JP2010177009A - Cell of fuel cell - Google Patents

Cell of fuel cell Download PDF

Info

Publication number
JP2010177009A
JP2010177009A JP2009017682A JP2009017682A JP2010177009A JP 2010177009 A JP2010177009 A JP 2010177009A JP 2009017682 A JP2009017682 A JP 2009017682A JP 2009017682 A JP2009017682 A JP 2009017682A JP 2010177009 A JP2010177009 A JP 2010177009A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
gasket
membrane
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009017682A
Other languages
Japanese (ja)
Other versions
JP5447777B2 (en
Inventor
Yoshihiro Kurano
慶宏 蔵野
Kenichi Kikuchi
健一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2009017682A priority Critical patent/JP5447777B2/en
Publication of JP2010177009A publication Critical patent/JP2010177009A/en
Application granted granted Critical
Publication of JP5447777B2 publication Critical patent/JP5447777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration and degradation of strength in a power generating body 10 and a separator 20 caused by integrally molding a gasket 30, and deterioration of power generating efficiency, in a cell of a fuel cell in which the power generating body 10 is integrated with the separator 20 disposed on one side thereof through the gasket 30. <P>SOLUTION: This cell of the fuel cell includes the power generating body 10 formed by laminating and integrating gas diffusion layers 12, 13 on both sides in the thickness direction of a membrane electrode assembly 11 having electrode layers provided on both surfaces of an electrode membrane, a separator 20 disposed on one side of the power generating body 10, and the gasket 30 made of a rubber-like elastic material, which is disposed along the fringe part of the power generating body 10 and bonded to the separator 20 through an adhesive 34, and a locking portion 33 to lock the power generating body 10 to the separator 20 is formed in the gasket 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、膜−電極複合体及びその厚さ方向両側に積層された多孔質の第一ガス拡散層からなる発電体と、これに積層されるセパレータとを、ガスケットを介して一体化した燃料電池セルに関するものである。   The present invention relates to a fuel in which a power generation body composed of a membrane-electrode assembly and a porous first gas diffusion layer laminated on both sides in the thickness direction thereof and a separator laminated thereon are integrated via a gasket. The present invention relates to a battery cell.

図8は、従来の燃料電池セルを積層した燃料電池の一部を示す断面図、図9は、図8の燃料電池を構成する従来の燃料電池セルの一部を示す断面図である。   FIG. 8 is a cross-sectional view showing a part of a fuel cell in which conventional fuel cells are stacked, and FIG. 9 is a cross-sectional view showing a part of a conventional fuel cell constituting the fuel cell of FIG.

図8に示されるように、燃料電池は、多数の燃料電池セル100を積層して締結したスタック構造を有する。各燃料電池セル100としては、図9に示されるように、電解質膜(イオン交換膜)の両面に一対の電極層を設けた膜−電極複合体(MEA:Membrane Electrode Assembly)111の厚さ方向両側に、多孔質体からなるガス拡散層(GDL:Gas Diffusion Layer)112,113を積層一体化した発電体110と、その一側に配置され、カーボンあるいは導電性金属からなるセパレータ120を積層したものが知られている。   As shown in FIG. 8, the fuel cell has a stack structure in which a large number of fuel cells 100 are stacked and fastened. As shown in FIG. 9, each fuel battery cell 100 has a thickness direction of a membrane-electrode assembly (MEA) 111 in which a pair of electrode layers are provided on both surfaces of an electrolyte membrane (ion exchange membrane). On both sides, a power generation body 110 in which gas diffusion layers (GDL: Gas Diffusion Layer) 112 and 113 made of a porous material are laminated and integrated, and a separator 120 made of carbon or a conductive metal, which is arranged on one side, are laminated. Things are known.

この種の燃料電池は、各燃料電池セル100において、酸化ガス(空気)が、発電体110におけるガス拡散層112,113のうちの一方を介して膜−電極複合体111のカソード側に供給され、燃料ガス(水素)が、ガス拡散層112,113のうちの他方を介して膜−電極複合体111のアノード側に供給され、水の電気分解の逆反応、すなわち水素と酸素から水を生成する反応によって電力を発生するものである。また、各燃料電池セル100の起電力は低いものであるが、多数の燃料電池セル100を積層して電気的に直列に接続することにより、必要な起電力が得られるようになっている。   In this type of fuel cell, in each fuel cell 100, oxidizing gas (air) is supplied to the cathode side of the membrane-electrode assembly 111 through one of the gas diffusion layers 112 and 113 in the power generator 110. The fuel gas (hydrogen) is supplied to the anode side of the membrane-electrode assembly 111 through the other of the gas diffusion layers 112 and 113, and the reverse reaction of water electrolysis, that is, water is generated from hydrogen and oxygen. Electric power is generated by the reaction. Moreover, although the electromotive force of each fuel battery cell 100 is low, a required electromotive force can be obtained by stacking a large number of fuel battery cells 100 and electrically connecting them in series.

発電体110の端縁部や開口縁部には、燃料ガスや酸化ガス、その反応によって生成した水や余剰ガスなどが外部へ漏れたり混合したりしないように、ゴム状弾性材料(ゴム系材料あるいはゴム状弾性を有する合成樹脂系材料)からなるガスケット130が配置されている。   A rubber-like elastic material (rubber-based material) is used to prevent fuel gas, oxidizing gas, water generated by the reaction, excess gas, etc. from leaking or mixing outside at the edge or opening edge of the power generator 110. Alternatively, a gasket 130 made of a synthetic resin material having rubber-like elasticity is disposed.

ガスケット130は、その成形に際してゴム系又は樹脂系の低粘度又は液状の成形材料の一部を発電体110におけるガス拡散層112,113の縁部(周縁部及び開口縁部)に含浸させると共に、予め接着剤を塗布したセパレータ120に接触させた状態で、前記成形材料を硬化させることによって、ガス拡散層112,113に形成された含浸領域112a,113aを介して発電体110に一体的に接合され、かつセパレータ120にも接着一体化されたものとなっている。そしてこのガスケット130は、図9に示されるように山形の主シールリップ130aを有し、この主シールリップ130aが、図8に示される積層状態では積層荷重によってつぶされ、隣接する燃料電池セル100のセパレータ120に密接されることによって、所要の密封機能を奏する。   The gasket 130 impregnates the edges (peripheral edge and opening edge) of the gas diffusion layers 112 and 113 in the power generator 110 with a part of a rubber-based or resin-based low-viscosity or liquid molding material during molding. The molding material is cured in a state where it is in contact with the separator 120 to which an adhesive has been applied in advance, so that it is integrally joined to the power generator 110 via the impregnation regions 112a and 113a formed in the gas diffusion layers 112 and 113. In addition, the separator 120 is also bonded and integrated. The gasket 130 has an angled main seal lip 130a as shown in FIG. 9, and this main seal lip 130a is crushed by the stacking load in the stacked state shown in FIG. By being in close contact with the separator 120, a required sealing function is achieved.

なお、ガスケットをガス拡散層及びセパレータに成形材料の含浸領域を介して一体化する技術としては、下記の特許文献に開示されたものが知られている。   In addition, what was disclosed by the following patent document is known as a technique which integrates a gasket to a gas diffusion layer and a separator through the impregnation region of a molding material.

ところが、上述のように構成された燃料電池セル100は、発電体110及びセパレータ120が、ガスケット130を介して一体化された構造となるため、部品数が少なくなると共に、積層ずれなどが発生しにくいものとすることができるが、その反面、発電体110及びセパレータ120を金型内に配置してガスケット130を一体成形する際に、これら発電体110及びセパレータ120が型締めによる機械的ダメージや、金型の加熱による熱的ダメージを受けることが懸念される。特に、膜−電極複合体111における電解質膜の熱的ダメージを防止することは重要であり、このため成形条件が制約される問題があった。   However, since the fuel cell 100 configured as described above has a structure in which the power generator 110 and the separator 120 are integrated via the gasket 130, the number of components is reduced and stacking deviation occurs. However, on the other hand, when the power generator 110 and the separator 120 are placed in the mold and the gasket 130 is integrally formed, the power generator 110 and the separator 120 may be mechanically damaged by clamping. There is a concern that the mold may be thermally damaged by heating. In particular, it is important to prevent thermal damage to the electrolyte membrane in the membrane-electrode assembly 111, which has a problem that the molding conditions are restricted.

また、金属多孔質体などからなるガス拡散層112,113の縁部に、成形材料の一部を含浸させながらガスケット130を成形する際には、成形材料の充填圧力や粘度等を一定にしても、ガス拡散層112,113の気孔率(空隙率)にはバラつきがあるため、成形材料の含浸領域112a,113aの大きさを適切にコントロールすることが困難である。その結果、含浸領域112a,113aが狭すぎる場合はガスケット130と発電体110との接合強度の低下やガスの浸透漏れに対するシール性の低下を来たし、逆に含浸領域112a,113aが広すぎる場合は、その分、発電体110における発電領域110a(図9参照)が狭くなって、発電効率の低下を来たす問題があった。   Further, when the gasket 130 is molded while impregnating a part of the molding material at the edges of the gas diffusion layers 112 and 113 made of a metal porous body or the like, the filling pressure or viscosity of the molding material is kept constant. However, since the porosity (porosity) of the gas diffusion layers 112 and 113 varies, it is difficult to appropriately control the size of the impregnation regions 112a and 113a of the molding material. As a result, when the impregnation regions 112a and 113a are too narrow, the bonding strength between the gasket 130 and the power generation body 110 is lowered and the sealing performance against gas permeation leakage is lowered. Conversely, when the impregnation regions 112a and 113a are too wide, As a result, the power generation region 110a (see FIG. 9) in the power generation body 110 is narrowed, resulting in a problem that power generation efficiency is lowered.

このため、金型の内面に突起を形成して、型締めの際にガス拡散層112,113の一部を前記突起で圧縮することによって成形材料の含浸を制限する方法や、予めガス拡散層112,113に、成形材料の含浸を制限するための目止め処理を行う方法が考えられるが、前者の方法ではガス拡散層112,113が圧縮によってダメージを受けるおそれがあり、後者の方法ではガス拡散層112,113に目止め処理を行う工程が必要になる。   Therefore, a method of limiting the impregnation of the molding material by forming protrusions on the inner surface of the mold and compressing part of the gas diffusion layers 112 and 113 with the protrusions at the time of clamping, A method of performing sealing treatment to limit the impregnation of the molding material to 112 and 113 is conceivable. However, in the former method, the gas diffusion layers 112 and 113 may be damaged by compression. A step of performing a sealing process on the diffusion layers 112 and 113 is required.

さらに、水素と酸素の反応による発電過程で生成される水の排出性を良好にするためには、セパレータ120の表面には適度な濡れ性が求められるが、ガスケット130を一体成形した場合、加硫の際に発生するガスがセパレータ120の表面の濡れ性に悪影響を与えるおそれがあった。   Furthermore, in order to improve the drainage of water generated during the power generation process due to the reaction between hydrogen and oxygen, the surface of the separator 120 is required to have an appropriate wettability. There is a possibility that the gas generated during the sulfurization adversely affects the wettability of the surface of the separator 120.

特開2002−160257号公報JP 2002-160257 A

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、膜−電極複合体及びガス拡散層からなる発電体とその一側に配置されたセパレータが、ガスケットを介して一体化された燃料電池セルにおいて、前記発電体及びセパレータの強度低下や熱による劣化、及び発電効率の低下を防止することにある。   The present invention has been made in view of the above points, and its technical problem is that a power generation body comprising a membrane-electrode composite and a gas diffusion layer and a separator disposed on one side thereof are gaskets. In the fuel cell united through the above, the strength of the power generator and the separator, the deterioration due to heat, and the decrease in power generation efficiency are prevented.

上述した技術的課題を有効に解決するための手段として、本発明に係る燃料電池セルは、電解質膜の両面に電極層を設けた膜−電極複合体の厚さ方向両側にガス拡散層を積層一体化した発電体と、この発電体の一側に配置されるセパレータと、前記発電体の縁部に沿って配置されると共に前記セパレータに接着剤を介して接着されるゴム状弾性材料からなるガスケットとを備え、このガスケットに、前記発電体を前記セパレータに係止する係止部を形成したものである。   As a means for effectively solving the technical problem described above, the fuel cell according to the present invention has a gas diffusion layer laminated on both sides in the thickness direction of a membrane-electrode composite in which electrode layers are provided on both sides of an electrolyte membrane. An integrated power generator, a separator disposed on one side of the power generator, and a rubber-like elastic material disposed along an edge of the power generator and bonded to the separator via an adhesive A gasket is provided, and a locking portion for locking the power generator to the separator is formed on the gasket.

なお、ここでいう「発電体の縁部」とは、発電体の外周縁部や開口縁部を総称するものであり、「ゴム状弾性材料」とは、ゴム系材料あるいはゴム状弾性を有する合成樹脂系材料をいう。   Here, “the edge of the power generator” is a general term for the outer peripheral edge and the opening edge of the power generator, and “rubber-like elastic material” is a rubber-based material or rubber-like elasticity. A synthetic resin material.

また、上記構成において一層好ましくは、係止部が、発電体の他側のガス拡散層から露出させた膜−電極複合体に適当な面圧で密接されるシール面と、当該燃料電池セルの積層状態において前記発電体の他側に位置するセパレータに適当な面圧で密接されるシール面を有するものである。   Further, in the above configuration, more preferably, the locking portion is a seal surface that is brought into close contact with the membrane-electrode assembly exposed from the gas diffusion layer on the other side of the power generator with an appropriate surface pressure, and the fuel cell. In the laminated state, it has a sealing surface that is brought into close contact with a separator located on the other side of the power generator with an appropriate surface pressure.

請求項1の発明に係る燃料電池セルによれば、ガスケットを発電体のガス拡散層に含浸成形により一体成形することなく発電体とセパレータとガスケットを一体に有する構造とすることができる。このため、膜−電極複合体及びガス拡散層からなる発電体とその一側に配置されたセパレータが、ガスケットの一体成形の際の型締めによる強度低下や、熱による悪影響を受けるおそれがなく、セパレータの濡れ性の悪化を来たすおそれがなく、ガスケット成形材料の含浸による発電効率の低下を来たすこともない。   According to the fuel battery cell of the first aspect of the present invention, the power generator, the separator and the gasket can be integrally formed without integrally forming the gasket in the gas diffusion layer of the power generator by impregnation molding. For this reason, the power generation body composed of the membrane-electrode composite and the gas diffusion layer and the separator disposed on one side thereof are not likely to be adversely affected by heat reduction due to mold clamping during the integral molding of the gasket, or by heat, There is no risk of deterioration of the wettability of the separator, and power generation efficiency is not reduced due to the impregnation of the gasket molding material.

また、請求項2の発明に係る燃料電池セルによれば、燃料電池セルの積層状態において、ガスケットの係止部が発電体の膜−電極複合体とセパレータの間に密接された状態で、ガスケットが発電体の縁部を覆った構造となるため、ガス拡散層から反応ガスが膜−電極複合体の縁部を回り込んでクロスリークするのを有効に遮断することができる。   According to the fuel cell of the invention of claim 2, in the stacked state of the fuel cell, the gasket is held in a state in which the engaging portion of the gasket is in intimate contact between the membrane-electrode assembly of the power generator and the separator. Since the structure covers the edge of the power generation body, it is possible to effectively block the reaction gas from flowing around the edge of the membrane-electrode assembly from the gas diffusion layer and cross leaking.

本発明に係る第一の形態の燃料電池セルを積層した燃料電池を示す部分断面図である。It is a fragmentary sectional view showing the fuel cell which laminated the fuel cell of the 1st form concerning the present invention. 本発明に係る第一の形態の燃料電池セルを示す組み立て前の状態の部分断面図である。It is a fragmentary sectional view of the state before an assembly showing the fuel cell of the 1st form concerning the present invention. 本発明に係る第一の形態の燃料電池セルを示す組み立て状態の部分断面図である。It is a fragmentary sectional view of the assembly state which shows the fuel cell of the 1st form which concerns on this invention. 本発明に係る第二の形態の燃料電池セルを示す組み立て前の状態の部分断面図である。It is a fragmentary sectional view of the state before an assembly showing the fuel cell of the 2nd form concerning the present invention. 本発明に係る第二の形態の燃料電池セルを示す組み立て状態の部分断面図である。It is a fragmentary sectional view of the assembly state which shows the fuel cell of the 2nd form which concerns on this invention. 本発明に係る第三の形態の燃料電池セルを示す組み立て前の状態の部分断面図である。It is a fragmentary sectional view of the state before the assembly which shows the fuel cell of the 3rd form concerning the present invention. 本発明に係る第三の形態の燃料電池セルを示す組み立て状態の部分断面図である。It is a fragmentary sectional view of the assembly state which shows the fuel cell of the 3rd form which concerns on this invention. 従来の燃料電池セルを積層した燃料電池を示す部分断面図である。It is a fragmentary sectional view which shows the fuel cell which laminated | stacked the conventional fuel cell. 従来の燃料電池セルを示す部分断面図である。It is a fragmentary sectional view showing the conventional fuel cell.

以下、本発明に係る燃料電池セルについて、図面を参照しながら詳細に説明する。まず図1は、第一の形態の燃料電池セルを積層した燃料電池を示す部分断面図、図2は、第一の形態の燃料電池セルを示す組み立て前の状態の部分断面図、図3は、第一の形態の燃料電池セルを示す組み立て状態の部分断面図である。   Hereinafter, a fuel cell according to the present invention will be described in detail with reference to the drawings. First, FIG. 1 is a partial cross-sectional view showing a fuel cell in which fuel cells of the first embodiment are stacked, FIG. 2 is a partial cross-sectional view of a fuel cell of the first embodiment before assembly, and FIG. It is a fragmentary sectional view of the assembly state which shows the fuel cell of a 1st form.

図1に示される燃料電池は、多数の燃料電池セル1を積層して締結したスタック構造を有する。各燃料電池セル1は、図2に示されるように、電解質膜(イオン交換膜)の両面に一対の電極層(アノード及びカソード)を設けた膜−電極複合体(MEA:Membrane Electrode Assembly)11の厚さ方向両側に、金属多孔質体等からなるガス拡散層(GDL:Gas Diffusion Layer)12,13を積層一体化した発電体10と、その一側に配置され、カーボンあるいは導電性金属からなるセパレータ20と、発電体10の縁部に沿って配置されると共に前記セパレータ20に接着剤34を介して接着されるゴム系材料あるいはゴム状弾性を有する合成樹脂系材料からなるガスケット30とを備える。   The fuel cell shown in FIG. 1 has a stack structure in which a large number of fuel cells 1 are stacked and fastened. As shown in FIG. 2, each fuel cell 1 includes a membrane-electrode assembly (MEA) 11 in which a pair of electrode layers (anode and cathode) are provided on both surfaces of an electrolyte membrane (ion exchange membrane). A power generation body 10 in which gas diffusion layers (GDL: Gas Diffusion Layer) 12 and 13 made of a metal porous body or the like are laminated and integrated on both sides in the thickness direction, and is disposed on one side thereof, and is made of carbon or conductive metal. And a gasket 30 made of a rubber-based material or a synthetic resin-based material having rubber-like elasticity, which is disposed along the edge of the power generator 10 and is bonded to the separator 20 via an adhesive 34. Prepare.

セパレータ20には、反応ガスすなわち燃料ガス及び酸化ガスを発電体10における膜−電極複合体11のアノード側及びカソード側に供給し、あるいは燃料ガスと酸化ガスの電気化学的反応による生成水を排出し、あるいは冷却水を供給・排出させるためのマニホールド孔が開設されている。そして発電体10におけるガス拡散層12,13は、セパレータ20の供給側マニホールド孔と排出側マニホールド孔の間で、燃料ガス及び酸化ガスを流通させるガス流路をなすものである。   The separator 20 is supplied with a reactive gas, that is, a fuel gas and an oxidizing gas, to the anode side and the cathode side of the membrane-electrode assembly 11 in the power generation body 10 or discharges water generated by an electrochemical reaction between the fuel gas and the oxidizing gas. Alternatively, a manifold hole is provided for supplying and discharging cooling water. The gas diffusion layers 12 and 13 in the power generation body 10 form a gas flow path for allowing the fuel gas and the oxidizing gas to flow between the supply-side manifold hole and the discharge-side manifold hole of the separator 20.

発電体10はセパレータ20よりも面積が小さく、すなわちこの発電体10の外周縁部あるいはマニホールド孔の周囲に位置する縁部は、セパレータ20の縁部(外周縁部あるいはマニホールド孔の開口縁部)20aより一定幅w1だけ後退している。 The power generation body 10 has a smaller area than the separator 20, that is, the edge located around the outer peripheral edge or manifold hole of the power generation body 10 is the edge of the separator 20 (outer peripheral edge or opening edge of the manifold hole). It is retracted by a certain width w 1 from 20a.

発電体10における膜−電極複合体11及びその一側のガス拡散層12は互いに同一面積であって、その縁部11a,12aが互いに揃っているのに対し、他側のガス拡散層13は、前記膜−電極複合体11及びガス拡散層12よりも面積がやや小さく、他側のガス拡散層13の外周縁部あるいはマニホールド孔の周囲に位置する縁部13aは、膜−電極複合体11及びガス拡散層12の縁部11a,12aより一定幅w2だけ後退している。このため、発電体10の縁部は段差状をなしていて、膜−電極複合体11の縁部11aは、他側のガス拡散層13の縁部13aから張り出して露出している。 The membrane-electrode assembly 11 and the gas diffusion layer 12 on one side of the power generation body 10 have the same area and the edges 11a and 12a are aligned with each other, whereas the gas diffusion layer 13 on the other side is The membrane-electrode assembly 11 and the gas diffusion layer 12 have a slightly smaller area, and the edge 13a located on the outer peripheral edge of the gas diffusion layer 13 on the other side or around the manifold hole is formed on the membrane-electrode assembly 11. and edge 11a of the gas diffusion layer 12, are retracted by a predetermined width w 2 than 12a. For this reason, the edge of the power generation body 10 has a stepped shape, and the edge 11a of the membrane-electrode assembly 11 protrudes from the edge 13a of the gas diffusion layer 13 on the other side and is exposed.

ガスケット30は、不図示の金型によって発電体10及びセパレータ20とは別部材として成形されたものであって、発電体10の縁部に沿って延在されると共にセパレータ20に接着により一体化されている。このガスケット30をなすゴム系材料あるいはゴム状弾性を有する合成樹脂系材料としては、成分の溶出性が少なく、燃料電池内部の使用環境で所要の耐性を有するものであればとくに制限はないが、例えばFKM(フッ素ゴム)、VMQ(シリコーンゴム)、EPDM(エチレンプロピレンゴム)などが好適に採用可能である。   The gasket 30 is formed as a separate member from the power generation body 10 and the separator 20 by a mold (not shown), and extends along the edge of the power generation body 10 and is integrated with the separator 20 by bonding. Has been. The rubber-based material constituting the gasket 30 or the synthetic resin-based material having rubber-like elasticity is not particularly limited as long as it has less elution of components and has a required resistance in the use environment inside the fuel cell. For example, FKM (fluorine rubber), VMQ (silicone rubber), EPDM (ethylene propylene rubber), etc. can be suitably employed.

そしてこのガスケット30は、セパレータ20における縁部20aに沿った部分の片面に接着剤34を介して一体的に接着される基部31と、この基部31における接着面と反対側に断面山形に隆起形成された主シールリップ32と、前記基部31における発電体10側の側面上部から延びる係止部33とを有する。ガスケット30の基部31の上面には、主シールリップ32の両側に沿って延びる谷部31a,31bが形成されている。   The gasket 30 has a base 31 integrally bonded to one side of the separator 20 along the edge 20a via an adhesive 34, and a ridge formed in a cross-sectional mountain shape on the opposite side of the base 31 from the bonding surface. The main seal lip 32 is formed, and a locking portion 33 extending from the upper portion of the base portion 31 on the side of the power generator 10. Valley portions 31 a and 31 b extending along both sides of the main seal lip 32 are formed on the upper surface of the base portion 31 of the gasket 30.

ガスケット30の基部31は、セパレータ20の縁部20aと、それより幅w1だけ後退した発電体10の膜−電極複合体11及びその一側のガス拡散層12の縁部11a,12aとによる段差部に収まる大きさとなっており、その高さh1は、発電体10の厚さtとほぼ等しく、主シールリップ32の高さh2は、発電体10の厚さtより適宜大きく、係止部33は、発電体10における膜−電極複合体11の縁部11aと、それより幅w2だけ後退した他側のガス拡散層13の縁部13aとによる段差部に収まる大きさとなっている。 The base portion 31 of the gasket 30 is formed by the edge portion 20a of the separator 20, the membrane-electrode assembly 11 of the power generation body 10 that is retracted by the width w 1 and the edge portions 11a and 12a of the gas diffusion layer 12 on one side thereof. The height h 1 is substantially equal to the thickness t of the power generation body 10, and the height h 2 of the main seal lip 32 is appropriately larger than the thickness t of the power generation body 10. The locking portion 33 has a size that can be accommodated in a stepped portion formed by the edge portion 11a of the membrane-electrode assembly 11 in the power generator 10 and the edge portion 13a of the gas diffusion layer 13 on the other side that is retracted by a width w 2 from the edge portion 11a. ing.

また、係止部33には、図1に示される燃料電池セル1の積層状態において発電体10の膜−電極複合体11の縁部11aに適当なつぶし代で密接されるビード状のシール面33aと、隣接する燃料電池セル1のセパレータ20に密接される平坦なシール面33bが形成されている。   In addition, the locking portion 33 has a bead-shaped sealing surface that is brought into close contact with the edge portion 11a of the membrane-electrode assembly 11 of the power generation body 10 in the stacked state of the fuel cell 1 shown in FIG. 33a and a flat sealing surface 33b that is in close contact with the separator 20 of the adjacent fuel cell 1 are formed.

以上の構成を備える第一の形態によれば、ガスケット30は、発電体10及びセパレータ20とは別部材として成形される。このため、先に説明したような含浸成形と異なり、使用すべきゴム系又は樹脂系の成形材料の粘度などの制約がなくなり、材料選定の自由度を高めることができ、成形材料の加硫の際に発生するガスがセパレータ20の表面やガス拡散層12,13の濡れ性に悪影響を与えるおそれもない。しかも、発電体10における膜−電極複合体11の耐熱性を考慮する必要がないため、加硫時の成形温度を高温(例えば150℃以上)に設定して短時間で成形することが可能になり、生産性の向上を図ることができる。   According to the first embodiment having the above configuration, the gasket 30 is molded as a separate member from the power generation body 10 and the separator 20. For this reason, unlike impregnation molding as described above, there are no restrictions such as the viscosity of rubber-based or resin-based molding materials to be used, the degree of freedom in material selection can be increased, and the vulcanization of molding materials can be increased. There is no possibility that the gas generated at this time adversely affects the wettability of the surface of the separator 20 and the gas diffusion layers 12 and 13. Moreover, since it is not necessary to consider the heat resistance of the membrane-electrode assembly 11 in the power generation body 10, it is possible to perform molding in a short time by setting the molding temperature during vulcanization to a high temperature (for example, 150 ° C. or higher). Thus, productivity can be improved.

また、先に説明したような含浸成形のように、予めガス拡散層12,13に成形材料の予備含浸による目止め処理を行う必要がないので、工程の増大を来たさず、しかもガス拡散層12,13が目止め部の加硫のための余計な熱履歴を受けることもなく、ガス拡散層12,13が金型の型締めによる機械的ダメージを受けることもない。   Further, unlike the impregnation molding as described above, it is not necessary to preliminarily perform sealing treatment by pre-impregnation of the molding material on the gas diffusion layers 12 and 13, so that the number of processes does not increase and the gas diffusion does not occur. The layers 12 and 13 do not receive an extra heat history for vulcanization of the sealing portion, and the gas diffusion layers 12 and 13 do not receive mechanical damage due to mold clamping.

燃料電池セル1の組み立てに際しては、まず図2に示される組み立て前の状態から、発電体10をセパレータ20上に位置決めして載せる。次に、ガスケット30の基部31における主シールリップ32と反対側の面に破線で示される接着剤34を塗布し、この基部31を発電体10の縁部から張り出したセパレータ20の縁部20aの上面20bに接着する。このとき、ガスケット30をセパレータ20に接着するのに必要な荷重は、ガスケット30をセパレータ20に一体成形するための型締め圧力に比較すると十分に小さなもので良いため、セパレータ20の変形を来たすことはない。また、接着剤34の材料としては特に制約はないが、例えばゴム糊系やエポキシ系などの接着剤が好適に採用可能である。   When the fuel cell 1 is assembled, first, the power generator 10 is positioned and placed on the separator 20 from the state before assembly shown in FIG. Next, an adhesive 34 shown by a broken line is applied to the surface of the base portion 31 of the gasket 30 opposite to the main seal lip 32, and the base portion 31 of the edge portion 20a of the separator 20 protruding from the edge portion of the power generator 10 is applied. Adhere to the upper surface 20b. At this time, the load necessary to bond the gasket 30 to the separator 20 may be sufficiently smaller than the clamping pressure for integrally molding the gasket 30 to the separator 20, so that the separator 20 may be deformed. There is no. Moreover, there is no restriction | limiting in particular as a material of the adhesive agent 34, For example, adhesive agents, such as a rubber paste type | system | group and an epoxy type, can be employ | adopted suitably.

そして上述のように、ガスケット30の基部31をセパレータ20に接着することによって、前記基部31から延在された係止部33のビード状のシール面33aが発電体10の膜−電極複合体11の縁部11aに当接するので、この発電体10は、膜−電極複合体11の縁部11a及びその一側のガス拡散層12の縁部12aが、セパレータ20と係止部33の間に挟持された状態となって係止され、図3に示されるように発電体10とセパレータ20がガスケット30を介して一体化された燃料電池セル1が得られる。   Then, as described above, the base portion 31 of the gasket 30 is bonded to the separator 20, whereby the bead-shaped sealing surface 33 a of the locking portion 33 extending from the base portion 31 becomes the membrane-electrode assembly 11 of the power generator 10. Since the power generator 10 is in contact with the edge portion 11a of the membrane-electrode assembly 11, the edge portion 11a of the membrane-electrode assembly 11 and the edge portion 12a of the gas diffusion layer 12 on one side thereof are located between the separator 20 and the engaging portion 33. The fuel cell 1 is obtained in which the power generator 10 and the separator 20 are integrated with each other through the gasket 30 as shown in FIG.

このように組み立てられた燃料電池セル1は、図1に示されるように、厚さ方向に多数積層すると共に電気的に直列に接続することによって、燃料電池スタックとして組み立てられる。   As shown in FIG. 1, the fuel cells 1 assembled in this way are assembled as a fuel cell stack by stacking a large number in the thickness direction and electrically connecting them in series.

そしてこの燃料電池スタックは、各燃料電池セル1において、酸化ガス(空気)が、発電体10におけるガス拡散層12,13のうち一方を介して膜−電極複合体11のカソード側に供給され、燃料ガス(水素)が、発電体10におけるガス拡散層12,13のうち他方を介して膜−電極複合体11のアノード側に供給され、水の電気分解の逆反応、すなわち水素と酸素から水を生成する電気化学的反応によって電力を発生するものであり、この電力が、集電板であるセパレータ20を介して取り出されるようになっている。   In this fuel cell stack, in each fuel cell 1, oxidizing gas (air) is supplied to the cathode side of the membrane-electrode assembly 11 via one of the gas diffusion layers 12 and 13 in the power generator 10. Fuel gas (hydrogen) is supplied to the anode side of the membrane-electrode assembly 11 through the other of the gas diffusion layers 12 and 13 in the power generation body 10, and reverse reaction of water electrolysis, that is, water from hydrogen and oxygen. The electric power is generated by the electrochemical reaction that generates the electric power, and this electric power is taken out through the separator 20 that is a current collector plate.

ここで、各燃料電池セル1のガスケット30は、隣接する他の燃料電池セル1におけるセパレータ20の縁部20aに、主シールリップ32が適当につぶれた状態で密接されることによって、不図示のマニホールド孔やガス拡散層12,13による流路内を流れる酸化ガスや燃料ガスなどが漏洩するのを防止する密封機能を奏するものである。そして、主シールリップ32の圧縮による応力は、両側の谷部31a,31bによってある程度吸収されるので、主シールリップ32のヘタリによる経時的な密封性の低下を抑制することができる。   Here, the gasket 30 of each fuel battery cell 1 is brought into close contact with the edge 20a of the separator 20 in another adjacent fuel battery cell 1 in a state where the main seal lip 32 is appropriately crushed. It has a sealing function to prevent the oxidant gas, fuel gas, etc. flowing in the flow path by the manifold holes and the gas diffusion layers 12 and 13 from leaking. Since the stress due to compression of the main seal lip 32 is absorbed to some extent by the valley portions 31a and 31b on both sides, it is possible to suppress deterioration in sealing performance over time due to the settling of the main seal lip 32.

また図1に示される燃料電池セル1の積層状態では、各ガスケット30における係止部33は、発電体10の膜−電極複合体11の露出縁部11aと、隣接する燃料電池セル1のセパレータ20の間にシール面33a,33bにおいて密接状態に介在し、この係止部33と、基部31によって、発電体10の縁部、すなわち膜−電極複合体11及びガス拡散層12,13の縁部11a,12a,13aを遮蔽しているため、一側のガス拡散層12の縁部12a及び他側のガス拡散層13の縁部13aから、酸化ガスと燃料ガスが膜−電極複合体11の縁部11aを回り込むようにして互いにクロスリークするのを有効に防止することができる。   Further, in the stacked state of the fuel cells 1 shown in FIG. 1, the engaging portion 33 in each gasket 30 is the exposed edge portion 11 a of the membrane-electrode assembly 11 of the power generator 10 and the separator of the adjacent fuel cell 1. 20, the sealing surfaces 33 a and 33 b are in close contact with each other, and the locking portion 33 and the base portion 31 allow the edge of the power generator 10, that is, the edge of the membrane-electrode assembly 11 and the gas diffusion layers 12 and 13. Since the portions 11a, 12a, and 13a are shielded, the oxidizing gas and the fuel gas are transferred from the edge portion 12a of the gas diffusion layer 12 on one side and the edge portion 13a of the gas diffusion layer 13 on the other side. It is possible to effectively prevent cross-leakage between the two edges 11a.

さらに、この燃料電池セル1によれば、発電体10のガス拡散層12,13に、従来のような成形材料の含浸領域が存在しないため、図3に示されるように、ガスケット30の係止部33のビード状シール面33aで囲まれた領域全体を発電領域10aとすることができる。したがって、広い発電領域10aを確保して発電効率を向上することができる。   Furthermore, according to this fuel cell 1, since the gas diffusion layers 12 and 13 of the power generation body 10 do not have a conventional impregnation region of the molding material, as shown in FIG. The entire region surrounded by the bead-shaped sealing surface 33a of the portion 33 can be used as the power generation region 10a. Therefore, it is possible to secure a wide power generation region 10a and improve power generation efficiency.

次に図4は、本発明に係る第二の形態の燃料電池セルを示す組み立て前の状態の部分断面図、図5は、同じく第二の形態の燃料電池セルを示す組み立て状態の部分断面図である。   Next, FIG. 4 is a partial cross-sectional view of a state before assembly showing a fuel cell of the second embodiment according to the present invention, and FIG. 5 is a partial cross-sectional view of an assembled state showing the fuel cell of the second embodiment. It is.

この第二の形態の燃料電池セル1において、先に説明した第一の形態と異なるところは、ガスケット30の係止部33のうち、発電体10の膜−電極複合体11と反対側を向いたシール面33bを、発電体10の上面(他側のガス拡散層13の上面)より高く隆起したかまぼこ型の凸面状に形成したことにある。その他の部分は、基本的に第一の形態と同様に構成されている。   In the fuel cell 1 of the second embodiment, the difference from the first embodiment described above is that the facing portion 33 of the gasket 30 faces away from the membrane-electrode assembly 11 of the power generator 10. The seal surface 33b is formed in a kamaboko-shaped convex surface that is raised higher than the upper surface of the power generator 10 (the upper surface of the gas diffusion layer 13 on the other side). Other parts are basically configured in the same manner as in the first embodiment.

この形態による燃料電池セル1も、基本的には第一の形態と同様の効果を奏するものである。そして図1のように積層した状態において、ガスケット30の係止部33は、ビード状のシール面33aが発電体10の膜−電極複合体11の縁部11aに適当なつぶし代で密接されると共に、その反対側の凸面状のシール面33bが、隣接する燃料電池セル1のセパレータ20に適当なつぶし代で密接される。このため、ビード状のシール面33aにヘタリを生じても、凸面状のシール面33bの圧縮反力によって、係止部33はビード状のシール面33a側の面33c全体が膜−電極複合体11の縁部11aに密接されることになり、良好な密封性が維持される。   The fuel cell 1 according to this embodiment basically has the same effect as that of the first embodiment. In the stacked state as shown in FIG. 1, the engaging portion 33 of the gasket 30 has the bead-shaped sealing surface 33 a in close contact with the edge portion 11 a of the membrane-electrode assembly 11 of the power generator 10 with an appropriate crushing allowance. At the same time, the convex seal surface 33b on the opposite side is brought into intimate contact with the separator 20 of the adjacent fuel cell 1 with an appropriate crushing allowance. For this reason, even if the bead-shaped sealing surface 33a is settling, the entire surface 33c on the side of the bead-shaped sealing surface 33a is the membrane-electrode assembly by the compression reaction force of the convex sealing surface 33b. 11 will be in close contact with the edge 11a, and good sealing performance will be maintained.

次に図6は、本発明に係る第三の形態の燃料電池セルを示す組み立て前の状態の部分断面図、図7は、同じく第三の形態の燃料電池セルを示す組み立て状態の部分断面図である。   Next, FIG. 6 is a partial cross-sectional view of the fuel cell of the third embodiment according to the present invention before assembly, and FIG. 7 is a partial cross-sectional view of the assembled state of the fuel cell of the third embodiment. It is.

この第三の形態の燃料電池セル1において、先に説明した第一の形態と異なるところは、ガスケット30の係止部33のうち、発電体10の膜−電極複合体11に密接されるシール面33aをフラットに形成し、これと反対側のシール面33bを、発電体10の上面(他側のガス拡散層13の上面)より高く隆起したかまぼこ型の凸面状に形成したことにある。その他の部分は、基本的に第一の形態と同様に構成されている。   In the fuel cell 1 of the third embodiment, the difference from the first embodiment described above is that the seal that is in close contact with the membrane-electrode assembly 11 of the power generator 10 among the engaging portions 33 of the gasket 30. The surface 33a is formed flat, and the seal surface 33b on the opposite side is formed in a kamaboko-shaped convex surface that is raised higher than the upper surface of the power generator 10 (the upper surface of the gas diffusion layer 13 on the other side). Other parts are basically configured in the same manner as in the first embodiment.

この形態による燃料電池セル1も、基本的には第一の形態と同様の効果を奏するものである。そして、図1のように積層した状態において、ガスケット30の係止部33は、平坦なシール面33aが発電体10の膜−電極複合体11の縁部11aに適当な面圧で密接されると共に、その反対側の凸面状のシール面33bが、隣接する燃料電池セル1のセパレータ20に適当なつぶし代で密接される。このため、発電体10の膜−電極複合体11の縁部11aとこれに対向するセパレータ20との間の隙間が、ガスケット30の係止部33で埋められた状態になるので、良好な密封性が維持される。   The fuel cell 1 according to this embodiment basically has the same effect as that of the first embodiment. In the stacked state as shown in FIG. 1, the locking portion 33 of the gasket 30 has a flat sealing surface 33 a in close contact with the edge portion 11 a of the membrane-electrode assembly 11 of the power generator 10 with an appropriate surface pressure. At the same time, the convex seal surface 33b on the opposite side is brought into intimate contact with the separator 20 of the adjacent fuel cell 1 with an appropriate crushing allowance. For this reason, since the gap between the edge portion 11a of the membrane-electrode assembly 11 of the power generator 10 and the separator 20 facing the edge portion 11a is filled with the engaging portion 33 of the gasket 30, a good sealing is achieved. Sex is maintained.

1 燃料電池セル
10 発電体
11 膜−電極複合体
11a,12a,13a,20a 縁部
12,13 ガス拡散層
20 セパレータ
30 ガスケット
31 基部
31a,31b 谷部
32 主シールリップ
33 係止部
33a,33b シール面
34 接着剤
DESCRIPTION OF SYMBOLS 1 Fuel cell 10 Electric power generation body 11 Membrane-electrode assembly 11a, 12a, 13a, 20a Edge part 12, 13 Gas diffusion layer 20 Separator 30 Gasket 31 Base part 31a, 31b Valley part 32 Main seal lip 33 Locking part 33a, 33b Seal surface 34 Adhesive

Claims (2)

電解質膜の両面に電極層を設けた膜−電極複合体の厚さ方向両側にガス拡散層を積層一体化した発電体と、この発電体の一側に配置されるセパレータと、前記発電体の縁部に沿って配置されると共に前記セパレータに接着剤を介して接着されるゴム状弾性材料からなるガスケットとを備え、このガスケットに、前記発電体を前記セパレータに係止する係止部を形成したことを特徴とする燃料電池セル。   A power generation body in which gas diffusion layers are laminated and integrated on both sides in the thickness direction of a membrane-electrode assembly in which electrode layers are provided on both surfaces of the electrolyte membrane, a separator disposed on one side of the power generation body, And a gasket made of a rubber-like elastic material that is disposed along the edge and is bonded to the separator via an adhesive, and a locking portion for locking the power generator to the separator is formed on the gasket. A fuel battery cell characterized by that. 係止部が、発電体の他側のガス拡散層から露出させた膜−電極複合体に適当な面圧で密接されるシール面と、当該燃料電池セルの積層状態において前記発電体の他側に位置するセパレータに適当な面圧で密接されるシール面を有することを特徴とする請求項1に記載の燃料電池セル。   The engaging portion has a seal surface that is intimately contacted with the membrane-electrode assembly exposed from the gas diffusion layer on the other side of the power generator with an appropriate surface pressure, and the other side of the power generator in the stacked state of the fuel cell. 2. The fuel cell according to claim 1, further comprising a sealing surface that is brought into close contact with the separator located at an appropriate surface pressure. 3.
JP2009017682A 2009-01-29 2009-01-29 Fuel cell Expired - Fee Related JP5447777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017682A JP5447777B2 (en) 2009-01-29 2009-01-29 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017682A JP5447777B2 (en) 2009-01-29 2009-01-29 Fuel cell

Publications (2)

Publication Number Publication Date
JP2010177009A true JP2010177009A (en) 2010-08-12
JP5447777B2 JP5447777B2 (en) 2014-03-19

Family

ID=42707749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017682A Expired - Fee Related JP5447777B2 (en) 2009-01-29 2009-01-29 Fuel cell

Country Status (1)

Country Link
JP (1) JP5447777B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007011A (en) * 2012-06-22 2014-01-16 Toyota Motor Corp Fuel cell
CN111564645A (en) * 2020-05-28 2020-08-21 上海空间电源研究所 Sealing element of metal polar plate fuel cell and metal polar plate fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997619A (en) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd Fuel cell
JPH11219714A (en) * 1998-02-03 1999-08-10 Matsushita Electric Ind Co Ltd Fuel cell
JP2006252795A (en) * 2005-03-08 2006-09-21 Ishikawajima Harima Heavy Ind Co Ltd Gasket for fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997619A (en) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd Fuel cell
JPH11219714A (en) * 1998-02-03 1999-08-10 Matsushita Electric Ind Co Ltd Fuel cell
JP2006252795A (en) * 2005-03-08 2006-09-21 Ishikawajima Harima Heavy Ind Co Ltd Gasket for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007011A (en) * 2012-06-22 2014-01-16 Toyota Motor Corp Fuel cell
CN111564645A (en) * 2020-05-28 2020-08-21 上海空间电源研究所 Sealing element of metal polar plate fuel cell and metal polar plate fuel cell

Also Published As

Publication number Publication date
JP5447777B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
US6596427B1 (en) Encapsulating seals for electrochemical cell stacks and methods of sealing electrochemical cell stacks
US7833673B2 (en) Solid polymer electrolytic fuel cell
JP4305568B2 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL
JP4719771B2 (en) Electrode-membrane-frame assembly for fuel cell and manufacturing method thereof, and polymer electrolyte fuel cell and manufacturing method thereof
US9490497B2 (en) Solid polymer electrolyte type fuel cell, and electrolyte membrane-electrode-frame assembly
KR20180115266A (en) A positive electrode plate including an asymmetric sealing section, and a fuel cell stack
JP2004342493A (en) Fuel cell
JP2008171613A (en) Fuel cells
US9680166B2 (en) Integrated gas diffusion layer with sealing function and method of making the same
JP2011023161A (en) Sealing structure of fuel cell
JP2006040792A (en) Separator for solid polymer fuel cell, and cell for solid polymer fuel battery using it
US11171341B2 (en) Fuel cell and method of manufacturing fuel cell
JP2008226722A (en) Gasket integration type membrane-electrode assembly, fuel cell including it, membrane protecting structure, and manufacturing method of gasket integration type membrane-electrode assembly
JP4514027B2 (en) Fuel cell and fuel cell
KR20100030709A (en) Bipolarplate for fuel cell stack
JP2006004677A (en) Fuel cell
JP5447777B2 (en) Fuel cell
WO2008056778A1 (en) Fuel cell and fuel cell manufacturing method
JPWO2020121830A1 (en) Fuel cell module and fuel cell stack, and how to manufacture the fuel cell module
JP2007329083A (en) Fuel cell
JP2004178978A (en) Separator for fuel cell with seal and membrane electrode assembly with seal
JP2005183210A (en) Fuel cell sealing structure
JP2007335279A (en) Fuel battery cell seal
JP2005174875A (en) Fuel battery and its manufacturing method
US9350034B2 (en) Fuel cell gas diffusion layer integrated gasket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5447777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees