JP2010177368A - Method for manufacturing led device - Google Patents

Method for manufacturing led device Download PDF

Info

Publication number
JP2010177368A
JP2010177368A JP2009017074A JP2009017074A JP2010177368A JP 2010177368 A JP2010177368 A JP 2010177368A JP 2009017074 A JP2009017074 A JP 2009017074A JP 2009017074 A JP2009017074 A JP 2009017074A JP 2010177368 A JP2010177368 A JP 2010177368A
Authority
JP
Japan
Prior art keywords
phosphor
led chip
color rendering
wavelength
blue led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009017074A
Other languages
Japanese (ja)
Other versions
JP5344149B2 (en
Inventor
Yumiko Hayashida
裕美子 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2009017074A priority Critical patent/JP5344149B2/en
Publication of JP2010177368A publication Critical patent/JP2010177368A/en
Application granted granted Critical
Publication of JP5344149B2 publication Critical patent/JP5344149B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a white LED device, which achieves both color characteristics and color rendering properties while allowing the improvement of manufacturability and the reduction in cost. <P>SOLUTION: In the method for manufacturing an LED device, color rendering properties are adjusted by selecting a main wavelength of a blue LED chip 21 so that a difference between the minimum main wavelength and the maximum main wavelength of the blue LED chip 21 is ≤10 nm, in the state where a mixture ratio of phosphors corresponding to a plurality of colors of a phosphor portion 13 is fixed. Since color rendering properties are finely adjusted without the necessity of preparing specifications for mixture ratios of large numbers of phosphors, both color characteristics and color rendering properties are achieved while allowing the improvement in manufacturability and the reduction in cost. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LEDチップと、このLEDチップの発光により励起される蛍光体とを備えたLED装置の製造方法に関する。   The present invention relates to a method for manufacturing an LED device including an LED chip and a phosphor excited by light emitted from the LED chip.

従来、発光ダイオードすなわちLED(Light Emitting Diode)は、液晶ディスプレイ、携帯電話、情報端末のバックライト、あるいは屋内外公告など、多方面への展開が飛躍的に進んでいる。そして、LEDは、その長寿命、低消費電力、耐衝撃性、高速応答性、高純度表示色、軽薄短小化の実現などの特徴から、産業分野のみならず一般照明用としても脚光を浴びている。   2. Description of the Related Art Conventionally, light emitting diodes (LEDs), such as liquid crystal displays, mobile phones, information terminal backlights, and indoor / outdoor announcements, have been dramatically expanded. And LEDs are attracting attention not only for industrial fields but also for general lighting because of their features such as long life, low power consumption, impact resistance, high-speed response, high purity display color, lightness, thinness, etc. Yes.

例えば、白色光を発光するLED装置を構成する代表的な方式としては、(1)赤、緑および青などの原色を構成する3色のLEDを用いる3LED方式、(2)青色LEDと、黄色蛍光体(YAGなど)および赤色蛍光体を配合した蛍光体とを用いる方式、および、(3)紫外LED(以下、UV−LEDという)と、青蛍光体、緑蛍光体および赤色蛍光体(以下、BGR蛍光体という)を配合した蛍光体とを用いる方式の3つがある。   For example, as a typical method for constructing an LED device that emits white light, (1) a three-LED method using three color LEDs constituting primary colors such as red, green, and blue, and (2) a blue LED and yellow A method using a phosphor (YAG, etc.) and a phosphor blended with a red phosphor, and (3) an ultraviolet LED (hereinafter referred to as UV-LED), a blue phosphor, a green phosphor and a red phosphor (hereinafter referred to as a UV phosphor). There are three types using a phosphor blended with BGR phosphor).

このようなLED装置としては、例えばSMDや砲弾型のようなカップ形状の中に青色LEDチップを備え、蛍光体含有樹脂を塗布するタイプに加え、高輝度化を目的に、基板(ボード)の上に複数の青色LEDチップを搭載したチップオンボ−ド(COB)の構成が開発され注目されている。   As such an LED device, for example, a blue LED chip is provided in a cup shape such as an SMD or a shell type, and in addition to a type in which a phosphor-containing resin is applied, for the purpose of increasing the brightness, a substrate (board) is used. A structure of a chip on board (COB) having a plurality of blue LED chips mounted thereon has been developed and attracts attention.

そして、このようなLED装置に一般照明用として求められている特性としては、高効率に加え、現行のランプであるHIDランプ、電球、蛍光ランプにより展開されている光源色として、相関色温度が6600K,5000K,4200K,3000K(2800K)などのラインナップが必要とされる。またさらに、色の見え方の指標として演色性(例えば平均演色評価数Ra)も重要であり、蛍光ランプなどをベンチマークにしたRa80〜85あるいはRa90以上などのラインナップが求められている。これらの光特性の要求に対応するために、一般的に上記(2)および上記(3)の励起LEDと蛍光体を組合せる方式が採用されている。   In addition to high efficiency, the characteristics required of such LED devices for general illumination include correlated color temperature as a light source color developed by HID lamps, light bulbs, and fluorescent lamps that are current lamps. Lineups such as 6600K, 5000K, 4200K, and 3000K (2800K) are required. Furthermore, color rendering (for example, average color rendering index Ra) is also important as an indicator of color appearance, and lineups such as Ra 80 to 85 or Ra 90 or higher with a fluorescent lamp as a benchmark are required. In order to meet the requirements of these light characteristics, generally, a method of combining the excitation LED and the phosphor of (2) and (3) above is adopted.

通常、演色性を向上させるには、チップからの青色発光によって540nm〜560nmの黄色に発光するYAGなどの黄色系蛍光体に、620nmの赤色蛍光体からの赤色発光を加えて、演色性に優れる白色光を調整する方法が取られる。近年では、緑色蛍光体(500nm前後)も使用し、青色発光と蛍光体からの蛍光発光との間に生じる分光分布の谷間を埋めることにより、太陽光の分光スペクトルに近づけ、さらなる演色性の向上(Ra95付近)を狙う方法も取られている(例えば、特許文献1参照。)。   Usually, in order to improve the color rendering, the red color emission from the 620 nm red phosphor is added to the yellow phosphor such as YAG which emits yellow from 540 nm to 560 nm by blue light emission from the chip, and the color rendering property is excellent. A method of adjusting the white light is taken. In recent years, green phosphors (around 500 nm) are also used, and by filling the valley of the spectral distribution generated between blue light emission and fluorescent light emission from the phosphor, it is closer to the spectral spectrum of sunlight and further improves color rendering. A method of aiming at (around Ra95) has also been taken (see, for example, Patent Document 1).

特開2006−303140号公報(第5−7頁、図1)JP 2006-303140 A (page 5-7, FIG. 1)

上述のように、照明用途を考慮したLEDでは、高効率で、かつ、相関色温度および演色性のラインアップが多数要求される。したがって、これらに対応するため、蛍光体の配合に際しては、複数種の蛍光体が緻密にコントロールされた蛍光体仕様を、膨大に用意することが不可欠となる。   As described above, the LED considering the lighting application is required to have many lineups of high efficiency and correlated color temperature and color rendering. Therefore, in order to cope with these, it is indispensable to prepare enormous amounts of phosphor specifications in which a plurality of types of phosphors are precisely controlled when blending phosphors.

しかしながら、このような近年のLEDに対する幅広い光特性に対応するためには、必然的に膨大な蛍光体仕様を用意しなければならず、複雑な情報管理と維持、製造時の蛍光体塗布液変え頻度による時間のロスといった、製造上の手間やコストの問題が生じる。   However, in order to deal with such a wide range of light characteristics for recent LEDs, it is inevitably necessary to prepare a huge amount of phosphor specifications, complicated information management and maintenance, and changing phosphor coating liquid during production There are problems in manufacturing and cost such as time loss due to frequency.

また、実際、蛍光体方式にて色特性と演色性とを両立して制御することは特に難しく、例えば演色性の向上を試みて単純に赤色蛍光体を添加すると、相関色温度も低色温度側へずれてしまう。そのため、黄色蛍光体あるいは緑色蛍光体も添加して調整することとなるが、赤色蛍光体と黄色蛍光体および緑色蛍光体との間には吸収の関係があり、単純に加算減算とはならない。したがって、蛍光体の配合に際しては、複数種の蛍光体を緻密にコントロールして調合しなくてはならない。   In fact, it is particularly difficult to control both the color characteristics and the color rendering in the phosphor system. For example, when a red phosphor is simply added in an attempt to improve the color rendering, the correlated color temperature is reduced to a low color temperature. It will shift to the side. For this reason, a yellow phosphor or a green phosphor is also added for adjustment, but there is an absorption relationship between the red phosphor, the yellow phosphor, and the green phosphor, and it is not simply an addition / subtraction. Therefore, when blending phosphors, a plurality of types of phosphors must be precisely controlled and blended.

本発明は、このような点に鑑みなされたもので、製造性の向上および低コスト化を可能としつつ、色特性と演色性とを両立したLED装置の製造方法を提供することを目的とする。   This invention is made in view of such a point, and it aims at providing the manufacturing method of the LED device which made the color characteristic and color rendering property compatible, enabling improvement of productivity and cost reduction. .

請求項1記載のLED装置の製造方法は、基板に配置したLEDチップ、および、このLEDチップの発光により励起される複数の色に対応する蛍光体が所定の配合比で配合されてこのLEDチップを覆う蛍光体部を備えたLED装置の製造方法であって、蛍光体部の蛍光体の配合比を固定した状態でLEDチップの最小の主波長と最大の主波長との差が10nm以内となるようにLEDチップの主波長を選択することにより演色性を調整するものである。   The LED device manufacturing method according to claim 1, wherein an LED chip disposed on a substrate and phosphors corresponding to a plurality of colors excited by light emission of the LED chip are blended at a predetermined blending ratio. A method for manufacturing an LED device including a phosphor portion covering the phosphor portion, wherein the difference between the minimum dominant wavelength and the maximum dominant wavelength of the LED chip is within 10 nm with the phosphor compounding ratio of the phosphor portion fixed. Thus, the color rendering properties are adjusted by selecting the dominant wavelength of the LED chip.

LEDチップは、好ましくは450nm〜465nmの主波長を有する青色LEDチップの中から、最小の主波長と最大の主波長との差が10nm以内となるように複数種類が選択される。   A plurality of types of LED chips are preferably selected from blue LED chips having a dominant wavelength of 450 nm to 465 nm so that the difference between the minimum dominant wavelength and the maximum dominant wavelength is within 10 nm.

蛍光体部に用いる蛍光体としては、例えば、緑色蛍光体、黄色蛍光体、あるいは赤色蛍光体などがある。   Examples of the phosphor used in the phosphor part include a green phosphor, a yellow phosphor, and a red phosphor.

蛍光体の配合比とは、蛍光体を分散させる被分散体である樹脂などに対する各蛍光体の割合をいう。   The blending ratio of the phosphors refers to the ratio of each phosphor to the resin or the like to be dispersed in which the phosphor is dispersed.

請求項2記載のLED装置の製造方法は、請求項1記載のLED装置の製造方法において、蛍光体の配合比を、互いに異なる複数の主波長を有する複数種類のLEDチップのうち、主波長が中央値となるLEDチップに対して所定の色温度範囲となるように設定するものである。   The manufacturing method of the LED device according to claim 2 is the manufacturing method of the LED device according to claim 1, wherein the main wavelength is a plurality of kinds of LED chips having a plurality of different main wavelengths with respect to the phosphor mixture ratio. It is set so as to be within a predetermined color temperature range with respect to the LED chip having the median value.

互いに異なる複数の主波長を有する複数種類のLEDチップのうち、主波長が中央値となるLEDチップとは、例えば、その主波長が、複数種類のLEDチップの主波長の最小値と最大値の間の値となるものをいう。   Among a plurality of types of LED chips having a plurality of different main wavelengths, for example, an LED chip whose main wavelength is the median value is, for example, that the main wavelength is the minimum value and the maximum value of the main wavelengths of the plurality of types of LED chips. The value that is between.

請求項1記載のLED装置の製造方法によれば、蛍光体部の蛍光体の配合比を固定した状態でLEDチップの最小の主波長と最大の主波長との差が10nm以内となるようにLEDチップの主波長を選択することで演色性を調整することにより、膨大な蛍光体の配合比の仕様を用意することなく演色性を微調整することが可能になり、製造性の向上および低コスト化を可能としつつ、色特性と演色性とを両立できる。   According to the manufacturing method of the LED device according to claim 1, the difference between the minimum dominant wavelength and the maximum dominant wavelength of the LED chip is within 10 nm in a state where the phosphor mixture ratio of the phosphor portion is fixed. By adjusting the color rendering property by selecting the dominant wavelength of the LED chip, it becomes possible to finely adjust the color rendering property without preparing a specification of the enormous phosphor blending ratio. Both color characteristics and color rendering can be achieved while enabling cost reduction.

請求項2記載のLED装置の製造方法によれば、請求項1記載のLED装置の製造方法の効果に加えて、蛍光体の配合比を、互いに異なる複数の主波長を有する複数種類のLEDチップのうち、主波長が中央値となるLEDチップに対して所定の色温度範囲となるように設定することにより、複数種類のLEDチップのいずれを用いても所望の色温度範囲内としつつ、演色性のみを調整できる。   According to the manufacturing method of the LED device according to claim 2, in addition to the effect of the manufacturing method of the LED device according to claim 1, a plurality of types of LED chips having a plurality of main wavelengths different from each other in the blending ratio of the phosphors Of these, by setting the LED wavelength with the dominant wavelength to be within the predetermined color temperature range for the LED chip having the median value, color rendering can be achieved while using any of a plurality of types of LED chips within the desired color temperature range. Only sex can be adjusted.

本発明の一実施の形態を示すLED装置の断面図である。It is sectional drawing of the LED device which shows one embodiment of this invention. 同上LED装置の平面図である。It is a top view of a LED device same as the above. 同上実施例1〜3の特性を示す表である。It is a table | surface which shows the characteristic of Examples 1-3 same as the above. 同上実施例1〜3の特性を示すグラフである。It is a graph which shows the characteristic of Examples 1-3 same as the above. 同上実施例1〜3の分光分布を示すグラフである。It is a graph which shows the spectral distribution of Examples 1-3 same as the above. 同上実施例1〜3のLEDチップの波長と演色性との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of the LED chip of Examples 1-3 same as the above, and color rendering properties.

以下、本発明の一実施の形態を図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1はLED装置の断面図、図2はLED装置の平面図、図3はLED装置の実施例1〜3の特性を示す表、図4は実施例1〜3の特性を示すグラフは、図5は実施例1〜3の分光分布を示すグラフ、図6は実施例1〜3のLEDチップの波長と演色性との関係を示すグラフである。   1 is a sectional view of the LED device, FIG. 2 is a plan view of the LED device, FIG. 3 is a table showing the characteristics of Examples 1 to 3 of the LED device, and FIG. 4 is a graph showing the characteristics of Examples 1 to 3, FIG. 5 is a graph showing the spectral distribution of Examples 1 to 3, and FIG. 6 is a graph showing the relationship between the wavelength of the LED chips of Examples 1 to 3 and the color rendering properties.

図1および図2において、11は例えば一般照明用などのLED装置である白色LED装置を示し、この白色LED装置は、平面視で四角形状の基板12と、この基板12上に形成された蛍光体部13とを備えている。   In FIG. 1 and FIG. 2, reference numeral 11 denotes a white LED device which is an LED device for general illumination, for example. This white LED device has a rectangular substrate 12 in plan view and a fluorescent light formed on the substrate 12. And a body part 13.

基板12は、基板本体としての例えばアルミニウム層15と、このアルミニウム層15の一主面に形成される絶縁層16と、この絶縁層16上に形成される銅パターン17と、この銅パターン17を覆って形成されるめっき処理層18,19と、めっき処理層19上にそれぞれダイボンド材20を介して固定されるLEDチップとしての複数のベアチップである青色LEDチップ21とを有している。そして、この基板12には、青色LEDチップ21が配置される平面視で円形状の配置部22と、この配置部22の周囲に位置する周辺部23とが形成され、この周辺部23に、コネクタ24,25が配置されている。   The substrate 12 includes, for example, an aluminum layer 15 as a substrate body, an insulating layer 16 formed on one main surface of the aluminum layer 15, a copper pattern 17 formed on the insulating layer 16, and the copper pattern 17 Plating treatment layers 18 and 19 formed so as to be covered, and blue LED chips 21 which are a plurality of bare chips as LED chips each fixed on the plating treatment layer 19 via a die bonding material 20. And in this board | substrate 12, the circular-shaped arrangement | positioning part 22 by the planar view by which the blue LED chip 21 is arrange | positioned, and the peripheral part 23 located around this arrangement | positioning part 22 are formed, In this peripheral part 23, Connectors 24 and 25 are arranged.

アルミニウム層15は、例えば1mm程度の厚みを有している。   The aluminum layer 15 has a thickness of about 1 mm, for example.

絶縁層16は、例えば厚みが80μmで、かつ、熱伝導率が1.0W/m・K程度の層である。   The insulating layer 16 is, for example, a layer having a thickness of 80 μm and a thermal conductivity of about 1.0 W / m · K.

銅パターン17は、例えば35μm程度の厚みを有しており、各青色LEDチップ21、および、周辺部23にはんだ実装されている図示しない保護回路部品(例えば抵抗器、ツェナダイオードあるいはコンデンサ)などを電気的に接続するものである。   The copper pattern 17 has a thickness of, for example, about 35 μm, and includes each blue LED chip 21 and a protection circuit component (not shown) (for example, a resistor, a Zener diode, or a capacitor) that is solder-mounted on the peripheral portion 23. It is an electrical connection.

めっき処理層18は、例えば無電解ニッケル(Ni)めっき層であり、3.0μm〜5.0μm程度の厚みを有している。   The plating layer 18 is, for example, an electroless nickel (Ni) plating layer, and has a thickness of about 3.0 μm to 5.0 μm.

めっき処理層19は、例えば無電解銀(Ag)めっき層であり、0.3μm〜0.7μm程度の厚みを有している。   The plating layer 19 is, for example, an electroless silver (Ag) plating layer, and has a thickness of about 0.3 μm to 0.7 μm.

ダイボンド材20は、例えば透明なシリコーンなどの樹脂によって構成された接着剤である。   The die bond material 20 is an adhesive composed of, for example, a transparent resin such as silicone.

青色LEDチップ21は、ダイボンド材20により固定されるサファイヤ基板などの素子基板上に青色の単色発光の半導体発光層が積層され、この半導体発光層上に電極が互いに離間されて配置された半導体チップであり、電極に接続された配線であるボンディングワイヤ26を介して、図示しない導体に電気的に接続され、例えば全ての青色LEDチップ21が電気的に直列に接続されている。そして、これら青色LEDチップ21は、互いに異なる主波長(好ましくは450nm〜465nm)を有する複数種類の青色LEDチップ21の中から、最小の主波長と最大の主波長との差が10nm以内となるように数種類を選択することにより、白色LED装置11の相関色温度および演色性(例えば平均演色評価数Ra)をそれぞれ所望の範囲に調整可能としている。なお、青色LEDチップ21は、同一の相関色温度において、長波長であるほど演色性が向上する。   The blue LED chip 21 is a semiconductor chip in which a blue monochromatic light emitting semiconductor light emitting layer is laminated on an element substrate such as a sapphire substrate fixed by a die bond material 20, and electrodes are arranged on the semiconductor light emitting layer so as to be separated from each other. And electrically connected to a conductor (not shown) via bonding wires 26 connected to the electrodes, for example, all the blue LED chips 21 are electrically connected in series. The blue LED chips 21 have a difference between the minimum main wavelength and the maximum main wavelength within 10 nm from among a plurality of types of blue LED chips 21 having different main wavelengths (preferably 450 nm to 465 nm). By selecting several types as described above, the correlated color temperature and the color rendering properties (for example, the average color rendering index Ra) of the white LED device 11 can be adjusted to each desired range. The blue LED chip 21 has a higher color rendering property as the wavelength is longer at the same correlated color temperature.

コネクタ24,25は、青色LEDチップ21を図示しない外部回路と接続するためのものである。   The connectors 24 and 25 are for connecting the blue LED chip 21 to an external circuit (not shown).

また、蛍光体部13は、基板12の配置部22の周囲を囲む円環状の枠部31と、この枠部31内に充填されて配置部22全体(青色LEDチップ21)を覆う封止樹脂部32とを有している。   The phosphor portion 13 includes an annular frame portion 31 surrounding the arrangement portion 22 of the substrate 12, and a sealing resin that fills the frame portion 31 and covers the entire arrangement portion 22 (blue LED chip 21). Part 32.

枠部31は、めっき処理層19上に、例えば1mm程度の厚みに形成されている。   The frame portion 31 is formed on the plating layer 19 to a thickness of about 1 mm, for example.

封止樹脂部32は、例えば複数の色に対応する図示しない蛍光体が内部に混入された透明なシリコーンなどの樹脂により形成された蛍光体塗布液を用いて構成されている。   The sealing resin portion 32 is configured using a phosphor coating liquid formed of a resin such as transparent silicone in which phosphors (not shown) corresponding to a plurality of colors are mixed.

ここで、蛍光体は、青色LEDチップ21が発する光の一部により励起されることで所定の色の光を放射するもので、本実施の形態では、青色光に対して黄色光、赤色光、あるいは緑色光をそれぞれ放射する黄色蛍光体、赤色蛍光体、あるいは緑色蛍光体が、予め設定された所定の配合比で配合されて構成されている。   Here, the phosphor emits light of a predetermined color by being excited by a part of the light emitted from the blue LED chip 21, and in the present embodiment, yellow light and red light with respect to blue light. Alternatively, a yellow phosphor, a red phosphor, or a green phosphor that respectively emits green light is blended at a predetermined blending ratio that is set in advance.

また、各蛍光体の配合比は、主波長範囲の中央値の主波長を有する青色LEDチップ21に対して目標とする所定の色温度範囲となるように設定されている。なお、青色LEDチップ21を互いに主波長が異なる4種類以上の偶数種類選択している場合には、それらの主波長のうち、主波長が中間値となる2種類のうちのいずれかを中間値として蛍光体の配合比を設定すればよい。例えば、主波長がa〜d(a<b<c<d)の4種類の青色LEDチップ21を選択する場合には、b、あるいはcのいずれかの主波長を有する青色LEDチップ21に対して、目標とする所定の色温度範囲となるように蛍光体の配合比を設定すればよい。   In addition, the blending ratio of each phosphor is set to be a predetermined color temperature range targeted for the blue LED chip 21 having a median dominant wavelength in the dominant wavelength range. In addition, when the blue LED chip 21 is selected as an even number of four or more types having different main wavelengths, one of the two types of the main wavelengths having the intermediate value is the intermediate value. The blending ratio of the phosphors may be set as follows. For example, when four types of blue LED chips 21 having main wavelengths a to d (a <b <c <d) are selected, the blue LED chip 21 having either the main wavelength b or c is selected. Thus, the blending ratio of the phosphors may be set so that a predetermined color temperature range as a target is obtained.

次に、上記一実施の形態の製造方法を説明する。   Next, the manufacturing method of the one embodiment will be described.

まず、アルミニウム層15上に絶縁層16および銅を形成し、各種めっき処理を施した後、パターニングを行って銅パターン17およびめっき処理層18,19を形成する。   First, an insulating layer 16 and copper are formed on the aluminum layer 15 and subjected to various plating processes, followed by patterning to form a copper pattern 17 and plating layers 18 and 19.

次いで、めっき処理層19上に、ダイボンド材20を介して青色LEDチップ21を固定して配置する。このとき、青色LEDチップ21は、主波長の最小値と最大値との差を、10nm以内とした互いに異なる複数種類の中から、所望の演色性に対応させた主波長のものを選択する。   Next, the blue LED chip 21 is fixedly disposed on the plating layer 19 via the die bonding material 20. At this time, the blue LED chip 21 selects a main wavelength corresponding to a desired color rendering property from a plurality of different types in which the difference between the minimum value and the maximum value of the main wavelength is within 10 nm.

この後、枠部31を配置部22の周囲に形成し、この枠部31の内部に、各種蛍光体を所定の配合比で内部に配合した透明な2液型のシリコーンなどの蛍光体塗布液を充填して硬化させることにより、封止樹脂部32を構成し、白色LED装置11を完成する。   Thereafter, a frame part 31 is formed around the arrangement part 22, and a phosphor coating liquid such as a transparent two-pack type silicone in which various phosphors are blended in the frame part 31 at a predetermined blending ratio. Is filled and cured to form the sealing resin portion 32, and the white LED device 11 is completed.

そして、図3ないし図6には、実施例1〜3について色温度特性などを示す。   3 to 6 show the color temperature characteristics and the like for the first to third embodiments.

実施例1は、青色LEDチップ21の主波長(λd)として、454nm(最小値)、456nm(中央値)および461nm(最大値)のものをそれぞれ用い、蛍光体部13の蛍光体としては、例えば約520nmにピーク波長を有する緑色蛍光体と、約570nmにピーク波長を有する黄色蛍光体と、650nmにピーク波長を有する赤色蛍光体とを所定の配合比で配合した蛍光体塗布液を用いて、相関色温度(Tc)が3200K、演色性(Ra)が80の白色LED装置11をそれぞれ作成したものである。なお、この実施例1では、青色LEDチップ21の波長が456nmのものを用いたときに所定の色温度範囲となるように、蛍光体部13の蛍光体の配合比を設定した。   In Example 1, the main wavelength (λd) of the blue LED chip 21 is 454 nm (minimum value), 456 nm (median value), and 461 nm (maximum value), respectively. For example, using a phosphor coating liquid in which a green phosphor having a peak wavelength at about 520 nm, a yellow phosphor having a peak wavelength at about 570 nm, and a red phosphor having a peak wavelength at 650 nm are blended at a predetermined blending ratio. The white LED device 11 having a correlated color temperature (Tc) of 3200K and a color rendering property (Ra) of 80 is produced. In Example 1, the phosphor mixture ratio of the phosphor portion 13 was set so that the color temperature range would be within a predetermined color temperature range when the blue LED chip 21 having a wavelength of 456 nm was used.

また、実施例2は、青色LEDチップ21の主波長(λd)として、452nm(最小値)および455nm(最大値)のものをそれぞれ用い、蛍光体部13の蛍光体としては、黄色蛍光体と赤色蛍光体とを所定の配合比で配合した蛍光体塗布液を用いて、相関色温度(Tc)が5000K、演色性(Ra)が70の白色LED装置11をそれぞれ作成したものである。なお、この実施例2では、青色LEDチップ21の波長が455nmのもの、すなわち主波長が最大の青色LEDチップ21を用いたときに所定の色温度範囲となるように、蛍光体部13の蛍光体の配合比を設定したが、主波長が最小(ここでは452nm)の青色LEDチップ21を用いたときに所定の色温度範囲となるように蛍光体部13の蛍光体の配合比を設定してもよい。   In Example 2, the main wavelength (λd) of the blue LED chip 21 is 452 nm (minimum value) and 455 nm (maximum value), and the phosphor of the phosphor portion 13 is yellow phosphor. White LED devices 11 each having a correlated color temperature (Tc) of 5000 K and a color rendering property (Ra) of 70 are prepared using a phosphor coating solution in which a red phosphor is blended at a predetermined blending ratio. In Example 2, the fluorescence of the phosphor portion 13 is set so that the blue LED chip 21 has a wavelength of 455 nm, that is, a predetermined color temperature range when the blue LED chip 21 having the maximum dominant wavelength is used. The composition ratio of the phosphor is set, but when the blue LED chip 21 having the minimum dominant wavelength (452 nm in this case) is used, the composition ratio of the phosphor of the phosphor portion 13 is set so that the predetermined color temperature range is obtained. May be.

さらに、実施例3は、青色LEDチップ21の主波長(λd)として、452nm(最小値)、455nm(中央値)および458nm(最大値)のものをそれぞれ用い、蛍光体部13の蛍光体としては、黄色蛍光体、緑色蛍光体および赤色蛍光体を所定の配合比で配合した蛍光体塗布液を用いて、相関色温度(Tc)が5000K、演色性(Ra)が80の白色LED装置11をそれぞれ作成したものである。なお、この実施例3では、青色LEDチップ21の波長が455nmのものを用いたときに所定の色温度範囲となるように、蛍光体部13の蛍光体の配合比を設定した。   Further, in Example 3, the main wavelength (λd) of the blue LED chip 21 is 452 nm (minimum value), 455 nm (median value), and 458 nm (maximum value), respectively. Is a white LED device 11 having a correlated color temperature (Tc) of 5000 K and a color rendering property (Ra) of 80 using a phosphor coating liquid in which a yellow phosphor, a green phosphor and a red phosphor are blended at a predetermined blending ratio. Are created. In Example 3, the blending ratio of the phosphors in the phosphor portion 13 was set so that a predetermined color temperature range was obtained when the blue LED chip 21 having a wavelength of 455 nm was used.

そして、これら実施例1ないし実施例3に対して、蛍光分光光度計(FP−6500、日本分光株式会社製)により測色評価を行った。その結果を、図3ないし図5に示す。   Then, a colorimetric evaluation was performed on these Examples 1 to 3 using a fluorescence spectrophotometer (FP-6500, manufactured by JASCO Corporation). The results are shown in FIGS.

これら実施例に示すように、同一の配合比で配合した蛍光体塗布液を用いて蛍光体部13を構成した場合、青色LEDチップ21の波長が長いほど演色性が向上した(図6)。このとき、相関色温度は若干変化するものの、特に使用状態において違和感のない範囲に留まっている。具体的に、相関色温度が3200Kの場合には±200K以内、相関色温度が5000Kの場合には±300K以内、相関色温度が6600Kの場合には±500K以内であれば、それぞれ使用状態において違和感がない範囲であり、上記各白色LED装置11は、このような色温度範囲内の変化に留まっているため、問題なく使用することができる。   As shown in these examples, when the phosphor portion 13 was configured using phosphor coating liquids blended at the same blending ratio, the color rendering was improved as the wavelength of the blue LED chip 21 was longer (FIG. 6). At this time, although the correlated color temperature slightly changes, it remains in a range where there is no sense of incongruity particularly in the use state. Specifically, when the correlated color temperature is 3200K, within ± 200K, when the correlated color temperature is 5000K, within ± 300K, and when the correlated color temperature is 6600K, within ± 500K, The white LED devices 11 are in a range in which there is no sense of incongruity, and the white LED devices 11 remain in such a change within the color temperature range, and can be used without any problem.

このように、上記一実施の形態では、蛍光体部13の複数の色に対応する蛍光体の配合比を固定した状態で青色LEDチップ21の最小の主波長と最大の主波長との差が10nm以内となるように青色LEDチップ21の主波長を選択することで演色性を調整する。すなわち、上記一実施の形態では、主波長範囲が10nm以内となる複数種類の青色LEDチップ21を用意しておき、これら青色LEDチップ21の中からいずれかを選択して用いることにより所望の演色性を得る。このため、膨大な蛍光体の配合比の仕様を用意することなく演色性を平均演色評価数Raの約5ポイント範囲で微調整することが可能になる。この結果、蛍光体の膨大な配合比仕様を用いる従来の場合では、演色性を平均演色評価数Raの5ポイント程度の範囲で微調整することが容易でなく、また、配合比仕様の複雑な情報管理および維持などが必要で、かつ、蛍光体塗布液の変え頻度による時間のロスなどがあったのに対して、上記一実施の形態では、これらが必要なく、互いに主波長が異なる数種類の青色LEDチップ21を用意するのみで演色性が互いに異なる複数種類の白色LED装置11を効率よく製造できるので、製造性の向上および低コスト化を可能としつつ、色特性と演色性とを両立できる。   As described above, in the above-described embodiment, the difference between the minimum main wavelength and the maximum main wavelength of the blue LED chip 21 is fixed in a state where the mixing ratio of the phosphors corresponding to the plurality of colors of the phosphor portion 13 is fixed. The color rendering properties are adjusted by selecting the dominant wavelength of the blue LED chip 21 to be within 10 nm. That is, in the above-described embodiment, a plurality of types of blue LED chips 21 having a dominant wavelength range of 10 nm or less are prepared, and a desired color rendering is achieved by selecting one of these blue LED chips 21 and using it. Get sex. For this reason, it is possible to finely adjust the color rendering properties within the range of about 5 points of the average color rendering index Ra without preparing specifications for the enormous phosphor blend ratio. As a result, in the conventional case using an enormous blending ratio specification of the phosphor, it is not easy to finely adjust the color rendering in a range of about 5 points of the average color rendering index Ra, and the blending ratio specification is complicated. Information management and maintenance are necessary, and there is a time loss due to the frequency of changing the phosphor coating liquid, whereas in the above embodiment, these are not necessary, and several types of main wavelengths are different from each other. Multiple types of white LED devices 11 having different color rendering properties can be efficiently manufactured simply by preparing the blue LED chip 21, so that both the color characteristics and the color rendering properties can be achieved while improving the productivity and reducing the cost. .

しかも、青色LEDチップ21を、主波長範囲を10nm以内として選択することにより、いずれの青色LEDチップ21を用いた場合でも、白色LED装置11の相関色温度を所望の色温度範囲内に制御できる。   Moreover, by selecting the blue LED chip 21 so that the main wavelength range is within 10 nm, the correlated color temperature of the white LED device 11 can be controlled within the desired color temperature range regardless of which blue LED chip 21 is used. .

また、波長が450nm〜465nmの青色LEDチップ21は、特性が良好であることに加え、例えばYAG系の蛍光体と組み合わせた際には、その励起特性の観点からも有意であるので、発光効率が高い白色LED装置11を得ることができる。   In addition, the blue LED chip 21 having a wavelength of 450 nm to 465 nm is not only excellent in characteristics but also significant in terms of its excitation characteristics when combined with, for example, a YAG-based phosphor. Can be obtained.

さらに、蛍光体部13の各蛍光体の配合比を、互いに異なる複数の主波長を有する複数種類の青色LEDチップ21のうち、主波長が中央値となる青色LEDチップ21、換言すれば、主波長範囲の中央値の主波長を有する青色LEDチップ21に対して所定の色温度範囲となるように設定することにより、複数種類の青色LEDチップ21のいずれを用いた白色LED装置11でも所望の色温度範囲内としつつ、演色性のみを調整できる。   Further, the mixing ratio of the phosphors in the phosphor portion 13 is set such that, among a plurality of types of blue LED chips 21 having a plurality of different main wavelengths, the blue LED chip 21 having the center value of the main wavelengths, in other words, By setting the blue LED chip 21 having the principal wavelength of the median wavelength range to have a predetermined color temperature range, the white LED device 11 using any of the plurality of types of blue LED chips 21 can also have a desired color temperature range. Only the color rendering property can be adjusted while keeping the color temperature range.

なお、上記一実施の形態において、青色LEDチップ21の配置および主波長は、上記構成に限定されるものではない。   In the above embodiment, the arrangement and the dominant wavelength of the blue LED chip 21 are not limited to the above configuration.

また、LEDチップは、青色LEDチップに限定されるものではなく、蛍光体の色も、LEDチップの発光色に対応させて適宜設定できる。   The LED chip is not limited to the blue LED chip, and the color of the phosphor can be appropriately set in accordance with the emission color of the LED chip.

11 LED装置である白色LED装置
12 基板
13 蛍光体部
21 LEDチップとしての青色LEDチップ
11 White LED device which is LED device
12 Board
13 Phosphor part
21 Blue LED chip as LED chip

Claims (2)

基板に配置したLEDチップ、および、このLEDチップの発光により励起される複数の色に対応する蛍光体が所定の配合比で配合されてこのLEDチップを覆う蛍光体部を備えたLED装置の製造方法であって、
蛍光体部の蛍光体の配合比を固定した状態でLEDチップの最小の主波長と最大の主波長との差が10nm以内となるようにLEDチップの主波長を選択することにより演色性を調整する
ことを特徴とするLED装置の製造方法。
Manufacture of an LED device including an LED chip disposed on a substrate and a phosphor portion that covers a plurality of phosphors corresponding to a plurality of colors excited by light emission of the LED chip at a predetermined blending ratio. A method,
Color rendering properties are adjusted by selecting the main wavelength of the LED chip so that the difference between the minimum main wavelength and the maximum main wavelength of the LED chip is within 10 nm with the phosphor compounding ratio of the phosphor part fixed. A method for manufacturing an LED device.
蛍光体の配合比を、互いに異なる複数の主波長を有する複数種類のLEDチップのうち、主波長が中央値となるLEDチップに対して所定の色温度範囲となるように設定する
ことを特徴とする請求項1記載のLED装置の製造方法。
The compounding ratio of the phosphors is set so as to be within a predetermined color temperature range with respect to the LED chip having a central wavelength among a plurality of types of LED chips having a plurality of different main wavelengths. The manufacturing method of the LED device of Claim 1.
JP2009017074A 2009-01-28 2009-01-28 Manufacturing method of LED device Expired - Fee Related JP5344149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017074A JP5344149B2 (en) 2009-01-28 2009-01-28 Manufacturing method of LED device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017074A JP5344149B2 (en) 2009-01-28 2009-01-28 Manufacturing method of LED device

Publications (2)

Publication Number Publication Date
JP2010177368A true JP2010177368A (en) 2010-08-12
JP5344149B2 JP5344149B2 (en) 2013-11-20

Family

ID=42708034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017074A Expired - Fee Related JP5344149B2 (en) 2009-01-28 2009-01-28 Manufacturing method of LED device

Country Status (1)

Country Link
JP (1) JP5344149B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192459A (en) * 2015-03-31 2016-11-10 日亜化学工業株式会社 Light-emitting device
WO2017030278A1 (en) * 2015-08-17 2017-02-23 주식회사 프로텍 Led device manufacturing method and led device manufacturing apparatus using phosphorescent liquid spraying method
US10648911B2 (en) 2016-11-30 2020-05-12 Nichia Corporation Light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183986A (en) * 2003-12-19 2005-07-07 Agilent Technol Inc Method and apparatus for producing clean white light by using off-white light emitting diode
JP2007536729A (en) * 2004-05-06 2007-12-13 ソウル オプト デバイス カンパニー リミテッド Light emitting device
JP2008258356A (en) * 2007-04-04 2008-10-23 Sharp Corp Illuminating light source and illuminator comprising the same
JP2008283155A (en) * 2007-05-14 2008-11-20 Sharp Corp Light emitting device, lighting device, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183986A (en) * 2003-12-19 2005-07-07 Agilent Technol Inc Method and apparatus for producing clean white light by using off-white light emitting diode
JP2007536729A (en) * 2004-05-06 2007-12-13 ソウル オプト デバイス カンパニー リミテッド Light emitting device
JP2008258356A (en) * 2007-04-04 2008-10-23 Sharp Corp Illuminating light source and illuminator comprising the same
JP2008283155A (en) * 2007-05-14 2008-11-20 Sharp Corp Light emitting device, lighting device, and liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192459A (en) * 2015-03-31 2016-11-10 日亜化学工業株式会社 Light-emitting device
WO2017030278A1 (en) * 2015-08-17 2017-02-23 주식회사 프로텍 Led device manufacturing method and led device manufacturing apparatus using phosphorescent liquid spraying method
US10648911B2 (en) 2016-11-30 2020-05-12 Nichia Corporation Light emitting device
US11018471B2 (en) 2016-11-30 2021-05-25 Nichia Corporation Method of producing light emitting device

Also Published As

Publication number Publication date
JP5344149B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
US7893445B2 (en) Solid state emitter package including red and blue emitters
TWI463636B (en) High cri lighting device with added long-wavelength blue color
JP5864851B2 (en) Light emitting device
JP5181505B2 (en) Light emitting device
US20200126958A1 (en) Light source with tunable cri
US20200194617A1 (en) Method for manufacturing light emitting unit
JP5056520B2 (en) Lighting device
JP2008218485A (en) Light emitting device
JP2008218486A (en) Light emitting device
KR20050108816A (en) Light emitting device with rgb diodes and phosphor converter
JP5834257B2 (en) Variable color light emitting device and lighting apparatus using the same
JP2009065137A (en) Light-emitting device
JP7184852B2 (en) Lighting device having mounting board for LED lighting
JP2012174420A (en) Light-emitting device
JP2009111273A (en) Light-emitting device
JP2008218998A (en) Light emitting device
JP2018056474A (en) Light-emitting device and method for manufacturing light-emitting device
JP5918827B2 (en) Light emitting device
JP5344149B2 (en) Manufacturing method of LED device
JP2016157965A (en) Light-emitting device, luminaire arranged by use thereof, and display device
JP2009260319A (en) Lighting device
JP2008235552A (en) Method of manufacturing light-emitting apparatus and light-emitting apparatus
JP2008244469A (en) Light-emitting device
JP2015106502A (en) Luminaire
EP2830093B1 (en) LED-module with high color rendering index

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

LAPS Cancellation because of no payment of annual fees