSCの製造装置100では、攪拌タンク102は第1冷却機構120を、第2流動路部材110Bは第2冷却機構130をそれぞれ有している。このため、正極板用スラリーSCが攪拌タンク102を流動する際、第1冷却機構120を用いて正極板用スラリーSCを冷却することができる。また、正極板用スラリーSCが第2流動路部材110Bを流動する際、第2冷却機構130を用いて正極板用スラリーSCを冷却することができる。従って、製造装置100によれば、水分混入を防止するのみならず、高温となることによる特性の低下を防止して、良好な特性の正極板用スラリーSCを製造できる。   Further, in the positive plate slurry SC manufacturing apparatus 100 according to the first embodiment, the stirring tank 102 has the first cooling mechanism 120 and the second flow path member 110B has the second cooling mechanism 130, respectively. For this reason, when the positive electrode plate slurry SC flows in the stirring tank 102, the positive plate slurry SC can be cooled using the first cooling mechanism 120. Further, when the positive electrode plate slurry SC flows through the second flow path member 110B, the positive plate slurry SC can be cooled using the second cooling mechanism 130. Therefore, according to the manufacturing apparatus 100, it is possible not only to prevent moisture mixing but also to prevent the deterioration of characteristics due to high temperature, and to manufacture the positive electrode plate slurry SC having good characteristics.

また、上述のドライエア供給機構150を備えるので、正極板用スラリーSCを流動させるのに先立ち、このドライエア供給機構150を用いて、第2流動路PS2全体に亘って、これを乾燥させることができる。また第2流動路PS2のうち、少なくとも正極板用スラリーSCに接する流動路内雰囲気PS2Gの露点を下げて、第2流動路PS2内の結露を防止することができる。   In addition, since the dry air supply mechanism 150 described above is provided, the dry air supply mechanism 150 can be used to dry the entire second flow path PS2 prior to flowing the positive electrode plate slurry SC. . Further, in the second flow path PS2, the dew point of the flow path atmosphere PS2G in contact with at least the positive electrode plate slurry SC can be lowered to prevent dew condensation in the second flow path PS2.

また製造装置100では、露点計141を備える。このため、例えば、流動路内雰囲気PS2Gが、正極板用スラリーSCや第2流動路部材110Bに触れても結露を生じない所定値TK以下となるまで、第2流動路部材110BにドライエアDAを流通させて、確実に流動路内雰囲気PS2Gの雰囲気露点TGを下げるなど、適切な露点管理ができる。。かくして、第2流動路PS2内での結露を確実に防止することができる。   The manufacturing apparatus 100 includes a dew point meter 141. For this reason, for example, the dry air DA is supplied to the second flow path member 110B until the flow path atmosphere PS2G becomes equal to or less than a predetermined value TK that does not cause condensation even when the positive electrode plate slurry SC or the second flow path member 110B is touched. Proper dew point management is possible, for example, by lowering the atmosphere dew point TG of the atmosphere PS2G in the flow path by distributing it. . Thus, condensation in the second flow path PS2 can be reliably prevented.

さらに、露点計141がバルブ143を介して第2流動路PS2に接続されているので、雰囲気露点TGの計測前はバルブ143を開け、計測の際にはバルブ143を閉じることで、流動路内雰囲気PS2Gの雰囲気露点TGを安定して計測することができる。   Further, since the dew point meter 141 is connected to the second flow path PS2 via the valve 143, the valve 143 is opened before the measurement of the atmospheric dew point TG, and the valve 143 is closed at the time of measurement. The atmosphere dew point TG of the atmosphere PS2G can be stably measured.

次に、上述の製造装置100を用いた正極板用スラリーSCの製造方法について、図面を参照しつつ説明する。
この正極板用スラリーSCの製造方法では、攪拌により、正極活物質SX及び結着材SYを互いに分散させた正極板用スラリーSCとする攪拌工程と、攪拌された正極板用スラリーSCを貯留タンク103まで流動させて、貯留タンク103で貯留する流動貯留工程とを備える。さらに、流動貯留工程に先立ち、正極板用スラリーSCが流通する第2流動路PS2全体に亘ってドライエアDAを流通させ、第2流動路PS2をなす第2流動路部材110Bのうち、正極板用スラリーSCに接する部材内側部110BHを乾燥させる乾燥工程を備える。
Next, a method for producing the positive electrode slurry SC using the production apparatus 100 will be described with reference to the drawings.
In this method of manufacturing the positive electrode plate slurry SC, the agitation step is performed to obtain the positive electrode plate slurry SC in which the positive electrode active material SX and the binder SY are dispersed, and the stirred positive electrode plate slurry SC is stored in the storage tank. And a flow storage step of storing in the storage tank 103. Further, prior to the flow storage step, the dry air DA is circulated over the entire second flow path PS2 through which the positive electrode plate slurry SC circulates, and the second flow path member 110B forming the second flow path PS2 is used for the positive electrode plate. A drying step of drying the member inner portion 110BH in contact with the slurry SC is provided.

まず、乾燥工程について図3を参照して説明する。この乾燥工程では、ドライエア供給機構150を用いて第2流動路部材110BにドライエアDAを流入させる。具体的には、ドライエア供給機構150のドライエア供給機151から供給するドライエアDAを、バルブ153を開けたドライエア配管152及び第1分岐部110BPを経由して、第2流動路部材110Bの第2流動路PS2に流し込む。
第2流動路部材110Bに流入したドライエアDAは、第1分岐部110BPから螺旋部110BZ側(図3中、右方向)、及び、第1分岐部110BPから攪拌タンク102側(図3中、左方向)にそれぞれ流れる。このうち、螺旋部110BZ側に向かって流れるドライエアDAは、第2流動路PS2の螺旋部110BZ及び第2流動路PS2の途中に配置したフィルタ部111を流れて、流出口110BEから外部へ流れ出る。一方、攪拌タンク102側に向かって流れるドライエアDAは、第2流動路PS2を流れた後、攪拌タンク102、及び、第1流動路部材110A内の第1流動路PS1を流れて、供給タンク101から外部へ出る(図1参照)。つまり、ドライエアDAは、第2流動路PS2全体と、攪拌タンク102にタンク内部PST全体とに亘って流通するので、乾燥工程では第2流動路部材110Bの部材内側部110BH及び攪拌タンク102を乾燥させる。
First, the drying process will be described with reference to FIG. In this drying step, the dry air DA is caused to flow into the second flow path member 110B using the dry air supply mechanism 150. Specifically, the second flow of the second flow path member 110B from the dry air supply mechanism 151 of the dry air supply mechanism 150 is supplied to the second flow path member 110B through the dry air pipe 152 and the first branching section 110BP with the valve 153 opened. Pour into road PS2.
The dry air DA flowing into the second flow path member 110B is from the first branch part 110BP to the spiral part 110BZ side (right direction in FIG. 3), and from the first branch part 110BP to the stirring tank 102 side (left side in FIG. 3). Direction). Among these, the dry air DA that flows toward the spiral portion 110BZ side flows through the spiral portion 110BZ of the second flow path PS2 and the filter portion 111 disposed in the middle of the second flow path PS2, and flows out from the outlet 110BE. On the other hand, after the dry air DA flowing toward the stirring tank 102 flows through the second flow path PS2, the dry air DA flows through the stirring tank 102 and the first flow path PS1 in the first flow path member 110A, thereby supplying the supply tank 101. Go out (see Figure 1). That is, since the dry air DA flows through the entire second flow path PS2 and the entire tank interior PST to the stirring tank 102, the member inner portion 110BH and the stirring tank 102 of the second flow path member 110B are dried in the drying process. Let

なお、上述の乾燥工程では、ドライエアDAを供給しつつ、露点計測機構140の露点計141を用いて、第2流動路PS2の流動路内雰囲気PS2Gの雰囲気露点TGを計測する。このとき、流動路内雰囲気PS2Gの流通を開閉するバルブ143を一旦閉じる。
流動路内雰囲気PS2Gの雰囲気露点TGを露点計141で計測するにあたり、ドライエアDAを流通させたままで測定するよりも、流動路内雰囲気PS2Gが露点計141の周囲で動かない状態で雰囲気露点TGを計測した方が、より安定して雰囲気露点TGを測定できる。そこで、乾燥工程では、雰囲気露点TGの計測前はバルブ143を開けて、計測用配管142を第2流動路PS2の流動路内雰囲気PS2Gと同じにしておく。そして、計測の際にはバルブ143を閉じて計測する。これにより、より安定して流動路内雰囲気PS2Gの雰囲気露点TGを計測することができる。
In the drying step described above, the atmospheric dew point TG of the flow path atmosphere PS2G of the second flow path PS2 is measured using the dew point meter 141 of the dew point measurement mechanism 140 while supplying the dry air DA. At this time, the valve 143 that opens and closes the circulation of the flow path atmosphere PS2G is temporarily closed.
In measuring the atmospheric dew point TG of the flow path atmosphere PS2G with the dew point meter 141, the atmospheric dew point TG is set so that the flow path atmosphere PS2G does not move around the dew point meter 141, rather than measuring with the dry air DA being circulated. The measured one can measure the atmospheric dew point TG more stably. Therefore, in the drying process, the valve 143 is opened before the measurement of the atmospheric dew point TG, and the measurement pipe 142 is set to be the same as the flow path atmosphere PS2G of the second flow path PS2. In the measurement, the valve 143 is closed and measured. Thereby, the atmospheric dew point TG of the flow path atmosphere PS2G can be measured more stably.

露点計141を用いて雰囲気露点TGが、前述の所定値TK以下となったところで、ドライエアDAを供給しつつ、攪拌タンク102の第1冷却機構120、及び、第2流動路部材110Bの第2冷却機構130をそれぞれ稼働させる。これにより、第1冷却機構120が攪拌タンク102自身を、第2冷却機構130が第2流動路部材110Bの部材内側部110BHをそれぞれ冷却する。
攪拌タンク102のタンク温度TF及び部材内側部110BHの部材温度TTがいずれも所定の温度になったところで、ドライエア供給機構150によるドライエアDAの供給を停止(バルブ153を閉じる)し、乾燥工程を終了させる。
When the atmospheric dew point TG is equal to or less than the above-described predetermined value TK using the dew point meter 141, the first cooling mechanism 120 of the stirring tank 102 and the second flow path member 110B of the second flow path member 110B are supplied while supplying the dry air DA. Each cooling mechanism 130 is operated. Accordingly, the first cooling mechanism 120 cools the stirring tank 102 itself, and the second cooling mechanism 130 cools the member inner portion 110BH of the second flow path member 110B.
When the tank temperature TF of the agitation tank 102 and the member temperature TT of the member inner portion 110BH both reach a predetermined temperature, the supply of the dry air DA by the dry air supply mechanism 150 is stopped (the valve 153 is closed), and the drying process is completed. Let

次に、攪拌工程について図1を参照しつつ説明する。
この攪拌工程では、まず、製造装置100の供給タンク101の内部に、溶剤SW、粒子形状の正極活物質SX、溶剤SWに溶解した樹脂からなる結着材SY、及び、アセチレンブラックからなる導電助材SZを含む処理前スラリーSBを収容させる。このうち、溶剤SWはN−メチル−2−ピロリドン(NMP)からなり、正極活物質SXはLiNiO2からなり、結着材SYはポリフッ化ビニリデン(PVDF)からなる。
なお、これらの重量比を、正極活物質SX:結着材SY:導電助材SZ=93:4:3とした。
Next, the stirring process will be described with reference to FIG.
In this agitation step, first, in the supply tank 101 of the manufacturing apparatus 100, a conductive assistant comprising a solvent SW, a particulate positive electrode active material SX, a binder SY made of a resin dissolved in the solvent SW, and acetylene black. The untreated slurry SB containing the material SZ is accommodated. Among these, the solvent SW is made of N-methyl-2-pyrrolidone (NMP), the positive electrode active material SX is made of LiNiO 2 , and the binder SY is made of polyvinylidene fluoride (PVDF).
In addition, these weight ratios were set to positive electrode active material SX: binder SY: conducting aid SZ = 93: 4: 3.

供給タンク101に処理前スラリーSBを収容したら、第1流動路部材110Aに配置した液送ポンプ170を用いて、第1流動路部材110Aの第1流動路PS1に処理前スラリーSBを流動させる。そして、第1流動路部材110Aが接続する攪拌タンク102に処理前スラリーSBを到達させ、攪拌タンク102に収容する。   When the pretreatment slurry SB is stored in the supply tank 101, the pretreatment slurry SB is caused to flow into the first flow path PS1 of the first flow path member 110A using the liquid feed pump 170 disposed in the first flow path member 110A. Then, the pretreatment slurry SB is made to reach the stirring tank 102 to which the first flow path member 110 </ b> A is connected, and is stored in the stirring tank 102.

攪拌タンク102では、処理前スラリーSBを、攪拌はね102W及びモータ部102Mを用いて攪拌して、正極活物質SX、結着材SY及び導電助材SZを分散させる。これにより、正極活物質SX、結着材SY及び導電助材SZを分散させた正極板用スラリーSCができる。
なお、本実施形態1の正極板用スラリーSCは、攪拌の際、大きな剪断力を攪拌はね102Wから受けたことによって昇温してしまう。しかし、攪拌工程前及び攪拌工程中に、第1冷却機構120によって、攪拌タンク102自身が冷却されるので、正極板用スラリーSCを、例えば、結着材21Yの融点にまで昇温するのを防止する。
攪拌タンク102でできた正極板用スラリーSCは、第1流動路部材110Aから新たに収容される処理前スラリーSBに押し出されるようにして、第2流動路部材110Bの第2流動路PS2に流れ込む。
In the agitation tank 102, the pretreatment slurry SB is agitated using the agitation splash 102W and the motor unit 102M to disperse the positive electrode active material SX, the binder SY, and the conductive additive SZ. As a result, a positive electrode plate slurry SC in which the positive electrode active material SX, the binder SY, and the conductive additive SZ are dispersed can be obtained.
In addition, the slurry SC for positive electrode plate of this Embodiment 1 will heat up by receiving the big shear force from the stirring splash 102W at the time of stirring. However, since the stirring tank 102 itself is cooled by the first cooling mechanism 120 before and during the stirring step, the temperature of the slurry SC for the positive electrode plate is increased to, for example, the melting point of the binder 21Y. To prevent.
The positive electrode plate slurry SC formed in the stirring tank 102 flows into the second flow path PS2 of the second flow path member 110B so as to be pushed out from the first flow path member 110A to the pre-treatment slurry SB newly accommodated. .

次に、流動貯留工程では、上述の正極板用スラリーSCを貯留タンク103まで流動させて、貯留タンク103で貯留する。
具体的には、正極板用スラリーSCを第2流動路部材110Bの第2流動路PS2を流動させる。そして、第2流動路部材110Bの流出口110BEから流出する正極板用スラリーSCを、貯留タンク103に収容し貯留する。
Next, in the fluid storage process, the positive electrode plate slurry SC flows to the storage tank 103 and is stored in the storage tank 103.
Specifically, the positive electrode plate slurry SC is caused to flow in the second flow path PS2 of the second flow path member 110B. Then, the positive electrode plate slurry SC flowing out from the outlet 110BE of the second flow path member 110B is stored in the storage tank 103 and stored.

なお、フィルタ部111では、正極板用スラリーSCをメッシュフィルタ部111A上に、一旦堆積させる。そして、スクレイパー部111Bを用いて、メッシュフィルタ部111A上の正極板用スラリーSCを擦る。これにより、正極板用スラリーSC中の気泡をなくしたり、正極板用スラリーSCから異物を排除することができる。
また、第2流動路部材110Bの螺旋部110BZでは、正極板用スラリーSCの流動前及び流動中に、第2冷却機構130によって、螺旋部110BZの部材内側部110BHが冷却されているので、正極板用スラリーSCをさらに冷却することができる。
また、貯留タンク103では、攪拌はね103Wを回転させて、貯留した正極板用スラリーSCの凝結を防ぐ。
In the filter unit 111, the positive electrode plate slurry SC is temporarily deposited on the mesh filter unit 111A. And the slurry SC for positive electrode plates on the mesh filter part 111A is rubbed using the scraper part 111B. As a result, bubbles in the positive electrode plate slurry SC can be eliminated or foreign substances can be removed from the positive electrode plate slurry SC.
Further, in the spiral portion 110BZ of the second flow path member 110B, the member inner portion 110BH of the spiral portion 110BZ is cooled by the second cooling mechanism 130 before and during the flow of the positive electrode plate slurry SC. The board slurry SC can be further cooled.
Further, in the storage tank 103, the stirring splash 103W is rotated to prevent the stored positive electrode plate slurry SC from condensing.

以上より、本実施形態1にかかる正極板用スラリーSCの製造方法では、上述の攪拌工程と流動貯留工程とを備え、正極板用スラリーSCが存在することとなる場所の何れにおいても、正極板用スラリーSC及びこの正極板用スラリーSCが接する部材内側部110BHの温度T2を、雰囲気露点TGよりも高い状態で、攪拌工程及び流動貯留工程を行う。このため、正極板用スラリーSCが存在することとなる何れの場所においても、結露を防止して、攪拌工程及び流動貯留工程を行うことができる。従って、結露に起因する水分が分散スラリーに混入したことによる分解反応や固化など、水分混入による不具合を防止して、良好な特性の正極板用スラリーSCを製造することができる。   As mentioned above, in the manufacturing method of the slurry SC for positive electrode plates concerning this Embodiment 1, it is provided with the above-mentioned stirring process and flow storage process, and the positive electrode plate in any place where the slurry SC for positive electrode plates exists. The agitation step and the flow storage step are performed in a state where the temperature T2 of the slurry SC and the member inner portion 110BH with which the positive electrode plate slurry SC is in contact is higher than the atmospheric dew point TG. For this reason, in any place where the positive electrode plate slurry SC is present, condensation can be prevented and the stirring step and the flow storage step can be performed. Therefore, it is possible to prevent a malfunction due to moisture mixing such as decomposition reaction and solidification due to mixing of moisture due to condensation into the dispersed slurry, and to produce a positive electrode plate slurry SC having good characteristics.

また、流動貯留工程が冷却工程を有するので、正極板用スラリーSCの流通時にこれを冷却することができる。従って、水分の混入のみならず、高温による特性の低下をも防止した正極板用スラリーSCを製造できる。   Moreover, since a fluid storage process has a cooling process, this can be cooled at the time of distribution | circulation of the slurry SC for positive electrode plates. Therefore, it is possible to manufacture the positive electrode slurry SC that prevents not only the mixing of moisture but also the deterioration of the characteristics due to the high temperature.

また、上述の乾燥工程を備えるので、第2流動路PS2をなす第2流動路部材110Bのうち、少なくとも正極板用スラリーSCに接する部材内側部110BHに付着していた水分の、正極板用スラリーSCへの混入を防止することができる。   In addition, since the above-described drying process is provided, the positive electrode plate slurry of moisture adhering to at least the member inner portion 110BH in contact with the positive electrode plate slurry SC in the second flow path member 110B forming the second flow path PS2. Mixing into the SC can be prevented.

また、雰囲気露点TGが所定値TK以下となるまでドライエアDAを流通させる。このため、第2流動路PS2における結露を確実に防止できる。   Further, the dry air DA is circulated until the atmospheric dew point TG becomes equal to or less than the predetermined value TK. For this reason, the dew condensation in 2nd flow path PS2 can be prevented reliably.

また、本実施形態1にかかる正極板用スラリーSCの製造方法では、第2流動路PS2と露点計141との間にバルブ143を設け、このバルブ143を介して、第2流動路PS2に接続した露点計141を用い、バルブ143を閉じて雰囲気露点TGを計測するので、より安定して雰囲気露点TGを計測することができる。   Moreover, in the manufacturing method of the positive electrode plate slurry SC according to the first embodiment, a valve 143 is provided between the second flow path PS2 and the dew point meter 141 and is connected to the second flow path PS2 via the valve 143. Since the dew point meter 141 is used and the valve 143 is closed to measure the atmospheric dew point TG, the atmospheric dew point TG can be measured more stably.

以上において、本発明を実施形態1に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1では、正極板用スラリーSCを製造する製造装置100について示したが、正極板用スラリーに限らず、負極板用スラリーを製造する製造装置としても良い。また、製造装置100のうち供給タンク101から第2流動路部材110Bまでの間をクローズエアにして、流動貯留工程における分散スラリー(電極用スラリー)を外気に触れないようにした。しかし、例えば、製造装置を、分散スラリーが外気(室内の空気)に触れるような形態(例えば、管状の第2流動路部材110Bに外気が流入する形態や第2流動路部材110Bの上方が開いた形態)にして、流動貯留工程において分散スラリーが外気に触れても良い。
また、電極用スラリーを、攪拌工程でできた分散スラリーをそのまま使用したが、分散スラリーに、さらに他の物質を加えたり加工を施しても良い。
In the above, the present invention has been described with reference to the first embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the first embodiment, the manufacturing apparatus 100 that manufactures the positive electrode plate slurry SC is shown. However, the manufacturing apparatus 100 is not limited to the positive electrode plate slurry, and may be a manufacturing apparatus that manufactures the negative electrode plate slurry. In addition, the space between the supply tank 101 and the second flow path member 110B in the manufacturing apparatus 100 is closed air so that the dispersed slurry (electrode slurry) in the flow storage process is not exposed to the outside air. However, for example, the manufacturing apparatus is configured such that the dispersed slurry comes into contact with the outside air (room air) (for example, the form in which the outside air flows into the tubular second flow path member 110B or the upper part of the second flow path member 110B is opened). The dispersed slurry may come into contact with the outside air in the fluid storage process.
Moreover, although the slurry for electrodes was used as it was as the dispersion slurry produced in the stirring step, other substances may be added to the dispersion slurry or processed.

100 製造装置
102 攪拌タンク(攪拌手段)
103 貯留タンク(貯留部)
110B 第2流動路部材(部材,流動路部材)
110BH 部材内側部(部位)
130 第2冷却機構(冷却手段)
141 露点計
143 バルブ
150 ドライエア供給機構(ドライエア流通手段)
DA ドライエア
PS2 第2流動路(場所,流動路)
PS2G 流動路内雰囲気(雰囲気)
PST タンク内流路(場所)
SC 正極板用スラリー(分散スラリー,電極用スラリー)
SB 処理前スラリー
SW 溶剤
SX 正極活物質(活物質粒子)
SY 結着材(樹脂)
TF タンク温度(部材温度)
TG 雰囲気露点
TK 所定値
TS スラリー温度
TT 部材温度
100 Manufacturing equipment 102 Stirring tank (stirring means)
103 Storage tank (storage part)
110B second flow path member (member, flow path member)
110BH member inner part (part)
130 Second cooling mechanism (cooling means)
141 Dew point meter 143 Valve 150 Dry air supply mechanism (dry air distribution means)
DA dry air PS2 second flow path (location, flow path)
PS2G Flow path atmosphere (atmosphere)
PST tank flow path (place)
SC positive electrode slurry (dispersed slurry, electrode slurry)
SB Pretreatment slurry SW Solvent SX Positive electrode active material (active material particles)
SY binder (resin)
TF tank temperature (component temperature)
TG Atmospheric dew point TK Predetermined value TS Slurry temperature TT Member temperature

Claims (10)

溶剤と活物質粒子と上記溶剤に溶解した樹脂とを含む電極用スラリーの製造方法であって、
攪拌により、上記活物質粒子と上記樹脂とを互いに分散させた分散スラリーとする攪拌工程と、
攪拌された上記分散スラリーを貯留部まで流動させて、上記貯留部で貯留する流動貯留工程と、を備え、
上記攪拌工程及び上記流動貯留工程を、
上記分散スラリーが存在することとなる場所の何れにおいても、当該場所における上記分散スラリーのスラリー温度、及び、この分散スラリーが接する部材の部材温度を、この場所において分散スラリーに接する雰囲気の露点温度よりも高い状態としつつ行う
電極用スラリーの製造方法。
A method for producing a slurry for an electrode comprising a solvent, active material particles and a resin dissolved in the solvent,
An agitation step in which the active material particles and the resin are dispersed into each other by stirring to form a dispersed slurry;
A flow storage step of flowing the stirred dispersion slurry to the storage unit and storing in the storage unit,
The stirring step and the fluid storage step are
In any place where the dispersion slurry is present, the slurry temperature of the dispersion slurry in the place and the member temperature of the member in contact with the dispersion slurry are determined from the dew point temperature of the atmosphere in contact with the dispersion slurry in this place. The manufacturing method of the slurry for electrodes performed while making it into a high state.
請求項1に記載の電極用スラリーの製造方法であって、
前記流動貯留工程は、
前記分散スラリーを流動させつつ冷却する冷却工程を含む
電極用スラリーの製造方法。
It is a manufacturing method of the slurry for electrodes according to claim 1,
The fluid storage step includes
The manufacturing method of the slurry for electrodes including the cooling process cooled while making the said dispersion | distribution slurry flow.
請求項1又は請求項2に記載の電極用スラリーの製造方法であって、
前記流動貯留工程に先立って、前記分散スラリーが流動する流動路全体に亘ってドライエアを流通させて、上記流動路をなす部材のうち、少なくとも上記分散スラリーに接する部位を乾燥させる乾燥工程を備える
電極用スラリーの製造方法。
It is a manufacturing method of the slurry for electrodes according to claim 1 or 2,
Prior to the flow storage step, an electrode including a drying step of drying at least a portion in contact with the dispersion slurry among the members forming the flow passage by flowing dry air over the entire flow passage through which the dispersion slurry flows. Slurry manufacturing method.
請求項3に記載の電極用スラリーの製造方法であって、
前記乾燥工程は、
前記流動路内に位置する流動路内雰囲気の雰囲気露点温度が、所定値以下となるまで、前記ドライエアを流通させる
電極用スラリーの製造方法。
It is a manufacturing method of the slurry for electrodes according to claim 3,
The drying step
The manufacturing method of the slurry for electrodes which distribute | circulates the said dry air until the atmospheric dew point temperature of the atmosphere in a flow path located in the said flow path becomes below a predetermined value.
請求項4に記載の電極用スラリーの製造方法であって、
前記乾燥工程は、
前記流動路内雰囲気の流通を開閉するバルブを介して、前記流動路に接続された露点計により、上記バルブを閉じて前記雰囲気露点温度を計測する
電極用スラリーの製造方法。
It is a manufacturing method of the slurry for electrodes according to claim 4,
The drying step
A method for producing an electrode slurry, wherein the valve is closed and the atmospheric dew point temperature is measured by a dew point meter connected to the flow path through a valve that opens and closes the circulation of the atmosphere in the flow path.
溶剤と活物質粒子と上記溶剤に溶解した樹脂とを含む電極用スラリーの製造装置であって、
上記溶剤、上記活物質粒子及び上記樹脂を含む処理前スラリーを攪拌して、上記活物質粒子と上記樹脂とを分散させた分散スラリーを形成する攪拌手段と、
上記分散スラリーを流動させて上記攪拌手段から貯留部まで導く流動路をなす流動路部材と、を備え、
上記攪拌手段及び上記流動路部材は、
上記分散スラリーが存在することとなる場所の何れにおいても、当該場所における上記分散スラリーのスラリー温度及び、この分散スラリーが接する部材の部材温度を、この場所において分散スラリーに接する雰囲気の露点温度よりも高い状態としてなる
電極用スラリーの製造装置。
An apparatus for producing a slurry for an electrode comprising a solvent, active material particles, and a resin dissolved in the solvent,
A stirring means for stirring a pre-treatment slurry containing the solvent, the active material particles and the resin to form a dispersed slurry in which the active material particles and the resin are dispersed;
A flow path member that forms a flow path for flowing the dispersion slurry and leading from the stirring means to the storage section,
The stirring means and the flow path member are
In any place where the dispersion slurry is present, the slurry temperature of the dispersion slurry in the place and the member temperature of the member in contact with the dispersion slurry are higher than the dew point temperature of the atmosphere in contact with the dispersion slurry in this place. An apparatus for producing slurry for electrodes that is in a high state.
請求項6に記載の電極用スラリーの製造装置であって、
前記流動路部材は、
前記分散スラリーを流動させつつ冷却する冷却手段を有する
電極用スラリーの製造装置。
It is a manufacturing apparatus of the slurry for electrodes according to claim 6,
The flow path member is
An apparatus for producing an electrode slurry, comprising cooling means for cooling the dispersed slurry while flowing.
請求項6又は請求項7に記載の電極用スラリーの製造装置であって、
前記流動路全体に亘って、ドライエアを流通させるドライエア流通手段を備える
電極用スラリーの製造装置。
It is a manufacturing apparatus of the slurry for electrodes according to claim 6 or 7,
An apparatus for producing an electrode slurry, comprising dry air circulation means for circulating dry air over the entire flow path.
請求項8に記載の電極用スラリーの製造装置であって、
前記流動路内に位置する流動路内雰囲気の雰囲気露点温度を計測する露点計を備える
電極用スラリーの製造装置。
It is a manufacturing apparatus of the slurry for electrodes according to claim 8,
An apparatus for producing a slurry for an electrode, comprising a dew point meter for measuring the atmospheric dew point temperature of the atmosphere in the flow path located in the flow path.
請求項9に記載の電極用スラリーの製造装置であって、
前記露点計は、
前記流動路内雰囲気の流通を開閉するバルブを介して、前記流動路に接続されてなる
電極用スラリーの製造装置。
It is a manufacturing apparatus of the slurry for electrodes according to claim 9,
The dew point meter
An apparatus for producing slurry for an electrode connected to the flow path via a valve that opens and closes circulation of the atmosphere in the flow path.
JP2009023605A 2009-02-04 2009-02-04 Electrode slurry manufacturing method and electrode slurry manufacturing apparatus Expired - Fee Related JP5003695B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009023605A JP5003695B2 (en) 2009-02-04 2009-02-04 Electrode slurry manufacturing method and electrode slurry manufacturing apparatus
PCT/IB2010/000204 WO2010089650A1 (en) 2009-02-04 2010-02-03 Manufacturing method for electrode slurry and manufacturing system for electrode slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023605A JP5003695B2 (en) 2009-02-04 2009-02-04 Electrode slurry manufacturing method and electrode slurry manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011161776A Division JP5532023B2 (en) 2011-07-25 2011-07-25 Electrode slurry manufacturing method and electrode slurry manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2010182485A true JP2010182485A (en) 2010-08-19
JP5003695B2 JP5003695B2 (en) 2012-08-15

Family

ID=42133521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023605A Expired - Fee Related JP5003695B2 (en) 2009-02-04 2009-02-04 Electrode slurry manufacturing method and electrode slurry manufacturing apparatus

Country Status (2)

Country Link
JP (1) JP5003695B2 (en)
WO (1) WO2010089650A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145556A1 (en) * 2010-05-18 2011-11-24 日産自動車株式会社 Coating apparatus
JP2014017064A (en) * 2012-07-05 2014-01-30 Toyota Motor Corp Production method and production system for electrode paste, and secondary battery
JP2017147188A (en) * 2016-02-19 2017-08-24 エリーパワー株式会社 Method of producing battery electrode slurry
KR20200035582A (en) * 2018-09-27 2020-04-06 주식회사 엘지화학 Method for preparing negative electrode of lithium secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966509B (en) * 2010-08-27 2012-05-30 严卓晟 Dispersing and spraying automatic continuous production system of electrode paste of power battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245773A (en) * 1996-03-13 1997-09-19 Toshiba Corp Manufacture of electrode for non-aqueous solvent secondary battery
JPH1092429A (en) * 1996-09-13 1998-04-10 Toshiba Corp Manufacture of non-aqueous solvent secondary battery and non-aqueous solvent secondary battery
JPH1145706A (en) * 1997-05-27 1999-02-16 Tdk Corp Manufacture of electrode for nonaqueous electrolytic battery
JPH11144716A (en) * 1997-11-10 1999-05-28 Toray Ind Inc Manufacture of battery electrode slurry
JP2001068098A (en) * 1999-07-28 2001-03-16 Mitsubishi Chemicals Corp Manufacturing method of electrode paste
JP2001118600A (en) * 1999-10-19 2001-04-27 Ngk Insulators Ltd Lithium secondary cell
JP2004033924A (en) * 2002-07-03 2004-02-05 Toyota Motor Corp Continuous defoaming equipment for paste material
JP2006054097A (en) * 2004-08-11 2006-02-23 Mitsubishi Chemicals Corp Electrode material composition enclosing body for lithium secondary battery, manufacturing method and preservation method of the same, and electrode material dispersion liquid for lithium secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054774A1 (en) 1997-05-27 1998-12-03 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells
JP3539223B2 (en) * 1998-08-07 2004-07-07 松下電器産業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
EP1313158A3 (en) * 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
KR101150069B1 (en) * 2004-12-13 2012-06-01 파나소닉 주식회사 Multilayer body containing active material layer and solid electrolyte layer, and all-solid lithium secondary battery using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245773A (en) * 1996-03-13 1997-09-19 Toshiba Corp Manufacture of electrode for non-aqueous solvent secondary battery
JPH1092429A (en) * 1996-09-13 1998-04-10 Toshiba Corp Manufacture of non-aqueous solvent secondary battery and non-aqueous solvent secondary battery
JPH1145706A (en) * 1997-05-27 1999-02-16 Tdk Corp Manufacture of electrode for nonaqueous electrolytic battery
JPH11144716A (en) * 1997-11-10 1999-05-28 Toray Ind Inc Manufacture of battery electrode slurry
JP2001068098A (en) * 1999-07-28 2001-03-16 Mitsubishi Chemicals Corp Manufacturing method of electrode paste
JP2001118600A (en) * 1999-10-19 2001-04-27 Ngk Insulators Ltd Lithium secondary cell
JP2004033924A (en) * 2002-07-03 2004-02-05 Toyota Motor Corp Continuous defoaming equipment for paste material
JP2006054097A (en) * 2004-08-11 2006-02-23 Mitsubishi Chemicals Corp Electrode material composition enclosing body for lithium secondary battery, manufacturing method and preservation method of the same, and electrode material dispersion liquid for lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145556A1 (en) * 2010-05-18 2011-11-24 日産自動車株式会社 Coating apparatus
JP2014017064A (en) * 2012-07-05 2014-01-30 Toyota Motor Corp Production method and production system for electrode paste, and secondary battery
JP2017147188A (en) * 2016-02-19 2017-08-24 エリーパワー株式会社 Method of producing battery electrode slurry
KR20200035582A (en) * 2018-09-27 2020-04-06 주식회사 엘지화학 Method for preparing negative electrode of lithium secondary battery
KR102555942B1 (en) * 2018-09-27 2023-07-17 주식회사 엘지에너지솔루션 Method for preparing negative electrode of lithium secondary battery

Also Published As

Publication number Publication date
WO2010089650A1 (en) 2010-08-12
JP5003695B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5532023B2 (en) Electrode slurry manufacturing method and electrode slurry manufacturing apparatus
JP5003695B2 (en) Electrode slurry manufacturing method and electrode slurry manufacturing apparatus
CN102112565B (en) Method and device for producing coating material
Wenzel et al. Challenges in lithium‐ion‐battery slurry preparation and potential of modifying electrode structures by different mixing processes
Wu et al. High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays
US20180198113A1 (en) Distribution and processing of battery electrode slurry and similar suspensions
Wen et al. Anticorrosive copper current collector passivated by self‐assembled porous membrane for highly stable lithium metal batteries
Sun et al. Formation of nitrogen‐doped carbon‐coated CoP nanoparticles embedded within graphene oxide for lithium‐ion batteries anode
US11931705B2 (en) System and method for manufacturing dispersion liquid of carbon nanotube
Ravikumar et al. γ-Valerolactone: an alternative solvent for manufacturing of lithium-ion battery electrodes
CN108134054A (en) A kind of high-performance start and stop negative plate lead plaster and the application in lead-acid battery cathode plate
Kim et al. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries
Wang et al. Urea and Ethylene Glycol‐Assisted Solvothermal Synthesis of Spheroidal LiFePO4/C Nanoparticles as a Cathode Material for Lithium‐ion Batteries
CN101326661A (en) Method and apparatus for manufacturing member for secondary battery and secondary battery using the same
JP6843374B2 (en) Kneading method for producing battery electrode slurry
Jiao et al. Conductive additives for improving the rate capability of cathode materials in secondary lithium batteries
Burdette‐Trofimov et al. Role of low molecular weight polymers on the dynamics of silicon anodes during casting
JP4492880B2 (en) Method for cleaning sodium-using facility and method for manufacturing sodium dispersion by performing cleaning and manufacturing sodium dispersion
JP2006236658A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte battery
JP7008655B2 (en) Stirrer
JP6864698B2 (en) Manufacturing method and equipment for positive electrode slurry of non-aqueous electrolyte secondary battery
Kolesnikov et al. Lithium Powder Synthesis and Preparation of Powder‐Based Composite Electrodes for Application in Lithium Metal Batteries
JP7049187B2 (en) Method for manufacturing paste for manufacturing electrodes for power storage devices
JP5352488B2 (en) Dry air supply method and apparatus
JP4848192B2 (en) Sodium dispersion production method and sodium dispersion produced by the sodium dispersion production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees