WO2013137187A1 - Method for producing membrane electrode assembly - Google Patents

Method for producing membrane electrode assembly Download PDF

Info

Publication number
WO2013137187A1
WO2013137187A1 PCT/JP2013/056620 JP2013056620W WO2013137187A1 WO 2013137187 A1 WO2013137187 A1 WO 2013137187A1 JP 2013056620 W JP2013056620 W JP 2013056620W WO 2013137187 A1 WO2013137187 A1 WO 2013137187A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas
membrane electrode
electrode assembly
film
Prior art date
Application number
PCT/JP2013/056620
Other languages
French (fr)
Japanese (ja)
Inventor
松岡 孝明
川村 剛平
河南 博
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2013137187A1 publication Critical patent/WO2013137187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Various aspects and embodiments of the present invention relate to a method of manufacturing a membrane electrode assembly.
  • Patent Document 1 describes a method for producing a kind of electrolyte layer used in a solid fuel battery cell.
  • the manufacturing method described in Patent Document 1 is a method of forming an electrolyte layer by performing film deposition by CVD using an organometallic material containing metal while performing plasma spraying using a thermal spraying powder containing metal. is there. Plasma spraying is performed using microwaves. Film formation by CVD is performed in an atmosphere of about 500 Torr to atmospheric pressure.
  • the power generation performance of the solid fuel battery cell is not limited to the above-described ion conduction characteristics of the electrolyte layer itself, but also a membrane electrode assembly (MEA: Membrane Electrode) in which the electrolyte layer is sandwiched between an air electrode (anode layer) and a fuel electrode (cathode layer). Assembly) depends on the catalytic reactivity. For example, the bonding state at the interface between the electrolyte layer and the electrode affects the catalytic reactivity of the membrane electrode assembly, that is, the power generation performance of the solid fuel cell. For this reason, in this technical field, it is desired to improve the catalytic reactivity of the membrane electrode assembly.
  • MEA Membrane Electrode
  • the method for producing a membrane electrode assembly is a method of forming a membrane electrode assembly in a vacuum evacuated processing container.
  • This manufacturing method includes a film forming step of forming a membrane electrode assembly in a consistent vacuum without being exposed to the atmosphere.
  • the membrane electrode assembly is formed by forming a cathode layer, an electrolyte layer and an anode layer, or an anode layer, an electrolyte layer and a cathode layer in this order on a substrate.
  • the electrolyte layer, the cathode layer, and the anode layer are formed.
  • the interface can be protected from oxidation or contamination associated with atmospheric exposure. For this reason, it becomes possible to reduce the resistance loss of the whole membrane electrode assembly.
  • the film quality can be easily controlled and the film thickness can be reduced. Therefore, the catalytic reactivity of the membrane electrode assembly can be improved.
  • At least one layer selected from a cathode layer, an electrolyte layer, and an anode layer may be formed by plasma CVD.
  • plasma CVD plasma CVD
  • a film forming apparatus including a processing container, a mounting table, a microwave generator, an antenna, a dielectric window, and a material gas supply unit may be used in the film forming process.
  • the processing container defines a processing space.
  • the mounting table mounts a substrate.
  • the antenna radiates the microwave generated by the microwave generator.
  • the dielectric window is provided between the processing space and the antenna.
  • the material gas supply unit supplies a material gas for forming at least one layer selected from a cathode layer, an electrolyte layer, and an anode layer.
  • the substrate is placed on a mounting table, a plasma excitation gas is supplied from the gas supply unit, a microwave is emitted from the antenna to excite the plasma, and a material gas is supplied from the material gas supply unit. Then, the material gas may be reacted with plasma to generate at least one layer selected from the cathode layer, the electrolyte layer, and the anode layer.
  • the material gas may be reacted with plasma to generate at least one layer selected from the cathode layer, the electrolyte layer, and the anode layer.
  • the material gas for forming the electrolyte layer may be a gas containing CF x and a gas containing SO x as a doping material.
  • the film forming apparatus may further include a high frequency power source that applies high frequency power for bias to the mounting table, and a dope gas supply unit that supplies a dope gas containing SO x. .
  • a high frequency power source that applies high frequency power for bias to the mounting table
  • a dope gas supply unit that supplies a dope gas containing SO x.
  • the film forming step after any one of the cathode layer, the electrolyte layer, and the anode layer is laminated, high frequency power is applied to the mounting table by a high frequency power source, and a gas for plasma excitation is supplied from the gas supply unit. Doping may be performed on the layer located on the most surface by exciting the plasma by radiating microwaves from the antenna, supplying the dope gas from the dope gas supply unit, and drawing the element in the dope gas to the mounting table by high frequency power .
  • the electrolyte layer in the film forming step, may be doped with SO 3 — or SO 2 — .
  • the electrolyte layer may be doped with SO 3 — or SO 2 — .
  • the material gas for forming the anode layer or the cathode layer may be a gas containing C x H y .
  • a raw material in which carbon nanotubes are dispersed in a solution may be used as a material gas for forming the anode layer or the cathode layer.
  • the anode layer or the cathode layer may be formed by depositing an organic raw material or an inorganic raw material containing Pt or Pt on the amorphous carbon film by a CVD method. With such a configuration, the low-resistance interface and the ultrathin film electrode assembly hydrogen ions can be formed by the high-density and low-electron temperature plasma excited using microwaves.
  • the anode layer or the cathode layer may be formed by forming an organic raw material or an inorganic raw material containing Pt or Pt on the amorphous carbon film by the PVD method.
  • a method for producing a membrane electrode assembly capable of improving the catalytic reactivity of the membrane electrode assembly is provided.
  • FIG. 2 is a cross-sectional view taken along line II-II of the fuel battery cell shown in FIG. It is a whole schematic diagram of a processing system for manufacturing a membrane electrode assembly. It is an example of the CVD apparatus contained in the processing system of FIG. It is a flowchart which shows the flow of the manufacturing method which concerns on one Embodiment.
  • FIG. 1 is a perspective view of a fuel cell 1 including a membrane electrode assembly manufactured by a manufacturing method according to an embodiment.
  • FIG. 2 is a sectional view taken along line II-II of the fuel cell 1 shown in FIG.
  • the fuel cell 1 generates power by propagating hydrogen ions (protons).
  • the fuel cell shown in FIGS. 1 and 2 is employed, for example, as a polymer electrolyte fuel cell, and includes a lower separator 2, a lower electrode layer 3a, a lower catalyst layer 3b, an electrolyte layer 4, an upper catalyst layer 5b, An upper electrode layer 5a and an upper separator 6 are provided.
  • the lower separator 2 has a substantially plate shape and includes a first main surface and a second main surface facing the first main surface. Grooves serving as fluid flow paths are formed in the first main surface and the second main surface. The groove formed on the first main surface is formed to extend in a direction orthogonal to the direction in which the groove formed on the second main surface extends. As shown in FIGS. 1 and 2, the lower separator 2 is arranged so that a groove 2 a for circulating oxygen (air) is positioned on the upper surface side thereof. The groove 2b functions as a flow path for flowing hydrogen (fuel gas) supplied to the other fuel cells when the other fuel cells are connected to the lower side of the fuel cell 1 via the separator 2. .
  • the lower electrode layer 3 a is formed on the lower separator 2.
  • the lower electrode layer 3a is an electrode member having electrical conductivity, and is formed as amorphous or porous.
  • the lower electrode layer 3a also functions as a catalyst carrier contained in the lower catalyst layer 3b.
  • amorphous carbon is used as the lower electrode layer 3a.
  • the lower electrode layer 3a has a thickness of about 100 nm, for example.
  • the lower catalyst layer 3b is formed on the lower electrode layer 3a and is formed in the same manner as the lower electrode layer 3a.
  • the lower electrode layer 3a and the lower catalyst layer 3b may be configured as the cathode layer 3.
  • the electrolyte layer 4 is formed on the cathode layer 3.
  • the electrolyte layer 4 is a so-called ion exchange membrane, and here has a function of conducting hydrogen ions from the anode layer 5 side described later to the cathode layer 3 side.
  • the upper catalyst layer 5b, the upper electrode layer 5a, and the upper separator 6 are configured in the same manner as the lower catalyst layer 3b, the lower electrode layer 3a, and the lower separator 2. That is, the upper catalyst layer 5b contains a catalyst metal that ionizes the fuel gas.
  • the anode layer 5 includes an upper catalyst layer 5b.
  • the anode layer 5 may further include an upper electrode layer 5a.
  • the flow path 6b of the upper separator 6 circulates hydrogen gas.
  • a membrane electrode assembly 7 is configured to include the cathode layer 3, the electrolyte layer 4, and the anode layer 5 described above. As will be described later, the membrane electrode assembly 7 is formed in a consistent vacuum without being exposed to the atmosphere. In addition, you may comprise the fuel cell 1 connected in multiple numbers. In this case, the lower separator 2 also serves as the upper separator 6.
  • Hydrogen gas and air are supplied to the fuel cell 1 having the above configuration.
  • Hydrogen supplied to the flow path 6 b is ionized in the anode layer 5, conducts through the electrolyte layer 4, and reaches the cathode layer 3. At this time, electrons are taken out from the anode layer 5 and generated.
  • oxygen in the air supplied to the flow path 2 a chemically reacts with hydrogen ions conducted through the electrolyte layer 4 in the cathode layer 3 to generate water.
  • FIG. 3 shows a film forming system for manufacturing the fuel battery cell 1.
  • the processing system 107 includes a carry-in / out section 108, a load lock chamber 109, a transfer chamber 100, and processing apparatuses 101 to.
  • the substrate is carried into and out of the transfer chamber 100 from the carry-in / out unit 108 via the two load lock chambers 109, and the substrate is carried into and out of each processing apparatus 101 to 106 by the transfer chamber 100. It is like that.
  • the number and arrangement of processing devices provided in the processing system are arbitrary.
  • the processing apparatuses 101 to 106 are configured as film forming apparatuses, for example.
  • the processing apparatuses 101 to 106 may include not only a film forming apparatus but also a doping apparatus or an etching apparatus.
  • the processing apparatuses 101 to 106 may include a chamber for forming an anode layer, a chamber for forming an electrolyte layer, a chamber for forming a cathode layer, a pretreatment chamber, and a posttreatment chamber. Both chambers are vacuum vessels connected to a vacuum pump. These chambers are transported in vacuum and are not exposed to the atmosphere.
  • any or all of a gas supply function, a pressure control function, a film formation temperature control function, a substrate adsorption function, and a plasma generation mechanism can be mounted in any chamber.
  • a CVD apparatus is used as the film forming apparatus. That is, at least one layer selected from the cathode layer, the electrolyte layer, and the anode layer may be formed by plasma CVD.
  • any of the chambers can be changed to a film forming apparatus having a sputtering function (a film forming apparatus using a PVD method).
  • FIG. 4 is an example of a CVD apparatus included in the processing system of FIG.
  • RLSA Radial Line Slot Antenna
  • SWP Surface Wave Plasma
  • the CVD apparatus 10 shown in FIG. 1 includes a processing vessel 12, a stage (mounting table) 14, a microwave generator 16, an antenna 18, and a dielectric window 20.
  • the CVD apparatus 10 shown in FIG. 1 includes a processing vessel 12, a stage (mounting table) 14, a microwave generator 16, an antenna 18, and a dielectric window 20.
  • the processing container 12 defines a processing space S for performing plasma processing on the substrate W to be processed.
  • the processing container 12 may include a side wall 12a and a bottom 12b.
  • the side wall 12a has a substantially cylindrical shape extending in the axis X direction (that is, the extending direction of the axis X).
  • the bottom 12b is provided on the lower end side of the side wall 12a.
  • the bottom 12b is provided with an exhaust hole 12h for exhaust.
  • the upper end of the side wall 12a is open.
  • the upper end opening of the side wall 12 a is closed by the dielectric window 20.
  • An O-ring 21 may be interposed between the dielectric window 20 and the upper end portion of the side wall 12a. The O-ring 21 ensures the sealing of the processing container 12 more reliably.
  • the microwave generator 16 generates a microwave of 2.45 GHz, for example.
  • the CVD apparatus 10 further includes a tuner 22, a waveguide 24, a mode converter 26, and a coaxial waveguide 28.
  • the microwave generator 16 is connected to the waveguide 24 via the tuner 22.
  • the waveguide 24 is, for example, a rectangular waveguide.
  • the waveguide 24 is connected to a mode converter 26, and the mode converter 26 is connected to the upper end of the coaxial waveguide 28.
  • the coaxial waveguide 28 extends along the axis X.
  • the coaxial waveguide 28 includes an outer conductor 28a and an inner conductor 28b.
  • the outer conductor 28a has a substantially cylindrical shape extending in the axis X direction.
  • the inner conductor 28b is provided inside the outer conductor 28a.
  • the inner conductor 28b has a substantially cylindrical shape extending along the axis X.
  • the microwave generated by the microwave generator 16 is guided to the mode converter 26 via the tuner 22 and the waveguide 24.
  • the mode converter 26 converts a microwave mode and supplies the microwave after the mode conversion to the coaxial waveguide 28. Microwaves from the coaxial waveguide 28 are supplied to the antenna 18.
  • the antenna 18 radiates a microwave for plasma excitation based on the microwave generated by the microwave generator 16.
  • the antenna 18 may include a slot plate 30, a dielectric plate 32, and a cooling jacket 34.
  • the slot plate 30 has a plurality of slots arranged in the circumferential direction around the axis X.
  • the slot plate 30 can be a slot plate constituting a radial line slot antenna.
  • the slot plate 30 is made of a metal disc having conductivity.
  • a plurality of slot pairs 30 a are formed in the slot plate 30.
  • Each slot pair 30a includes a slot 30b and a slot 30c extending in a direction intersecting or orthogonal to each other.
  • the plurality of slot pairs 30a are arranged at predetermined intervals in the radial direction, and are arranged at predetermined intervals in the circumferential direction.
  • the dielectric plate 32 is provided between the slot plate 30 and the lower surface of the cooling jacket 34.
  • the dielectric plate 32 is made of, for example, quartz and has a substantially disk shape.
  • the surface of the cooling jacket 34 may have conductivity.
  • the cooling jacket 34 cools the dielectric plate 32 and the slot plate 30.
  • a coolant channel is formed in the cooling jacket 34.
  • the lower end of the outer conductor 28 a is electrically connected to the upper surface of the cooling jacket 34.
  • the lower end of the inner conductor 28 b is electrically connected to the slot plate 30 through a hole formed in the cooling jacket 34 and the central portion of the dielectric plate 32.
  • the microwave from the coaxial waveguide 28 is propagated to the dielectric plate 32 and is introduced into the processing space S from the slot of the slot plate 30 through the dielectric window 20.
  • the dielectric window 20 has a substantially disc shape and is made of, for example, quartz.
  • the dielectric window 20 is provided between the processing space S and the antenna 18. In one embodiment, the dielectric window 20 is provided immediately below the antenna 18 in the axis X direction.
  • a conduit 36 passes through the inner hole of the inner conductor 28 b of the coaxial waveguide 28. The conduit 36 extends along the axis X and can be connected to the gas supply system 40.
  • the gas supply system 40 supplies argon gas to the conduit 36.
  • the gas supply system 40 may include a gas source 40a, a valve 40b, and a flow rate controller 40c.
  • the gas source 40a is a gas source of argon gas.
  • the valve 40b switches supply and stop of supply of argon gas from the gas source 40a.
  • the flow rate controller 40c is, for example, a mass flow controller, and adjusts the flow rate of argon gas from the gas source 40a.
  • the CVD apparatus 10 may further include an injector 41.
  • the injector 41 supplies the gas from the conduit 36 to the through hole 20 h formed in the dielectric window 20.
  • the gas supplied to the through hole 20 h of the dielectric window 20 is supplied to the processing space S.
  • the gas supply path constituted by the conduit 36, the injector 41, and the through hole 20h may be referred to as a “central gas introduction unit”.
  • the CVD apparatus 10 may further include a gas supply unit 42.
  • the gas supply unit 42 supplies gas from the periphery of the axis X to the processing space S between the stage 14 and the dielectric window 20.
  • the gas supply unit 42 may be referred to as “peripheral gas introduction unit”.
  • the gas supply unit 42 may include a conduit 42a.
  • the conduit 42 a extends annularly around the axis X between the dielectric window 20 and the stage 14.
  • a plurality of gas supply holes 42b are formed in the conduit 42a.
  • the plurality of gas supply holes 42 b are arranged in an annular shape, open toward the axis X, and supply the gas supplied to the conduit 42 a toward the axis X.
  • the gas supply unit 42 is connected to a gas supply system 45 through a conduit 46.
  • the material gas supply system (material gas supply unit) 44 supplies the material gas to the gas supply unit 42.
  • the material gas supply system 44 may include a gas source 44a, a valve 44b, and a flow controller 44c.
  • the gas source 44a is a gas source of material gas.
  • the valve 44b switches between supply and stop of gas supply from the gas source 44a.
  • the flow rate controller 44c is a mass flow controller, for example, and adjusts the flow rate of the gas from the gas source 44a.
  • CFx gas is used as the material gas.
  • a raw material having a SO x bond in a part of CF x may be used. That is, the material gas may be a gas containing CF x and a gas containing SO x as a doping material.
  • a raw material in which carbon nanotubes are dispersed in a solution may be used as a material gas.
  • the dope gas supply system (dope gas supply unit) 45 supplies the dope gas to the gas supply unit 42.
  • the dope gas supply system 45 may include a gas source 45a, a valve 45b, and a flow rate controller 45c.
  • the gas source 45a is a gas source of dope gas.
  • the valve 45b switches supply and stop of supply of the dope gas from the gas source 45a.
  • the flow rate controller 45c is, for example, a mass flow controller, and adjusts the flow rate of the dope gas from the gas source 45a.
  • a gas containing SO x is used as a doping gas for the electrolyte layer.
  • H 2 SO 4 or the like may be used as a dope gas for the electrolyte layer.
  • the stage 14 is provided so as to face the dielectric window 20 in the axis X direction.
  • the stage 14 is provided so as to sandwich the processing space S between the dielectric window 20 and the stage 14.
  • a substrate to be processed is placed on the stage 14.
  • the stage 14 may include a table 14a, a focus ring 14b, and an electrostatic chuck 14c.
  • the base 14 a is supported by a cylindrical support portion 48.
  • the cylindrical support portion 48 is made of an insulating material and extends vertically upward from the bottom portion 12b.
  • a conductive cylindrical support 50 is provided on the outer periphery of the cylindrical support 48.
  • the cylindrical support portion 50 extends vertically upward from the bottom portion 12 b of the processing container 12 along the outer periphery of the cylindrical support portion 48.
  • An annular exhaust passage 51 is formed between the cylindrical support portion 50 and the side wall 12a.
  • An annular baffle plate 52 provided with a plurality of through holes is attached to the upper part of the exhaust passage 51.
  • An exhaust device 56 is connected to the lower portion of the exhaust hole 12 h via an exhaust pipe 54.
  • the exhaust device 56 has a vacuum pump such as a turbo molecular pump. The exhaust device 56 can depressurize the processing space S in the processing container 12 to a desired degree of vacuum.
  • the stand 14a also serves as a high-frequency electrode.
  • a high frequency power source 58 for RF bias is electrically connected to the base 14 a via a matching unit 60 and a power feeding rod 62.
  • the high frequency power supply 58 outputs a predetermined frequency suitable for controlling the energy of ions drawn into the substrate W to be processed, for example, high frequency power of 13.65 MHz at a predetermined power.
  • the matching unit 60 accommodates a matching unit for matching between the impedance on the high-frequency power source 58 side and the impedance on the load side such as electrodes, plasma, and the processing container 12.
  • This matching unit includes a blocking capacitor for generating a self-bias.
  • An electrostatic chuck 14c is provided on the upper surface of the table 14a.
  • the electrostatic chuck 14c holds the substrate to be processed W with an electrostatic attraction force.
  • a focus ring 14b that surrounds the periphery of the substrate W to be processed is provided on the outer side in the radial direction of the electrostatic chuck 14c.
  • the electrostatic chuck 14c includes an electrode 14d, an insulating film 14e, and an insulating film 14f.
  • the electrode 14d is made of a conductive film, and is provided between the insulating film 14e and the insulating film 14f.
  • a high-voltage DC power supply 64 is electrically connected to the electrode 14 d via a switch 66 and a covered wire 68.
  • the electrostatic chuck 14c can attract and hold the substrate W to be processed by the Coulomb force generated by the DC voltage applied from the DC power source 64.
  • An annular refrigerant chamber 14g extending in the circumferential direction is provided inside the table 14a.
  • a refrigerant having a predetermined temperature for example, cooling water
  • a chiller unit (not shown)
  • the heat transfer gas of the electrostatic chuck 14 c for example, He gas
  • the gas supply pipe 74 is supplied between the upper surface of the electrostatic chuck 14 c and the rear surface of the substrate W to be processed via the gas supply pipe 74.
  • gas is supplied along the axis X into the processing space S from the through hole 20h of the dielectric window 20 through the conduit 36 and the through hole 41h of the injector 41. Further, gas is supplied from the gas supply unit 42 toward the axis X below the through hole 20h. Further, microwaves are introduced from the antenna 18 through the dielectric window 20 into the processing space S and / or the through hole 20 h. Thereby, plasma is generated in the processing space S and / or the through hole 20h. Thus, according to the CVD apparatus 10, it is possible to generate plasma without applying a magnetic field.
  • an anode layer (anode electrode) is formed in a chamber for forming an anode layer.
  • a highly conductive amorphous carbon film is formed by plasma CVD, and then an organic solvent (organic raw material) or inorganic solvent (inorganic raw material) containing vaporized Pt is attached to the amorphous carbon film.
  • the amorphous carbon of the electrode is formed by selecting a raw material of C x H y (CH 4 , C 2 H 4 , C 2 H 2 , C 3 H 6 , C 3 H 8 or C 4 H 6 ), for example. May be.
  • the organic solvent for example, (CH 3 ) 3 (CH 3 C 5 H 4 ) Pt, Pt (CF 3 COCHCOCF 3 ) 2 or the like is used.
  • Pt contained in the organic solvent may be formed by a plasma CVD method.
  • unnecessary organic substances may be reduced and removed by, for example, irradiation with H 2 plasma.
  • Pt may be formed in a sputtering chamber different from this without using the CVD method. Unlike conventional wet methods, these processes make full use of control parameters such as pressure, flow rate, and time to control the desired film thickness, composition, and structure in the depth direction of the film. Can do.
  • a film containing CF x and SO x as an ionomer in the electrode is formed and supported on the anode electrode carbon film by a CVD method.
  • the ionomer film formation may be performed simultaneously with the carbon electrode film formation, or the carbon electrode film formation and the ionomer film formation may be performed alternately.
  • the amorphous fluorocarbon of the electrolyte layer is CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 , C 4 F 8 , C 5 F 8 , C 5 F 10 or
  • the film may be formed using a gas containing C and F, such as C 6 F 6 .
  • a raw material such as SO 2 or H 2 SO 4 that functions as a sulfone group (SO 3 ⁇ ) is bonded to the terminal portion of the previously formed amorphous fluorocarbon film by plasma CVD.
  • the cathode layer is transferred from the chamber for forming the electrolyte layer to the chamber for forming the cathode layer.
  • this chamber almost the reverse process of the chamber for forming the anode layer is performed.
  • an organic solvent containing vaporized Pt is deposited on the amorphous fluorocarbon film previously formed.
  • the organic solvent those similar to those used when forming the above-described anode layer are employed.
  • Pt contained in the organic solvent may be formed by plasma CVD, or may be transferred to another chamber and formed by sputtering. Further, in order to remove organic substances contained in the organic solvent, for example, H 2 plasma is irradiated to reduce and remove unnecessary organic substances.
  • an amorphous carbon film having high conductivity is formed by plasma CVD. Similar to the anode electrode, a film containing CF x and SO x as an ionomer is formed and supported on the cathode electrode carbon film by a CVD method in the cathode electrode.
  • the ionomer film formation may be performed simultaneously with the carbon electrode film formation, or the carbon electrode film formation and the ionomer film formation may be performed alternately.
  • the interface between the anode layer and the cathode layer is covered with an amorphous fluorocarbon film containing a sulfone group so as to cover the Pt surface.
  • the amorphous fluorocarbon film containing a sulfone group plays the role of an ionomer, and can promote the permeation of hydrogen and oxygen and promote the catalytic reaction on the Pt surface.
  • the film can be formed in a vacuum consistent process that is never exposed to the atmosphere, and a low-resistance interface and an ultra-thin membrane electrode assembly, which has not been obtained by conventional methods, are configured.
  • FIG. 5 is a flowchart showing a manufacturing method according to an embodiment.
  • a substrate is carried in. That is, the substrate is loaded into the processing apparatus 101 via the loading / unloading unit 108, the load lock chamber 109, and the transfer chamber 100 (S10).
  • the substrate is the lower separator 2, and here, grooves 2a and 2b are formed in advance.
  • the lower electrode layer 3a is formed on the lower separator 2 (S12).
  • an amorphous carbon film is formed on the lower separator 2 by plasma processing in an Ar atmosphere in the processing apparatus 101.
  • the film is formed with a microwave power of 2000 W as a power source, a flow rate of C 4 H 6 gas of 200 sccm, a pressure of a processing space of 50 mTorr (65 Pa), and a processing time of 20 seconds.
  • the lower catalyst layer 3b is formed on the lower electrode layer 3a (S14).
  • an organic or inorganic material containing Pt is continuously formed on the amorphous carbon film on the processing apparatus 101.
  • film formation is performed with a microwave power of 200 W, a flow rate of a raw material containing Pt of 5 sccm, a pressure of a processing space of 100 mTorr (130 Pa), and a processing time of 20 seconds.
  • adsorption may be performed simply by flowing a gas without using a microwave.
  • the Pt organic matter is reduced and removed using H 2 plasma.
  • the processing is performed with a microwave power of 200 W, a flow rate of a raw material containing Pt of 5 sccm, a processing space pressure of 100 mTorr (130 Pa), and a processing time of 20 seconds.
  • Pt may be formed by sputtering instead of the above method.
  • the electrolyte layer 4 is formed on the lower catalyst layer 3b (S16).
  • the processing apparatus 103 is the CVD apparatus shown in FIG.
  • the processing body is transferred from the processing apparatus 102 to the processing apparatus 103 via the transfer chamber 100.
  • a CF x film is formed using plasma excited by RLSA in the apparatus 103.
  • a doping gas is introduced to dope the sulfone group.
  • a high frequency power is applied to the stage 14 by the high frequency power source 58, a gas for gas excitation is supplied from the gas supply unit 42, a microwave is emitted from the antenna 18 to excite the plasma, and a dope gas is supplied from the gas supply unit 42.
  • the element located in the most surface is doped by drawing the element in the doping gas into the stage 14 by high frequency power.
  • doping is performed at an output RF power of 300 W from the high-frequency power source 58, an argon gas flow rate of 200 sccm, and an SO 2 gas flow rate of 50 sccm.
  • the electrolyte layer is doped with SO 3 ⁇ or SO 2 ⁇ .
  • the upper catalyst layer 5b is formed on the electrolyte layer 4 (S18).
  • the processing body is transferred from the processing apparatus 103 to the processing apparatus 102 via the transfer chamber 100.
  • an organic material containing Pt is formed in the apparatus 102.
  • the film forming conditions are the same as S14.
  • the upper electrode layer 5a is formed on the upper catalyst layer 5b (S20).
  • the processing body is transferred from the processing apparatus 102 to the processing apparatus 101 via the transfer chamber 100.
  • an amorphous carbon film is formed on the upper catalyst layer 5b by plasma treatment in an Ar atmosphere.
  • the film forming conditions are the same as in S12.
  • this membrane electrode assembly is unloaded (S22). It is unloaded from the processing apparatus 101 via the transfer chamber 100, the load lock chamber 109, and the loading / unloading unit 108.
  • the control process shown in FIG. 5 ends.
  • the electrolyte layer 4 not only the electrolyte layer 4 but also the membrane electrode assembly 7 including the cathode layer 3 and the anode layer 5 is formed in a consistently vacuum without being exposed to the atmosphere in a evacuated processing container. Therefore, the interface between the electrolyte layer 4, the cathode layer 3, and the anode layer 5 can be formed with good consistency. That is, an interface with reduced roughness can be realized. For this reason, the resistance loss of the whole membrane electrode assembly 7 can be reduced. Therefore, the catalytic reactivity of the membrane electrode assembly 7 can be improved.
  • the film thickness control and composition control of the electrolyte layer 4 can be facilitated by forming the electrolyte layer 4 by plasma CVD, it is possible to form the electrolyte layer 4 having a uniform film thickness and composition. It becomes. Further, by using plasma CVD, the electrolyte layer 4 can be formed with a thickness of 1 ⁇ m or less instead of the electrolyte layer of several tens ⁇ m to several hundreds ⁇ m as in the prior art.
  • the fuel cell of a plurality of cycles can be formed in a consistent vacuum.
  • the cathode layer 3, the electrolyte layer 4, and the anode layer 5 are formed in this order on the lower separator 2 that is the substrate.
  • the anode layer 5, the electrolyte layer 4, and the cathode are formed.
  • the layers 3 may be formed in this order.

Abstract

The present invention is a method for forming a membrane electrode assembly (7) within a processing vessel that has been evacuated. The method for production includes a film formation step for forming the membrane electrode assembly (7) consistently in a vacuum without exposure to the atmosphere. The membrane electrode assembly (7) is formed by forming, in the given order, a cathode layer (3) on a lower separator (2) that is a substrate, an electrolyte layer (4) and an anode layer (5) or an anode layer (5), an electrolyte layer (4), and a cathode layer (3). In the method for production, the membrane electrode assembly (7) including the cathode layer (3) and the anode layer (5) and not just the electrolyte layer (4) is formed consistently in a vacuum in a processing vessel that has been evacuated, and so it is possible to protect the interfaces between the electrolyte layer (4), the cathode layer (3) and the anode layer (5) from oxidation or contamination resulting from exposure to the atmosphere.

Description

膜電極接合体の製造方法Manufacturing method of membrane electrode assembly
 本発明の種々の側面及び実施形態は、膜電極接合体の製造方法に関するものである。 Various aspects and embodiments of the present invention relate to a method of manufacturing a membrane electrode assembly.
 特許文献1には、固体燃料電池セルに用いられる一種の電解質層の製造方法が記載されている。特許文献1に記載された製造方法は、金属を含む溶射用粉体を用いてプラズマ溶射を行いつつ、金属を含む有機金属材料を用いてCVDにより成膜することで電解質層を形成する方法である。プラズマ溶射はマイクロ波を用いて行われる。CVDによる成膜は、500Torr~大気圧程度の雰囲気中で行われる。 Patent Document 1 describes a method for producing a kind of electrolyte layer used in a solid fuel battery cell. The manufacturing method described in Patent Document 1 is a method of forming an electrolyte layer by performing film deposition by CVD using an organometallic material containing metal while performing plasma spraying using a thermal spraying powder containing metal. is there. Plasma spraying is performed using microwaves. Film formation by CVD is performed in an atmosphere of about 500 Torr to atmospheric pressure.
特開2007-299686号公報JP 2007-299686 A
 固体燃料電池セルの発電性能は、上述した電解質層自体のイオン伝導特性のみならず、電解質層を空気電極(アノード層)及び燃料電極(カソード層)で挟み込んだ膜電極接合体(MEA:Membrane Electrode Assembly)の触媒反応性に左右される。例えば、電解質層と電極との界面の接合状態が膜電極接合体の触媒反応性すなわち固体燃料電池セルの発電性能へ影響を与える。このため、当技術分野においては、膜電極接合体の触媒反応性を向上させることが望まれている。 The power generation performance of the solid fuel battery cell is not limited to the above-described ion conduction characteristics of the electrolyte layer itself, but also a membrane electrode assembly (MEA: Membrane Electrode) in which the electrolyte layer is sandwiched between an air electrode (anode layer) and a fuel electrode (cathode layer). Assembly) depends on the catalytic reactivity. For example, the bonding state at the interface between the electrolyte layer and the electrode affects the catalytic reactivity of the membrane electrode assembly, that is, the power generation performance of the solid fuel cell. For this reason, in this technical field, it is desired to improve the catalytic reactivity of the membrane electrode assembly.
 本発明の一側面に係る膜電極接合体の製造方法は、真空排気された処理容器内で膜電極接合体を成膜する方法である。この製造方法は、大気に晒すことなく真空一貫で膜電極接合体を成膜する成膜工程を含む。膜電極接合体は、基板上にカソード層、電解質層及びアノード層、又は、アノード層、電解質層及びカソード層の順に成膜されて形成される。 The method for producing a membrane electrode assembly according to one aspect of the present invention is a method of forming a membrane electrode assembly in a vacuum evacuated processing container. This manufacturing method includes a film forming step of forming a membrane electrode assembly in a consistent vacuum without being exposed to the atmosphere. The membrane electrode assembly is formed by forming a cathode layer, an electrolyte layer and an anode layer, or an anode layer, an electrolyte layer and a cathode layer in this order on a substrate.
 この製造方法によれば、電解質層のみならず、カソード層及びアノード層を含む膜電極接合体を真空排気された処理容器内で真空一貫で形成するため、電解質層とカソード層及びアノード層との界面を大気暴露に伴う酸化又は汚染から保護することができる。このため、膜電極接合体全体の抵抗損失を低減させることが可能となる。さらに、従来の製造方法である湿式法に比べて、例えば深さ方向への膜質の変更を容易にすることができるため、膜質の制御が容易でかつ薄膜化も可能となる。よって、膜電極接合体の触媒反応性を向上させることができる。 According to this manufacturing method, in order to form not only the electrolyte layer but also the membrane electrode assembly including the cathode layer and the anode layer in a vacuum consistently in the evacuated processing container, the electrolyte layer, the cathode layer, and the anode layer are formed. The interface can be protected from oxidation or contamination associated with atmospheric exposure. For this reason, it becomes possible to reduce the resistance loss of the whole membrane electrode assembly. Furthermore, since it is possible to easily change the film quality in the depth direction, for example, compared to the wet method which is a conventional manufacturing method, the film quality can be easily controlled and the film thickness can be reduced. Therefore, the catalytic reactivity of the membrane electrode assembly can be improved.
 ここで、成膜工程では、カソード層、電解質層及びアノード層から選択される少なくとも一つの層をプラズマCVDにより成膜してもよい。このように製造することで、カソード層、電解質層及びアノード層から選択される少なくとも一つの膜の膜厚制御及び組成制御を容易とすることができるため、例えば高性能な層を形成することができる。 Here, in the film forming step, at least one layer selected from a cathode layer, an electrolyte layer, and an anode layer may be formed by plasma CVD. By manufacturing in this way, film thickness control and composition control of at least one film selected from the cathode layer, the electrolyte layer, and the anode layer can be facilitated. For example, a high-performance layer can be formed. it can.
 一実施形態においては、成膜工程では、処理容器、載置台、マイクロ波発生器、アンテナ、誘電体窓及び材料ガス供給部を備える成膜装置を用いてもよい。処理容器は、処理空間を画成する。載置台は、基板を載置する。アンテナはマイクロ波発生器によって発生されたマイクロ波を放射する。誘電体窓は処理空間とアンテナとの間に設けられている。材料ガス供給部は、カソード層、電解質層及びアノード層から選択される少なくとも一つの層を形成するための材料ガスを供給する。成膜工程では、基板を載置台に載置させ、ガス供給部からプラズマ励起用のガスを供給させ、アンテナからマイクロ波を放射させてプラズマを励起させ、材料ガス供給部から材料ガスを供給させて、材料ガスをプラズマにより反応させてカソード層、電解質層及びアノード層から選択される少なくとも一つの層を生成してもよい。このように製造することで、マイクロ波を用いて励起させた高密度・低電子温度のプラズマにより低ダメージでカソード層、電解質層及びアノード層から選択される少なくとも一つの層を成膜することができるので、膜質を向上させることが可能となる。 In one embodiment, a film forming apparatus including a processing container, a mounting table, a microwave generator, an antenna, a dielectric window, and a material gas supply unit may be used in the film forming process. The processing container defines a processing space. The mounting table mounts a substrate. The antenna radiates the microwave generated by the microwave generator. The dielectric window is provided between the processing space and the antenna. The material gas supply unit supplies a material gas for forming at least one layer selected from a cathode layer, an electrolyte layer, and an anode layer. In the film forming process, the substrate is placed on a mounting table, a plasma excitation gas is supplied from the gas supply unit, a microwave is emitted from the antenna to excite the plasma, and a material gas is supplied from the material gas supply unit. Then, the material gas may be reacted with plasma to generate at least one layer selected from the cathode layer, the electrolyte layer, and the anode layer. By manufacturing in this way, at least one layer selected from a cathode layer, an electrolyte layer, and an anode layer can be formed with low damage by high-density and low electron temperature plasma excited using microwaves. Therefore, the film quality can be improved.
 一実施形態においては、電解質層を形成するための材料ガスは、CFを含むガス及びドープ材としてのSOを含むガスであってもよい。このように構成することで、マイクロ波を用いて励起させた高密度・低電子温度のプラズマにより、低抵抗界面および極薄膜の膜電極接合体を形成することができる。 In one embodiment, the material gas for forming the electrolyte layer may be a gas containing CF x and a gas containing SO x as a doping material. With this configuration, it is possible to form a membrane electrode assembly having a low resistance interface and an ultrathin film by using high-density and low electron temperature plasma excited using microwaves.
 一実施形態においては、成膜工程では、成膜装置として、載置台にバイアス用の高周波電力を印加する高周波電源と、SOを含むドープガスを供給するドープガス供給部と、をさらに備えてもよい。そして、成膜工程では、カソード層、電解質層及びアノード層の何れかの層を積層した後に、高周波電源により載置台に高周波電力を印加するとともに、ガス供給部からプラズマ励起用のガスを供給させ、アンテナからマイクロ波を放射させてプラズマを励起させ、ドープガス供給部からドープガスを供給させ、ドープガス中の元素を高周波電力により載置台へ引き込むことにより最も表面に位置する層にドーピングを行ってもよい。 In one embodiment, in the film forming process, the film forming apparatus may further include a high frequency power source that applies high frequency power for bias to the mounting table, and a dope gas supply unit that supplies a dope gas containing SO x. . In the film forming step, after any one of the cathode layer, the electrolyte layer, and the anode layer is laminated, high frequency power is applied to the mounting table by a high frequency power source, and a gas for plasma excitation is supplied from the gas supply unit. Doping may be performed on the layer located on the most surface by exciting the plasma by radiating microwaves from the antenna, supplying the dope gas from the dope gas supply unit, and drawing the element in the dope gas to the mounting table by high frequency power .
 一実施形態においては、成膜工程では、電解質層にSO 又はSO をドーピングしてもよい。このように製造することで、水素イオンをより良好に伝導させる電解質層を形成することができる。 In one embodiment, in the film forming step, the electrolyte layer may be doped with SO 3 or SO 2 . By manufacturing in this way, an electrolyte layer that conducts hydrogen ions better can be formed.
 一実施形態においては、アノード層又はカソード層を形成するための材料ガスは、Cを含むガスであってもよい。あるいは、一実施形態においては、アノード層又はカソード層を形成するための材料ガスとして、カーボンナノチューブを溶液に分散させた原料を用いてもよい。また、一実施形態においては、アモルファスカーボン膜にPt又はPtを含む有機原料もしくは無機原料をCVD法にて成膜することによってアノード層又はカソード層を形成してもよい。このように構成することで、マイクロ波を用いて励起させた高密度・低電子温度のプラズマにより、低抵抗界面および極薄膜の膜電極接合体水素イオンを形成することができる。 In one embodiment, the material gas for forming the anode layer or the cathode layer may be a gas containing C x H y . Alternatively, in one embodiment, a raw material in which carbon nanotubes are dispersed in a solution may be used as a material gas for forming the anode layer or the cathode layer. In one embodiment, the anode layer or the cathode layer may be formed by depositing an organic raw material or an inorganic raw material containing Pt or Pt on the amorphous carbon film by a CVD method. With such a configuration, the low-resistance interface and the ultrathin film electrode assembly hydrogen ions can be formed by the high-density and low-electron temperature plasma excited using microwaves.
 さらに、一実施形態においては、アモルファスカーボン膜にPt又はPtを含む有機原料もしくは無機原料をPVD法にて成膜することによってアノード層又はカソード層を形成してもよい。 Further, in one embodiment, the anode layer or the cathode layer may be formed by forming an organic raw material or an inorganic raw material containing Pt or Pt on the amorphous carbon film by the PVD method.
 以上説明したように、本発明の種々の側面及び実施形態によれば、膜電極接合体の触媒反応性を向上させることができる膜電極接合体の製造方法が提供される。 As described above, according to various aspects and embodiments of the present invention, a method for producing a membrane electrode assembly capable of improving the catalytic reactivity of the membrane electrode assembly is provided.
一実施形態に係る製造方法で製造される膜電極接合体を含む燃料電池セルの斜視図である。It is a perspective view of the fuel cell containing the membrane electrode assembly manufactured with the manufacturing method concerning one embodiment. 図1に示す燃料電池セルのII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II of the fuel battery cell shown in FIG. 膜電極接合体を製造するための処理システムの全体概要図である。It is a whole schematic diagram of a processing system for manufacturing a membrane electrode assembly. 図3の処理システムに含まれるCVD装置の一例である。It is an example of the CVD apparatus contained in the processing system of FIG. 一実施形態に係る製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method which concerns on one Embodiment.
 以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。 Hereinafter, various embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
(第1実施形態)
 図1は、一実施形態に係る製造方法で製造される膜電極接合体を含む燃料電池セル1の斜視図である。図2は、図1に示す燃料電池セル1のII-II線に沿った断面図である。燃料電池セル1は、水素イオン(プロトン)を伝搬させて発電を行うものである。図1及び図2に示す燃料電池セルは、例えば固体高分子型燃料電池として採用されるものであり、下部セパレータ2、下部電極層3a、下部触媒層3b、電解質層4、上部触媒層5b、上部電極層5a及び上部セパレータ6を備えている。
(First embodiment)
FIG. 1 is a perspective view of a fuel cell 1 including a membrane electrode assembly manufactured by a manufacturing method according to an embodiment. FIG. 2 is a sectional view taken along line II-II of the fuel cell 1 shown in FIG. The fuel cell 1 generates power by propagating hydrogen ions (protons). The fuel cell shown in FIGS. 1 and 2 is employed, for example, as a polymer electrolyte fuel cell, and includes a lower separator 2, a lower electrode layer 3a, a lower catalyst layer 3b, an electrolyte layer 4, an upper catalyst layer 5b, An upper electrode layer 5a and an upper separator 6 are provided.
 下部セパレータ2は、略板状を呈し、第1主面及び第1主面に対向する第2主面を備えている。第1主面及び第2主面には、流体の流路となる溝が形成されている。第1主面に形成された溝は、第2主面に形成された溝が延びる方向と直交する方向に延びるように形成されている。図1,2に示すように、下部セパレータ2は、その上面側に、酸素(空気)を流通させる溝2aが位置するように配置される。なお、溝2bは、燃料電池セル1の下方にセパレータ2を介して他の燃料電池セルを連結させる際に、他の燃料電池に供給される水素(燃料ガス)を流通させる流路として機能する。 The lower separator 2 has a substantially plate shape and includes a first main surface and a second main surface facing the first main surface. Grooves serving as fluid flow paths are formed in the first main surface and the second main surface. The groove formed on the first main surface is formed to extend in a direction orthogonal to the direction in which the groove formed on the second main surface extends. As shown in FIGS. 1 and 2, the lower separator 2 is arranged so that a groove 2 a for circulating oxygen (air) is positioned on the upper surface side thereof. The groove 2b functions as a flow path for flowing hydrogen (fuel gas) supplied to the other fuel cells when the other fuel cells are connected to the lower side of the fuel cell 1 via the separator 2. .
 下部電極層3aは、下部セパレータ2上に形成されている。下部電極層3aは、電気伝導性を有する電極部材であり、アモルファス又は多孔質として形成されている。下部電極層3aは、下部触媒層3bに含まれる触媒の担体としても機能する。下部電極層3aとして、例えばアモルファスカーボンが用いられる。下部電極層3aは、例えば、厚さ約100nmである。 The lower electrode layer 3 a is formed on the lower separator 2. The lower electrode layer 3a is an electrode member having electrical conductivity, and is formed as amorphous or porous. The lower electrode layer 3a also functions as a catalyst carrier contained in the lower catalyst layer 3b. For example, amorphous carbon is used as the lower electrode layer 3a. The lower electrode layer 3a has a thickness of about 100 nm, for example.
 下部触媒層3bは、下部電極層3a上に形成され、下部電極層3aと同様に形成される。なお、下部電極層3a及び下部触媒層3bがカソード層3として構成されてもよい。電解質層4は、カソード層3上に形成されている。電解質層4は、いわゆるイオン交換膜であり、ここでは水素イオンを後述するアノード層5側からカソード層3側へ伝導させる機能を有している。 The lower catalyst layer 3b is formed on the lower electrode layer 3a and is formed in the same manner as the lower electrode layer 3a. The lower electrode layer 3a and the lower catalyst layer 3b may be configured as the cathode layer 3. The electrolyte layer 4 is formed on the cathode layer 3. The electrolyte layer 4 is a so-called ion exchange membrane, and here has a function of conducting hydrogen ions from the anode layer 5 side described later to the cathode layer 3 side.
 上部触媒層5b、上部電極層5a及び上部セパレータ6は、下部触媒層3b、下部電極層3a及び下部セパレータ2と同様に構成される。すなわち、上部触媒層5bは、燃料ガスをイオン化する触媒金属を含む。アノード層5は、上部触媒層5bを含んで構成される。アノード層5はさらに上部電極層5aを含んで構成されてもよい。上部セパレータ6の流路6bは、水素ガスを流通させる。上述したカソード層3、電解質層4及びアノード層5を備えて膜電極接合体7が構成される。膜電極接合体7は、後述の通り、大気に晒すことなく真空一貫で形成される。なお、燃料電池セル1は複数連結して構成してもよい。この場合、下部セパレータ2が上部セパレータ6を兼用する。 The upper catalyst layer 5b, the upper electrode layer 5a, and the upper separator 6 are configured in the same manner as the lower catalyst layer 3b, the lower electrode layer 3a, and the lower separator 2. That is, the upper catalyst layer 5b contains a catalyst metal that ionizes the fuel gas. The anode layer 5 includes an upper catalyst layer 5b. The anode layer 5 may further include an upper electrode layer 5a. The flow path 6b of the upper separator 6 circulates hydrogen gas. A membrane electrode assembly 7 is configured to include the cathode layer 3, the electrolyte layer 4, and the anode layer 5 described above. As will be described later, the membrane electrode assembly 7 is formed in a consistent vacuum without being exposed to the atmosphere. In addition, you may comprise the fuel cell 1 connected in multiple numbers. In this case, the lower separator 2 also serves as the upper separator 6.
 上記構成を有する燃料電池セル1へ水素ガス及び空気が供給される。流路6bに供給された水素は、アノード層5でイオン化され、電解質層4を伝導してカソード層3へ到達する。このとき電子がアノード層5から取り出されて発電される。一方、流路2aに供給された空気中の酸素は、カソード層3において、電解質層4を伝導した水素イオンと化学反応して水が生成される。 Hydrogen gas and air are supplied to the fuel cell 1 having the above configuration. Hydrogen supplied to the flow path 6 b is ionized in the anode layer 5, conducts through the electrolyte layer 4, and reaches the cathode layer 3. At this time, electrons are taken out from the anode layer 5 and generated. On the other hand, oxygen in the air supplied to the flow path 2 a chemically reacts with hydrogen ions conducted through the electrolyte layer 4 in the cathode layer 3 to generate water.
 次に、燃料電池セル1の製造方法について説明する。図3は、燃料電池セル1を製造するための成膜システムである。図3に示すように、処理システム107は、搬入出部108、ロードロック室109、トランスファーチャンバ100、処理装置101~106を備えている。処理システム107では、搬入出部108から、2つのロードロック室109を介して、基板をトランスファーチャンバ100に搬入出させ、トランスファーチャンバ100によって、各処理装置101~106に対して基板を搬入出させるようになっている。処理システムに設ける処理装置の台数、配置は任意である。 Next, a method for manufacturing the fuel battery cell 1 will be described. FIG. 3 shows a film forming system for manufacturing the fuel battery cell 1. As shown in FIG. 3, the processing system 107 includes a carry-in / out section 108, a load lock chamber 109, a transfer chamber 100, and processing apparatuses 101 to. In the processing system 107, the substrate is carried into and out of the transfer chamber 100 from the carry-in / out unit 108 via the two load lock chambers 109, and the substrate is carried into and out of each processing apparatus 101 to 106 by the transfer chamber 100. It is like that. The number and arrangement of processing devices provided in the processing system are arbitrary.
 処理装置101~106は、例えば、成膜装置として構成される。なお、処理装置101~106には、成膜装置だけでなく、ドーピング装置又はエッチング装置が含まれてもよい。そして、処理装置101~106は、アノード層を成膜するチャンバー、電解質層を成膜するチャンバー、カソード層を成膜するチャンバー、前処理チャンバー及び後処理チャンバーで構成されていてもよい。いずれのチャンバーも真空ポンプに接続された真空容器である。これらのチャンバーは真空搬送され、大気に暴露されることはない。また、どのチャンバーにもガス供給機能、圧力制御機能、成膜温度制御機能、基板吸着機能、プラズマ発生機構の何れかあるいは全てを搭載することが可能である。成膜装置は、例えばCVD装置が用いられる。すなわち、カソード層、電解質層及びアノード層から選択されるすくなくとも一つの層はプラズマCVDによって形成されてもよい。なお、場合によっては何れかのチャンバーを、スパッタ機能を持った成膜装置(PVD法による成膜装置)に変更することも可能である。 The processing apparatuses 101 to 106 are configured as film forming apparatuses, for example. Note that the processing apparatuses 101 to 106 may include not only a film forming apparatus but also a doping apparatus or an etching apparatus. The processing apparatuses 101 to 106 may include a chamber for forming an anode layer, a chamber for forming an electrolyte layer, a chamber for forming a cathode layer, a pretreatment chamber, and a posttreatment chamber. Both chambers are vacuum vessels connected to a vacuum pump. These chambers are transported in vacuum and are not exposed to the atmosphere. In addition, any or all of a gas supply function, a pressure control function, a film formation temperature control function, a substrate adsorption function, and a plasma generation mechanism can be mounted in any chamber. For example, a CVD apparatus is used as the film forming apparatus. That is, at least one layer selected from the cathode layer, the electrolyte layer, and the anode layer may be formed by plasma CVD. In some cases, any of the chambers can be changed to a film forming apparatus having a sputtering function (a film forming apparatus using a PVD method).
 以下では、CVD装置の詳細について説明する。図4は、図3の処理システムに含まれるCVD装置の一例である。ここでは、CVD装置としてラジアルラインスロットアンテナ(RLSA:Radial Line Slot Antenna)方式の平面アンテナ部材を用いた場合を一例として説明する。すなわち、表面波プラズマ(SWP:Surface Wave Plasma)を用いる場合である。 Hereinafter, details of the CVD apparatus will be described. FIG. 4 is an example of a CVD apparatus included in the processing system of FIG. Here, a case where a radial line slot antenna (RLSA: Radial Line Slot Antenna) type planar antenna member is used as a CVD apparatus will be described as an example. That is, this is a case where surface wave plasma (SWP: Surface Wave Plasma) is used.
 図4に示すCVD装置10は、処理容器12、ステージ(載置台)14、マイクロ波発生器16、アンテナ18、及び誘電体窓20を備えている。 4 includes a processing vessel 12, a stage (mounting table) 14, a microwave generator 16, an antenna 18, and a dielectric window 20. The CVD apparatus 10 shown in FIG.
 処理容器12は、被処理基体Wにプラズマ処理を行うための処理空間Sを画成している。処理容器12は、側壁12a、及び、底部12bを含み得る。側壁12aは、軸線X方向(即ち、軸線Xの延在方向)に延在する略筒形状を有している。底部12bは、側壁12aの下端側に設けられている。底部12bには、排気用の排気孔12hが設けられている。側壁12aの上端部は開口している。 The processing container 12 defines a processing space S for performing plasma processing on the substrate W to be processed. The processing container 12 may include a side wall 12a and a bottom 12b. The side wall 12a has a substantially cylindrical shape extending in the axis X direction (that is, the extending direction of the axis X). The bottom 12b is provided on the lower end side of the side wall 12a. The bottom 12b is provided with an exhaust hole 12h for exhaust. The upper end of the side wall 12a is open.
 側壁12aの上端部開口は、誘電体窓20によって閉じられている。この誘電体窓20と側壁12aの上端部との間にはOリング21が介在していてもよい。このOリング21により、処理容器12の密閉がより確実なものとなる。 The upper end opening of the side wall 12 a is closed by the dielectric window 20. An O-ring 21 may be interposed between the dielectric window 20 and the upper end portion of the side wall 12a. The O-ring 21 ensures the sealing of the processing container 12 more reliably.
 マイクロ波発生器16は、例えば、2.45GHzのマイクロ波を発生する。一実施形態においては、CVD装置10は、チューナ22、導波管24、モード変換器26、及び同軸導波管28を更に備えている。 The microwave generator 16 generates a microwave of 2.45 GHz, for example. In one embodiment, the CVD apparatus 10 further includes a tuner 22, a waveguide 24, a mode converter 26, and a coaxial waveguide 28.
 マイクロ波発生器16は、チューナ22を介して導波管24に接続されている。導波管24は、例えば、矩形導波管である。導波管24は、モード変換器26に接続されており、当該モード変換器26は、同軸導波管28の上端に接続されている。 The microwave generator 16 is connected to the waveguide 24 via the tuner 22. The waveguide 24 is, for example, a rectangular waveguide. The waveguide 24 is connected to a mode converter 26, and the mode converter 26 is connected to the upper end of the coaxial waveguide 28.
 同軸導波管28は、軸線Xに沿って延びている。この同軸導波管28は、外側導体28a及び内側導体28bを含んでいる。外側導体28aは、軸線X方向に延びる略円筒形状を有している。内側導体28bは、外側導体28aの内部に設けられている。この内側導体28bは、軸線Xに沿って延びる略円筒形状を有している。 The coaxial waveguide 28 extends along the axis X. The coaxial waveguide 28 includes an outer conductor 28a and an inner conductor 28b. The outer conductor 28a has a substantially cylindrical shape extending in the axis X direction. The inner conductor 28b is provided inside the outer conductor 28a. The inner conductor 28b has a substantially cylindrical shape extending along the axis X.
 マイクロ波発生器16によって発生されたマイクロ波は、チューナ22及び導波管24を介してモード変換器26に導波される。モード変換器26は、マイクロ波のモードを変換して、モード変換後のマイクロ波を同軸導波管28に供給する。同軸導波管28からのマイクロ波は、アンテナ18に供給される。 The microwave generated by the microwave generator 16 is guided to the mode converter 26 via the tuner 22 and the waveguide 24. The mode converter 26 converts a microwave mode and supplies the microwave after the mode conversion to the coaxial waveguide 28. Microwaves from the coaxial waveguide 28 are supplied to the antenna 18.
 アンテナ18は、マイクロ波発生器16によって発生されるマイクロ波に基づいて、プラズマ励起用のマイクロ波を放射する。アンテナ18は、スロット板30、誘電体板32、及び冷却ジャケット34を含み得る。 The antenna 18 radiates a microwave for plasma excitation based on the microwave generated by the microwave generator 16. The antenna 18 may include a slot plate 30, a dielectric plate 32, and a cooling jacket 34.
 スロット板30には、軸線Xを中心にして周方向に複数のスロットが配列されている。スロット板30は、ラジアルラインスロットアンテナを構成するスロット板であり得る。スロット板30は、導電性を有する金属製の円板から構成される。スロット板30には、複数のスロット対30aが形成されている。各スロット対30aは、互いに交差又は直交する方向に延びるスロット30bとスロット30cを含んでいる。複数のスロット対30aは、径方向に所定の間隔で配置されており、また、周方向に所定の間隔で配置されている。 The slot plate 30 has a plurality of slots arranged in the circumferential direction around the axis X. The slot plate 30 can be a slot plate constituting a radial line slot antenna. The slot plate 30 is made of a metal disc having conductivity. A plurality of slot pairs 30 a are formed in the slot plate 30. Each slot pair 30a includes a slot 30b and a slot 30c extending in a direction intersecting or orthogonal to each other. The plurality of slot pairs 30a are arranged at predetermined intervals in the radial direction, and are arranged at predetermined intervals in the circumferential direction.
 誘電体板32は、スロット板30と冷却ジャケット34の下側表面の間に設けられている。誘電体板32は、例えば石英製であり、略円板形状を有している。冷却ジャケット34の表面は、導電性を有し得る。冷却ジャケット34は、誘電体板32及びスロット板30を冷却する。そのために、冷却ジャケット34内には、冷媒用の流路が形成されている。この冷却ジャケット34の上部表面には、外側導体28aの下端が電気的に接続されている。また、内側導体28bの下端は、冷却ジャケット34及び誘電体板32の中央部分に形成された孔を通って、スロット板30に電気的に接続されている。 The dielectric plate 32 is provided between the slot plate 30 and the lower surface of the cooling jacket 34. The dielectric plate 32 is made of, for example, quartz and has a substantially disk shape. The surface of the cooling jacket 34 may have conductivity. The cooling jacket 34 cools the dielectric plate 32 and the slot plate 30. For this purpose, a coolant channel is formed in the cooling jacket 34. The lower end of the outer conductor 28 a is electrically connected to the upper surface of the cooling jacket 34. Further, the lower end of the inner conductor 28 b is electrically connected to the slot plate 30 through a hole formed in the cooling jacket 34 and the central portion of the dielectric plate 32.
 同軸導波管28からのマイクロ波は、誘電体板32に伝播され、スロット板30のスロットから誘電体窓20を介して、処理空間S内に導入される。誘電体窓20は、略円板形状を有しており、例えば石英によって構成される。この誘電体窓20は、処理空間Sとアンテナ18との間に設けられており、一実施形態においては、軸線X方向においてアンテナ18の直下に設けられている。同軸導波管28の内側導体28bの内孔には、導管36が通っている。導管36は、軸線Xに沿って延在しており、ガス供給系40に接続され得る。 The microwave from the coaxial waveguide 28 is propagated to the dielectric plate 32 and is introduced into the processing space S from the slot of the slot plate 30 through the dielectric window 20. The dielectric window 20 has a substantially disc shape and is made of, for example, quartz. The dielectric window 20 is provided between the processing space S and the antenna 18. In one embodiment, the dielectric window 20 is provided immediately below the antenna 18 in the axis X direction. A conduit 36 passes through the inner hole of the inner conductor 28 b of the coaxial waveguide 28. The conduit 36 extends along the axis X and can be connected to the gas supply system 40.
 ガス供給系40は、アルゴンガスを導管36に供給する。ガス供給系40は、ガス源40a、弁40b、及び流量制御器40cを含み得る。ガス源40aは、アルゴンガスのガス源である。弁40bは、ガス源40aからのアルゴンガスの供給及び供給停止を切り替える。流量制御器40cは、例えば、マスフローコントローラであり、ガス源40aからのアルゴンガスの流量を調整する。 The gas supply system 40 supplies argon gas to the conduit 36. The gas supply system 40 may include a gas source 40a, a valve 40b, and a flow rate controller 40c. The gas source 40a is a gas source of argon gas. The valve 40b switches supply and stop of supply of argon gas from the gas source 40a. The flow rate controller 40c is, for example, a mass flow controller, and adjusts the flow rate of argon gas from the gas source 40a.
 CVD装置10は、更に、インジェクタ41を更に備え得る。インジェクタ41は、導管36からのガスを誘電体窓20に形成された貫通孔20hに供給する。誘電体窓20の貫通孔20hに供給されたガスは、処理空間Sに供給される。以下の説明では、導管36、インジェクタ41、及び、貫通孔20hによって構成されるガス供給経路を、「中央ガス導入部」ということがある。 The CVD apparatus 10 may further include an injector 41. The injector 41 supplies the gas from the conduit 36 to the through hole 20 h formed in the dielectric window 20. The gas supplied to the through hole 20 h of the dielectric window 20 is supplied to the processing space S. In the following description, the gas supply path constituted by the conduit 36, the injector 41, and the through hole 20h may be referred to as a “central gas introduction unit”.
 CVD装置10は、ガス供給部42を更に備え得る。ガス供給部42は、ステージ14と誘電体窓20との間において、軸線Xの周囲からガスを処理空間Sに供給する。以下の説明では、ガス供給部42のことを、「周辺ガス導入部」ということがある。ガス供給部42は、導管42aを含み得る。導管42aは、誘電体窓20とステージ14との間において軸線Xを中心に環状に延在している。導管42aには、複数のガス供給孔42bが形成されている。複数のガス供給孔42bは、環状に配列されており、軸線Xに向けて開口しており、導管42aに供給されたガスを、軸線Xに向けて供給する。このガス供給部42は、導管46を介して、ガス供給系45に接続されている。 The CVD apparatus 10 may further include a gas supply unit 42. The gas supply unit 42 supplies gas from the periphery of the axis X to the processing space S between the stage 14 and the dielectric window 20. In the following description, the gas supply unit 42 may be referred to as “peripheral gas introduction unit”. The gas supply unit 42 may include a conduit 42a. The conduit 42 a extends annularly around the axis X between the dielectric window 20 and the stage 14. A plurality of gas supply holes 42b are formed in the conduit 42a. The plurality of gas supply holes 42 b are arranged in an annular shape, open toward the axis X, and supply the gas supplied to the conduit 42 a toward the axis X. The gas supply unit 42 is connected to a gas supply system 45 through a conduit 46.
 材料ガス供給系(材料ガス供給部)44は、材料ガスをガス供給部42に供給する。材料ガス供給系44は、ガス源44a、弁44b、及び流量制御器44cを含み得る。ガス源44aは、材料ガスのガス源である。弁44bは、ガス源44aからのガスの供給及び供給停止を切り替える。流量制御器44cは、例えば、マスフローコントローラであり、ガス源44aからのガスの流量を調整する。材料ガスとしては、CFxガスが用いられる。あるいは、CF中の一部にSO結合をもつ原料を用いてもよい。すなわち、材料ガスは、CFを含むガス及びドープ材としてのSOを含むガスであってもよい。あるいは、材料ガスとしてカーボンナノチューブを溶液に分散させた原料を用いてもよい。 The material gas supply system (material gas supply unit) 44 supplies the material gas to the gas supply unit 42. The material gas supply system 44 may include a gas source 44a, a valve 44b, and a flow controller 44c. The gas source 44a is a gas source of material gas. The valve 44b switches between supply and stop of gas supply from the gas source 44a. The flow rate controller 44c is a mass flow controller, for example, and adjusts the flow rate of the gas from the gas source 44a. As the material gas, CFx gas is used. Alternatively, a raw material having a SO x bond in a part of CF x may be used. That is, the material gas may be a gas containing CF x and a gas containing SO x as a doping material. Alternatively, a raw material in which carbon nanotubes are dispersed in a solution may be used as a material gas.
 ドープガス供給系(ドープガス供給部)45は、ドープガスをガス供給部42に供給する。ドープガス供給系45は、ガス源45a、弁45b、及び流量制御器45cを含み得る。ガス源45aは、ドープガスのガス源である。弁45bは、ガス源45aからのドープガスの供給及び供給停止を切り替える。流量制御器45cは、例えば、マスフローコントローラであり、ガス源45aからのドープガスの流量を調整する。例えば、電解質層用のドープガスとして、SOを含むガスが用いられる。あるいは、電解質層用のドープガスとして、HSO等を用いてもよい。 The dope gas supply system (dope gas supply unit) 45 supplies the dope gas to the gas supply unit 42. The dope gas supply system 45 may include a gas source 45a, a valve 45b, and a flow rate controller 45c. The gas source 45a is a gas source of dope gas. The valve 45b switches supply and stop of supply of the dope gas from the gas source 45a. The flow rate controller 45c is, for example, a mass flow controller, and adjusts the flow rate of the dope gas from the gas source 45a. For example, a gas containing SO x is used as a doping gas for the electrolyte layer. Alternatively, H 2 SO 4 or the like may be used as a dope gas for the electrolyte layer.
 ステージ14は、軸線X方向において誘電体窓20と対面するように設けられている。このステージ14は、誘電体窓20と当該ステージ14との間に処理空間Sを挟むように設けられている。ステージ14上には、被処理基体が載置される。一実施形態においては、ステージ14は、台14a、フォーカスリング14b、及び、静電チャック14cを含み得る。 The stage 14 is provided so as to face the dielectric window 20 in the axis X direction. The stage 14 is provided so as to sandwich the processing space S between the dielectric window 20 and the stage 14. A substrate to be processed is placed on the stage 14. In one embodiment, the stage 14 may include a table 14a, a focus ring 14b, and an electrostatic chuck 14c.
 台14aは、筒状支持部48によって支持されている。筒状支持部48は、絶縁性の材料で構成されており、底部12bから垂直上方に延びている。また、筒状支持部48の外周には、導電性の筒状支持部50が設けられている。筒状支持部50は、筒状支持部48の外周に沿って処理容器12の底部12bから垂直上方に延びている。この筒状支持部50と側壁12aとの間には、環状の排気路51が形成されている。 The base 14 a is supported by a cylindrical support portion 48. The cylindrical support portion 48 is made of an insulating material and extends vertically upward from the bottom portion 12b. A conductive cylindrical support 50 is provided on the outer periphery of the cylindrical support 48. The cylindrical support portion 50 extends vertically upward from the bottom portion 12 b of the processing container 12 along the outer periphery of the cylindrical support portion 48. An annular exhaust passage 51 is formed between the cylindrical support portion 50 and the side wall 12a.
 排気路51の上部には、複数の貫通孔が設けられた環状のバッフル板52が取り付けられている。排気孔12hの下部には排気管54を介して排気装置56が接続されている。排気装置56は、ターボ分子ポンプなどの真空ポンプを有している。排気装置56により、処理容器12内の処理空間Sを所望の真空度まで減圧することができる。 An annular baffle plate 52 provided with a plurality of through holes is attached to the upper part of the exhaust passage 51. An exhaust device 56 is connected to the lower portion of the exhaust hole 12 h via an exhaust pipe 54. The exhaust device 56 has a vacuum pump such as a turbo molecular pump. The exhaust device 56 can depressurize the processing space S in the processing container 12 to a desired degree of vacuum.
 台14aは、高周波電極を兼ねている。台14aには、マッチングユニット60及び給電棒62を介して、RFバイアス用の高周波電源58が電気的に接続されている。高周波電源58は、被処理基体Wに引き込むイオンのエネルギーを制御するのに適した一定の周波数、例えば、13.65MHzの高周波電力を所定のパワーで出力する。マッチングユニット60は、高周波電源58側のインピーダンスと、主に電極、プラズマ、処理容器12といった負荷側のインピーダンスとの間で整合をとるための整合器を収容している。この整合器の中に自己バイアス生成用のブロッキングコンデンサが含まれている。 The stand 14a also serves as a high-frequency electrode. A high frequency power source 58 for RF bias is electrically connected to the base 14 a via a matching unit 60 and a power feeding rod 62. The high frequency power supply 58 outputs a predetermined frequency suitable for controlling the energy of ions drawn into the substrate W to be processed, for example, high frequency power of 13.65 MHz at a predetermined power. The matching unit 60 accommodates a matching unit for matching between the impedance on the high-frequency power source 58 side and the impedance on the load side such as electrodes, plasma, and the processing container 12. This matching unit includes a blocking capacitor for generating a self-bias.
 台14aの上面には、静電チャック14cが設けられている。静電チャック14cは、被処理基体Wを静電吸着力で保持する。静電チャック14cの径方向外側には、被処理基体Wの周囲を環状に囲むフォーカスリング14bが設けられている。静電チャック14cは、電極14d、絶縁膜14e、及び、絶縁膜14fを含んでいる。電極14dは、導電膜によって構成されており、絶縁膜14eと絶縁膜14fの間に設けられている。電極14dには、高圧の直流電源64がスイッチ66および被覆線68を介して電気的に接続されている。静電チャック14cは、直流電源64より印加される直流電圧により発生するクーロン力によって、被処理基体Wを吸着保持することができる。 An electrostatic chuck 14c is provided on the upper surface of the table 14a. The electrostatic chuck 14c holds the substrate to be processed W with an electrostatic attraction force. A focus ring 14b that surrounds the periphery of the substrate W to be processed is provided on the outer side in the radial direction of the electrostatic chuck 14c. The electrostatic chuck 14c includes an electrode 14d, an insulating film 14e, and an insulating film 14f. The electrode 14d is made of a conductive film, and is provided between the insulating film 14e and the insulating film 14f. A high-voltage DC power supply 64 is electrically connected to the electrode 14 d via a switch 66 and a covered wire 68. The electrostatic chuck 14c can attract and hold the substrate W to be processed by the Coulomb force generated by the DC voltage applied from the DC power source 64.
 台14aの内部には、周方向に延びる環状の冷媒室14gが設けられている。この冷媒室14gには、チラーユニット(図示せず)より配管70,72を介して所定の温度の冷媒、例えば、冷却水が循環供給される。冷媒の温度によって静電チャック14cの伝熱ガス、例えば、Heガスがガス供給管74を介して静電チャック14cの上面と被処理基体Wの裏面との間に供給される。 An annular refrigerant chamber 14g extending in the circumferential direction is provided inside the table 14a. A refrigerant having a predetermined temperature, for example, cooling water, is circulated and supplied to the refrigerant chamber 14g from a chiller unit (not shown) via pipes 70 and 72. Depending on the temperature of the refrigerant, the heat transfer gas of the electrostatic chuck 14 c, for example, He gas, is supplied between the upper surface of the electrostatic chuck 14 c and the rear surface of the substrate W to be processed via the gas supply pipe 74.
 このように構成されたCVD装置10では、導管36及びインジェクタ41の貫通孔41hを介して、誘電体窓20の貫通孔20hから処理空間S内に軸線Xに沿ってガスが供給される。また、貫通孔20hよりも下方において、ガス供給部42から軸線Xに向けてガスが供給される。さらに、アンテナ18から誘電体窓20を介して処理空間S及び/又は貫通孔20h内にマイクロ波が導入される。これにより、処理空間S及び/又は貫通孔20hにおいてプラズマが発生する。このように、CVD装置10によれば、磁場を加えずに、プラズマを発生させることができる。 In the CVD apparatus 10 configured in this way, gas is supplied along the axis X into the processing space S from the through hole 20h of the dielectric window 20 through the conduit 36 and the through hole 41h of the injector 41. Further, gas is supplied from the gas supply unit 42 toward the axis X below the through hole 20h. Further, microwaves are introduced from the antenna 18 through the dielectric window 20 into the processing space S and / or the through hole 20 h. Thereby, plasma is generated in the processing space S and / or the through hole 20h. Thus, according to the CVD apparatus 10, it is possible to generate plasma without applying a magnetic field.
 以下、上述した処理システム107を用いた製造方法(成膜工程)の一実施形態について説明する。まず、アノード層を成膜するチャンバーにおいて、アノード層(アノード電極)を構成する。例えば、プラズマCVD法によって導電性の高いアモルファスカーボン膜を成膜し、その後、気化したPtを含む有機溶剤(有機原料)又は無機溶剤(無機原料)をアモルファスカーボン膜に付着させる。電極のアモルファスカーボンは、例えば、C(CH、C、C、C、C又はC等)の原料を選択して成膜してもよい。有機溶剤として、例えば、(CH(CH)Pt、Pt(CFCOCHCOCF等が用いられる。このとき、有機溶剤に含まれるPtはプラズマCVD法で成膜してもよい。さらに有機溶剤中に含まれる有機物を取り除くために、例えば、Hプラズマを照射し、不要な有機物を還元除去してもよい。あるいは、CVD法を使わずこれとは別のスパッタチャンバーでPtを成膜してもよい。これらの工程は、従来の湿式法と異なり、圧力や流量、時間などの制御パラメータを駆使し、膜の深さ方向に対して、いかようにも所望の膜厚や組成、構造を制御することができる。特に薄膜化が容易なため、従来大量に消費せざるを得なかった高価なPtの消費量を大幅に削減することができる安価な製造方法となる。なお、電極中におけるイオノマーとして、CF及びSOを含む膜をCVD法によってアノード電極カーボン膜に成膜、担持させる。イオノマーの成膜は、カーボン電極の成膜と同時に行ってもよいし、カーボン電極の成膜とイオノマーの成膜とを交互に行ってもよい。 Hereinafter, an embodiment of a manufacturing method (film formation process) using the above-described processing system 107 will be described. First, an anode layer (anode electrode) is formed in a chamber for forming an anode layer. For example, a highly conductive amorphous carbon film is formed by plasma CVD, and then an organic solvent (organic raw material) or inorganic solvent (inorganic raw material) containing vaporized Pt is attached to the amorphous carbon film. The amorphous carbon of the electrode is formed by selecting a raw material of C x H y (CH 4 , C 2 H 4 , C 2 H 2 , C 3 H 6 , C 3 H 8 or C 4 H 6 ), for example. May be. As the organic solvent, for example, (CH 3 ) 3 (CH 3 C 5 H 4 ) Pt, Pt (CF 3 COCHCOCF 3 ) 2 or the like is used. At this time, Pt contained in the organic solvent may be formed by a plasma CVD method. Furthermore, in order to remove organic substances contained in the organic solvent, unnecessary organic substances may be reduced and removed by, for example, irradiation with H 2 plasma. Alternatively, Pt may be formed in a sputtering chamber different from this without using the CVD method. Unlike conventional wet methods, these processes make full use of control parameters such as pressure, flow rate, and time to control the desired film thickness, composition, and structure in the depth direction of the film. Can do. In particular, since it is easy to make a thin film, it is an inexpensive manufacturing method that can significantly reduce the consumption of expensive Pt, which has been conventionally consumed in large quantities. A film containing CF x and SO x as an ionomer in the electrode is formed and supported on the anode electrode carbon film by a CVD method. The ionomer film formation may be performed simultaneously with the carbon electrode film formation, or the carbon electrode film formation and the ionomer film formation may be performed alternately.
 次にアノード層を成膜するチャンバーから電解質層を成膜するチャンバーへ移送し、電解質層を成膜する。チャンバー間を移送する経路も真空引き可能であるため、移送中であっても大気からの酸化や汚染が起きないことは言うまでもない。その結果、アノードと電解質間の抵抗は酸化等の劣化で増加することがなくなる。このチャンバーでは、例えば、プラズマCVD法にてアモルファスフロロカーボン膜を成膜する。電解質層のアモルファスフロロカーボンは、CF、C、C、C、C、C、C、C、C10又はCといったようなCとFを含むガスを用いて成膜してもよい。次にスルホン基(SO3-)として機能するSOもしくはHSOなどの原料をプラズマCVD法により、先に成膜したアモルファスフロロカーボン膜の終端部分に結合させる。この手法により、従来のNafion(登録商標)やFlemion(登録商標)に代表される高分子化成品と同等もしくはそれ以上の性能を持たせることができる。また、このプラズマCVD法はミクロン以上でしか作れないNafionやFlemionよりも数桁以上薄膜化することができるため、電界質の電気抵抗を大幅に下げることができる。 Next, it transfers from the chamber which forms an anode layer to the chamber which forms an electrolyte layer, and forms an electrolyte layer into a film. It is needless to say that oxidation or contamination from the atmosphere does not occur even during transfer because the path for transferring between chambers can be evacuated. As a result, the resistance between the anode and the electrolyte does not increase due to deterioration such as oxidation. In this chamber, for example, an amorphous fluorocarbon film is formed by plasma CVD. The amorphous fluorocarbon of the electrolyte layer is CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 , C 4 F 8 , C 5 F 8 , C 5 F 10 or The film may be formed using a gas containing C and F, such as C 6 F 6 . Next, a raw material such as SO 2 or H 2 SO 4 that functions as a sulfone group (SO 3− ) is bonded to the terminal portion of the previously formed amorphous fluorocarbon film by plasma CVD. By this method, it is possible to provide performance equal to or higher than that of a polymer compound represented by conventional Nafion (registered trademark) and Flemion (registered trademark). In addition, since this plasma CVD method can be made thinner by several orders of magnitude than Nafion and Flemion, which can be made only with micron or more, the electric resistance of the electric field can be greatly reduced.
 次に電解質層を成膜するチャンバーからカソード層を成膜するチャンバーに移送し、カソードを成膜する。このチャンバーでは、アノード層を成膜するチャンバーとほぼ逆の工程を行う。まず、気化したPtを含む有機溶剤を先に成膜したアモルファスフロロカーボン膜上に付着させる。有機溶剤としては、上述したアノード層を成膜する際に用いられるものと同様のものが採用される。このとき、有機溶剤に含まれるPtはプラズマCVD法で成膜してもよいし、別のチャンバーに移送しスパッタ法で成膜してもよい。さらに有機溶剤に含まれる有機物を取り除くために、例えば、Hプラズマを照射し、不要な有機物を還元除去する。その後、例えば、プラズマCVD法によって導電性の高いアモルファスカーボン膜を成膜する。なお、アノード電極と同様、カソード電極中にはイオノマーとして、CF及びSOを含む膜をCVD法によってカソード電極カーボン膜に成膜、担持させる。イオノマーの成膜は、カーボン電極の成膜と同時に行ってもよいし、カーボン電極の成膜とイオノマーの成膜とを交互に行ってもよい。 Next, the cathode layer is transferred from the chamber for forming the electrolyte layer to the chamber for forming the cathode layer. In this chamber, almost the reverse process of the chamber for forming the anode layer is performed. First, an organic solvent containing vaporized Pt is deposited on the amorphous fluorocarbon film previously formed. As the organic solvent, those similar to those used when forming the above-described anode layer are employed. At this time, Pt contained in the organic solvent may be formed by plasma CVD, or may be transferred to another chamber and formed by sputtering. Further, in order to remove organic substances contained in the organic solvent, for example, H 2 plasma is irradiated to reduce and remove unnecessary organic substances. Thereafter, for example, an amorphous carbon film having high conductivity is formed by plasma CVD. Similar to the anode electrode, a film containing CF x and SO x as an ionomer is formed and supported on the cathode electrode carbon film by a CVD method in the cathode electrode. The ionomer film formation may be performed simultaneously with the carbon electrode film formation, or the carbon electrode film formation and the ionomer film formation may be performed alternately.
 このとき、アノード層およびカソード層の界面はPt表面を覆うようにスルホン基を含むアモルファスフロロカーボン膜が被覆される。これらの界面ではスルホン基を含むアモルファスフロロカーボン膜がイオノマーの役割を果たし、水素や酸素の透過を促し、Pt表面での触媒反応を促進させることができる。 At this time, the interface between the anode layer and the cathode layer is covered with an amorphous fluorocarbon film containing a sulfone group so as to cover the Pt surface. At these interfaces, the amorphous fluorocarbon film containing a sulfone group plays the role of an ionomer, and can promote the permeation of hydrogen and oxygen and promote the catalytic reaction on the Pt surface.
 このようにして一度も大気に暴露されることのない真空一貫の工程で成膜することができ、従来の手法では得られなった低抵抗界面および極薄膜の膜電極接合体が構成される。 In this way, the film can be formed in a vacuum consistent process that is never exposed to the atmosphere, and a low-resistance interface and an ultra-thin membrane electrode assembly, which has not been obtained by conventional methods, are configured.
 以下では、上述した処理システム107を用いた製造方法(成膜工程)の詳細を説明する。図5は、一実施形態に係る製造方法を示す流れ図である。図5に示す製造方法では、まず、基板が搬入される。すなわち、基板が、搬入出部108、ロードロック室109、トランスファーチャンバ100を介して処理装置101へ搬入される(S10)。なお、基板は、下部セパレータ2であり、ここでは予め溝2a及び2bが形成されているものとする。 Hereinafter, details of a manufacturing method (film formation process) using the above-described processing system 107 will be described. FIG. 5 is a flowchart showing a manufacturing method according to an embodiment. In the manufacturing method shown in FIG. 5, first, a substrate is carried in. That is, the substrate is loaded into the processing apparatus 101 via the loading / unloading unit 108, the load lock chamber 109, and the transfer chamber 100 (S10). The substrate is the lower separator 2, and here, grooves 2a and 2b are formed in advance.
 次に、下部セパレータ2上に下部電極層3aを成膜する(S12)。例えば、処理装置101においてAr雰囲気中でプラズマ処理によって下部セパレータ2上にアモルファスカーボン膜を成膜する。例えば、電源のマイクロ波パワー2000W、Cガスの流量200sccm、処理空間の圧力50mTorr(65Pa)、処理時間20秒で成膜する。 Next, the lower electrode layer 3a is formed on the lower separator 2 (S12). For example, an amorphous carbon film is formed on the lower separator 2 by plasma processing in an Ar atmosphere in the processing apparatus 101. For example, the film is formed with a microwave power of 2000 W as a power source, a flow rate of C 4 H 6 gas of 200 sccm, a pressure of a processing space of 50 mTorr (65 Pa), and a processing time of 20 seconds.
 次に、下部電極層3a上に下部触媒層3bを成膜する(S14)。例えば、処理装置101上で、Ptを含む有機もしくは無機材料をアモルファスカーボン膜に引き続き成膜する。例えば、マイクロ波パワー200W、Ptを含む原料の流量5sccm、処理空間の圧力100mTorr(130Pa)、処理時間20秒で成膜する。このとき、マイクロ波を使わず、単にガスを流すだけで吸着させてもよい。Pt材料を吸着させたのち、Hプラズマを用いて、Pt有機物の還元除去を行う。このとき、例えば、マイクロ波パワー200W、Ptを含む原料の流量5sccm、処理空間の圧力100mTorr(130Pa)、処理時間20秒で処理する。また、Ptは上記手法でなくスパッタ法によって成膜してもよい。 Next, the lower catalyst layer 3b is formed on the lower electrode layer 3a (S14). For example, an organic or inorganic material containing Pt is continuously formed on the amorphous carbon film on the processing apparatus 101. For example, film formation is performed with a microwave power of 200 W, a flow rate of a raw material containing Pt of 5 sccm, a pressure of a processing space of 100 mTorr (130 Pa), and a processing time of 20 seconds. At this time, adsorption may be performed simply by flowing a gas without using a microwave. After the Pt material is adsorbed, the Pt organic matter is reduced and removed using H 2 plasma. At this time, for example, the processing is performed with a microwave power of 200 W, a flow rate of a raw material containing Pt of 5 sccm, a processing space pressure of 100 mTorr (130 Pa), and a processing time of 20 seconds. Further, Pt may be formed by sputtering instead of the above method.
 次に、下部触媒層3b上に電解質層4を成膜する(S16)。例えば、処理装置103が図4に示すCVD装置であるとする。この場合、トランスファーチャンバ100を経由して、処理装置102から処理装置103へ処理体が搬送される。当該装置103においてRLSAによって励起されたプラズマを用いて、CF膜が成膜される。例えば、マイクロ波のパワー2000W、マイクロ波の周波数2.45GHz、高周波電源58の出力RFパワー0W、アルゴンガスの流量200sccm、CFxガスの流量200sccm、流量比(中央ガス導入部のガス流量:周辺ガス導入部のガス流量)1:1.5、処理空間Sの圧力60mTorr、処理時間30秒、処理空間Sの温度 上部:100℃、側壁12a内面:80℃、ステージ14の温度 中央:200℃、周縁部:200℃、ステージ14の冷媒温度:80℃で成膜する。なお、CF膜を積層後、ドープガスを導入してスルホン基をドーピングする。高周波電源58によりステージ14に高周波電力を印加するとともに、ガス供給部42からプラズマ励起用のガスを供給させ、アンテナ18からマイクロ波を放射させてプラズマを励起させ、ガス供給部42からドープガスを供給させ、ドープガス中の元素を高周波電力によりステージ14へ引き込むことにより最も表面に位置する層にドーピングを行う。例えば、高周波電源58の出力RFパワー300W、アルゴンガスの流量200sccm、SOガスの流量50sccmでドーピングする。これにより、電解質層にSO3-又はSO2-がドーピングされる。 Next, the electrolyte layer 4 is formed on the lower catalyst layer 3b (S16). For example, it is assumed that the processing apparatus 103 is the CVD apparatus shown in FIG. In this case, the processing body is transferred from the processing apparatus 102 to the processing apparatus 103 via the transfer chamber 100. A CF x film is formed using plasma excited by RLSA in the apparatus 103. For example, a microwave power of 2000 W, a microwave frequency of 2.45 GHz, an output RF power of 0 W of the high-frequency power supply 58, an argon gas flow rate of 200 sccm, a CFx gas flow rate of 200 sccm, a flow rate ratio (a gas flow rate at the central gas inlet: peripheral gas) Gas flow rate of introduction part) 1: 1.5, pressure of processing space S 60 mTorr, processing time 30 seconds, temperature of processing space S Upper: 100 ° C., side wall 12a inner surface: 80 ° C., temperature of stage 14 Center: 200 ° C., Film formation is performed at the peripheral edge: 200 ° C. and the refrigerant temperature of the stage 14: 80 ° C. After laminating the CF x film, a doping gas is introduced to dope the sulfone group. A high frequency power is applied to the stage 14 by the high frequency power source 58, a gas for gas excitation is supplied from the gas supply unit 42, a microwave is emitted from the antenna 18 to excite the plasma, and a dope gas is supplied from the gas supply unit 42. Then, the element located in the most surface is doped by drawing the element in the doping gas into the stage 14 by high frequency power. For example, doping is performed at an output RF power of 300 W from the high-frequency power source 58, an argon gas flow rate of 200 sccm, and an SO 2 gas flow rate of 50 sccm. As a result, the electrolyte layer is doped with SO 3− or SO 2− .
 次に、電解質層4上に上部触媒層5bを成膜する(S18)。例えば、トランスファーチャンバ100を経由して、処理装置103から処理装置102へ処理体が搬送される。当該装置102においてPtを含む有機材料を成膜する。成膜条件はS14と同様である。 Next, the upper catalyst layer 5b is formed on the electrolyte layer 4 (S18). For example, the processing body is transferred from the processing apparatus 103 to the processing apparatus 102 via the transfer chamber 100. In the apparatus 102, an organic material containing Pt is formed. The film forming conditions are the same as S14.
 次に、上部触媒層5b上に上部電極層5aを成膜する(S20)。例えば、トランスファーチャンバ100を経由して、処理装置102から処理装置101へ処理体が搬送される。当該装置101においてAr雰囲気中でプラズマ処理によって上部触媒層5b上にアモルファスカーボン膜を成膜する。成膜条件はS12と同様である。 Next, the upper electrode layer 5a is formed on the upper catalyst layer 5b (S20). For example, the processing body is transferred from the processing apparatus 102 to the processing apparatus 101 via the transfer chamber 100. In the apparatus 101, an amorphous carbon film is formed on the upper catalyst layer 5b by plasma treatment in an Ar atmosphere. The film forming conditions are the same as in S12.
 次に、この膜電極接合体を搬出する(S22)。処理装置101から、トランスファーチャンバ100、ロードロック室109、搬入出部108を介して搬出される。S22の処理が終了すると図5に示す制御処理を終了する。 Next, this membrane electrode assembly is unloaded (S22). It is unloaded from the processing apparatus 101 via the transfer chamber 100, the load lock chamber 109, and the loading / unloading unit 108. When the process of S22 ends, the control process shown in FIG. 5 ends.
 図5に示す製造方法によれば、電解質層4のみならず、カソード層3及びアノード層5を含む膜電極接合体7を真空排気された処理容器内で、大気に晒すことなく真空一貫で形成するため、電解質層4とカソード層3及びアノード層5との界面を整合性よく形成することができる。すなわち、ラフネスを低減させた界面を実現することが可能となる。このため、膜電極接合体7全体の抵抗損失が低減することができる。よって、膜電極接合体7の触媒反応性を向上させることが可能となる。 According to the manufacturing method shown in FIG. 5, not only the electrolyte layer 4 but also the membrane electrode assembly 7 including the cathode layer 3 and the anode layer 5 is formed in a consistently vacuum without being exposed to the atmosphere in a evacuated processing container. Therefore, the interface between the electrolyte layer 4, the cathode layer 3, and the anode layer 5 can be formed with good consistency. That is, an interface with reduced roughness can be realized. For this reason, the resistance loss of the whole membrane electrode assembly 7 can be reduced. Therefore, the catalytic reactivity of the membrane electrode assembly 7 can be improved.
 また、電解質層4をプラズマCVDにより成膜することで、電解質層4の膜厚制御及び組成制御を容易とすることができるので、膜厚及び組成が均一な電解質層4を形成することが可能となる。また、プラズマCVDを用いることで、従来のように数十μm~数百μmの電解質層ではなく、1μm以下の厚さで電解質層4を形成することができる。 Moreover, since the film thickness control and composition control of the electrolyte layer 4 can be facilitated by forming the electrolyte layer 4 by plasma CVD, it is possible to form the electrolyte layer 4 having a uniform film thickness and composition. It becomes. Further, by using plasma CVD, the electrolyte layer 4 can be formed with a thickness of 1 μm or less instead of the electrolyte layer of several tens μm to several hundreds μm as in the prior art.
 以上、種々の実施形態について説明したが、これら実施形態に限定されることなく、種々の変形態様を構成することが可能である。例えば、上述した実施形態では、S10の処理で、予め溝2a及び2bが形成されている下部セパレータ2を搬入する例を説明したが、エッチング装置等で溝2a及び2bを形成してもよい。また、予めアモルファスカーボン膜が形成されている下部セパレータ2及び上部セパレータ6を用いてもよい。この場合、S12及びS20の処理は不要となる。また、上述した実施形態では、1セルの製造方法を説明したが、上部セパレータ6を次の燃料電池セルの下部セパレータ2としてもよい。これにより、複数周期の燃料電池セルを真空一貫で形成することができる。また、上述した実施形態では、基板である下部セパレータ2上に、カソード層3、電解質層4、及びアノード層5の順で形成する例を説明したが、アノード層5、電解質層4、及びカソード層3の順で形成してもよい。 Although various embodiments have been described above, various modifications can be made without being limited to these embodiments. For example, in the above-described embodiment, the example in which the lower separator 2 in which the grooves 2a and 2b are formed in advance has been described in the process of S10, but the grooves 2a and 2b may be formed with an etching apparatus or the like. Alternatively, the lower separator 2 and the upper separator 6 on which an amorphous carbon film is formed in advance may be used. In this case, the processes of S12 and S20 are not necessary. Moreover, although the manufacturing method of 1 cell was demonstrated in embodiment mentioned above, it is good also considering the upper separator 6 as the lower separator 2 of the following fuel cell. Thereby, the fuel cell of a plurality of cycles can be formed in a consistent vacuum. In the above-described embodiment, the example in which the cathode layer 3, the electrolyte layer 4, and the anode layer 5 are formed in this order on the lower separator 2 that is the substrate has been described. However, the anode layer 5, the electrolyte layer 4, and the cathode are formed. The layers 3 may be formed in this order.
 1…燃料電池セル、2…下部セパレータ(基板)、3…カソード層、3a…下部電極層、3b…下部触媒層、4…電解質層、5…アノード層、5a…上部電極層、5b…上部触媒層、6…上部セパレータ(基板)、7…膜電極接合体、10…CVD装置、12…処理容器、14…ステージ(載置台)、16…マイクロ波発生器、18…アンテナ、20…誘電体窓、30…スロット板、32…誘電体板、40…ガス供給系、44…材料ガス供給系(材料ガス供給部)、45…ドープガス供給系(ドープガス供給部)、S…処理空間、W…被処理基体。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 2 ... Lower separator (substrate), 3 ... Cathode layer, 3a ... Lower electrode layer, 3b ... Lower catalyst layer, 4 ... Electrolyte layer, 5 ... Anode layer, 5a ... Upper electrode layer, 5b ... Upper part Catalyst layer, 6 ... upper separator (substrate), 7 ... membrane electrode assembly, 10 ... CVD apparatus, 12 ... processing vessel, 14 ... stage (mounting table), 16 ... microwave generator, 18 ... antenna, 20 ... dielectric Body window, 30 ... slot plate, 32 ... dielectric plate, 40 ... gas supply system, 44 ... material gas supply system (material gas supply unit), 45 ... dope gas supply system (dope gas supply unit), S ... processing space, W ... Substrate to be treated.

Claims (10)

  1.  カソード層、電解質層及びアノード層を有する膜電極接合体の製造方法であって、
     真空排気された処理容器へ基板を導入し、前記基板上に前記カソード層、前記電解質層及び前記アノード層、又は、前記アノード層、前記電解質層及び前記カソード層の順に、大気に晒すことなく真空一貫で成膜する成膜工程を含む、
    膜電極接合体の製造方法。
    A method for producing a membrane electrode assembly having a cathode layer, an electrolyte layer and an anode layer,
    The substrate is introduced into the evacuated processing container, and the cathode layer, the electrolyte layer and the anode layer, or the anode layer, the electrolyte layer and the cathode layer are sequentially exposed to the atmosphere on the substrate without being exposed to the atmosphere. Including a film-forming process for consistent film formation,
    Manufacturing method of membrane electrode assembly.
  2.  前記成膜工程では、前記カソード層、前記電解質層及び前記アノード層から選択される少なくとも一つの層をプラズマCVDにより成膜する請求項1に記載の膜電極接合体の製造方法。 The method of manufacturing a membrane electrode assembly according to claim 1, wherein in the film formation step, at least one layer selected from the cathode layer, the electrolyte layer, and the anode layer is formed by plasma CVD.
  3.  前記成膜工程では、成膜装置として、
      処理空間を画成する処理容器と、
      前記基板を載置する載置台と、
      マイクロ波発生器と、
      前記マイクロ波発生器によって発生されるマイクロ波を放射するアンテナと、
      前記処理空間と前記アンテナとの間に設けられた誘電体窓と、
      プラズマ励起用のガスを供給するガス供給部と、
      前記カソード層、前記電解質層及び前記アノード層から選択される少なくとも一つの層を形成するための材料ガスを供給する材料ガス供給部と、
    を備える成膜装置を用い、
     前記基板を前記載置台に載置させ、前記ガス供給部からプラズマ励起用の前記ガスを供給させ、前記アンテナからマイクロ波を放射させてプラズマを励起させ、前記材料ガス供給部から前記材料ガスを供給させて、前記材料ガスを前記プラズマにより反応させて前記カソード層、前記電解質層及び前記アノード層から選択される少なくとも一つの層を形成する請求項2に記載の膜電極接合体の製造方法。
    In the film forming step, as a film forming apparatus,
    A processing vessel defining a processing space;
    A mounting table for mounting the substrate;
    A microwave generator;
    An antenna for radiating microwaves generated by the microwave generator;
    A dielectric window provided between the processing space and the antenna;
    A gas supply unit for supplying a gas for plasma excitation;
    A material gas supply unit for supplying a material gas for forming at least one layer selected from the cathode layer, the electrolyte layer, and the anode layer;
    Using a film forming apparatus comprising:
    The substrate is placed on the mounting table, the gas for plasma excitation is supplied from the gas supply unit, microwaves are emitted from the antenna to excite plasma, and the material gas is supplied from the material gas supply unit. 3. The method of manufacturing a membrane electrode assembly according to claim 2, wherein the material gas is supplied and reacted with the plasma to form at least one layer selected from the cathode layer, the electrolyte layer, and the anode layer.
  4.  前記電解質層を形成するための前記材料ガスは、CF及びドープ材としてのSOを含むガスを含むガスである請求項3に記載の膜電極接合体の製造方法。 Wherein said material gas for forming the electrolyte layer, the manufacturing method of the membrane electrode assembly according to claim 3 is a gas containing a gas containing SO x as CF x and doped materials.
  5.  前記成膜工程では、前記成膜装置として、
      前記載置台にバイアス用の高周波電力を印加する高周波電源と、
      SOを含むドープガスを供給するドープガス供給部と、
    をさらに備え、
     前記カソード層、前記電解質層及び前記アノード層の何れかの層を積層した後に、前記高周波電源により前記載置台に前記高周波電力を印加するとともに、前記ガス供給部からプラズマ励起用の前記ガスを供給させ、前記アンテナからマイクロ波を放射させてプラズマを励起させ、前記ドープガス供給部から前記ドープガスを供給させ、前記ドープガス中の元素を前記高周波電力により前記載置台へ引き込むことにより最も表面に位置する層にドーピングを行う請求項4に記載の膜電極接合体の製造方法。
    In the film forming step, as the film forming apparatus,
    A high frequency power source for applying a high frequency power for bias to the mounting table;
    A dope gas supply unit for supplying a dope gas containing SO x ;
    Further comprising
    After laminating any one of the cathode layer, the electrolyte layer, and the anode layer, the high-frequency power is applied to the mounting table by the high-frequency power source, and the gas for plasma excitation is supplied from the gas supply unit. And by exciting microwaves from the antenna to excite plasma, supplying the dope gas from the dope gas supply unit, and drawing the elements in the dope gas into the mounting table by the high frequency power, the layer located on the most surface The method for producing a membrane electrode assembly according to claim 4, wherein doping is performed on the electrode.
  6.  前記成膜工程では、前記電解質層にSO 又はSO をドーピングする請求項5に記載の膜電極接合体の製造方法。 6. The method of manufacturing a membrane electrode assembly according to claim 5, wherein in the film forming step, the electrolyte layer is doped with SO 3 or SO 2 .
  7.  前記アノード層又は前記カソード層を形成するための前記材料ガスは、CxHyを含むガスである請求項3~6の何れか一項に記載の膜電極接合体の製造方法。 The method for producing a membrane electrode assembly according to any one of claims 3 to 6, wherein the material gas for forming the anode layer or the cathode layer is a gas containing CxHy.
  8.  前記アノード層又は前記カソード層を形成するための前記材料ガスは、カーボンナノチューブを溶液に分散させた原料である請求項3~6の何れか一項に記載の膜電極接合体の製造方法。 The method for producing a membrane electrode assembly according to any one of claims 3 to 6, wherein the material gas for forming the anode layer or the cathode layer is a raw material in which carbon nanotubes are dispersed in a solution.
  9.  アモルファスカーボン膜にPt又はPtを含む有機原料もしくは無機原料をCVD法にて成膜することによって前記アノード層又は前記カソード層を形成する請求項2~8の何れか一項に記載の膜電極接合体の製造方法。 The membrane electrode junction according to any one of claims 2 to 8, wherein the anode layer or the cathode layer is formed by depositing Pt or an organic material or an inorganic material containing Pt on the amorphous carbon film by a CVD method. Body manufacturing method.
  10.  アモルファスカーボン膜にPt又はPtを含む有機原料もしくは無機原料をPVD法にて成膜することによって前記アノード層又は前記カソード層を形成する請求項1に記載の膜電極接合体の製造方法。 The method for producing a membrane electrode assembly according to claim 1, wherein the anode layer or the cathode layer is formed by depositing Pt or an organic or inorganic raw material containing Pt on the amorphous carbon film by a PVD method.
PCT/JP2013/056620 2012-03-14 2013-03-11 Method for producing membrane electrode assembly WO2013137187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012057526A JP5995468B2 (en) 2012-03-14 2012-03-14 Manufacturing method of membrane electrode assembly
JP2012-057526 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013137187A1 true WO2013137187A1 (en) 2013-09-19

Family

ID=49161096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056620 WO2013137187A1 (en) 2012-03-14 2013-03-11 Method for producing membrane electrode assembly

Country Status (3)

Country Link
JP (1) JP5995468B2 (en)
TW (1) TW201403934A (en)
WO (1) WO2013137187A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031792A (en) * 2005-07-28 2007-02-08 Sumitomo Electric Ind Ltd Microwave plasma cvd apparatus
JP2009517825A (en) * 2005-11-30 2009-04-30 シーエヌアールエス Method for producing fuel cell made of thin film
JP2010177420A (en) * 2009-01-29 2010-08-12 Tokyo Electron Ltd Microwave plasma processing apparatus, dielectric board for microwave plasma processing apparatus, and microwave feeding method of microwave plasma processing apparatus
WO2010131366A1 (en) * 2009-05-15 2010-11-18 株式会社島津製作所 Surface wave plasma cvd apparatus and film forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031792A (en) * 2005-07-28 2007-02-08 Sumitomo Electric Ind Ltd Microwave plasma cvd apparatus
JP2009517825A (en) * 2005-11-30 2009-04-30 シーエヌアールエス Method for producing fuel cell made of thin film
JP2010177420A (en) * 2009-01-29 2010-08-12 Tokyo Electron Ltd Microwave plasma processing apparatus, dielectric board for microwave plasma processing apparatus, and microwave feeding method of microwave plasma processing apparatus
WO2010131366A1 (en) * 2009-05-15 2010-11-18 株式会社島津製作所 Surface wave plasma cvd apparatus and film forming method

Also Published As

Publication number Publication date
TW201403934A (en) 2014-01-16
JP5995468B2 (en) 2016-09-21
JP2013191441A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP3384795B2 (en) Plasma process equipment
US8728917B2 (en) Carbon nanotube forming method and pre-treatment method therefor
US5750013A (en) Electrode membrane assembly and method for manufacturing the same
US9771266B2 (en) Method and apparatus for processing carbon nanotubes
US10017853B2 (en) Processing method of silicon nitride film and forming method of silicon nitride film
JPWO2005021430A1 (en) Carbon nanowall manufacturing method, carbon nanowall and manufacturing apparatus
JP2019178021A (en) Method and device of forming graphene structure
JP2017084965A (en) Etching method of transition metal film and substrate processing apparatus
US8435882B2 (en) Film forming method for a semiconductor
JP6101467B2 (en) Film forming method and film forming apparatus
WO2021132010A1 (en) Film forming method and film forming system
KR101411171B1 (en) Plasma processing apparatus
JP4786156B2 (en) Method for producing carbon nanowall
US9209041B2 (en) Plasma processing method and plasma processing apparatus
US11270881B2 (en) Plasma deposition method, plasma deposition apparatus and method of manufacturing semiconductor device
JP5995468B2 (en) Manufacturing method of membrane electrode assembly
US6830653B2 (en) Plasma processing method and apparatus
US9034698B2 (en) Semiconductor device manufacturing method
US20180073145A1 (en) Auxiliary device for plasma-enhanced chemical vapor deposition (pecvd) reaction chamber and film deposition method using the same
WO2013172203A1 (en) Solar cell manufacturing method and plasma processing apparatus
JPWO2004089822A1 (en) Gas atom inclusion fullerene production apparatus and method, and gas atom inclusion fullerene
KR20130017476A (en) Plasma generating apparatus and method of plasma processing of substrate
JPH11238597A (en) Plasma processing method and device
JP2000064052A (en) Plasma cvd device
JP2014089976A (en) Plasma processing apparatus and slow-wave plate used for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761355

Country of ref document: EP

Kind code of ref document: A1