JP2010177420A - Microwave plasma processing apparatus, dielectric board for microwave plasma processing apparatus, and microwave feeding method of microwave plasma processing apparatus - Google Patents

Microwave plasma processing apparatus, dielectric board for microwave plasma processing apparatus, and microwave feeding method of microwave plasma processing apparatus Download PDF

Info

Publication number
JP2010177420A
JP2010177420A JP2009018021A JP2009018021A JP2010177420A JP 2010177420 A JP2010177420 A JP 2010177420A JP 2009018021 A JP2009018021 A JP 2009018021A JP 2009018021 A JP2009018021 A JP 2009018021A JP 2010177420 A JP2010177420 A JP 2010177420A
Authority
JP
Japan
Prior art keywords
inner conductor
microwave
dielectric plate
dielectric
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009018021A
Other languages
Japanese (ja)
Other versions
JP5189999B2 (en
Inventor
Kiyotaka Ishibashi
清隆 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009018021A priority Critical patent/JP5189999B2/en
Publication of JP2010177420A publication Critical patent/JP2010177420A/en
Application granted granted Critical
Publication of JP5189999B2 publication Critical patent/JP5189999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave plasma processing apparatus, in which microwave propagation characteristics are not adversely affected even when an inner conductor of a coaxial waveguide is thermally expanded or shrunk. <P>SOLUTION: The inner conductor 22 consists of a dielectric board side inner conductor portion 22b that is connected to at least one of a dielectric board 26 and a slot board 27, and a mode transformer side inner conductor portion 22a that is connected to a mode transformer 29 or a rectangular waveguide 21. The mode transformer side inner conductor portion 22a is separated from the dielectric board side inner conductor portion 22b, and a clearance is provided between the inner conductor portions. Thermal expansion or shrinkage of the inner conductor 22 just causes the clearance between the dielectric board side inner conductor portion 22b and the mode transformer side inner conductor portion 22a to be changed. This structure prevents stress caused by thermal expansion or shrinkage from occurring at the dielectric board side inner conductor portion 22b, thereby avoiding deformation of the dielectric board 26 and/or the slot board 27 connected to the dielectric board side inner conductor portion 22b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マイクロ波を用いて生成されたプラズマにより半導体ウェハ、液晶用基板、有機EL素子等の被処理体をプラズマ処理するマイクロ波プラズマ処理装置に関する。   The present invention relates to a microwave plasma processing apparatus that performs plasma processing on an object to be processed such as a semiconductor wafer, a liquid crystal substrate, and an organic EL element using plasma generated using microwaves.

プラズマ処理は、半導体製造工程のエッチング、薄膜成膜等のプロセスに広く使用されている。近年、LSIの高集積化、高速化、小電力化の観点からLSIを構成する半導体のプロセスルール(ICの線幅)が益々微細化されている。配線間の距離が縮まると、従来の層間絶縁膜では絶縁できず、隣接する配線の信号と干渉するおそれがある。この干渉するおそれを解決するために、低誘電率(Low-k)の絶縁膜が求められている。しかし、従来から多用されている平行平板型や誘導結合型のプラズマ処理装置においては、電子温度が高いので、低誘電率の絶縁膜にダメージを与えてしまう。例えば、低誘電率の絶縁膜として知られている炭素とフッ素を含むCF膜を使用した場合、プラズマ処理のダメージによって絶縁膜の誘電率が上がってしまう。   Plasma treatment is widely used in processes such as etching and thin film deposition in semiconductor manufacturing processes. In recent years, the process rules (IC line width) of semiconductors constituting an LSI have been increasingly miniaturized from the viewpoint of high integration, high speed, and low power consumption of the LSI. When the distance between the wirings is shortened, the conventional interlayer insulating film cannot be insulated, and there is a possibility of interfering with a signal of an adjacent wiring. In order to solve this interference, an insulating film having a low dielectric constant (Low-k) is required. However, in parallel plate type and inductively coupled plasma processing apparatuses that have been widely used in the past, the electron temperature is high, which damages the insulating film having a low dielectric constant. For example, when a CF film containing carbon and fluorine, which is known as an insulating film having a low dielectric constant, is used, the dielectric constant of the insulating film increases due to plasma processing damage.

さらに、半導体のウェハサイズも大口径化しており、これに伴って大口径の半導体ウェハに偏りなく均一に処理を行うことが要請されている。   Furthermore, the size of semiconductor wafers has been increased, and accordingly, it has been demanded to uniformly process large-diameter semiconductor wafers without deviation.

そこで近年、高密度で低電子温度のプラズマを均一に形成することができるRLSA(Radial Line Slot Antenna)を用いたマイクロ波プラズマ処理装置が注目されている(例えば特許文献1参照)。マイクロ波プラズマ処置装置は、均一なマイクロ波を発するように配列された多数のスロットを有する平面状のマイクロ波アンテナから処理容器内にマイクロ波を放射し、マイクロ波の電界により処理容器内のガスを電離してプラズマを励起させる。このマイクロ波プラズマ処理装置によれば、アンテナ直下の広い領域に高いプラズマ密度を実現できるので、短時間で均一なプラズマ処理を行うことが可能である。しかも、低電子温度のプラズマを生成することができるので、被処理基板へのダメージを少なくすることができるという利点もある。   Therefore, in recent years, a microwave plasma processing apparatus using RLSA (Radial Line Slot Antenna) capable of uniformly forming high density and low electron temperature plasma has attracted attention (see, for example, Patent Document 1). A microwave plasma treatment apparatus radiates microwaves into a processing container from a planar microwave antenna having a number of slots arranged to emit uniform microwaves, and gas in the processing container is generated by an electric field of the microwaves. Is ionized to excite the plasma. According to this microwave plasma processing apparatus, since a high plasma density can be realized in a wide region directly under the antenna, it is possible to perform uniform plasma processing in a short time. Moreover, since plasma having a low electron temperature can be generated, there is an advantage that damage to the substrate to be processed can be reduced.

図1に示すように、このマイクロ波プラズマ処理装置において、処理容器1の天井部の開口は誘電体窓2により塞がれる。誘電体窓2の上にはマイクロ波アンテナ3が載せられる。矩形導波路4には、マイクロ波発生装置が接続される。マイクロ波発生装置が発するマイクロ波は、矩形導波路を伝播した後、モード変換器5によって同軸モードに変換される。モード変換されたマイクロ波は同軸導波管6を上下方向に伝播する。同軸導波管6を伝播したマイクロ波は、ディスク状の誘電体板7を半径方向に伝播する。誘電体板7内で波長が圧縮され、かつ共振するマイクロ波は、導電材料からなるスロット板8のスロットを透過し、誘電体窓2を介して処理容器1内に放射される。   As shown in FIG. 1, in this microwave plasma processing apparatus, the opening of the ceiling portion of the processing container 1 is closed by a dielectric window 2. A microwave antenna 3 is placed on the dielectric window 2. A microwave generator is connected to the rectangular waveguide 4. The microwaves emitted from the microwave generator are propagated through the rectangular waveguide and then converted into the coaxial mode by the mode converter 5. The mode-converted microwave propagates up and down the coaxial waveguide 6. The microwave propagated through the coaxial waveguide 6 propagates in the radial direction through the disk-shaped dielectric plate 7. The microwave whose wavelength is compressed in the dielectric plate 7 and resonates passes through the slot of the slot plate 8 made of a conductive material, and is radiated into the processing container 1 through the dielectric window 2.

同軸導波管6は、内導体6aと、内導体6aを囲む外導体6bと、から構成される。内導体6aの上端部は、モード変換器5に結合される。内導体6aの下端部は、スロット板8にねじ等で電気的に結合される。マイクロ波は内導体6aの外周面と外導体6bの内周面との間の環状の同軸導波路を伝播する。   The coaxial waveguide 6 includes an inner conductor 6a and an outer conductor 6b surrounding the inner conductor 6a. An upper end portion of the inner conductor 6 a is coupled to the mode converter 5. The lower end portion of the inner conductor 6a is electrically coupled to the slot plate 8 with screws or the like. The microwave propagates in an annular coaxial waveguide between the outer peripheral surface of the inner conductor 6a and the inner peripheral surface of the outer conductor 6b.

特開2002−35550号公報JP 2002-35550 A

励起されたプラズマにより熱が生じると、マイクロ波アンテナ3には誘電体窓2を介して熱が伝達される。同軸導波管6の内導体6aと外導体6bとの間に温度差が生じた場合、図2に示すように、内導体6aの伸び量と外導体6bの熱による伸び量が異なるので、内導体6aに結合されたスロット板8が上下方向に変位する。スロット板8自身の剛性が低く、かつ内導体6aが長いことも一因である。スロット板8の上下方向の変位に伴い、スロット板8と誘電体板7との間に隙間ができたり、スロット板8が誘電体板7に押し付けられたりすると、スロット板8を透過するマイクロ波の導波路を乱し、均一なプラズマの生成を困難とし、プロセスに悪影響を与えてしまう。内導体6a及び外導体6bの熱膨張による伸び量を同一にすれば、スロット板8の位置を一定にできる。しかし、内導体6a及び外導体6bの熱膨張による伸び量を同一に制御するのは困難である。さらに、内導体6aは伸びるだけでなく、モード変換器5及びスロット板8を固定端にして撓むこともある。内導体6aが撓むと、同軸導波管6を伝播するマイクロ波の分布が乱れてしまう。   When heat is generated by the excited plasma, heat is transferred to the microwave antenna 3 through the dielectric window 2. When a temperature difference occurs between the inner conductor 6a and the outer conductor 6b of the coaxial waveguide 6, as shown in FIG. 2, the extension amount of the inner conductor 6a and the extension amount of the outer conductor 6b due to heat are different. The slot plate 8 coupled to the inner conductor 6a is displaced in the vertical direction. One of the reasons is that the rigidity of the slot plate 8 itself is low and the inner conductor 6a is long. When the slot plate 8 is displaced in the vertical direction, a gap is formed between the slot plate 8 and the dielectric plate 7 or the slot plate 8 is pressed against the dielectric plate 7. This disturbs the waveguide, making it difficult to generate a uniform plasma and adversely affecting the process. If the amount of elongation due to thermal expansion of the inner conductor 6a and the outer conductor 6b is the same, the position of the slot plate 8 can be made constant. However, it is difficult to control the amount of elongation due to thermal expansion of the inner conductor 6a and the outer conductor 6b to be the same. Further, the inner conductor 6a not only extends, but may be bent with the mode converter 5 and the slot plate 8 as fixed ends. If the inner conductor 6a bends, the distribution of the microwave propagating through the coaxial waveguide 6 will be disturbed.

他方、図3に示すように、誘電体板7にスロット板としてのめっき等の導電膜9をパターニングし、内導体6aを誘電体板下面の導電膜9に電気的に接続したマイクロ波プラズマ処理装置も知られている。しかし、このプラズマ処理装置にあっても、熱により内導体6aが伸縮すると、内導体6aの下端の電気コンタクト板6cが変形したり、電気コンタクト板6cと誘電体板7の下面の導電膜9との電気的接触が不十分になったりするという問題がある。   On the other hand, as shown in FIG. 3, a microwave plasma treatment is performed by patterning a conductive film 9 such as plating as a slot plate on the dielectric plate 7 and electrically connecting the inner conductor 6a to the conductive film 9 on the lower surface of the dielectric plate. Devices are also known. However, even in this plasma processing apparatus, when the inner conductor 6a expands or contracts due to heat, the electric contact plate 6c at the lower end of the inner conductor 6a is deformed, or the conductive film 9 on the lower surface of the electric contact plate 6c and the dielectric plate 7 is used. There is a problem that electrical contact with the battery becomes insufficient.

そこで本発明は、同軸導波管の内導体が熱膨張・熱収縮しても、マイクロ波の伝播特性に悪影響を及ぼすことのないマイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用の誘電体板、及びマイクロ波プラズマ処理装置のマイクロ波給電方法を提供することを目的とする。   Accordingly, the present invention provides a microwave plasma processing apparatus and a dielectric plate for the microwave plasma processing apparatus that do not adversely affect the propagation characteristics of the microwave even if the inner conductor of the coaxial waveguide is thermally expanded or contracted. And it aims at providing the microwave electric power feeding method of a microwave plasma processing apparatus.

上記課題を解決するために、本発明の一態様は、天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマ励起用ガスを供給するガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内にマイクロ波を供給するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、前記マイクロ波アンテナは、マイクロ波を伝播する同軸導波管と、半径方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、マイクロ波を透過させるスロットを有するスロット板と、を含み、前記同軸導波管は、内導体と、内導体を囲む外導体と、を含み、前記内導体は、前記誘電体板及び前記スロット板の少なくとも一方に連結される誘電体板側の内導体と、前記誘電体板側の内導体から分離され、前記誘電体板側の内導体との間に空間が空けられる残りの内導体と、を含むマイクロ波プラズマ処理装置である。   In order to solve the above problems, according to one embodiment of the present invention, a processing container in which a ceiling portion is defined by a dielectric window, a gas exhaust system that decompresses the processing container, and a plasma excitation gas is supplied to the processing container. A microwave plasma processing apparatus comprising: a gas supply unit configured to operate; and a microwave antenna mounted on the dielectric window of the processing container and configured to supply microwaves into the processing container. A coaxial waveguide for propagating microwaves, a dielectric plate for propagating microwaves in the radial direction and compressing the wavelength of the microwaves, and a slot plate having slots for transmitting the microwaves, the coaxial waveguide Includes an inner conductor and an outer conductor surrounding the inner conductor, and the inner conductor is connected to at least one of the dielectric plate and the slot plate, and an inner conductor on the dielectric plate side; Serial separated from the inner conductor of the dielectric plate side, the a microwave plasma processing apparatus comprising, a remainder of the inner conductor which space is opened between the inner conductor of the dielectric plate side.

本発明の他の態様は、マイクロ波を用いて生成されたプラズマにより被処理体をプラズマ処理するマイクロ波プラズマ処理装置に用いられ、内導体、及び内導体を囲む外導体を含む同軸導波管を伝播したマイクロ波を半径方向に伝播すると共に波長を短縮する誘電体板であって、前記誘電体板には、誘電体板側の内導体が一体化され、前記誘電体を前記マイクロ波プラズマ処理装置に組み込んだとき、前記内導体は、前記誘電体板側の内導体と、前記誘電体板側の内導体から空間を空けて配置される残りの内導体と、から構成されるマイクロ波プラズマ処理装置用の誘電体板である。   Another aspect of the present invention is a coaxial waveguide including an inner conductor and an outer conductor surrounding the inner conductor, which is used in a microwave plasma processing apparatus for plasma-treating an object to be processed with plasma generated using microwaves. A dielectric plate that propagates the microwave propagated in the radial direction and shortens the wavelength, and an inner conductor on the dielectric plate side is integrated with the dielectric plate, and the dielectric is made into the microwave plasma. When incorporated in a processing apparatus, the inner conductor comprises a microwave composed of an inner conductor on the dielectric plate side and a remaining inner conductor arranged with a space from the inner conductor on the dielectric plate side. A dielectric plate for a plasma processing apparatus.

本発明のさらに他の態様は、矩形導波路を伝播するマイクロ波をモード変換器によりモード変換し、内導体、及び内導体を囲む外導体を含む同軸導波管に伝播し、前記同軸導波管を伝播したマイクロ波を誘電体板で半径方向に伝播すると共に波長を圧縮するマイクロ波プラズマ処理装置のマイクロ波給電方法において、前記マイクロ波は、前記モード変換器に連結されるモード変換器側の内導体の周囲、並びに、前記モード変換器側の内導体から空間を空けて配置される誘電体板側の内導体の周囲を伝播するマイクロ波プラズマ処理装置のマイクロ波給電方法である。   According to still another aspect of the present invention, a microwave propagating in a rectangular waveguide is mode-converted by a mode converter and propagated to a coaxial waveguide including an inner conductor and an outer conductor surrounding the inner conductor. In the microwave power feeding method of the microwave plasma processing apparatus, in which the microwave propagated through the tube is propagated in the radial direction by the dielectric plate and the wavelength is compressed, the microwave is connected to the mode converter on the mode converter side And a microwave power supply method for a microwave plasma processing apparatus that propagates around the inner conductor on the dielectric plate side that is spaced from the inner conductor on the mode converter side.

同軸導波管の内導体を誘電体板側の内導体と残りの内導体(モード変換器側の内導体)とに分離し、誘電体板側の内導体のみを誘電体板やスロット板に連結するので、内導体が熱膨張・熱収縮しても、誘電体板側の内導体と残りの内導体との間の隙間が変化するだけであり、誘電体板側の内導体に熱膨張・熱収縮による応力が発生するのを防止できる。誘電体板側の内導体に連結される誘電体板やスロット板が変形するのを防止できるので、マイクロ波の伝播特性に悪影響を及ぼすことがない。   The inner conductor of the coaxial waveguide is separated into the inner conductor on the dielectric plate side and the remaining inner conductor (the inner conductor on the mode converter side), and only the inner conductor on the dielectric plate side is used as the dielectric plate or slot plate. Even if the inner conductor is thermally expanded or contracted, the gap between the inner conductor on the dielectric plate side and the remaining inner conductor only changes, and the inner conductor on the dielectric plate side is thermally expanded.・ Prevents stress from thermal shrinkage. Since it is possible to prevent the dielectric plate and the slot plate connected to the inner conductor on the dielectric plate side from being deformed, the microwave propagation characteristics are not adversely affected.

従来のマイクロ波プラズマ処理装置の断面図Sectional view of a conventional microwave plasma processing apparatus 従来のマイクロ波プラズマ処理装置の同軸導波管を示す詳細図Detailed view showing a coaxial waveguide of a conventional microwave plasma processing apparatus 誘電体板にスロット板としての導電膜をパターニングした従来のマイクロ波プラズマ処理装置の断面図Sectional view of a conventional microwave plasma processing apparatus in which a conductive film as a slot plate is patterned on a dielectric plate 本発明の一実施形態のマイクロ波プラズマ処理装置の断面図Sectional drawing of the microwave plasma processing apparatus of one Embodiment of this invention 同軸導波管の詳細図Detailed view of coaxial waveguide 誘電体板側の内導体及び誘電体板の他の例(変形例1)を示す断面図Sectional drawing which shows the other example (modification 1) of the inner conductor by the side of a dielectric plate, and a dielectric plate 導電膜が付着する誘電体板を示す図The figure which shows the dielectric plate to which the conductive film adheres 誘電体板側の内導体及び誘電体板のさらに他の例(変形例2)を示す断面図Sectional drawing which shows further another example (modification 2) of the inner conductor on the dielectric plate side and the dielectric plate 変形例2において、誘電体板の孔の内周面に導電膜を形成した例を示す断面図Sectional drawing which shows the example which formed the electrically conductive film in the internal peripheral surface of the hole of a dielectric material board in the modification 2. 誘電体板側の内導体及び誘電体板のさらに他の例(変形例3)を示す断面図Sectional drawing which shows further another example (modification 3) of the inner conductor on the dielectric plate side and the dielectric plate 誘電体板側の内導体及び誘電体板のさらに他の例(変形例4)を示す断面図Sectional drawing which shows further another example (modification 4) of the inner conductor on the dielectric plate side and the dielectric plate 実施例の同軸導波管を示す図The figure which shows the coaxial waveguide of an Example 実施例の同軸導波管を用いたときの、電磁波周波数と透過比率との関係を示すグラフGraph showing the relationship between electromagnetic wave frequency and transmission ratio when using the coaxial waveguide of the example

以下、添付図面を参照して、本発明のマイクロ波プラズマ処理装置の一実施形態を説明する。図4は、マイクロ波プラズマ処理装置の全体の構成図を示す。   Hereinafter, an embodiment of a microwave plasma processing apparatus of the present invention will be described with reference to the accompanying drawings. FIG. 4 shows an overall configuration diagram of the microwave plasma processing apparatus.

マイクロ波プラズマ処理装置は、外壁によって区画される処理容器11と、処理容器11内に設けられ、被処理基板を静電チャックにより保持する窒化アルミニウム(AlN)又はアルミナ(Al23)からなる保持台16と、を備える。処理容器11には、保持台を囲む円環状の空間に周方向に均等に排気ポートが形成される。処理容器11は、排気ポートを介して真空ポンプにより排気・減圧される。 The microwave plasma processing apparatus is composed of a processing container 11 partitioned by an outer wall, and aluminum nitride (AlN) or alumina (Al 2 O 3 ) provided in the processing container 11 and holding a substrate to be processed by an electrostatic chuck. A holding table 16. In the processing container 11, exhaust ports are uniformly formed in the circumferential direction in an annular space surrounding the holding table. The processing container 11 is evacuated and decompressed by a vacuum pump through an exhaust port.

処理容器11は、アルミニウム(Al)好ましくはアルミニウム(Al)を含有するステンレス鋼からなり、内壁面には酸化処理により酸化アルミニウム(Al23)よりなる保護膜が形成されてもよい。処理容器11の天井部には、アルミナ(Al23)、石英等の誘電体からなる誘電体窓12が外壁の一部として設けられる。誘電体窓12は処理容器11の側壁にシールリング13を介して装着される。誘電体窓12は処理容器11の側壁の上部に取り付けられる誘電体窓押えリング14によって処理容器11に固定される。誘電体窓押えリング14は、処理容器11と同様にアルミニウム(Al)若しくはアルミニウム(Al)を含有するステンレス鋼からなる。 The processing vessel 11 is made of stainless steel containing aluminum (Al), preferably aluminum (Al), and a protective film made of aluminum oxide (Al 2 O 3 ) may be formed on the inner wall surface by oxidation treatment. A dielectric window 12 made of a dielectric such as alumina (Al 2 O 3 ) or quartz is provided as a part of the outer wall on the ceiling of the processing vessel 11. The dielectric window 12 is attached to the side wall of the processing container 11 via a seal ring 13. The dielectric window 12 is fixed to the processing container 11 by a dielectric window pressing ring 14 attached to the upper part of the side wall of the processing container 11. The dielectric window pressing ring 14 is made of aluminum (Al) or stainless steel containing aluminum (Al) in the same manner as the processing container 11.

処理容器11の側壁には、プラズマ励起用ガスを処理容器11内に供給するための例えば環状のガス供給部15が設けられる。ガス供給部15にはガス供給系が接続されている。Arガス、Krガス等のプラズマ励起用ガスや、プラズマ処理の種類に応じた処理ガスがガス供給部から処理容器11に供給される。かかるプラズマ処理には、ラジカル酸化処理、ラジカル窒化処理、ラジカル酸窒化処理、プラズマCVD処理等が含まれる。ガス供給部からC48,C58又はC46等のフルオロカーボンガスや、F系あるいはCl系等のエッチングガスを供給し、保持台16上に高周波電源から高周波電圧を印加することにより、被処理基板に対して処理を行う。 On the side wall of the processing vessel 11, for example, an annular gas supply unit 15 for supplying plasma excitation gas into the processing vessel 11 is provided. A gas supply system is connected to the gas supply unit 15. A plasma excitation gas such as Ar gas or Kr gas, or a processing gas corresponding to the type of plasma processing is supplied from the gas supply unit to the processing vessel 11. Such plasma treatment includes radical oxidation treatment, radical nitridation treatment, radical oxynitridation treatment, plasma CVD treatment and the like. A fluorocarbon gas such as C 4 F 8 , C 5 F 8, or C 4 F 6 , an F-based or Cl-based etching gas is supplied from the gas supply unit, and a high-frequency voltage is applied to the holding table 16 from a high-frequency power source. As a result, the substrate is processed.

処理容器11の側壁には、被処理基板を搬入及び搬出するための図示しない搬出入口が設けられる。搬出入口はゲートバルブによって開閉される。   On the side wall of the processing container 11, a loading / unloading port (not shown) for loading and unloading the substrate to be processed is provided. The carry-in / out port is opened and closed by a gate valve.

誘電体窓12上には、処理容器11内のプラズマ励起用ガスを励起するマイクロ波アンテナ18が載せられる。マイクロ波アンテナは、矩形導波管21、同軸導波管24、冷却板25、誘電体板26及びスロット板27を含む。矩形導波管21には、整合器を介してマグネトロン等のマイクロ波発生装置が接続される。マイクロ波発生装置は、例えば周波数2.45GHz,8.35GHz,1.98GHz,915MHz等のマイクロ波を発生する。整合器は、マイクロ波発生装置から発生するマイクロ波を矩形導波管21及び同軸導波管24を介して誘電体板26へ伝播させる。   On the dielectric window 12, a microwave antenna 18 for exciting the plasma excitation gas in the processing vessel 11 is placed. The microwave antenna includes a rectangular waveguide 21, a coaxial waveguide 24, a cooling plate 25, a dielectric plate 26 and a slot plate 27. A microwave generator such as a magnetron is connected to the rectangular waveguide 21 via a matching unit. The microwave generator generates microwaves having frequencies of 2.45 GHz, 8.35 GHz, 1.98 GHz, 915 MHz, and the like, for example. The matching unit propagates the microwave generated from the microwave generator to the dielectric plate 26 via the rectangular waveguide 21 and the coaxial waveguide 24.

水平方向に伸びる矩形導波管21は、垂直方向に伸びる同軸導波管24の上端部に接続される。同軸導波管24は、垂直方向に伸びる内導体22と、内導体22を囲む筒状の外導体23と、からなる。内導体22と外導体23との間に断面環状の同軸導波路20が形成される。内導体22及び外導体23は、例えば銀めっきした銅からなる。矩形導波管21と同軸導波管24の接続部には、円錐形のモード変換器29が設けられる。矩形導波管21を伝播するマイクロ波はモード変換器29によって同軸モードに変換され、同軸導波路20を上下方向に伝播する。   The rectangular waveguide 21 extending in the horizontal direction is connected to the upper end portion of the coaxial waveguide 24 extending in the vertical direction. The coaxial waveguide 24 includes an inner conductor 22 extending in the vertical direction and a cylindrical outer conductor 23 surrounding the inner conductor 22. A coaxial waveguide 20 having an annular cross section is formed between the inner conductor 22 and the outer conductor 23. The inner conductor 22 and the outer conductor 23 are made of, for example, silver plated copper. A conical mode converter 29 is provided at the connection between the rectangular waveguide 21 and the coaxial waveguide 24. The microwave propagating through the rectangular waveguide 21 is converted into a coaxial mode by the mode converter 29 and propagates up and down the coaxial waveguide 20.

同軸導波管24を上下方向に伝播したマイクロ波は、ディスク状の誘電体板26を半径方向に伝播する。誘電体板26は、アルミナ(Al23)、石英等の誘電体からなる。誘電体板26の上面には、誘電体板26を冷却するアルミニウム(Al)等に金属からなる冷却板25が設けられる。冷却板25には冷却水流路25aが形成される。冷却水流路25aに冷却水を流すことにより、誘電体板26が冷却される。誘電体板26の下面には、銅板等の導電材料からなるスロット板27が設けられる。 The microwave propagated in the vertical direction through the coaxial waveguide 24 propagates through the disk-shaped dielectric plate 26 in the radial direction. The dielectric plate 26 is made of a dielectric such as alumina (Al 2 O 3 ) or quartz. On the upper surface of the dielectric plate 26, a cooling plate 25 made of metal such as aluminum (Al) for cooling the dielectric plate 26 is provided. A cooling water passage 25 a is formed in the cooling plate 25. The dielectric plate 26 is cooled by flowing cooling water through the cooling water passage 25a. A slot plate 27 made of a conductive material such as a copper plate is provided on the lower surface of the dielectric plate 26.

マイクロ波は、電界と磁界が非常に速く変化しながら伝搬する電磁波である。誘電体板26の下面には金属からなるスロット板27が設けられ、誘電体板26の上面には金属からなる冷却板25が設けられる。金属面に当たったマイクロ波は、金属内には入らず、ごく表面に電流を流し、大部分が反射する。このため、同軸導波路20から誘電体板26に侵入したマイクロ波は、スロット板27及び冷却板25を反射しながら誘電体板26を半径方向に伝搬する。また、同軸導波路20から誘電体板26に入るとき、マイクロ波の媒質が空気から誘電体に変化するので、マイクロ波の波長が圧縮される。誘電体板26の厚みは、TEモードで(電界が厚み方向にだけできるように)伝搬するように決められる。誘電体板26内におけるマイクロ波の波長の1/4以下であれば問題ないが、あまり薄いと強度の問題があり、厚すぎると撓みにくくなる。アルミナ(Al23)の場合で3〜6mm程度が最適な厚みになる。 Microwaves are electromagnetic waves that propagate while the electric and magnetic fields change very quickly. A slot plate 27 made of metal is provided on the lower surface of the dielectric plate 26, and a cooling plate 25 made of metal is provided on the upper surface of the dielectric plate 26. The microwaves that hit the metal surface do not enter the metal, but a current flows through the very surface, and most of the light is reflected. Therefore, the microwave that has entered the dielectric plate 26 from the coaxial waveguide 20 propagates in the dielectric plate 26 in the radial direction while reflecting the slot plate 27 and the cooling plate 25. Further, when entering the dielectric plate 26 from the coaxial waveguide 20, the microwave medium is changed from air to a dielectric, so that the wavelength of the microwave is compressed. The thickness of the dielectric plate 26 is determined so as to propagate in the TE mode (so that the electric field can be generated only in the thickness direction). If it is 1/4 or less of the wavelength of the microwave in the dielectric plate 26, there is no problem. About 3~6mm is optimum thickness in the case of alumina (Al 2 O 3).

スロット板27には、マイクロ波を透過させる多数のスロットが形成される。誘電体板26内で共振したマイクロ波は、スロット板27の多数のスロットを透過し、誘電体窓12を介して処理容器11内に放射される。   The slot plate 27 has a number of slots through which microwaves are transmitted. The microwaves resonated in the dielectric plate 26 pass through a number of slots of the slot plate 27 and are radiated into the processing container 11 through the dielectric window 12.

マイクロ波アンテナ18は、誘電体窓押え14に取り付けられるアンテナ押え30によって誘電体窓12に固定される。アンテナ押え30は処理容器11と同様にアルミニウム(Al)若しくはアルミニウム(Al)を含有するステンレス鋼からなる。冷却板25とアンテナ押え30との間には、電磁遮蔽弾力体31が設けられる。電磁遮蔽弾力体31は電磁シールドの機能、及びマイクロ波アンテナ18を誘電体窓12に押しつける機能を持つ。スロット板27のスロットを透過するマイクロ波は全てがプラズマに吸収されるわけではなく、一部がスロット板27と誘電体窓12との間の小さな隙間から外側に漏れ出す。電磁遮蔽弾力体31は漏れ出したマイクロ波をシールドする。マイクロ波アンテナ18が誘電体窓12上に単に載っているだけだと、熱膨張によってマイクロ波アンテナ18と誘電体窓12との間に隙間が生ずる。隙間が発生するのを防止するために、電磁遮蔽弾力体31はマイクロ波アンテナ18を強い力で誘電体窓12に押し付ける。   The microwave antenna 18 is fixed to the dielectric window 12 by an antenna holder 30 attached to the dielectric window holder 14. The antenna holder 30 is made of aluminum (Al) or stainless steel containing aluminum (Al) in the same manner as the processing container 11. An electromagnetic shielding elastic body 31 is provided between the cooling plate 25 and the antenna holder 30. The electromagnetic shielding elastic body 31 has a function of electromagnetic shielding and a function of pressing the microwave antenna 18 against the dielectric window 12. The microwaves that pass through the slots of the slot plate 27 are not all absorbed by the plasma, but part of them leak out to the outside through a small gap between the slot plate 27 and the dielectric window 12. The electromagnetic shielding elastic body 31 shields the leaked microwave. If the microwave antenna 18 is merely placed on the dielectric window 12, a gap is generated between the microwave antenna 18 and the dielectric window 12 due to thermal expansion. In order to prevent the generation of a gap, the electromagnetic shielding elastic body 31 presses the microwave antenna 18 against the dielectric window 12 with a strong force.

図5に示すように、同軸導波管24を構成する内導体22は、スロット板に接続される誘電体板側の内導体22bと、モード変換器29又は矩形導波管21に連結される残りの内導体であるモード変換器側の内導体22aと、に分離される。モード変換器側の内導体22aはモード変換器29から垂直下方に伸びる。モード変換器側の内導体22aの軸線方向の途中には、円盤状に張り出すフランジ部32aが設けられてもよい。   As shown in FIG. 5, the inner conductor 22 constituting the coaxial waveguide 24 is connected to the inner conductor 22b on the dielectric plate side connected to the slot plate, and the mode converter 29 or the rectangular waveguide 21. The inner conductor 22a on the mode converter side which is the remaining inner conductor is separated. The inner conductor 22a on the mode converter side extends vertically downward from the mode converter 29. A flange portion 32a protruding in a disk shape may be provided in the axial direction of the inner conductor 22a on the mode converter side.

誘電体板側の内導体22bは垂直方向に伸びる。誘電体板側の内導体22bはスロット板27及び誘電体板26を貫通する。誘電体板側の内導体22bの下端には、スロット中心固定板33が設けられる。スロット中心固定板33はスロット板27にねじ等で結合される。誘電体板側の内導体22bの上部には、円盤状に張り出すフランジ部32bが設けられる。なお、この図5には、誘電体板26とスロット板27との間、及びスロット板27と誘電体窓12との間に隙間があるように示されているが、実際にはこれらの間には隙間はない。   The inner conductor 22b on the dielectric plate side extends in the vertical direction. The inner conductor 22 b on the dielectric plate side penetrates the slot plate 27 and the dielectric plate 26. A slot center fixing plate 33 is provided at the lower end of the inner conductor 22b on the dielectric plate side. The slot center fixing plate 33 is coupled to the slot plate 27 with screws or the like. A flange portion 32b projecting in a disk shape is provided on the upper portion of the inner conductor 22b on the dielectric plate side. In FIG. 5, there are shown gaps between the dielectric plate 26 and the slot plate 27 and between the slot plate 27 and the dielectric window 12. There are no gaps.

モード変換器側の内導体22aの下端と誘電体板側の内導体22bの上端との間には、空間が空けられる。この空間は大気で充満されてもよいし、真空であってもよい。力が伝達するのを防止するために、モード変換器側の内導体22aと誘電体板側の内導体22bとの間には介在物がない。すなわち、モード変換器側の内導体22aと誘電体板側の内導体22bとは物理的に不連続である。モード変換器側の内導体22aと誘電体板側の内導体22bとの間の隙間は、例えば3〜5mmに設定される。3mm未満だと、モード変換器側の内導体22a及び誘電体板側の内導体22bの熱膨張により、これらが物理的に接触するおそれがある。5mmを超えると、マイクロ波の均一な伝搬に必要な、後述する誘電体板側の内導体22bの長さaを十分に確保できなくなる。   A space is provided between the lower end of the inner conductor 22a on the mode converter side and the upper end of the inner conductor 22b on the dielectric plate side. This space may be filled with air or a vacuum. In order to prevent transmission of force, there is no inclusion between the inner conductor 22a on the mode converter side and the inner conductor 22b on the dielectric plate side. That is, the inner conductor 22a on the mode converter side and the inner conductor 22b on the dielectric plate side are physically discontinuous. A gap between the inner conductor 22a on the mode converter side and the inner conductor 22b on the dielectric plate side is set to 3 to 5 mm, for example. If it is less than 3 mm, the inner conductor 22a on the mode converter side and the inner conductor 22b on the dielectric plate side may be in physical contact with each other due to thermal expansion. If it exceeds 5 mm, the length a of the inner conductor 22b on the dielectric plate side, which will be described later, necessary for uniform propagation of microwaves cannot be secured sufficiently.

同軸導波管24の内導体22を、モード変換器側の内導体22aと誘電体板側の内導体22bとに分離し、誘電体板側の内導体22bをスロット板27に連結するので、内導体22が熱膨張・熱収縮しても、誘電体板側の内導体22bとモード変換器側の内導体22aとの間の隙間が変化するだけであり、誘電体板側の内導体22bに熱膨張・熱収縮による応力が発生するのを防止できる。誘電体板側の内導体22bに連結されるスロット板27が変形するのを防止できるので、マイクロ波の伝播特性に悪影響を及ぼすことがない。   The inner conductor 22 of the coaxial waveguide 24 is separated into the inner conductor 22a on the mode converter side and the inner conductor 22b on the dielectric plate side, and the inner conductor 22b on the dielectric plate side is connected to the slot plate 27. Even if the inner conductor 22 is thermally expanded or contracted, only the gap between the inner conductor 22b on the dielectric plate side and the inner conductor 22a on the mode converter side changes, and the inner conductor 22b on the dielectric plate side changes. It is possible to prevent the occurrence of stress due to thermal expansion and contraction. Since the slot plate 27 connected to the inner conductor 22b on the dielectric plate side can be prevented from being deformed, the microwave propagation characteristics are not adversely affected.

もしモード変換器側の内導体22aと誘電体板側の内導体22bとが物理的に連続していれば、マイクロ波はこれらの内導体22の周囲を伝播する。しかし、本実施形態のように、モード変換器側の内導体22aと誘電体板側の内導体22bとの間に隙間を空けたならば、隙間でマイクロ波が反射する。マイクロ波の反射を矯正し、マイクロ波を整形するために、フランジ部32a,32bが設けられる。マイクロ波が内導体22の周囲を伝播するとき、内導体22の表面にはマイクロ波の電界による電流と電界の変化に伴う変位電流が流れる。この変位電流に対し、フランジ部が32a,32bコンデンサのように機能し(図中二点鎖線で囲まれる範囲)、隙間に高周波の変位電流を流す。このため、高周波の変位電流が当該隙間で遮断されることはなく、インピーダンスも隙間で急激に変化することがない。隙間及びフランジ部32a,32bの大きさを調整することにより(例えば隙間を空けた分、フランジ部32a,32bの外径と外導体23との間の隙間を縮めることにより)、マイクロ波を減衰することなく同軸導波路20内を伝播させることができる。   If the inner conductor 22 a on the mode converter side and the inner conductor 22 b on the dielectric plate side are physically continuous, the microwave propagates around these inner conductors 22. However, if a gap is formed between the inner conductor 22a on the mode converter side and the inner conductor 22b on the dielectric plate side as in this embodiment, the microwave is reflected in the gap. Flange portions 32a and 32b are provided to correct the reflection of the microwave and shape the microwave. When the microwave propagates around the inner conductor 22, a current due to the microwave electric field and a displacement current accompanying a change in the electric field flow on the surface of the inner conductor 22. In response to this displacement current, the flange portion functions like a capacitor 32a, 32b (a range surrounded by a two-dot chain line in the figure), and a high-frequency displacement current flows in the gap. For this reason, the high-frequency displacement current is not interrupted by the gap, and the impedance does not change rapidly in the gap. Microwaves are attenuated by adjusting the size of the gap and the flange portions 32a and 32b (for example, by reducing the gap between the outer diameter of the flange portions 32a and 32b and the outer conductor 23 by the amount of the gap). It is possible to propagate in the coaxial waveguide 20 without doing so.

誘電体板側の内導体22bの長さaは、同軸導波管24におけるマイクロ波の波長の1/4から1波長までの範囲内にあるのが望ましい。ここで、誘電体板側の内導体22bの長さaとは、誘電体板側の内導体22bが同軸導波管24の内導体として機能する部分の長さであり、具体的には、誘電体板26の上面からフランジ部32bの下端までの高さである。モード変換器側の内導体22aと誘電体板側の内導体22bとの間に隙間を空けると、当該隙間で一旦マイクロ波が乱れる。誘電体板側の内導体22bの長さをマイクロ波の波長の1/4以上にし、当該内導体22bに沿ってマイクロ波を伝搬させることで、マイクロ波の乱れを矯正できる。また、モード変換器側の内導体22aと誘電体板側の内導体22bとの中心のずれが生じても、誘電体板側の内導体22bに沿ってマイクロ波を伝搬させることで、中心のずれに起因するマイクロ波の乱れを矯正できるので、対称性のよいマイクロ波の分布が形成される。誘電体板側の内導体22bの長さが1波長を超えると、誘電体板側の内導体22b自身がマイクロ波によって加熱されるので、破損等の問題が生じる可能性がある。   The length a of the inner conductor 22b on the dielectric plate side is preferably in the range from 1/4 to 1 wavelength of the microwave wavelength in the coaxial waveguide 24. Here, the length a of the inner conductor 22b on the dielectric plate side is the length of the portion where the inner conductor 22b on the dielectric plate side functions as the inner conductor of the coaxial waveguide 24. Specifically, This is the height from the upper surface of the dielectric plate 26 to the lower end of the flange portion 32b. If a gap is made between the inner conductor 22a on the mode converter side and the inner conductor 22b on the dielectric plate side, the microwave is once disturbed in the gap. By making the length of the inner conductor 22b on the dielectric plate side 1/4 or more of the wavelength of the microwave and propagating the microwave along the inner conductor 22b, the disturbance of the microwave can be corrected. Even if the center deviation between the inner conductor 22a on the mode converter side and the inner conductor 22b on the dielectric plate side occurs, the microwave is propagated along the inner conductor 22b on the dielectric plate side, Since the disturbance of the microwave caused by the deviation can be corrected, a highly symmetrical microwave distribution is formed. If the length of the inner conductor 22b on the dielectric plate side exceeds one wavelength, the inner conductor 22b itself on the dielectric plate side is heated by microwaves, which may cause problems such as breakage.

図6は、誘電体板側の内導体22b及び誘電体板26の他の例(変形例1)を示す。この例の誘電体板側の内導体22bは、アルミナ(Al23)、石英等の誘電体からなり、その表面には導電性を有する導電膜36が形成される。導電膜36は、例えば金属をめっきすることにより形成される。誘電体板側の内導体22bは、誘電体板26の中心部の孔26aに嵌められる。誘電体板側の内導体22bは、誘電体板26に一体化される。具体的には、圧入、ロウ付け、拡散接合、溶融、その他の手法により、誘電体板側の内導体22bが誘電体板26に一体化される。マイクロ波により金属の表面にのみ電流が流れる。 FIG. 6 shows another example (Modification 1) of the inner conductor 22b and the dielectric plate 26 on the dielectric plate side. The inner conductor 22b on the dielectric plate side in this example is made of a dielectric material such as alumina (Al 2 O 3 ) or quartz, and a conductive film 36 having conductivity is formed on the surface thereof. The conductive film 36 is formed, for example, by plating a metal. The inner conductor 22 b on the dielectric plate side is fitted into the hole 26 a in the center of the dielectric plate 26. The inner conductor 22 b on the dielectric plate side is integrated with the dielectric plate 26. Specifically, the inner conductor 22b on the dielectric plate side is integrated with the dielectric plate 26 by press fitting, brazing, diffusion bonding, melting, or other methods. Current flows only on the surface of the metal due to the microwave.

図7は、導電膜38が形成される誘電体板26の詳細図を示す。誘電体板26の上面、下面及び外周面には、金属の層からなる導電膜38が例えばめっきされる。誘電体板26の中心部には、誘電体板側の内導体22bに接続される孔26aが開けられる。誘電体板26の下面の導電膜38は、誘電体板側の内導体22bに電気的に接続され、誘電体板26の上面の導電膜38は、冷却板25を介して同軸導波管24の外導体23に電気的に接続される(図6参照)。   FIG. 7 shows a detailed view of the dielectric plate 26 on which the conductive film 38 is formed. A conductive film 38 made of a metal layer is plated on the upper surface, the lower surface and the outer peripheral surface of the dielectric plate 26, for example. A hole 26 a connected to the inner conductor 22 b on the dielectric plate side is opened at the center of the dielectric plate 26. The conductive film 38 on the lower surface of the dielectric plate 26 is electrically connected to the inner conductor 22b on the dielectric plate side, and the conductive film 38 on the upper surface of the dielectric plate 26 is connected to the coaxial waveguide 24 via the cooling plate 25. Is electrically connected to the outer conductor 23 (see FIG. 6).

誘電体板26の下面側の導電膜38には、マイクロ波を透過させる多数のスロット38aが形成される。隣接する一組のスロット38aは、直交するようにT字状に配列される。多数のスロット38aは導電膜38に例えば同心円状に配置される。スロット38aの長さや配列は、スロット38aから処理容器11に強い電界が放射されるように、誘電体板26によって圧縮されたマイクロ波の波長に応じて適宜決定される。スロット38aの形状は直線形状の他に円弧形状でもよく、スロット38aの配列は同心円状の他に螺旋状や放射状でもよい。   In the conductive film 38 on the lower surface side of the dielectric plate 26, a large number of slots 38a that transmit microwaves are formed. A pair of adjacent slots 38a are arranged in a T shape so as to be orthogonal to each other. The many slots 38a are arranged concentrically on the conductive film 38, for example. The length and arrangement of the slots 38 a are appropriately determined according to the wavelength of the microwave compressed by the dielectric plate 26 so that a strong electric field is radiated from the slot 38 a to the processing container 11. The shape of the slot 38a may be an arc shape in addition to the linear shape, and the arrangement of the slots 38a may be a spiral shape or a radial shape in addition to a concentric shape.

外導体23、内導体22及び誘電体板26の中心の位置決め精度は、50ミクロン以下が要求される。しかし、現状では50ミクロン以下の精度で位置決めするのは困難であり、これらの位置ずれが機差(同一処理を行う装置毎の差)の原因になっている。誘電体板側の内導体22bを誘電体板26に一体化することで、誘電体板26と給電部分との中心の位置決め精度がよくなり、昇温時の熱膨張の量も同一であるので、マイクロ波の伝搬路を乱さず、マイクロ波によって発生するプラズマの均一性を向上できる。さらに、誘電体板26と誘電体板側の内導体22bをアルミナ(Al23)や石英等の同じ材料からなる誘電体で一体に構成すれば、熱膨張率が同一であるため、昇温時にも熱膨張の量が同一であり、隙間等が生じることがなく、マイクロ波伝搬路を乱さず、均一にマイクロ波を供給することができる。 The positioning accuracy of the centers of the outer conductor 23, the inner conductor 22 and the dielectric plate 26 is required to be 50 microns or less. However, at present, it is difficult to perform positioning with an accuracy of 50 microns or less, and these positional shifts cause machine differences (differences between apparatuses performing the same process). By integrating the inner conductor 22b on the dielectric plate side with the dielectric plate 26, the positioning accuracy of the center of the dielectric plate 26 and the feeding portion is improved, and the amount of thermal expansion at the time of temperature rise is the same. The uniformity of the plasma generated by the microwave can be improved without disturbing the propagation path of the microwave. Furthermore, if the dielectric plate 26 and the inner conductor 22b on the dielectric plate side are integrally formed of a dielectric made of the same material such as alumina (Al 2 O 3 ) or quartz, the coefficient of thermal expansion is the same. Even when warm, the amount of thermal expansion is the same, no gaps are generated, and the microwave can be supplied uniformly without disturbing the microwave propagation path.

誘電体板側の内導体22bを誘電体板26に一体化したとき、これらの間に熱膨張の差があると、誘電体板側の内導体22b及び誘電体板26が割れるおそれがある。誘電体板側の内導体22bを金属でなく、誘電体板26と同一の材質又は熱膨張係数が実質的に等しい材料から製造することでその割れを防止することができる。   When the inner conductor 22b on the dielectric plate side is integrated with the dielectric plate 26, if there is a difference in thermal expansion between them, the inner conductor 22b and the dielectric plate 26 on the dielectric plate side may break. The inner conductor 22b on the dielectric plate side is made of the same material as that of the dielectric plate 26 or a material having substantially the same thermal expansion coefficient instead of metal, so that the crack can be prevented.

図8は、誘電体板側の内導体22b及び誘電体板26のさらに他の例(変形例2)を示す。この例の誘電体板26には、同軸導波管24の同軸導波路20にせり出す首部26bが設けられる。誘電体板26の孔26aの下部には、円錐形状のテーパ部26cが形成される。誘電体板26の首部26bの外周面及び誘電体板26の下面のテーパ部26cには、導電膜38が形成される。誘電体板26の孔26aには、導電性の表面を有する誘電体板側の内導体22bが嵌められる。誘電体板側の内導体22bの導電膜36は、誘電体板26の下面の導電膜38に電気的に接続される。誘電体板26の首部26bの外周面の導電膜38は冷却板25に電気的に接続される。誘電体板26に首部26bを設けることで、誘電体板26と誘電体板側の内導体22bを嵌め合い構造にできるだけでなく、誘電体板26と冷却板25とを嵌め合い構造にすることができる。   FIG. 8 shows still another example (Modification 2) of the inner conductor 22b and the dielectric plate 26 on the dielectric plate side. The dielectric plate 26 of this example is provided with a neck portion 26 b protruding to the coaxial waveguide 20 of the coaxial waveguide 24. A conical tapered portion 26c is formed in the lower portion of the hole 26a of the dielectric plate 26. A conductive film 38 is formed on the outer peripheral surface of the neck portion 26 b of the dielectric plate 26 and the tapered portion 26 c on the lower surface of the dielectric plate 26. In the hole 26a of the dielectric plate 26, the inner conductor 22b on the dielectric plate side having a conductive surface is fitted. The conductive film 36 of the inner conductor 22 b on the dielectric plate side is electrically connected to the conductive film 38 on the lower surface of the dielectric plate 26. The conductive film 38 on the outer peripheral surface of the neck portion 26 b of the dielectric plate 26 is electrically connected to the cooling plate 25. By providing the neck 26b on the dielectric plate 26, not only can the dielectric plate 26 and the inner conductor 22b on the dielectric plate side be fitted, but the dielectric plate 26 and the cooling plate 25 can be fitted. Can do.

図9に示すように、誘電体板26の孔26aの内周面に導電膜38を形成してもよい。導電膜38は孔26aの内周面の一部に形成されてもよい。孔26aの内周面に導電膜38を形成することで、内導体22bと導電膜38との電気的なコンタクトを強くすることができる。   As shown in FIG. 9, a conductive film 38 may be formed on the inner peripheral surface of the hole 26 a of the dielectric plate 26. The conductive film 38 may be formed on a part of the inner peripheral surface of the hole 26a. By forming the conductive film 38 on the inner peripheral surface of the hole 26a, electrical contact between the inner conductor 22b and the conductive film 38 can be strengthened.

この例においても、誘電体板側の内導体22bの長さaは、同軸導波管24におけるマイクロ波の波長の1/4から1波長までの範囲内にあるのが望ましい。ここで、誘電体板側の内導体22bの長さaとは、冷却板25に接触する誘電体板26の上面からフランジ部32bの下端までの高さである。なお、空気中を伝播するときと誘電体を伝播するときとでは、空気と誘電体の境界を境にしてマイクロ波の波長が異なる。誘電体板側の内導体22bの長さaは、空気中を伝播するときの波長分と誘電体を伝播するときの波長分を合算した波長で表わされる。   Also in this example, it is desirable that the length a of the inner conductor 22b on the dielectric plate side is within a range from 1/4 to 1 wavelength of the microwave wavelength in the coaxial waveguide 24. Here, the length a of the inner conductor 22b on the dielectric plate side is the height from the upper surface of the dielectric plate 26 in contact with the cooling plate 25 to the lower end of the flange portion 32b. Note that the wavelength of the microwave differs between when propagating through the air and when propagating through the dielectric at the boundary between the air and the dielectric. The length a of the inner conductor 22b on the dielectric plate side is represented by a wavelength obtained by adding the wavelength when propagating through the air and the wavelength when propagating through the dielectric.

図10は、誘電体板側の内導体22b及び誘電体板26のさらに他の例(変形例3)を示す。この例の誘電体板26の首部26bの上面には、円錐形状のテーパ部40が形成される。テーパ部40により、首部26bの外周側のせり出し高さは内周側よりも高くなる。誘電体板26の首部26bの外周面のせり出し高さbは、同軸導波管24におけるマイクロ波の波長の1/4以上であるとよい。   FIG. 10 shows still another example (Modification 3) of the inner conductor 22b and the dielectric plate 26 on the dielectric plate side. A conical tapered portion 40 is formed on the upper surface of the neck portion 26b of the dielectric plate 26 of this example. Due to the tapered portion 40, the protruding height of the neck portion 26b on the outer peripheral side becomes higher than that on the inner peripheral side. The protruding height b of the outer peripheral surface of the neck portion 26 b of the dielectric plate 26 is preferably not less than ¼ of the wavelength of the microwave in the coaxial waveguide 24.

誘電体板26の首部26bの外周面は冷却板25に電気的に接続される。誘電体板26の首部26bの外周面の上端39には、冷却板25との間に僅かな隙間が発生する。この隙間が周方向に不均一になると、マイクロ波が周方向に均等に分散しなくなる。誘電体板26の首部26bの外周面のせり出し高さbをマイクロ波の波長の1/4以上にすることで、誘電体板26から隙間を遠ざけることができる。そして、マイクロ波の波長の1/4以上の長さの首部26bの導電膜38に沿ってマイクロ波を伝搬させることで、マイクロ波の乱れを矯正できる。また、首部26bの上面のテーパ部40と誘電体板26の下面のテーパ部26cの傾斜を逆にすることで、首部26bのテーパ部40におけるマイクロ波の反射と、誘電体板26の下面のテーパ部26cにおけるマイクロ波の反射を打ち消し合うことができ、マイクロ波のロスを少なくすることができる。   The outer peripheral surface of the neck portion 26 b of the dielectric plate 26 is electrically connected to the cooling plate 25. A slight gap is generated between the upper end 39 of the outer peripheral surface of the neck portion 26 b of the dielectric plate 26 and the cooling plate 25. If this gap becomes uneven in the circumferential direction, the microwaves are not evenly distributed in the circumferential direction. By setting the protruding height b of the outer peripheral surface of the neck portion 26b of the dielectric plate 26 to ¼ or more of the wavelength of the microwave, the gap can be kept away from the dielectric plate 26. Then, the microwave disturbance can be corrected by propagating the microwave along the conductive film 38 of the neck portion 26b having a length of 1/4 or more of the wavelength of the microwave. Further, by reversing the inclination of the taper portion 40 on the upper surface of the neck portion 26b and the taper portion 26c on the lower surface of the dielectric plate 26, the reflection of microwaves at the taper portion 40 of the neck portion 26b and the lower surface of the dielectric plate 26 are reduced. The reflection of the microwaves at the taper portion 26c can be canceled out, and the loss of the microwaves can be reduced.

なお、この例においても、誘電体板側の内導体22bの長さは、同軸導波管24におけるマイクロ波の波長の1/4から1波長までの範囲内であることが望ましい。空気中を伝播するときと誘電体を伝播するときとでは、空気と誘電体の境界を境にしてマイクロ波の波長が異なる。誘電体板側の内導体22bの長さaは、テーパ部40の中心((テーパ部40の内径+テーパ部40の外径)/2の位置)において、空気中を伝播するときの波長分と誘電体を伝播するときの波長分を合算した波長で表わされる。   In this example as well, the length of the inner conductor 22b on the dielectric plate side is preferably within a range from 1/4 to 1 wavelength of the microwave wavelength in the coaxial waveguide 24. When propagating through the air and when propagating through the dielectric, the wavelength of the microwave differs at the boundary between the air and the dielectric. The length a of the inner conductor 22b on the dielectric plate side is equal to the wavelength when propagating through the air at the center of the taper portion 40 ((inner diameter of the taper portion 40 + outer diameter of the taper portion 40) / 2). And the sum of the wavelengths when propagating through the dielectric.

図11は、誘電体板側の内導体22b及び誘電体板26のさらに他の例(変形例4)を示す。同軸導波管24の外導体23(正確には外導体23を構成する冷却板25)には、表面が導電性を有する円筒形状の外導体ブロック42が嵌められる。外導体ブロック42は、アルミナ(Al23)、石英等の誘電体からなり、その表面には導電性を有する導電膜43が形成されている。誘電体板26は、誘電体板側の内導体22bと外導体ブロック42との間にせり出す首部26bを有する。外導体ブロック42は誘電体板26の首部26bの外周面に嵌められ、外導体ブロック42と誘電体板26とは一体化される。誘電体板26には誘電体板側の内導体22bが一体化される。このためこの例においては、誘電体板側の内導体22b,誘電体板26,及び外導体ブロック42が一体化される。外導体ブロック42の外周面は冷却板25に電気的に接続され、外導体ブロック42の下面は誘電体板26の上面の導電膜38に電気的に接続される。そして、誘電体板側の内導体22bの導電膜36は、誘電体板26の下面の導電膜38に電気的に接続される。 FIG. 11 shows still another example (Modification 4) of the inner conductor 22b and the dielectric plate 26 on the dielectric plate side. A cylindrical outer conductor block 42 having a conductive surface is fitted to the outer conductor 23 of the coaxial waveguide 24 (more precisely, the cooling plate 25 constituting the outer conductor 23). The outer conductor block 42 is made of a dielectric such as alumina (Al 2 O 3 ) or quartz, and a conductive film 43 having conductivity is formed on the surface thereof. The dielectric plate 26 has a neck portion 26b protruding between the inner conductor 22b and the outer conductor block 42 on the dielectric plate side. The outer conductor block 42 is fitted on the outer peripheral surface of the neck portion 26b of the dielectric plate 26, and the outer conductor block 42 and the dielectric plate 26 are integrated. An inner conductor 22b on the dielectric plate side is integrated with the dielectric plate. Therefore, in this example, the inner conductor 22b on the dielectric plate side, the dielectric plate 26, and the outer conductor block 42 are integrated. The outer peripheral surface of the outer conductor block 42 is electrically connected to the cooling plate 25, and the lower surface of the outer conductor block 42 is electrically connected to the conductive film 38 on the upper surface of the dielectric plate 26. The conductive film 36 of the inner conductor 22b on the dielectric plate side is electrically connected to the conductive film 38 on the lower surface of the dielectric plate 26.

外導体ブロック42の上部(冷却板25と接する部分)には、長さλ/2程度の奥行きを有する隙間45が形成される。これは、外導体23の内面と外導体ブロック42が接するように接続されると、マイクロ波電流が流れたとき、接触抵抗等により熱(ジュール熱)が発生するからである。この部分は電流値が大きいので、発熱量が大きくなり熱負荷が大きくなるので、破損等のおそれがある。そこで隙間45を設け、外導体23と外導体ブロック42が、隙間45の外導体内面からの距離がλ/4程度の位置で接触するように構成している。   A gap 45 having a depth of about λ / 2 is formed in the upper portion of the outer conductor block 42 (the portion in contact with the cooling plate 25). This is because when the inner surface of the outer conductor 23 and the outer conductor block 42 are connected to each other, heat (Joule heat) is generated due to contact resistance or the like when a microwave current flows. Since this portion has a large current value, the amount of heat generation increases and the heat load increases, which may cause damage. Therefore, the gap 45 is provided so that the outer conductor 23 and the outer conductor block 42 are in contact with each other at a position where the distance of the gap 45 from the inner surface of the outer conductor is about λ / 4.

外導体ブロック42の軸線方向の長さbは、同軸導波管24におけるマイクロ波の波長の1/4以上に設定されるのが望ましい。このようにすれば、外導体ブロック42の上端と冷却板25との間に生ずる隙間を、マイクロ波の波長の1/4以上誘電体板26から遠ざけることができる。このため、隙間を通過することによるマイクロ波の乱れを矯正することができる。外導体ブロック42の外周面と冷却板25の切欠き部25dの内周面との間には、これらの間に生ずる隙間を周方向に均一にするためのOリング44が装着される。   The length b of the outer conductor block 42 in the axial direction is preferably set to ¼ or more of the microwave wavelength in the coaxial waveguide 24. In this way, a gap formed between the upper end of the outer conductor block 42 and the cooling plate 25 can be kept away from the dielectric plate 26 by a quarter or more of the microwave wavelength. For this reason, the disturbance of the microwave caused by passing through the gap can be corrected. An O-ring 44 is mounted between the outer peripheral surface of the outer conductor block 42 and the inner peripheral surface of the cutout portion 25d of the cooling plate 25 in order to make the gap generated between them uniform in the circumferential direction.

この例においても、誘電体板側の内導体22bの長さは同軸導波管24におけるマイクロ波の波長の1/4から1波長までの範囲内にあるのが望ましい。外導体ブロック42の軸線方向の長さb及び誘電体板側の内導体22bの長さaは、空気中を伝播するときの波長分と誘電体板26を伝播するときの波長分を合算した波長で表わされる。   Also in this example, it is desirable that the length of the inner conductor 22b on the dielectric plate side is in a range from 1/4 to 1 wavelength of the microwave wavelength in the coaxial waveguide 24. The axial length b of the outer conductor block 42 and the length a of the inner conductor 22b on the dielectric plate side are the sum of the wavelength when propagating through the air and the wavelength when propagating through the dielectric plate 26. Expressed in wavelength.

図12に示す内導体及び外導体を製作し、内導体及び外導体との間の同軸導波路にマイクロ波を伝搬させた。図13に示すように。2.4〜2.6GHzの電磁波に対して、ほとんど損失することなく、マイクロ波が透過することがわかった。   The inner conductor and the outer conductor shown in FIG. 12 were manufactured, and the microwave was propagated to the coaxial waveguide between the inner conductor and the outer conductor. As shown in FIG. It was found that microwaves were transmitted with almost no loss to electromagnetic waves of 2.4 to 2.6 GHz.

なお、本発明は上記実施形態に限られることなく、本発明の要旨を変更しない範囲で様々に変更できる。例えば、モード変換器側の内導体及び誘電体板側の内導体に冷却ガス又は冷却水を流す通路を設け、これらの内導体を冷却してもよい。   In addition, this invention is not restricted to the said embodiment, In the range which does not change the summary of this invention, it can change variously. For example, a passage through which cooling gas or cooling water flows may be provided in the inner conductor on the mode converter side and the inner conductor on the dielectric plate side, and these inner conductors may be cooled.

誘電体板及び誘電体板側の内導体に付着する導電膜は、めっきの他、溶射、蒸着等の手法によって形成されてもよい。   The conductive film attached to the dielectric plate and the inner conductor on the dielectric plate side may be formed by a technique such as thermal spraying or vapor deposition in addition to plating.

アンテナ押えに冷却板及び誘電体板を誘電体窓に押さえ付ける電磁遮蔽弾力体を設けなくても、冷却板及び誘電体板の周囲を真空にすることによって、これらを誘電体窓に密着させてもよい。   Even if there is no electromagnetic shielding elastic body that presses the cooling plate and dielectric plate against the dielectric window for holding the antenna, the periphery of the cooling plate and dielectric plate is evacuated so that they are in close contact with the dielectric window. Also good.

さらに、誘電体窓に処理容器内にプラズマ励起用ガスを供給するプラズマ励起用ガス供給経路を形成し、誘電体窓と被処理基板との間に処理ガスを供給する中段シャワーヘッドを設けてもよい。   Further, a plasma excitation gas supply path for supplying a plasma excitation gas into the processing container may be formed in the dielectric window, and an intermediate shower head for supplying the processing gas may be provided between the dielectric window and the substrate to be processed. Good.

11…処理容器
12…誘電体窓
15…ガス供給部
18…マイクロ波アンテナ
20…同軸導波路
21…矩形導波管
22…内導体
22a…モード変換器側の内導体(残りの内導体)
22b…誘電体板側の内導体
23…外導体
24…同軸導波管
25…冷却板
26…誘電体板
26b…首部
27…スロット板
29…モード変換器
32a…フランジ部
32b…フランジ部
38…導電膜
42…外導体ブロック

DESCRIPTION OF SYMBOLS 11 ... Processing container 12 ... Dielectric window 15 ... Gas supply part 18 ... Microwave antenna 20 ... Coaxial waveguide 21 ... Rectangular waveguide 22 ... Inner conductor 22a ... Inner conductor (remaining inner conductor) on the mode converter side
22b ... Inner conductor 23 on the dielectric plate side ... Outer conductor 24 ... Coaxial waveguide 25 ... Cooling plate 26 ... Dielectric plate 26b ... Neck portion 27 ... Slot plate 29 ... Mode converter 32a ... Flange portion 32b ... Flange portion 38 ... Conductive film 42 ... outer conductor block

Claims (11)

天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマ励起用ガスを供給するガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内にマイクロ波を供給するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、
前記マイクロ波アンテナは、マイクロ波を伝播する同軸導波管と、半径方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、マイクロ波を透過させるスロットを有するスロット板と、を含み、
前記同軸導波管は、内導体と、内導体を囲む外導体と、を含み、
前記内導体は、前記誘電体板及び前記スロット板の少なくとも一方に連結される誘電体板側の内導体と、前記誘電体板側の内導体から分離され、前記誘電体板側の内導体との間に空間が空けられる残りの内導体と、を含むマイクロ波プラズマ処理装置。
A processing container having a ceiling defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a gas supply unit for supplying plasma excitation gas to the processing container, and the dielectric window of the processing container In a microwave plasma processing apparatus comprising: a microwave antenna that is mounted and that supplies a microwave to the processing container;
The microwave antenna includes a coaxial waveguide that propagates the microwave, a dielectric plate that propagates the microwave in the radial direction and compresses the wavelength of the microwave, and a slot plate having a slot that transmits the microwave, Including
The coaxial waveguide includes an inner conductor and an outer conductor surrounding the inner conductor,
The inner conductor is separated from the inner conductor on the dielectric plate side connected to at least one of the dielectric plate and the slot plate, and the inner conductor on the dielectric plate side, And a remaining inner conductor in which a space is left between.
前記マイクロ波アンテナはさらに、マイクロ波を伝播する矩形導波管と、前記矩形導波管を伝播するマイクロ波のモードを変換するモード変換器と、を含み、
前記残りの内導体は、前記モード変換器又は前記矩形導波管に連結されることを特徴とする請求項1に記載のマイクロ波プラズマ処理装置。
The microwave antenna further includes a rectangular waveguide that propagates the microwave, and a mode converter that converts a mode of the microwave that propagates through the rectangular waveguide,
The microwave plasma processing apparatus according to claim 1, wherein the remaining inner conductor is connected to the mode converter or the rectangular waveguide.
前記スロット板は、前記誘電体板に付着する導電膜からなることを特徴とする請求項1又は2に記載のマイクロ波プラズマ処理装置。   The microwave plasma processing apparatus according to claim 1, wherein the slot plate is made of a conductive film attached to the dielectric plate. 前記誘電体板側の内導体は、前記誘電体板に一体化されることを特徴とする請求項1ないし3のいずれかに記載のマイクロ波プラズマ処理装置。   4. The microwave plasma processing apparatus according to claim 1, wherein the inner conductor on the dielectric plate side is integrated with the dielectric plate. 前記誘電体板側の内導体は、前記誘電体板と同一の材質又は熱膨張係数が実質的に等しい材料からなり、かつその表面に導電性を有することを特徴とする請求項4に記載のマイクロ波プラズマ処理装置。   The inner conductor on the dielectric plate side is made of the same material as that of the dielectric plate or a material having substantially the same thermal expansion coefficient, and has conductivity on the surface thereof. Microwave plasma processing equipment. 前記誘電体板側の内導体及び前記残りの内導体には、外側に張り出すフランジ部が設けられることを特徴とする請求項1ないし5のいずれかに記載のマイクロ波プラズマ処理装置。   6. The microwave plasma processing apparatus according to claim 1, wherein the inner conductor on the dielectric plate side and the remaining inner conductor are provided with flange portions projecting outward. 前記誘電体板側の内導体の長さは、前記同軸導波管におけるマイクロ波の波長の1/4から1波長までの範囲内にあることを特徴とする請求項1ないし6のいずれかに記載のマイクロ波プラズマ処理装置。   7. The length of the inner conductor on the dielectric plate side is in a range from 1/4 to 1 wavelength of the microwave wavelength in the coaxial waveguide. The microwave plasma processing apparatus as described. 前記誘電体板は、前記同軸導波管内にせり出す首部を有し、
前記首部の外周面は導電性を有し、
前記同軸導波管内にせり出す前記首部の外周面のせり出し高さが、前記同軸導波管におけるマイクロ波の波長の1/4以上であることを特徴とする請求項1ないし7のいずれかに記載のマイクロ波プラズマ処理装置。
The dielectric plate has a neck protruding into the coaxial waveguide;
The outer peripheral surface of the neck has conductivity,
The protruding height of the outer peripheral surface of the neck protruding into the coaxial waveguide is ¼ or more of the wavelength of the microwave in the coaxial waveguide. Microwave plasma processing equipment.
前記同軸導波管の外導体には、表面が導電性を有する円筒形状の外導体ブロックが嵌められ、
前記誘電体板は、前記内導体と前記外導体ブロックとの間にせり出す首部を有し、
前記外導体ブロックの軸線方向の長さが、前記同軸導波管におけるマイクロ波の波長の1/4以上であることを特徴とする請求項1ないし8のいずれかに記載のマイクロ波プラズマ処理装置。
The outer conductor of the coaxial waveguide is fitted with a cylindrical outer conductor block having a conductive surface.
The dielectric plate has a neck portion protruding between the inner conductor and the outer conductor block,
9. The microwave plasma processing apparatus according to claim 1, wherein the length of the outer conductor block in the axial direction is ¼ or more of the wavelength of the microwave in the coaxial waveguide. .
マイクロ波を用いて生成されたプラズマにより被処理体をプラズマ処理するマイクロ波プラズマ処理装置に用いられ、内導体、及び内導体を囲む外導体を含む同軸導波管を伝播したマイクロ波を半径方向に伝播すると共に波長を短縮する誘電体板であって、
前記誘電体板には、誘電体板側の内導体が一体化され、
前記誘電体を前記マイクロ波プラズマ処理装置に組み込んだとき、前記内導体は、前記誘電体板側の内導体と、前記誘電体板側の内導体から空間を空けて配置される残りの内導体と、から構成されるマイクロ波プラズマ処理装置用の誘電体板。
Used in a microwave plasma processing apparatus that plasma-processes an object to be processed with plasma generated using microwaves, and the microwaves propagated through a coaxial waveguide including an inner conductor and an outer conductor surrounding the inner conductor in the radial direction. A dielectric plate that propagates to the wavelength and shortens the wavelength,
An inner conductor on the dielectric plate side is integrated with the dielectric plate,
When the dielectric is incorporated in the microwave plasma processing apparatus, the inner conductor includes the inner conductor on the dielectric plate side and the remaining inner conductor arranged with a space from the inner conductor on the dielectric plate side. And a dielectric plate for a microwave plasma processing apparatus.
矩形導波路を伝播するマイクロ波をモード変換器によりモード変換し、内導体、及び内導体を囲む外導体を含む同軸導波管に伝播し、前記同軸導波管を伝播したマイクロ波を誘電体板で半径方向に伝播すると共に波長を圧縮するマイクロ波プラズマ処理装置のマイクロ波給電方法において、
前記マイクロ波は、前記モード変換器に連結されるモード変換器側の内導体の周囲、並びに、前記モード変換器側の内導体から空間を空けて配置される誘電体板側の内導体の周囲を伝播するマイクロ波プラズマ処理装置のマイクロ波給電方法。
Microwaves propagating in the rectangular waveguide are mode-converted by a mode converter, propagated to the coaxial waveguide including the inner conductor and the outer conductor surrounding the inner conductor, and the microwave propagated through the coaxial waveguide is dielectric. In a microwave power feeding method of a microwave plasma processing apparatus that propagates in a radial direction with a plate and compresses a wavelength,
The microwaves surround the inner conductor on the mode converter side connected to the mode converter, and the inner conductor on the dielectric plate side arranged with a space from the inner conductor on the mode converter side. Microwave power supply method for microwave plasma processing apparatus propagating through the surface.
JP2009018021A 2009-01-29 2009-01-29 Microwave plasma processing apparatus and microwave power supply method for microwave plasma processing apparatus Expired - Fee Related JP5189999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018021A JP5189999B2 (en) 2009-01-29 2009-01-29 Microwave plasma processing apparatus and microwave power supply method for microwave plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018021A JP5189999B2 (en) 2009-01-29 2009-01-29 Microwave plasma processing apparatus and microwave power supply method for microwave plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2010177420A true JP2010177420A (en) 2010-08-12
JP5189999B2 JP5189999B2 (en) 2013-04-24

Family

ID=42708073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018021A Expired - Fee Related JP5189999B2 (en) 2009-01-29 2009-01-29 Microwave plasma processing apparatus and microwave power supply method for microwave plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP5189999B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130025147A (en) 2011-09-01 2013-03-11 세메스 주식회사 Apparatus for treating substrate
KR20130040027A (en) 2011-10-13 2013-04-23 세메스 주식회사 Apparatus for treating substrate
WO2013111474A1 (en) * 2012-01-27 2013-08-01 東京エレクトロン株式会社 Microwave emission mechanism, microwave plasma source and surface wave plasma processing device
WO2013137187A1 (en) * 2012-03-14 2013-09-19 東京エレクトロン株式会社 Method for producing membrane electrode assembly
KR101513579B1 (en) 2011-08-11 2015-04-20 세메스 주식회사 Apparatus for treating a substrate
JP2015201364A (en) * 2014-04-09 2015-11-12 株式会社Ihi microwave plasma generating device
JP2018078010A (en) * 2016-11-09 2018-05-17 東京エレクトロン株式会社 Microwave plasma source and microwave plasma processing device
CN109302791A (en) * 2018-10-26 2019-02-01 中国科学院合肥物质科学研究院 Microwave antenna, which regulates and controls magnetic, enhances linear plasma source generation system
CN109698107A (en) * 2017-10-24 2019-04-30 北京北方华创微电子装备有限公司 Surface wave plasma equipment
JP2021068694A (en) * 2019-10-23 2021-04-30 株式会社イー・エム・ディー Plasma source

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229000A (en) * 1997-02-14 1998-08-25 Nissin Electric Co Ltd Plasma generator and ion source using it
JP2000077335A (en) * 1998-08-27 2000-03-14 Furontekku:Kk Plasma treating device
JP2002289398A (en) * 2001-01-18 2002-10-04 Tokyo Electron Ltd Plasma apparatus and plasma forming method
JP2002355550A (en) * 2001-03-28 2002-12-10 Tadahiro Omi Plasma treatment apparatus, plasma treatment method and slow-wave plate
JP2003188152A (en) * 2001-12-19 2003-07-04 Tokyo Electron Ltd Plasma processing system and plasma generating method
JP2006203247A (en) * 2001-03-28 2006-08-03 Tadahiro Omi Plasma processing device
WO2007148690A1 (en) * 2006-06-19 2007-12-27 Tokyo Electron Limited Microwave introducing apparatus and plasma processing apparatus
JP2008124424A (en) * 2006-10-16 2008-05-29 Tokyo Electron Ltd Plasma filming apparatus, and method for plasma filming
WO2008153053A1 (en) * 2007-06-11 2008-12-18 Tokyo Electron Limited Plasma processing apparatus, power supply apparatus and method for using plasma processing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229000A (en) * 1997-02-14 1998-08-25 Nissin Electric Co Ltd Plasma generator and ion source using it
JP2000077335A (en) * 1998-08-27 2000-03-14 Furontekku:Kk Plasma treating device
JP2002289398A (en) * 2001-01-18 2002-10-04 Tokyo Electron Ltd Plasma apparatus and plasma forming method
JP2002355550A (en) * 2001-03-28 2002-12-10 Tadahiro Omi Plasma treatment apparatus, plasma treatment method and slow-wave plate
JP2006203247A (en) * 2001-03-28 2006-08-03 Tadahiro Omi Plasma processing device
JP2003188152A (en) * 2001-12-19 2003-07-04 Tokyo Electron Ltd Plasma processing system and plasma generating method
WO2007148690A1 (en) * 2006-06-19 2007-12-27 Tokyo Electron Limited Microwave introducing apparatus and plasma processing apparatus
JP2008124424A (en) * 2006-10-16 2008-05-29 Tokyo Electron Ltd Plasma filming apparatus, and method for plasma filming
WO2008153053A1 (en) * 2007-06-11 2008-12-18 Tokyo Electron Limited Plasma processing apparatus, power supply apparatus and method for using plasma processing apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513579B1 (en) 2011-08-11 2015-04-20 세메스 주식회사 Apparatus for treating a substrate
KR20130025147A (en) 2011-09-01 2013-03-11 세메스 주식회사 Apparatus for treating substrate
KR20130040027A (en) 2011-10-13 2013-04-23 세메스 주식회사 Apparatus for treating substrate
TWI584340B (en) * 2012-01-27 2017-05-21 Tokyo Electron Ltd Microwave radiation mechanism, microwave plasma source and surface wave plasma processing device
WO2013111474A1 (en) * 2012-01-27 2013-08-01 東京エレクトロン株式会社 Microwave emission mechanism, microwave plasma source and surface wave plasma processing device
JP2013175430A (en) * 2012-01-27 2013-09-05 Tokyo Electron Ltd Microwave emission mechanism, microwave plasma source, and surface wave plasma processing device
KR20140117630A (en) * 2012-01-27 2014-10-07 도쿄엘렉트론가부시키가이샤 Microwave emission mechanism, microwave plasma source and surface wave plasma processing device
KR101711713B1 (en) 2012-01-27 2017-03-02 도쿄엘렉트론가부시키가이샤 Microwave emission mechanism, microwave plasma source and surface wave plasma processing device
WO2013137187A1 (en) * 2012-03-14 2013-09-19 東京エレクトロン株式会社 Method for producing membrane electrode assembly
JP2013191441A (en) * 2012-03-14 2013-09-26 Tokyo Electron Ltd Method of manufacturing membrane electrode assembly
JP2015201364A (en) * 2014-04-09 2015-11-12 株式会社Ihi microwave plasma generating device
JP2018078010A (en) * 2016-11-09 2018-05-17 東京エレクトロン株式会社 Microwave plasma source and microwave plasma processing device
CN109698107A (en) * 2017-10-24 2019-04-30 北京北方华创微电子装备有限公司 Surface wave plasma equipment
CN109698107B (en) * 2017-10-24 2021-04-09 北京北方华创微电子装备有限公司 Surface wave plasma device
CN109302791A (en) * 2018-10-26 2019-02-01 中国科学院合肥物质科学研究院 Microwave antenna, which regulates and controls magnetic, enhances linear plasma source generation system
CN109302791B (en) * 2018-10-26 2023-08-22 中国科学院合肥物质科学研究院 Microwave antenna regulation and control magnetic enhancement linear plasma source generation system
JP2021068694A (en) * 2019-10-23 2021-04-30 株式会社イー・エム・ディー Plasma source
JP7426709B2 (en) 2019-10-23 2024-02-02 株式会社イー・エム・ディー plasma source

Also Published As

Publication number Publication date
JP5189999B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5189999B2 (en) Microwave plasma processing apparatus and microwave power supply method for microwave plasma processing apparatus
KR101317018B1 (en) Plasma treatment apparatus
JP4694596B2 (en) Microwave plasma processing apparatus and microwave power feeding method
KR100920280B1 (en) Processing apparatus
US8419960B2 (en) Plasma processing apparatus and method
KR100927913B1 (en) Substrate Mounting Mechanism and Substrate Processing Equipment
KR101258005B1 (en) Plasma processing apparatus
KR100960424B1 (en) Microwave plasma processing device
KR101393890B1 (en) Plasma processing apparatus and microwave introduction device
KR100794806B1 (en) Plasma processing apparatus and method, and slot antenna
US20110150719A1 (en) Microwave introduction mechanism, microwave plasma source and microwave plasma processing apparatus
US10546725B2 (en) Plasma processing apparatus
JP2017004641A (en) Microwave plasma source and plasma processing apparatus
KR101256850B1 (en) Microwave plasma processing apparatus
WO2018101065A1 (en) Plasma treatment device
KR20090127219A (en) Microwave plasma processing apparatus
KR20120028331A (en) Plasma processing device and cooling device for plasma processing devices
JP5297885B2 (en) Microwave plasma processing equipment
WO2010086950A1 (en) Microwave plasma processing apparatus, dielectric board provided with slot board for microwave plasma processing apparatus, and method for manufacturing dielectric board
WO2007148690A1 (en) Microwave introducing apparatus and plasma processing apparatus
US10832892B2 (en) Antenna, plasma processing device and plasma processing method
JP2003168681A (en) Microwave plasma treatment device and treatment method
JP2007059782A (en) Spacer member and plasma processing device
JP5143662B2 (en) Plasma processing equipment
WO2013145916A1 (en) Microwave irradiating antenna, microwave plasma source, and plasma processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees