JP2010177533A - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2010177533A
JP2010177533A JP2009019938A JP2009019938A JP2010177533A JP 2010177533 A JP2010177533 A JP 2010177533A JP 2009019938 A JP2009019938 A JP 2009019938A JP 2009019938 A JP2009019938 A JP 2009019938A JP 2010177533 A JP2010177533 A JP 2010177533A
Authority
JP
Japan
Prior art keywords
hole
shape
wiring board
depth direction
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009019938A
Other languages
Japanese (ja)
Inventor
Hiroshi Kurokawa
博 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009019938A priority Critical patent/JP2010177533A/en
Publication of JP2010177533A publication Critical patent/JP2010177533A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board in which the connection strength of a through-hole plating is secured even if not thickening the through-hole plating like before, the thin line processing of the circuit pattern of a substrate surface is possible, moreover, there are few swellings and tapers of a through-hole inner wall in the whole depth direction of the through-hole, and the reduced diameter of the through-hole formed by laser can be attained, and to provide a method of manufacturing the same. <P>SOLUTION: The wiring board includes a base which is prepared with a through-hole, wherein the area of the sidewall of the through-hole is larger than the area of the sidewall at the time of presupposing that the through-hole is a cylinder, and the method of manufacturing the same is disclosed. Moreover, the perimeter shape of the through-hole is a variant shape in a plan view, and is an identical-shape in the whole depth direction of the through-hole in the wiring board and the method of manufacturing the same. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配線板及び配線板の製造方法に関し、特には高密度で且つスルーホールの接続信頼性の優れた配線板及び配線板の製造方法に関する。   The present invention relates to a wiring board and a method for manufacturing the wiring board, and more particularly to a wiring board having a high density and excellent through hole connection reliability and a method for manufacturing the wiring board.

配線板に対する高密度化の要求に伴い、ドリル加工に比べて小径のスルーホールの加工が容易であることから、スルーホールの穴明けにレーザー加工が多用されるようになっている。   With the demand for higher density of wiring boards, it is easier to process through holes with a small diameter than drilling, so laser processing is often used for drilling through holes.

図3は、貫通スルーホール3を、予め基材2の表面側15と裏面側16の銅箔1にエッチングによってレーザー加工のマスクとなる窓穴13を設けておき、基材2の表面側15から裏面側16に向かってレーザーを照射して形成した例である。この場合の貫通スルーホール3は、スルーホール深さ方向にいくにつれて穴径が小さくなる傾向がある。   In FIG. 3, a through hole 3 serving as a mask for laser processing is provided in advance on the copper foil 1 on the front surface 15 and the rear surface 16 of the base 2 by providing the through-hole 3. This is an example in which the laser beam is irradiated toward the back side 16 from the side. In this case, the through-hole 3 tends to have a hole diameter that decreases in the through-hole depth direction.

また、図4は、非貫通スルーホール3を、予め基材2の表面側15の銅箔1だけにエッチングによってレーザー加工のマスクとなる窓穴13を設けておき、基材2の表面側15から裏面側16に向かってレーザーを照射して形成した例である。基材2の表面側15には非貫通スルーホール3の開口が形成されるのに対して、裏面側16は銅箔1によって非貫通となる部分(底面)10を備えている。これは、いわゆるパッドオンビアといわれる構造であり、この非貫通となる部分(底面)10の銅箔1を加工部品実装部や自由な配線として利用できるので、高密度化の要求に沿うものである。この場合の非貫通スルーホール3は、貫通スルーホール3の場合と同様に、スルーホール深さ方向にいくにつれて穴径が小さくなる傾向がある。   In FIG. 4, the non-penetrating through hole 3 is preliminarily provided with a window hole 13 serving as a mask for laser processing by etching only on the copper foil 1 on the surface side 15 of the base material 2. This is an example in which the laser beam is irradiated toward the back side 16 from the side. While the opening of the non-penetrating through hole 3 is formed on the front surface side 15 of the base material 2, the back surface side 16 is provided with a portion (bottom surface) 10 that is not penetrating by the copper foil 1. This is a so-called pad-on-via structure, and the copper foil 1 in the non-penetrating portion (bottom surface) 10 can be used as a processed component mounting portion or a free wiring, which meets the demand for higher density. The non-through-hole 3 in this case tends to have a hole diameter that decreases in the depth direction of the through-hole, as in the case of the through-through hole 3.

このように、レーザー加工によって形成したスルーホールは、貫通スルーホール及び非貫通スルーホールの何れの場合も、スルーホール深さ方向に向かって、スルーホールの断面形状がテーパーを有する形状となり、表面側の穴径に対して裏面側又は底面の穴径が小さくなる傾向がある。裏面側又は底面の穴径が小さいと、この部分のスルーホールめっきの付きまわりが低下してめっき厚が薄くなり、接続強度が低下し易い。このため、信頼性を評価すると、裏面側又は底面の周囲のスルーホールめっきに先に亀裂が入り、スルーホールが壊れることが多い。この原因は、裏面側又は底面のスルーホール強度が低いことが原因である。   In this way, the through hole formed by laser processing has a shape in which the cross-sectional shape of the through hole has a taper in the depth direction of the through hole in both cases of the through through hole and the non-through through hole. There is a tendency that the hole diameter on the back surface side or the bottom surface becomes smaller than the hole diameter. If the hole diameter on the back side or the bottom surface is small, the area around the through-hole plating in this portion is reduced, the plating thickness is reduced, and the connection strength is likely to be reduced. For this reason, when the reliability is evaluated, the through-hole plating around the back surface or the bottom surface often cracks first, and the through-hole is often broken. This is because the through-hole strength on the back side or bottom is low.

近年では、機器の小型化によって配線板の高密度化が要求され、これに伴って貫通スルーホールか非貫通スルーホールかを問わず、ますます穴径の小径化が要求されてきている。スルーホールの小径化が進むと、上述したように、レーザー加工で形成したスルーホールはテーパーを有しているため、ますます裏面側又は底面の穴径が小さくなり、信頼性の低下が著しくなることが予想される。   In recent years, due to miniaturization of devices, higher density of wiring boards has been demanded, and accordingly, there has been a demand for smaller hole diameters regardless of whether they are through-holes or non-through-holes. As the diameter of the through hole is reduced, as described above, the through hole formed by laser processing has a taper, so that the hole diameter on the back side or the bottom surface becomes increasingly smaller, resulting in a significant decrease in reliability. It is expected that.

スルーホールの小径化による高密度化については、スルーホール内壁の膨らみやテーパーの形成を制御してスルーホールの径が拡大しないようにするため、熱収縮温度の最も高い基材を最上部に配置し、基材の上面から下面にかけて、熱収縮温度の高い順に基材を配置する回路形成用基板(特許文献1)、パルスレーザーの照射領域が重なり合うように照射位置をずらしながら複数回のショットを行なうレーザー加工方法(特許文献2)等が知られている。   For higher density by reducing the diameter of the through hole, the base material with the highest heat shrinkage temperature is placed at the top to prevent the through hole diameter from expanding by controlling the bulge and taper formation of the inner wall of the through hole. Then, from the upper surface to the lower surface of the base material, a circuit forming substrate (Patent Document 1) in which the base materials are arranged in the order of high heat shrinkage temperature, and multiple shots while shifting the irradiation position so that the irradiation areas of the pulse laser overlap. A laser processing method to be performed (Patent Document 2) is known.

スルーホールの信頼性については、スルーホールめっきの際にめっきの付きまわりを改善するため、非貫通スルーホールの断面の内面形状が凹面形状になるようにする製造方法(特許文献3)、めっき液が入り込み易くするため、非貫通スルーホールを長穴形状で且つ、側面形状が穴底から表面に向かって拡がった傾斜角度を有する配線板(特許文献4)等が知られている。   Regarding the reliability of the through hole, a manufacturing method (Patent Document 3) in which the inner surface shape of the cross-section of the non-through hole is a concave shape in order to improve the plating coverage at the time of through hole plating, In order to make it easier to enter, there is known a wiring board (Patent Document 4) having a non-through-through hole having a long hole shape and a side surface shape having an inclination angle extending from the bottom to the surface.

特開平11−330649号公報JP 11-330649 A 特開2003−053560号公報JP 2003-053560 A 特開2000−022337号公報JP 2000-022337 A 特開2001−203456号公報JP 2001-203456 A

配線板の高密度化に対応するためには、スルーホールの小径化が必要であるが、同時に信頼性を確保しなければならない。スルーホールの穴径は、現在では最小で直径100μm〜150μm程度までが量産可能なレベルであり、これより小さい穴径のスルーホールの加工安定化や信頼性確保は難しい領域となっている。   In order to cope with the higher density of the wiring board, it is necessary to reduce the diameter of the through hole, but at the same time, reliability must be ensured. At present, the diameter of the through hole is at a level that can be mass-produced at a minimum of about 100 μm to 150 μm, and it is difficult to stabilize and ensure the reliability of the through hole having a smaller hole diameter.

このような小径のスルーホールにおいて、信頼性を確保するために、スルーホールの銅めっき厚を増やして対処する方法も採られているが、同時に基材表面の銅厚が増すことになるため、その後の工程で回路パターンを作製するときに細線加工が難しくなるなどの弊害が出る。   In such a small-diameter through hole, in order to ensure reliability, a method of dealing with increasing the copper plating thickness of the through hole has been adopted, but at the same time the copper thickness of the substrate surface will increase, When producing a circuit pattern in a subsequent process, there are problems such as difficulty in thin wire processing.

特許文献1、2は、レーザーにより形成される穴径が基板の厚み方向で拡大しないように制御できるため、高密度化は達成できるが、基板の厚み方向全体に亘ってスルーホールの穴径が同等な円筒状なので、めっき液がスルーホール内に入り難いため、特に非貫通スルーホールでは、スルーホール底部に対するスルーホールめっきの付きまわりが悪く、接続強度が弱いために信頼性上の問題がある。   According to Patent Documents 1 and 2, since the hole diameter formed by the laser can be controlled so as not to expand in the thickness direction of the substrate, high density can be achieved, but the hole diameter of the through hole can be achieved over the entire thickness direction of the substrate. Since the plating solution is difficult to enter the through-hole because it is the same cylindrical shape, especially in the non-through-hole, there is a problem in reliability because the through-hole plating is poorly attached to the bottom of the through-hole and the connection strength is weak. .

特許文献3、4は、スルーホール内へのめっきの付きまわりが改善するため、信頼性を向上することができるが、レーザーにより形成されるスルーホールが比較的大きな内壁の膨らみやテーパーを有するため、小径化により高密度化が難しい問題がある。   In Patent Documents 3 and 4, since the plating around the through hole is improved, the reliability can be improved, but the through hole formed by the laser has a relatively large inner wall bulge and taper. There is a problem that it is difficult to increase the density by reducing the diameter.

本発明は、上記問題点に鑑みてなされたものであり、スルーホールめっきを従来のように厚くしなくても、スルーホールめっきの接続強度を確保することができ、基板表面の回路パターンの細線加工が可能で、しかも、スルーホールの深さ方向全体に亘って、スルーホール内壁の膨らみやテーパーが少なく、レーザーによって形成されるスルーホールの小径化が可能になる配線板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is possible to ensure the connection strength of the through-hole plating without increasing the thickness of the through-hole plating as in the prior art. Provided is a wiring board that can be processed and that has a small through-hole in the through-hole in the entire depth direction of the through-hole, and that can reduce the diameter of the through-hole formed by a laser, and a method for manufacturing the same. The purpose is to do.

本発明は、次のものに関する。
(1) スルーホールを設けた基材を備える配線板であって、前記スルーホールの側壁の面積が、前記スルーホールが円筒であるとした場合の側壁の面積よりも大きい配線板。
(2) 上記(1)において、スルーホールの外周形状が、平面視で異形形状であり、前記スルーホールの深さ方向の全体に亘って同一形状となる配線板。
(3) 上記(2)において、スルーホールの外周形状が、平面視で波打ち形状、ギザギザ形状又は多角形状である配線板。
(4) 上記(1)から(3)の何れかにおいて、スルーホールの外周の形状によって形成される側壁の凹凸又は溝や突起が、前記スルーホールの深さ方向に連続する配線板。
(5) 上記(1)から(4)の何れかにおいて、スルーホールが非貫通スルーホールであって、非貫通となる部分が銅箔で構成された配線板。
(6) 上記(5)において、非貫通となる部分のスルーホールの外周が異形形状である配線板。
(7) 基材上の銅箔にレーザー加工のマスクとなる窓穴を形成した後、この窓穴を通してレーザーを照射して、前記窓穴に対応する領域の基材にスルーホールを形成する配線板の製造方法において、前記窓穴の外周形状が平面視で波打ち形状、ギザギザ形状又は多角形状であり、前記スルーホールの深さ方向の全体に亘って同一形状となるスルーホールを形成する配線板の製造方法。
(8) 基材上の銅箔上からレーザーを照射して、前記銅箔とともに基材にスルーホールを形成する配線板の製造方法において、前記レーザーのビーム径を固定し、前記ビーム径の5%から70%のピッチで移動させながら、スルーホールの外周形状が、平面視で異形形状であり、前記スルーホールの深さ方向の全体に亘って同一形状となるスルーホールを形成する配線板の製造方法。
The present invention relates to the following.
(1) A wiring board including a base material provided with a through hole, wherein a side wall area of the through hole is larger than a side wall area when the through hole is a cylinder.
(2) The wiring board according to (1), wherein an outer peripheral shape of the through hole is an irregular shape in a plan view and has the same shape over the entire depth direction of the through hole.
(3) The wiring board according to (2), wherein the through hole has an outer peripheral shape that is a wavy shape, a jagged shape, or a polygonal shape in plan view.
(4) The wiring board according to any one of (1) to (3), wherein unevenness or grooves or protrusions on the side wall formed by the shape of the outer periphery of the through hole are continuous in the depth direction of the through hole.
(5) The wiring board according to any one of the above (1) to (4), wherein the through hole is a non-through hole, and the non-penetrating portion is formed of a copper foil.
(6) The wiring board according to (5), wherein the outer periphery of the non-penetrating portion of the through hole has an irregular shape.
(7) After forming a window hole serving as a laser processing mask on the copper foil on the substrate, a laser is irradiated through the window hole to form a through hole in the substrate in the region corresponding to the window hole. In the method of manufacturing a board, the outer peripheral shape of the window hole is a wavy shape, a jagged shape or a polygonal shape in plan view, and the wiring board forms a through hole having the same shape over the entire depth direction of the through hole Manufacturing method.
(8) In a method of manufacturing a wiring board in which a laser beam is irradiated from above a copper foil on a base material to form a through hole in the base material together with the copper foil, the laser beam diameter is fixed, and the beam diameter of 5 Of the wiring board that forms a through hole that has the same shape throughout the depth direction of the through hole, while the outer peripheral shape of the through hole is an irregular shape in plan view while being moved at a pitch of 70% to 70%. Production method.

本発明によれば、スルーホールめっきを従来のように厚くしなくても、スルーホールめっきの接続強度を確保することができるので、基板表面の回路パターンの細線加工が可能になり、しかも、スルーホールの深さ方向全体に亘って、スルーホール内壁の膨らみやテーパーが少ないので、レーザーによって形成されるスルーホールの小径化が可能になる配線板及びその製造方法を提供することが可能となる。   According to the present invention, since the connection strength of the through-hole plating can be ensured without increasing the thickness of the through-hole plating as in the prior art, the fine patterning of the circuit pattern on the surface of the substrate becomes possible. Since there is little swelling or taper of the inner wall of the through hole over the entire depth direction of the hole, it is possible to provide a wiring board that can reduce the diameter of the through hole formed by the laser and a manufacturing method thereof.

本発明の実施例1、2の非貫通スルーホールの各工程における断面図及び平面視のスルーホール外周形状である。It is sectional drawing in each process of the non-through-through hole of Example 1, 2 of this invention, and the through-hole outer peripheral shape of planar view. 本発明の実施例2の非貫通スルーホールの側壁を、斜め上からSEMで観察したものである(UVレーザーで形成したスルーホールの側壁)。The side wall of the non-penetrating through hole of Example 2 of the present invention is observed by SEM obliquely from above (the side wall of the through hole formed with a UV laser). 従来例の貫通スルーホールの断面及び平面視のスルーホール外周形状である。It is the cross-section of the through-hole of a conventional example, and the through-hole outer periphery shape of planar view. 比較例(従来例)の非貫通スルーホールのスルーホールめっき後における断面図及び平面視のスルーホール外周形状である。It is sectional drawing after through-hole plating of the non-through-hole of a comparative example (conventional example), and the through-hole outer periphery shape of planar view.

本発明の配線板の一例として、図1、図2に示すように、スルーホール3を設けた基材2を備える配線板5が挙げられる。   As an example of the wiring board of the present invention, as shown in FIGS. 1 and 2, a wiring board 5 including a base material 2 provided with a through hole 3 can be cited.

基材としては、配線板や半導体実装用の基板として一般的に使用されるものを使用できる。このようなものとして、例えば、ガラス布エポキシ樹脂含浸の銅張り積層板のほかに、ガラス不繊布エポキシ樹脂含浸銅張り積層板や、フレキシブル配線板に使用される、両面に銅箔を張り合わせたポリイミド樹脂銅張積層板などが挙げられる。配線板の層構成としては、両面2層板をはじめとして、多層基板にも使用できる。   As a base material, what is generally used as a wiring board or a substrate for semiconductor mounting can be used. As such, for example, in addition to glass cloth epoxy resin-impregnated copper-clad laminates, glass non-woven cloth epoxy resin-impregnated copper-clad laminates and polyimides with copper foil bonded on both sides are used for flexible wiring boards. Resin copper clad laminate and the like. As a layer structure of the wiring board, it can be used for a multilayer board as well as a double-sided double-layer board.

スルーホールとしては、基材を貫通する貫通スルーホールを始め、非貫通スルーホール、スタックビア、穴埋めビア、IVH(Interstitial Via Hole)などスルーホールとしての機能を果たす構造のもの全てが含まれる。非貫通スルーホールの場合は、例えば、非貫通となる部分(底面)が銅箔で構成され、この非貫通となる部分(底面)の銅箔を加工部品実装部や自由な配線として利用できる、いわゆるパッドオンビアといわれる構造のものも含まれる。   The through holes include all through holes that have a function as a through hole such as a through hole that penetrates the base material, a non-through hole, a stack via, a buried via, and an IVH (interstitial via hole). In the case of a non-penetrating through hole, for example, the non-penetrating portion (bottom surface) is made of copper foil, and the non-penetrating portion (bottom surface) of the copper foil can be used as a processed component mounting portion or free wiring. The so-called pad-on-via structure is also included.

スルーホールの形成は、ドリル加工も可能ではあるが、スルーホールの外周形状を制御し易い点でレーザーを用いるのがより望ましい。加工に用いるレーザーとしては、配線板や半導体実装基板の製造に用いられる、炭酸ガスレーザやYAGレーザなどを用いることができる。   The through-hole can be formed by drilling, but it is more preferable to use a laser because it is easy to control the outer peripheral shape of the through-hole. As a laser used for processing, a carbon dioxide laser, a YAG laser, or the like used for manufacturing a wiring board or a semiconductor mounting substrate can be used.

スルーホールを形成した後の側壁の処理は、配線板や半導体実装基板の製造に用いられる、過マンガン酸を使用したデスミア処理で樹脂残りを除去することができる。スルーホールめっきは、配線板や半導体実装用の基板の製造に用いられる、電気銅めっきや無電解銅めっきなど、従来の技術をそのまま使用できる。その後の回路パターン形成、ソルダーレジスト形成、めっき処理などは、従来の技術をそのまま使用したプロセスや材料、設備を使用することができる。   The processing of the side wall after the formation of the through hole can remove the resin residue by a desmear process using permanganic acid, which is used for manufacturing a wiring board or a semiconductor mounting board. For the through-hole plating, conventional techniques such as electrolytic copper plating and electroless copper plating, which are used for manufacturing a wiring board and a substrate for mounting a semiconductor, can be used as they are. Subsequent circuit pattern formation, solder resist formation, plating treatment, and the like can use processes, materials, and equipment that use conventional techniques as they are.

スルーホールの側壁の面積(表面積)は、スルーホールが円筒であるとした場合の側壁の面積よりも大きくなるように、スルーホールが形成される。これは、スルーホールが円筒の場合のように、スルーホールの内壁が平坦ではなく、凹凸又は溝や突起などを有することにより可能となる。このためには、スルーホールの外周形状は、平面視で異形形状であり、スルーホールの深さ方向の全体に亘って同一形状となるようにするのが望ましい。ここで、異形形状とは、スルーホールの外周が単純な円形ではないことをいい、例えば、スルーホールの外周形状が、平面視で波打ち形状、ギザギザ形状又は多角形状である場合が挙げられる。また、スルーホールの深さ方向の全体に亘って同一形状とは、完全な同一形状でなくてもよく、従来レベルのテーパー(基材の表面側のスルーホールの穴径が100μmに対して、裏面側の穴径が90μm程度のテーパー)によって、形状やサイズが変化する場合も含まれる。   The through hole is formed such that the area (surface area) of the side wall of the through hole is larger than the area of the side wall when the through hole is a cylinder. This is possible because the inner wall of the through hole is not flat as in the case where the through hole is a cylinder, but has irregularities, grooves, or protrusions. For this purpose, it is desirable that the outer peripheral shape of the through hole is an irregular shape in plan view, and is the same shape throughout the depth direction of the through hole. Here, the irregular shape means that the outer periphery of the through hole is not a simple circle. For example, the outer periphery of the through hole may be a wavy shape, a jagged shape or a polygonal shape in plan view. Further, the same shape over the entire depth direction of the through hole may not be a completely identical shape, and is a conventional level taper (the hole diameter of the through hole on the surface side of the substrate is 100 μm, This includes cases where the shape and size change due to the taper of the hole diameter on the back surface side of about 90 μm.

これにより、スルーホールの側壁が平坦な場合に比べて、スルーホール側壁に形成されるスルーホールめっきの量が多くなるので、基材の厚み方向の伸縮に対してもめっきの抗張力や伸びによって対応し易くなる。また、スルーホールの側壁が平坦でないことにより、スルーホールの側壁の深さ方向の端部(即ち基板の表裏の銅箔に至る部分)の外周の長さが、スルーホールが単純な円筒の場合に比べて長くなるため、スルーホールめっきが基板の表裏の銅箔と接続する部分が拡大される。このため、接続信頼性の優れたスルーホールが形成できる。   As a result, the amount of through-hole plating formed on the through-hole side wall is greater than when the through-hole side wall is flat. It becomes easy to do. In addition, when the through-hole side wall is not flat, the length of the outer edge of the through-hole side wall in the depth direction (that is, the portion reaching the copper foil on the front and back of the substrate) Therefore, the through-hole plating is connected to the copper foil on the front and back of the substrate. For this reason, a through hole having excellent connection reliability can be formed.

スルーホールの外周の形状によって形成される側壁の凹凸又は溝や突起は、その形状を保ってスルーホールの深さ方向にまっすぐに連続するようにするのが望ましい。このように、側壁の凹凸又は溝や突起が、スルーホールの深さ方向にまっすぐに連続するようにすることによって、スルーホールの側壁の深さ方向に連続した凹凸又は溝や突起が形成され、スルーホールの深さ方向については平滑なので、スルーホールめっきの際に、スルーホール内へのめっき液の進入が妨げられにくくなり、めっきの付きまわりが良くなる。   It is desirable that the irregularities or grooves or protrusions on the side wall formed by the shape of the outer periphery of the through hole be kept straight in the depth direction of the through hole while maintaining the shape. In this way, unevenness or grooves or protrusions on the side wall are continuously straight in the depth direction of the through hole, thereby forming unevenness or grooves or protrusions continuous in the depth direction of the through hole, Since the depth direction of the through hole is smooth, the penetration of the plating solution into the through hole becomes difficult to be prevented during the through hole plating, and the plating coverage is improved.

スルーホールが非貫通スルーホールであって、非貫通となる部分が銅箔で構成され、非貫通となる部分のスルーホールの外周が異形形状であるのが望ましい。これにより、スルーホールの側壁の深さ方向の端部(即ち非貫通となる部分の銅箔に至る部分)の外周の長さが、スルーホールが単純な円筒の場合に比べて長くなるため、スルーホールめっきが基板の表裏の銅箔と接続する部分が拡大される。このため、接続信頼性の優れたスルーホールが形成できる。   It is desirable that the through hole is a non-penetrating through hole, the non-penetrating portion is made of copper foil, and the outer periphery of the non-penetrating portion of the through hole has an irregular shape. Thereby, since the length of the outer periphery of the end portion in the depth direction of the side wall of the through hole (that is, the portion reaching the copper foil of the non-penetrating portion) is longer than that of a simple cylindrical through hole, The portion where the through-hole plating is connected to the copper foil on the front and back of the substrate is enlarged. For this reason, a through hole having excellent connection reliability can be formed.

このようなスルーホール外周の異形形状は、一例としては、基材上の銅箔にレーザー加工のマスクとなる窓穴を形成した後、この窓穴を通してレーザーを照射して、窓穴に対応する領域の基材にスルーホールを形成する配線板の製造方法(いわゆるコンフォーマルマスク工法)によって形成することができる。例えば、この場合において、窓穴の外周形状を、平面視で波打ち形状、ギザギザ形状又は多角形状とし、このような形状の窓穴をマスクとして、レーザー加工することで、スルーホールの外周形状が、スルーホールの深さ方向の全体に亘って略同一形状となるスルーホールを形成することができる。窓穴の外周形状は、配線板の回路パターンを形成する際に用いられる、いわゆるサブトラクト法などの工法によって自在に形成できる。   For example, such an irregular shape on the outer periphery of the through hole corresponds to the window hole by forming a window hole serving as a mask for laser processing on the copper foil on the substrate and then irradiating the laser through the window hole. It can be formed by a wiring board manufacturing method (so-called conformal mask method) in which through holes are formed in the base material in the region. For example, in this case, the outer peripheral shape of the window hole is a wavy shape, a jagged shape or a polygonal shape in plan view, and the outer shape of the through hole is obtained by laser processing using the window hole of such a shape as a mask. Through-holes having substantially the same shape can be formed over the entire depth direction of the through-hole. The outer peripheral shape of the window hole can be freely formed by a method such as a so-called subtract method used when forming a circuit pattern of a wiring board.

スルーホール外周の異形形状を形成する他の方法としては、基材上の銅箔上からレーザーを照射して、直接、銅箔とともに基材にスルーホールを形成する配線板の製造方法(いわゆるダイレクトレーザー工法)によって形成することができる。スルーホールの外周形状を、平面視で波打ち形状、ギザギザ形状又は多角形状とする方法としては、トレパン加工、スパイラル加工、サークル加工などが使用できる。例えば、レーザーのビーム径を直径25μm程度に固定し、ビーム径の5%から70%程度のピッチで円を描くように移動することによって、スルーホールの外周形状が、平面視で波打ち形状、ギザギザ形状又は多角形状などの異形形状であり、スルーホールの深さ方向の全体に亘って略同一形状となるスルーホールを形成することができる。レーザービームのピッチは、10%から50%程度とするのが、スルーホールめっきの付きまわりとスルーホール強度を確保するうえでさらに望ましい。   As another method of forming a deformed shape on the outer periphery of the through-hole, a method of manufacturing a wiring board (so-called direct) that directly irradiates a laser from a copper foil on a substrate and forms a through-hole in the substrate together with the copper foil. (Laser construction method). Trepan processing, spiral processing, circle processing, etc. can be used as a method of making the outer peripheral shape of the through hole into a wavy shape, a jagged shape or a polygonal shape in plan view. For example, by fixing the laser beam diameter to about 25 μm and moving it so as to draw a circle with a pitch of about 5% to 70% of the beam diameter, the outer shape of the through hole becomes a wavy shape and a jagged shape in plan view. Through holes having irregular shapes such as shapes or polygonal shapes and having substantially the same shape over the entire depth direction of the through holes can be formed. The pitch of the laser beam is more preferably about 10% to 50% in order to secure the through hole plating and the strength of the through hole.

以下、本発明の実施例を説明するが、本発明はこれに限定されない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

(実施例1)
[工程(a)]
図1(a)に示すように、基材2の両面に厚さ12μmの銅箔1を貼り合わせたポリイミド樹脂銅張り積層板(新日鉄化学株式会社製 製品名MB12−25−12CEG:商品名)を準備した。
[工程(b)]
図1(b)に示すように、銅箔1にフォトリソグラフを用いたサブトラクト法により窓穴13を形成した。窓穴13の外周形状14は、突起と溝のピッチが約10μmのギザギザ形状とした。また、窓穴13の直径は、ギザギザ形状の外側で、直径150μm、100μm、50μm、30μmとした。
[工程(c)]
図1(c)に示すように、12μmの銅箔1と25μmのポリイミド基材2までを貫通するスルーホール3をレーザー加工(炭酸ガスレーザー)で明けた。スルーホール3の外周形状11は、平面視で突起と溝のピッチが約10μmのギザギザ形状であり、スルーホール3の深さ方向の全体に亘って略同一形状となるスルーホール3が形成された。スルーホール3の直径は、ギザギザ形状の外側で、直径150μm、100μm、50μm、30μmであった。
[工程(d)]
図1(d)に示すように、過マンガン酸を使用したデスミアを行った後、スルーホールめっき4を電解銅めっきによって4μmの厚みに形成した。
Example 1
[Step (a)]
As shown in FIG. 1 (a), a polyimide resin copper-clad laminate in which a copper foil 1 having a thickness of 12 μm is bonded to both surfaces of a base material 2 (product name MB12-25-12CEG, manufactured by Nippon Steel Chemical Co., Ltd.) Prepared.
[Step (b)]
As shown in FIG. 1B, the window hole 13 was formed in the copper foil 1 by a subtracting method using a photolithograph. The outer peripheral shape 14 of the window hole 13 was a jagged shape with a protrusion-groove pitch of about 10 μm. Moreover, the diameter of the window hole 13 was 150 micrometers, 100 micrometers, 50 micrometers, and 30 micrometers in the diameter outside.
[Step (c)]
As shown in FIG. 1C, the through hole 3 penetrating through the 12 μm copper foil 1 and the 25 μm polyimide substrate 2 was opened by laser processing (carbon dioxide laser). The outer peripheral shape 11 of the through hole 3 is a jagged shape having a projection and groove pitch of about 10 μm in plan view, and the through hole 3 having substantially the same shape is formed over the entire depth direction of the through hole 3. . The diameter of the through hole 3 was 150 μm, 100 μm, 50 μm, and 30 μm on the outside of the jagged shape.
[Step (d)]
As shown in FIG. 1D, after performing desmearing using permanganic acid, a through-hole plating 4 was formed to a thickness of 4 μm by electrolytic copper plating.

(実施例2)
[工程(a)]
図1(a)に示すように、基材2の両面に厚さ12μmの銅箔1を貼り合わせたポリイミド樹脂銅張り積層板(新日鉄化学株式会社製 製品名MB12−25−12CEG:商品名)を準備した。
[工程(c)]
実施例1とは異なって、窓穴13を形成せずに、図1(c)に示すように、12μmの銅箔1と25μmのポリイミド基材2までを貫通するスルーホール3をレーザー加工(UV−YAGレーザー)で明けた。加工方法としては、サークル加工を使用し、レーザーのビーム径を約25μmとし、このビーム径の40%のピッチ(約20μm)で円を描くように移動することによってスルーホール3を形成した。スルーホール3の外周形状11は、平面視で突起と溝のピッチが約10μmのギザギザ形状であり、スルーホール3の深さ方向の全体に亘って略同一形状となるスルーホール3が形成された。スルーホール3の直径は、ギザギザ形状の外側で、直径150μm、100μm、50μm、30μmであった。なお、直径100μmの場合のスルーホール3をSEMで観察した結果を一例として図2に示す。
[工程(d)]
図1(d)に示すように、過マンガン酸を使用したデスミアを行った後、スルーホールめっき4を電解銅めっきによって4μmの厚みに形成した。
(Example 2)
[Step (a)]
As shown in FIG. 1 (a), a polyimide resin copper-clad laminate in which a copper foil 1 having a thickness of 12 μm is bonded to both surfaces of a base material 2 (product name MB12-25-12CEG: product name) manufactured by Nippon Steel Chemical Co., Ltd. Prepared.
[Step (c)]
Unlike Example 1, without forming the window hole 13, as shown in FIG.1 (c), the through-hole 3 which penetrates to 12 micrometer copper foil 1 and 25 micrometer polyimide base material 2 is laser-processed ( (UV-YAG laser). As the processing method, circle processing was used, the laser beam diameter was set to about 25 μm, and the through hole 3 was formed by moving in a circle at a pitch (about 20 μm) of 40% of the beam diameter. The outer peripheral shape 11 of the through hole 3 is a jagged shape having a projection and groove pitch of about 10 μm in plan view, and the through hole 3 having substantially the same shape is formed over the entire depth direction of the through hole 3. . The diameter of the through hole 3 was 150 μm, 100 μm, 50 μm, and 30 μm on the outside of the jagged shape. In addition, the result of having observed the through hole 3 in the case of 100 micrometers in diameter by SEM is shown in FIG. 2 as an example.
[Step (d)]
As shown in FIG. 1D, after performing desmearing using permanganic acid, a through-hole plating 4 was formed to a thickness of 4 μm by electrolytic copper plating.

(比較例)
[工程(b)]
図4に示すように、実施例1と同様に、銅箔1にフォトリソグラフを用いたサブトラクト法により窓穴13を形成し、スルーホールめっき4を電解銅めっきによって4μmの厚みに形成した。実施例1と異なり、窓穴13の外周形状14は、円形とした。これ以外は、実施例1と同様である。図4に示すように、スルーホール3の外周形状12は、平面視で円形であり、スルーホール3の深さ方向の全体に亘って略同一形状となるスルーホール3が形成された。
(Comparative example)
[Step (b)]
As shown in FIG. 4, the window hole 13 was formed in the copper foil 1 by the subtract method using the photolithograph similarly to Example 1, and the through-hole plating 4 was formed in thickness of 4 micrometers by the electrolytic copper plating. Unlike Example 1, the outer peripheral shape 14 of the window hole 13 was circular. Except this, it is the same as the first embodiment. As shown in FIG. 4, the outer peripheral shape 12 of the through hole 3 is circular in plan view, and the through hole 3 having substantially the same shape is formed over the entire depth direction of the through hole 3.

実施例1、2及び比較例について、ホットオイル試験を行い、スルーホールの接続信頼性を試験した。ホットオイル試験は、260℃、10秒から25℃、10秒のサイクルを繰り返し、所定サイクル数毎に、基板表裏のスルーホールの抵抗を測定して行なった。抵抗値が初期値に対して10%上昇するまでのサイクル数をカウントした。この結果を表1に示す。スルーホールの外周形状が、従来の円形の場合と比較すると、本発明のギザギザ形状の場合は、圧倒的に信頼性が向上していることが分かった。また、比較例より小径穴になっても信頼性が確保できるため、高密度化が可能なことが分かった。   About Examples 1, 2 and the comparative example, the hot oil test was done and the connection reliability of the through hole was tested. The hot oil test was performed by repeating the cycle of 260 ° C., 10 seconds to 25 ° C., 10 seconds, and measuring the resistance of through holes on the front and back of the substrate every predetermined number of cycles. The number of cycles until the resistance value increased by 10% from the initial value was counted. The results are shown in Table 1. It was found that the reliability of the through hole was significantly improved in the case of the jagged shape of the present invention as compared to the case of the conventional circular shape. Moreover, since reliability was ensured even if it became a hole with a smaller diameter than a comparative example, it turned out that a densification is possible.

Figure 2010177533
Figure 2010177533

1…銅箔、2…基材、3…スルーホール(貫通スルーホール又は非貫通スルーホール)、4…スルーホールめっき、5…配線板、6…スルーホールの外周形状(めっき前)、7…スルーホールの外周形状(めっき後)、8…側壁、9…凹凸又は溝や突起、10…非貫通となる部分(底面)、11…スルーホールの外周形状(めっき前)、12…スルーホールの外周形状(めっき後)、13…窓穴、14…窓穴の外周形状、15…表面側、16…裏面側 DESCRIPTION OF SYMBOLS 1 ... Copper foil, 2 ... Base material, 3 ... Through-hole (through-through hole or non-through-through hole), 4 ... Through-hole plating, 5 ... Wiring board, 6 ... Outer periphery shape (before plating), 7 ... Peripheral shape of through hole (after plating), 8 ... side wall, 9 ... unevenness or groove or protrusion, 10 ... non-penetrating part (bottom surface), 11 ... outer shape of through hole (before plating), 12 ... through hole Peripheral shape (after plating), 13 ... Window hole, 14 ... Peripheral shape of window hole, 15 ... Front side, 16 ... Back side

Claims (8)

スルーホールを設けた基材を備える配線板であって、前記スルーホールの側壁の面積が、前記スルーホールが円筒であるとした場合の側壁の面積よりも大きい配線板。   A wiring board comprising a base material provided with a through hole, wherein a side wall area of the through hole is larger than a side wall area when the through hole is a cylinder. 請求項1において、スルーホールの外周形状が、平面視で異形形状であり、前記スルーホールの深さ方向の全体に亘って同一形状となる配線板。   The wiring board according to claim 1, wherein an outer peripheral shape of the through hole is an irregular shape in a plan view and has the same shape throughout the depth direction of the through hole. 請求項1又は2において、スルーホールの外周形状が、平面視で波打ち形状、ギザギザ形状又は多角形状である配線板。   3. The wiring board according to claim 1, wherein the through hole has an outer peripheral shape that is a wavy shape, a jagged shape, or a polygonal shape in plan view. 請求項1から3の何れかにおいて、スルーホールの外周の形状によって形成される側壁の凹凸又は溝や突起が、前記スルーホールの深さ方向に連続する配線板。   4. The wiring board according to claim 1, wherein unevenness or grooves or protrusions on the side wall formed by the shape of the outer periphery of the through hole are continuous in the depth direction of the through hole. 請求項1から4の何れかにおいて、スルーホールが非貫通スルーホールであって、非貫通となる部分が銅箔で構成された配線板。   5. The wiring board according to claim 1, wherein the through hole is a non-through hole, and the non-penetrating portion is made of a copper foil. 請求項5において、非貫通となる部分のスルーホールの外周が異形形状である配線板。   6. The wiring board according to claim 5, wherein an outer periphery of a through hole in a non-penetrating portion has an irregular shape. 基材上の銅箔にレーザー加工のマスクとなる窓穴を形成した後、この窓穴を通してレーザーを照射して、前記窓穴に対応する領域の基材にスルーホールを形成する配線板の製造方法において、前記窓穴の外周形状が平面視で波打ち形状、ギザギザ形状又は多角形状であり、前記スルーホールの深さ方向の全体に亘って同一形状となるスルーホールを形成する配線板の製造方法。   Manufacturing a wiring board that forms a through hole in a base material in a region corresponding to the window hole after forming a window hole as a mask for laser processing on a copper foil on the base material and then irradiating a laser through the window hole In the method, the outer peripheral shape of the window hole is a wavy shape, a jagged shape or a polygonal shape in a plan view, and a method of manufacturing a wiring board in which a through hole having the same shape is formed throughout the depth direction of the through hole . 基材上の銅箔上からレーザーを照射して、前記銅箔とともに基材にスルーホールを形成する配線板の製造方法において、前記レーザーのビーム径を固定し、前記ビーム径の5%から70%のピッチで移動しながら、スルーホールの外周形状が、平面視で異形形状であり、前記スルーホールの深さ方向の全体に亘って同一形状となるスルーホールを形成する配線板の製造方法。   In a method of manufacturing a wiring board in which a laser beam is irradiated from above a copper foil on a base material to form a through hole in the base material together with the copper foil, the laser beam diameter is fixed, and from 5% to 70% of the beam diameter. %, The through hole has an irregular shape in plan view, and forms a through hole having the same shape throughout the depth direction of the through hole.
JP2009019938A 2009-01-30 2009-01-30 Wiring board and method of manufacturing the same Pending JP2010177533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019938A JP2010177533A (en) 2009-01-30 2009-01-30 Wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019938A JP2010177533A (en) 2009-01-30 2009-01-30 Wiring board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010177533A true JP2010177533A (en) 2010-08-12

Family

ID=42708160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019938A Pending JP2010177533A (en) 2009-01-30 2009-01-30 Wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010177533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181688B2 (en) 2009-10-13 2021-11-23 Skorpios Technologies, Inc. Integration of an unprocessed, direct-bandgap chip into a silicon photonic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181688B2 (en) 2009-10-13 2021-11-23 Skorpios Technologies, Inc. Integration of an unprocessed, direct-bandgap chip into a silicon photonic device

Similar Documents

Publication Publication Date Title
JP6314085B2 (en) Manufacturing method of printed wiring board and copper foil for laser processing
CN107251661B (en) Printed wiring board and method for manufacturing same
JP2007129180A (en) Printed wiring board, multilayer printed wiring board, and method of manufacturing same
KR100701353B1 (en) Multi-layer printed circuit board and manufacturing method thereof
KR101051551B1 (en) Printed circuit board including via pad having uneven pattern and manufacturing method thereof
JP2009200356A (en) Printed wiring board and manufacturing method therefor
JP4835067B2 (en) Circuit board manufacturing method, printed circuit board manufacturing method, and printed circuit board
US20140353025A1 (en) Printed circuit board
KR100674316B1 (en) Method forming via hole that utilizes lazer drill
JP2014120756A (en) Method of manufacturing printed circuit board
US20070017698A1 (en) Multilayer printed wiring board fabrication method and multilayer printed wiring board
JP2002217551A (en) Multilayer wiring substrate and its manufacturing method, and laser drill device
JPWO2018181742A1 (en) Manufacturing method of printed wiring board
KR101548421B1 (en) Method for Manufacturing Multi-Layered Printed Circuit Board
JP6016004B2 (en) Wiring board and manufacturing method thereof
JP2010177533A (en) Wiring board and method of manufacturing the same
JP2007165863A (en) Via hole having minute hole land and method of forming same
JP4153328B2 (en) Manufacturing method of multilayer printed wiring board
JP2005044914A (en) Printed wiring board and manufacturing method therefor
JPH11300487A (en) Drilling method and drilled body
JP5413632B2 (en) Wiring board
JP4791648B2 (en) Non-through hole processing method for printed wiring board
JP2007095910A (en) Manufacturing method of wiring board
JP2005333050A (en) Printed wiring board and method for forming via hole using via-fill plating
JP2005294364A (en) Printed wiring board and via hole forming method using via filling plating