JP2010175168A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2010175168A
JP2010175168A JP2009019303A JP2009019303A JP2010175168A JP 2010175168 A JP2010175168 A JP 2010175168A JP 2009019303 A JP2009019303 A JP 2009019303A JP 2009019303 A JP2009019303 A JP 2009019303A JP 2010175168 A JP2010175168 A JP 2010175168A
Authority
JP
Japan
Prior art keywords
heat exchange
pipe
flow control
header tank
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009019303A
Other languages
Japanese (ja)
Inventor
Naohisa Higashiyama
直久 東山
Hokuto Mine
北斗 峯
基之 ▲高▼木
Motoyuki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009019303A priority Critical patent/JP2010175168A/en
Publication of JP2010175168A publication Critical patent/JP2010175168A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator capable of reducing the number of components and a region of a superheat part. <P>SOLUTION: The evaporator 1 includes: a pair of header tanks 2, 3 arranged at intervals between them; a plurality of flat heat exchange pipes 4 which are arranged between both header tanks 2, 3 so as to make the width direction face the forward/backward direction and be lined up in the length direction of the both header tanks 2, 3 at intervals and have both ends connected to both header tanks 2, 3, respectively; and fins arranged between the adjacent heat exchange pipes 4. Within a pipe line 22 of the heat exchange pipe 4, first flow control members 23 extended rearward from a front edge of the pipe line 22 and second flow control members 24 extended forward from a rear edge of the pipe line 22 are alternately provided, at intervals in the length direction of the heat exchange pipe 4. The length of the both flow control members 23, 24 is set to be 1/2 or more of the width in the forward/backward direction of the pipe line 22 in the heat exchange pipe 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、たとえば自動車に搭載されるカーエアコンに好適に使用されるエバポレータに関する。   The present invention relates to an evaporator suitably used for, for example, a car air conditioner mounted on an automobile.

この明細書および特許請求の範囲において、隣接する熱交換管どうしの間の通風間隙を流れる空気の下流側(図1、図3、図6、図7および図9に矢印Xで示す方向)を前、これと反対側を後というものとする。   In this specification and claims, the downstream side of the air flowing in the ventilation gap between adjacent heat exchange pipes (the direction indicated by the arrow X in FIGS. 1, 3, 6, 7 and 9). The front and the opposite side are the back.

近年、小型軽量化および高性能化を図りうるカーエアコン用エバポレータに用いられる熱交換器として、本出願人は、先に、互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に、幅方向が前後方向を向くようにヘッダタンクの長さ方向に間隔をおいて前後2列に並ぶように配置され、かつ上下両端部が両ヘッダタンクに接続された複数の扁平状熱交換管と、隣り合う熱交換管どうしの間に配置されたコルゲートフィンとを備えており、各熱交換管が、幅方向に並んだ複数の冷媒流路を有している熱交換器を提案した(特許文献1参照)。   In recent years, as a heat exchanger used in an evaporator for a car air conditioner that can be reduced in size, weight, and performance, the present applicant has previously made a pair of header tanks spaced apart from each other, and both header tanks. A plurality of flat heats arranged in two rows in the front and rear, with the width direction facing in the front-rear direction and spaced in the longitudinal direction of the header tank. Proposed heat exchanger that has exchange pipes and corrugated fins arranged between adjacent heat exchange pipes, and each heat exchange pipe has a plurality of refrigerant channels arranged in the width direction (See Patent Document 1).

しかしながら、特許文献1記載の熱交換器においては、熱交換管が通風方向に2列に並ぶように配置されているので、熱交換管の数が多くなって部品点数が増加する。   However, in the heat exchanger described in Patent Document 1, since the heat exchange tubes are arranged in two rows in the ventilation direction, the number of heat exchange tubes increases and the number of parts increases.

部品点数を低減したエバポレータとして、互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に、幅方向が前後方向を向くようにヘッダタンクの長さ方向に間隔をおいて1列に並ぶように配置され、かつ上下両端部が両ヘッダタンクに接続された複数の扁平状熱交換管と、隣り合う熱交換管どうしの間に配置されたコルゲートフィンとを備えており、熱交換管が幅方向に並んだ複数の冷媒流路を有しているエバポレータが考えられる。   As an evaporator with a reduced number of parts, a pair of header tanks arranged at a distance from each other, and a distance between the header tanks in the length direction of the header tank so that the width direction faces the front-rear direction. A plurality of flat heat exchange pipes arranged in a row and having both upper and lower ends connected to both header tanks, and corrugated fins arranged between adjacent heat exchange pipes. An evaporator having a plurality of refrigerant channels in which exchange tubes are arranged in the width direction is conceivable.

ところが、1列に並んだ熱交換管を備えたエバポレータの場合、次のような問題がある。すなわち、熱交換管における通風方向上流側の冷媒流路を流れる冷媒は短時間で蒸発して過熱状態になるので、通風方向下流側を流れる冷媒も加熱され易くなり、その結果冷媒が完全に気相となって過熱状態となる部位、すなわちスーパヒート部の領域が大きくなる。   However, the evaporator having the heat exchange tubes arranged in a row has the following problems. That is, the refrigerant flowing through the refrigerant flow path upstream in the ventilation direction in the heat exchange pipe evaporates in a short time and becomes overheated, so that the refrigerant flowing downstream in the ventilation direction is also easily heated, and as a result, the refrigerant is completely discharged. The part which becomes a superheated state as a phase, that is, the region of the superheat part becomes large.

特開2008−20098号公報JP 2008-20098 A

この発明の目的は、上記問題を解決し、部品点数を低減しうるとともに、スーパーヒート部の領域を小さくしうるエバポレータを提供することにある。   An object of the present invention is to provide an evaporator that can solve the above problems, reduce the number of parts, and reduce the area of the superheat section.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に、幅方向を前後方向に向けるとともにヘッダタンクの長さ方向に間隔をおいて1列に並ぶように配置され、かつ両端部がそれぞれ両ヘッダタンクに接続された複数の扁平状熱交換管と、隣り合う熱交換管どうしの間に配置されたフィンとを備えており、熱交換管の管路内に、管路の前縁から後方にのびる第1流れ制御部材と、管路の後縁から前方にのびる第2流れ制御部材とが、熱交換管の長さ方向に間隔をおいて交互に設けられており、両流れ制御部材の長さが、熱交換管における管路の前後方向の幅の1/2以上となっているエバポレータ。   1) A pair of header tanks that are spaced apart from each other, and between the header tanks, the width direction is directed in the front-rear direction and the header tanks are arranged in a row at intervals in the length direction of the header tank. And a plurality of flat heat exchange pipes whose both ends are connected to both header tanks, and fins arranged between adjacent heat exchange pipes, in the pipe line of the heat exchange pipe, The first flow control member extending rearward from the front edge of the pipe and the second flow control member extending forward from the rear edge of the pipe are alternately provided at intervals in the length direction of the heat exchange pipe. An evaporator in which the lengths of both flow control members are ½ or more of the width in the front-rear direction of the pipe line in the heat exchange pipe.

2)すべての第1流れ制御部材の後端と管路の後縁との距離が等しくなっているとともに、すべての第2流れ制御部材の前端と管路の前縁との距離が等しくなっており、熱交換管の有効熱交換長さをL、第1流れ制御部材と第2流れ制御部材との合計数をN、第1流れ制御部材の後端と管路の後縁との距離をD1、第2流れ制御部材の前端と管路の前縁との距離をD2とした場合、1.5L<(D1+D2)/2×(N−1)+L<2.5Lという関係を満たす上記1)記載のエバポレータ。   2) The distances between the rear ends of all the first flow control members and the rear edge of the pipe are equal, and the distances between the front ends of all the second flow control members and the front edge of the pipe are equal. The effective heat exchange length of the heat exchange pipe is L, the total number of the first flow control member and the second flow control member is N, and the distance between the rear end of the first flow control member and the rear edge of the pipe is D1, where the distance between the front end of the second flow control member and the front edge of the pipeline is D2, the above 1 satisfying the relationship of 1.5L <(D1 + D2) / 2 × (N−1) + L <2.5L Evaporator as described.

3)第1流れ制御部材の後端と管路の後縁との距離D1と、第2流れ制御部材の前端と管路の前縁との距離D2とが等しくなっており、隣り合う第1流れ制御部材と第2流れ制御部材との間隔をSとした場合、0.5D1<S<1.5D1という関係を満たす上記2)記載のエバポレータ。   3) The distance D1 between the rear end of the first flow control member and the rear edge of the pipe is equal to the distance D2 between the front end of the second flow control member and the front edge of the pipe, and the first The evaporator according to the above item 2) that satisfies the relationship of 0.5D1 <S <1.5D1, where S is the distance between the flow control member and the second flow control member.

4)いずれか一方のヘッダタンクに、冷媒出口を有する冷媒出口ヘッダ部が設けられており、冷媒出口ヘッダ部に通じさせられた熱交換管における隣り合う第1流れ制御部材と第2流れ制御部材との間隔が、冷媒出口ヘッダ部に向かって広くなっている上記1)〜3)のうちのいずれかに記載のエバポレータ。   4) A refrigerant outlet header portion having a refrigerant outlet is provided in one of the header tanks, and the first flow control member and the second flow control member adjacent to each other in the heat exchange pipe communicated with the refrigerant outlet header portion. The evaporator according to any one of the above items 1) to 3), in which the distance between the first and second refrigerants becomes wider toward the refrigerant outlet header.

5)熱交換管の互いに対向する1対の側壁内面にそれぞれ複数の突起が内方突出状に形成されており、一方の側壁の突起が他方の側壁の突起に接合されている上記1)〜4)のうちのいずれかに記載のエバポレータ。   5) A plurality of protrusions are formed inwardly on the inner surfaces of a pair of side walls facing each other of the heat exchange pipe, and the protrusions on one side wall are joined to the protrusions on the other side wall. The evaporator according to any one of 4).

6)ヘッダタンクの長さ方向に連続して並んだ複数の熱交換管からなる熱交換管群が、ヘッダタンクの長さ方向に並んで2以上設けられ、ヘッダタンクの長さ方向の一端部の熱交換管群が、当該熱交換管群を構成する熱交換管内を冷媒が最初に流れる最上流側熱交換管群となり、ヘッダタンクの長さ方向の他端部の熱交換管群が、当該熱交換管群を構成する熱交換管内を冷媒が最後に流れる最下流側熱交換管群となっており、冷媒が、一方の第1ヘッダタンク側から他方の第2ヘッダタンク側への流れ、および第1ヘッダタンク側から第2ヘッダタンク側への流れに続く第2ヘッダタンク側から第1ヘッダタンク側への流れを含んで、最上流側熱交換管群から最下流側熱交換管群に向かって流れるようになされ、第1ヘッダタンクにおける最下流側熱交換管群が設けられている側の端部に冷媒入口および冷媒出口が形成され、第1ヘッダタンク内が、分流制御部材によって第1ヘッダタンクの全長にわたり、かつ冷媒が流入する第1空間と、第1ヘッダタンクの全長にわたり、かつ熱交換管に通じる第2空間とに分割されており、第2空間内が、仕切部材により第1ヘッダタンクの長さ方向に並んだ複数の区画に分割されるとともに、各熱交換管群の熱交換管が第2空間の区画に通じさせられ、第1空間が冷媒入口に通じるとともに、第2空間における最下流側熱交換管群の熱交換管が通じている区画が冷媒出口に通じ、第1ヘッダタンク内の第1空間と第2空間における最上流側熱交換管群の熱交換管が通じている区画とが連通させられ、第2空間における最上流側熱交換管群の熱交換管が通じている区画が冷媒入口ヘッダ部となっているとともに、同じく最下流側熱交換管群の熱交換管が通じている区画が冷媒出口ヘッダ部となっている上記1)〜4)のうちのいずれかに記載のエバポレータ。   6) Two or more heat exchange tube groups are arranged in the length direction of the header tank, and one end portion in the length direction of the header tank. The heat exchange pipe group is the most upstream side heat exchange pipe group in which the refrigerant first flows in the heat exchange pipe constituting the heat exchange pipe group, and the heat exchange pipe group at the other end in the length direction of the header tank is It is the most downstream side heat exchange tube group in which the refrigerant flows last in the heat exchange tube constituting the heat exchange tube group, and the refrigerant flows from one first header tank side to the other second header tank side. And a flow from the second header tank side to the first header tank side following the flow from the first header tank side to the second header tank side, and from the most upstream side heat exchange tube group to the most downstream side heat exchange tube The bottom of the first header tank is made to flow towards the group A refrigerant inlet and a refrigerant outlet are formed at an end portion on the side where the side heat exchange pipe group is provided, and the first header tank has a first flow-in member extending over the entire length of the first header tank by the flow dividing control member. A plurality of compartments divided into a space and a second space that extends to the entire length of the first header tank and communicates with the heat exchange pipe, and the inside of the second space is aligned in the length direction of the first header tank by a partition member And the heat exchange tubes of each heat exchange tube group are communicated with the compartments of the second space, the first space communicates with the refrigerant inlet, and the heat exchange of the most downstream heat exchange tube group in the second space. A section that communicates with the pipe communicates with the refrigerant outlet, and the first space in the first header tank communicates with the section that communicates with the heat exchange pipe of the most upstream side heat exchange pipe group in the second space. Heat exchange of the uppermost stream side heat exchange tube group in space The above-mentioned 1) to 4), in which the section through which the exchange pipe communicates is the refrigerant inlet header section, and the section through which the heat exchange pipe of the most downstream side heat exchange pipe group is also communicated is the refrigerant outlet header section. The evaporator according to any one of the above.

上記1)〜3)のエバポレータによれば、両ヘッダタンク間に、幅方向を前後方向に向けるとともにヘッダタンクの長さ方向に間隔をおいて1列に並ぶように配置され、かつ両端部がそれぞれ両ヘッダタンクに接続された複数の扁平状熱交換管を備えているので、2列に並べられた熱交換管を備えた特許文献1記載のエバポレータに比較して部品点数を低減することが可能になる。   According to the above evaporators 1) to 3), the two tanks are arranged so that the width direction is directed in the front-rear direction and the header tanks are arranged in a line at intervals in the length direction of the header tanks. Since a plurality of flat heat exchange tubes connected to both header tanks are provided, the number of components can be reduced as compared with the evaporator described in Patent Document 1 provided with heat exchange tubes arranged in two rows. It becomes possible.

また、熱交換管の管路内に、管路の前縁から後方にのびる第1流れ制御部材と、管路の後縁から前方にのびる第2流れ制御部材とが、熱交換管の長さ方向に間隔をおいて交互に設けられており、両流れ制御部材の長さが、熱交換管の内部幅の1/2以上となっているので、熱交換管の管路内において、冷媒は、流れ方向を変えながら略蛇行状に流れることになる。したがって、冷媒が、熱交換管の管路内における第1流れ制御部材の後端と管路の後縁との間の間隙を流れる際には、当該間隙の後寄り(通風方向上流側)を流れる冷媒は高温の空気により加熱されることになって短時間で蒸発し気相となるが、管路内において流れ方向を変える際に、上記間隙の前寄り(通風方向下流側)を流れた液相の冷媒と効率良く混合される。その結果、冷媒が完全に気相となって過熱状態となる部位、すなわちスーパヒート部の領域を小さくすることができる。   In addition, the first flow control member extending backward from the front edge of the pipe and the second flow control member extending forward from the rear edge of the pipe in the pipe of the heat exchange pipe are the length of the heat exchange pipe. Since the lengths of both flow control members are ½ or more of the internal width of the heat exchange pipe, the refrigerant is contained in the heat exchange pipe line. It will flow in a meandering manner while changing the flow direction. Therefore, when the refrigerant flows through the gap between the rear end of the first flow control member and the rear edge of the pipe in the pipe of the heat exchange pipe, the rear of the gap (the upstream side in the ventilation direction) The flowing refrigerant is heated by high-temperature air and evaporates in a short time to become a gas phase. However, when the flow direction is changed in the pipe, it flows near the front of the gap (downstream in the ventilation direction). Efficiently mixed with liquid phase refrigerant. As a result, it is possible to reduce the region where the refrigerant is completely vaporized and becomes superheated, that is, the region of the superheat portion.

上記4)のエバポレータによれば、冷媒出口ヘッダ部に通じさせられた熱交換管において、隣り合う第1流れ制御部材と第2流れ制御部材との間隔が、冷媒出口ヘッダ部に向かって広くなっているので、多くの気相の冷媒が流れる部位の通路抵抗の増大を抑制することができる。   According to the evaporator of 4) above, in the heat exchange pipe communicated with the refrigerant outlet header portion, the interval between the adjacent first flow control member and second flow control member becomes wider toward the refrigerant outlet header portion. Therefore, it is possible to suppress an increase in passage resistance at a portion where a lot of gas-phase refrigerant flows.

上記5)のエバポレータによれば、上記1)〜3)で述べた管路内を流れる冷媒の混合効果が向上してスーパーヒート部の領域を小さくすることができる。また、熱交換管の耐圧性が向上する。   According to the evaporator 5), the mixing effect of the refrigerant flowing in the pipe lines described in 1) to 3) is improved, and the region of the superheat portion can be reduced. Moreover, the pressure resistance of the heat exchange tube is improved.

この発明の実施形態1のエバポレータの全体構成を示す一部切り欠き斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view showing an overall configuration of an evaporator according to Embodiment 1 of the present invention. 図1のエバポレータの後方から前方を見た一部省略垂直断面図である。FIG. 2 is a partially omitted vertical cross-sectional view of the evaporator of FIG. 1 viewed from the rear to the front. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 図3のB−B線拡大断面図である。FIG. 4 is an enlarged sectional view taken along line B-B in FIG. 3. 図3のC−C線拡大断面図である。FIG. 4 is an enlarged sectional view taken along the line CC in FIG. 3. 図1のエバポレータにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the evaporator of FIG. 図1のエバポレータの最下流側熱交換管群の熱交換管の変形例を示す垂直断面図である。It is a vertical sectional view showing a modification of the heat exchange pipe of the most downstream heat exchange pipe group of the evaporator of FIG. 熱交換管の変形例を示す図である。It is a figure which shows the modification of a heat exchange pipe | tube. この発明の実施形態2のエバポレータを示す図6相当の図である。FIG. 7 is a view corresponding to FIG. 6, showing an evaporator according to Embodiment 2 of the present invention.

以下、この発明の実施形態を、図面を参照して説明する。以下に述べる実施形態は、この発明によるエバポレータを、フロン系冷媒を使用するカーエアコンに適用したものである。   Embodiments of the present invention will be described below with reference to the drawings. In the embodiment described below, the evaporator according to the present invention is applied to a car air conditioner using a chlorofluorocarbon refrigerant.

なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

以下の説明において、図1、図2および図9の上下、左右を上下、左右というものとする。   In the following description, the upper and lower sides and the left and right sides of FIGS.

また、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   Moreover, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.

図1および図2はこの発明のエバポレータの全体構成を示し、図3〜図5はその要部の構成を示す。また、図6はエバポレータにおける冷媒の流れ方を示す。   1 and 2 show the overall structure of the evaporator according to the present invention, and FIGS. 3 to 5 show the structure of the main part thereof. FIG. 6 shows how the refrigerant flows in the evaporator.

図1〜図3において、エバポレータ(1)は、左右方向にのびるとともに上下方向に間隔をおいて配置されたアルミニウム製第1ヘッダタンク(2)およびアルミニウム製第2ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に、幅方向が前後方向を向くとともに左右方向に間隔をおいて1列に並ぶように配置され、かつ上下両端部が両ヘッダタンク(2)(3)に接続された扁平状のアルミニウム製熱交換管(4)と、隣り合う熱交換管(4)どうしの間の通風間隙および左右両端の熱交換管(4)の外側に配置されて熱交換管(4)にろう付されたアルミニウム製コルゲートフィン(5)と、両端のコルゲートフィン(5)の外側に配置されてコルゲートフィン(5)にろう付されたアルミニウム製サイドプレート(6)とを備えており、左右方向(ヘッダタンク(2)(3)の長さ方向)に連続して並んだ複数の熱交換管(4)からなる複数、ここでは2つの熱交換管群(7A)(7B)が、左右方向に並んで設けられている。左側(ヘッダタンク(2)(3)の長さ方向の一端部)の熱交換管群(7A)は、当該熱交換管群(7A)を構成する熱交換管(4)内を流体が最初に流れる最上流側熱交換管群となり、右側(ヘッダタンク(2)(3)の長さ方向の他端部)の熱交換管群(7B)は、当該熱交換管群(7B)を構成する熱交換管(4)内を流体が最後に流れる最下流側熱交換管群となっている。   1 to 3, the evaporator (1) includes an aluminum first header tank (2) and an aluminum second header tank (3) that extend in the left-right direction and are spaced apart in the vertical direction. Between the header tanks (2) and (3), the width direction is oriented in the front-rear direction and the left and right sides are arranged in a row, and both upper and lower ends are located on both header tanks (2) and (3). The flat aluminum heat exchange pipe (4) connected and the ventilation gap between the adjacent heat exchange pipes (4) and the heat exchange pipes (4) arranged outside the heat exchange pipes (4) at both left and right ends ( 4) an aluminum corrugated fin (5) brazed to (4) and an aluminum side plate (6) disposed outside the corrugated fin (5) at both ends and brazed to the corrugated fin (5). Lined up continuously in the left-right direction (length direction of header tanks (2) and (3)) Consisting a plurality of heat exchange tubes (4), wherein the two heat exchange tube group (7A) (7B), are arranged in the lateral direction. In the heat exchange tube group (7A) on the left side (one end in the length direction of the header tanks (2) and (3)), the fluid first passes through the heat exchange tube (4) constituting the heat exchange tube group (7A). The heat exchange pipe group (7B) on the right side (the other end in the length direction of the header tanks (2) and (3)) constitutes the heat exchange pipe group (7B). This is the most downstream side heat exchange pipe group in which the fluid finally flows in the heat exchange pipe (4).

第1ヘッダタンク(2)の右端部に、冷媒入口(8)および冷媒出口(9)が形成されている。第1ヘッダタンク(2)内は、板状の分流制御部材(11)によって第1ヘッダタンク(2)の全長にわたり、かつ冷媒(流体)が流入する第1空間(12)と、第1ヘッダタンク(2)の全長にわたり、かつ熱交換管(4)に通じる第2空間(13)とに分割されている。分流制御部材(11)は、第1ヘッダタンク(2)とは別個にプレス加工により形成されたものであり、第1ヘッダタンク(2)の前壁(2a)の下端部と、上壁(2b)の前後方向の中央部よりも若干前側の部分との間に跨るように配置されて第1ヘッダタンク(2)に接合されており、前側縁部側から後側縁部側に向かって上方に傾斜している。そして、第1ヘッダタンク(2)の前壁(2a)、上壁(2b)および分流制御部材(11)により囲まれた空間が第1空間(12)となり、第1ヘッダタンク(2)の後壁(2c)、上壁(2b)、下壁(2d)および分流制御部材(11)により囲まれた空間が第2空間(13)となっている。なお、分流制御部材(11)の左右両端部は第1ヘッダタンク(2)の左右両端壁に接合されている。したがって、分流制御部材(11)が第1空間(12)と第2空間(13)を分割している。冷媒入口(8)は第1空間(12)内に通じている。   A refrigerant inlet (8) and a refrigerant outlet (9) are formed at the right end of the first header tank (2). The first header tank (2) has a first space (12) through which the refrigerant (fluid) flows, and a first header, over the entire length of the first header tank (2) by a plate-like flow dividing control member (11). The tank (2) is divided into a second space (13) extending over the entire length of the tank (2) and leading to the heat exchange pipe (4). The flow dividing control member (11) is formed by pressing separately from the first header tank (2), and includes a lower end portion of the front wall (2a) of the first header tank (2) and an upper wall ( 2b) is arranged so as to straddle between the front part and the front part of the front and rear direction, and is joined to the first header tank (2), from the front edge part toward the rear edge part. Inclined upward. The space surrounded by the front wall (2a), the upper wall (2b) and the flow control member (11) of the first header tank (2) becomes the first space (12), and the first header tank (2) A space surrounded by the rear wall (2c), the upper wall (2b), the lower wall (2d), and the flow control member (11) is a second space (13). The left and right end portions of the flow dividing control member (11) are joined to the left and right end walls of the first header tank (2). Therefore, the flow dividing control member (11) divides the first space (12) and the second space (13). The refrigerant inlet (8) communicates with the first space (12).

第1ヘッダタンク(2)の第2空間(13)内は、左右方向の中央部に配置されて第1ヘッダタンク(2)および分流制御部材(11)に接合された垂直板状の仕切部材(14)により、左右方向に並んだ熱交換管群(7A)(7B)と同数の2つの区画(15A)(15B)に分割されており、各熱交換管群(7A)(7B)の熱交換管(4)が第2空間(13)の各区画(15A)(15B)に通じさせられている。冷媒出口(9)は、第2空間(13)の右側の区画(15B)内に通じている。分流制御部材(11)に、第1空間(12)と、第2空間(13)における最上流側熱交換管群(7A)の熱交換管(4)が通じている左側の区画(15A)とを連通させる複数の流体通過穴(16)が左右方向に間隔をおいて形成されている。そして、第2空間(13)における最上流側熱交換管群(7A)の熱交換管(4)が通じている区画(15A)が冷媒入口ヘッダ部(17)となっているとともに、同じく最下流側熱交換管群(7B)の熱交換管(4)が通じている区画(15B)が冷媒出口ヘッダ部(18)となっている。   In the second space (13) of the first header tank (2), a vertical plate-like partition member disposed at the center in the left-right direction and joined to the first header tank (2) and the flow control member (11). (14) is divided into two compartments (15A) (15B) of the same number as the heat exchange tube groups (7A) (7B) arranged in the left-right direction, and each heat exchange tube group (7A) (7B) A heat exchange pipe (4) is connected to each section (15A) (15B) of the second space (13). The refrigerant outlet (9) communicates with the right compartment (15B) of the second space (13). The left compartment (15A) through which the heat exchange pipe (4) of the uppermost stream side heat exchange pipe group (7A) in the first space (12) and the second space (13) communicates with the flow dividing control member (11) A plurality of fluid passage holes (16) that communicate with each other are formed at intervals in the left-right direction. The section (15A) through which the heat exchange pipe (4) of the uppermost stream side heat exchange pipe group (7A) in the second space (13) communicates is the refrigerant inlet header portion (17), A section (15B) through which the heat exchange pipe (4) of the downstream heat exchange pipe group (7B) communicates forms a refrigerant outlet header (18).

図3〜図5に示すように、熱交換管(4)は、2枚の縦長長方形状アルミニウム板(21)の前後両側縁部どうしを全長にわたってろう付することにより形成されたものであり、両アルミニウム板(21)間に上下方向にのびるとともに上下両端が開口した管路(22)が形成されている。熱交換管(4)の管路(22)内に、管路(22)の前縁から後方にのびる第1流れ制御部材(23)と、管路(22)の後縁から前方にのびる第2流れ制御部材(24)とが、上下方向(熱交換管(4)の長さ方向)に間隔をおいて交互に設けられている。両流れ制御部材(23)(24)の長さTは相互に等しくなっており、両流れ制御部材(23)(24)の長さTが、それぞれ熱交換管(4)における管路(22)の前後方向の幅Wの1/2以上となっている。また、すべての第1流れ制御部材(23)の後端と管路(22)の後縁との距離D1が等しくなっているとともに、すべての第2流れ制御部材(24)の前端と管路(22)の前縁との距離D2が等しくなっている。また、第1流れ制御部材(23)の後端と管路(22)の後縁との距離D1と、第2流れ制御部材(24)の前端と管路(22)の前縁との距離D2とが等しくなっている。さらに、隣り合う第1流れ制御部材(23)と第2流れ制御部材(24)との全間隔Sは等しくなっている。両流れ制御部材(23)(24)は、両アルミニウム板(21)にそれぞれ内方に突出した凸条(21a)を形成し、凸条(21a)どうしをろう付することにより設けられている。   As shown in FIGS. 3 to 5, the heat exchange tube (4) is formed by brazing the front and rear side edges of two vertically long rectangular aluminum plates (21) over the entire length, A pipe line (22) extending in the vertical direction and having both upper and lower ends opened is formed between both aluminum plates (21). In the pipe line (22) of the heat exchange pipe (4), a first flow control member (23) extending rearward from the front edge of the pipe line (22) and a first flow control member extending forward from the rear edge of the pipe line (22). Two flow control members (24) are alternately provided in the up-down direction (the length direction of the heat exchange pipe (4)) at intervals. The lengths T of the two flow control members (23) and (24) are equal to each other, and the lengths T of the two flow control members (23) and (24) correspond to the pipe lines (22 in the heat exchange pipe (4)). ) Of the width W in the front-rear direction. The distances D1 between the rear ends of all the first flow control members (23) and the rear edges of the pipes (22) are equal, and the front ends of all the second flow control members (24) and the pipes The distance D2 from the front edge of (22) is equal. Further, the distance D1 between the rear end of the first flow control member (23) and the rear edge of the pipe (22), and the distance between the front end of the second flow control member (24) and the front edge of the pipe (22). D2 is equal. Further, the total distance S between the adjacent first flow control member (23) and the second flow control member (24) is equal. Both flow control members (23), (24) are provided by forming protrusions (21a) projecting inward on both aluminum plates (21) and brazing the protrusions (21a). .

ここで、熱交換管(4)の有効熱交換長さをL、すべての第1流れ制御部材(23)とすべての第2流れ制御部材(24)との合計数をN、第1流れ制御部材(23)の後端と管路(22)の後縁との距離をD1、第2流れ制御部材(24)の前端と管路(22)の前縁との距離をD2とした場合、1.5L<(D1+D2)/2×(N−1)+L<2.5Lという関係を満たしていることが好ましい。この場合、冷媒が流れる流路の距離を熱交換管(4)の長さよりも長くすることができ、後述するスーパーヒート部の領域を小さくすることができる。有効熱交換長さLとは、熱交換管(4)における両ヘッダタンク(2)(3)間に存在して風が当たる部分である。また、隣り合う第1流れ制御部材(23)と第2流れ制御部材(24)との間隔をSとした場合、0.5D1<S<1.5D1という関係を満たしていることが好ましい。この場合、管路(22)の前後方向の幅Wが変化したとしても、通路抵抗を下げることができる。   Here, the effective heat exchange length of the heat exchange pipe (4) is L, the total number of all the first flow control members (23) and all the second flow control members (24) is N, and the first flow control. When the distance between the rear end of the member (23) and the rear edge of the pipe (22) is D1, and the distance between the front end of the second flow control member (24) and the front edge of the pipe (22) is D2, It is preferable that the relationship of 1.5L <(D1 + D2) / 2 × (N−1) + L <2.5L is satisfied. In this case, the distance of the flow path through which the refrigerant flows can be made longer than the length of the heat exchange pipe (4), and the area of the superheat section described later can be reduced. The effective heat exchange length L is a portion where the wind hits between the header tanks (2) and (3) in the heat exchange pipe (4). Further, when the interval between the adjacent first flow control member (23) and the second flow control member (24) is S, it is preferable that the relationship of 0.5D1 <S <1.5D1 is satisfied. In this case, even if the width W in the front-rear direction of the pipe line (22) changes, the passage resistance can be lowered.

また、熱交換管(4)を構成する両アルミニウム板(21)に、それぞれ複数の突起(21b)が内方突出状に形成されており、両アルミニウム板(21)の突起(25)が相互にろう付されている。すなわち、熱交換管(4)の互いに対向する1対の側壁内面にそれぞれ複数の突起(25)が内方突出状に形成されており、一方の側壁の突起(25)が他方の側壁の突起(25)に接合されている。   In addition, a plurality of protrusions (21b) are formed in both aluminum plates (21) constituting the heat exchange pipe (4) so as to protrude inward, and the protrusions (25) of both aluminum plates (21) are mutually connected. It is brazed. That is, a plurality of projections (25) are formed inwardly projecting on the inner surfaces of a pair of side walls facing each other of the heat exchange pipe (4), and the projection (25) on one side wall is a projection on the other side wall (25).

上述したエバポレータ(1)は、圧縮機および冷媒冷却器としてのコンデンサとともにフロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。そして、冷房運転時には、圧縮機、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、図6に示すように流れる。すなわち、気液混相の2相冷媒は、冷媒入口(8)を通って第1ヘッダタンク(2)の第1空間(12)内に入る。第1ヘッダタンク(2)の第1空間(12)内に入った冷媒は左方に流れ、流体通過穴(16)を通って第2空間(13)の左側の区画(15A)である冷媒入口ヘッダ部(17)内に入る。   The evaporator (1) described above constitutes a refrigeration cycle that uses a chlorofluorocarbon refrigerant together with a compressor and a condenser as a refrigerant cooler, and is mounted on a vehicle, for example, an automobile, as a car air conditioner. And at the time of air_conditionaing | cooling operation, the two-phase refrigerant | coolant of the gas-liquid mixed phase which passed the compressor, the capacitor | condenser, and the expansion valve flows as shown in FIG. That is, the gas-liquid mixed phase two-phase refrigerant enters the first space (12) of the first header tank (2) through the refrigerant inlet (8). The refrigerant entering the first space (12) of the first header tank (2) flows to the left, passes through the fluid passage hole (16), and is the refrigerant in the left compartment (15A) of the second space (13). Enter the inlet header (17).

第1ヘッダタンク(2)の冷媒入口ヘッダ部(17)内に入った冷媒は、分流して最上流側熱交換管群(7A)の熱交換管(4)の管路(22)内に流入する。最上流側熱交換管群(7A)の熱交換管(4)の管路(22)内に流入した冷媒は、管路(22)内を下方に流れて第2ヘッダタンク(3)内に入る。第2ヘッダタンク(3)内に入った冷媒は右方に流れ、分流して最下流側熱交換管群(7B)の熱交換管(4)の管路(22)内に流入する。最下流側熱交換管群(7B)の熱交換管(4)の管路(22)内に流入した冷媒は、管路(22)内を上方に流れて第1ヘッダタンク(2)の第2空間(13)の右側の区画(15B)である冷媒出口ヘッダ部(18)内に入る。第1ヘッダタンク(2)の冷媒出口ヘッダ部(18)内に入った冷媒は、冷媒出口ヘッダ部(18)内を右方に流れ、冷媒出口(8)を通って流出する。すなわち、冷媒は、第1ヘッダタンク(2)側から第2ヘッダタンク(3)側への流れ、および第1ヘッダタンク(2)側から第2ヘッダタンク(3)側への流れに続く第2ヘッダタンク(3)側から第1ヘッダタンク(2)側への流れを1度行って、最上流側熱交換管群(7A)から最下流側熱交換管群(7B)に向かって流れる。   The refrigerant that has entered the refrigerant inlet header portion (17) of the first header tank (2) is diverted into the pipe (22) of the heat exchange pipe (4) of the most upstream heat exchange pipe group (7A). Inflow. The refrigerant that has flowed into the pipe (22) of the heat exchange pipe (4) of the uppermost stream side heat exchange pipe group (7A) flows downward in the pipe (22) into the second header tank (3). enter. The refrigerant that has entered the second header tank (3) flows to the right, splits, and flows into the pipe (22) of the heat exchange pipe (4) of the most downstream heat exchange pipe group (7B). The refrigerant that has flowed into the pipe line (22) of the heat exchange pipe (4) of the most downstream side heat exchange pipe group (7B) flows upward in the pipe line (22) and flows into the first header tank (2). The refrigerant enters the refrigerant outlet header portion (18) which is the right section (15B) of the two spaces (13). The refrigerant that has entered the refrigerant outlet header portion (18) of the first header tank (2) flows to the right in the refrigerant outlet header portion (18) and flows out through the refrigerant outlet (8). That is, the refrigerant follows the flow from the first header tank (2) side to the second header tank (3) side and the flow from the first header tank (2) side to the second header tank (3) side. 2 Flow from the header tank (3) side to the first header tank (2) side once and flow from the most upstream side heat exchange pipe group (7A) toward the most downstream side heat exchange pipe group (7B) .

そして、冷媒が熱交換管(4)の管路(22)内を流れる間に、隣り合う熱交換管(4)間の通風間隙を通過する空気(図1および図6矢印X参照)と熱交換をし、冷媒は気相となって流出する。   While the refrigerant flows in the pipe line (22) of the heat exchange pipe (4), the air passing through the ventilation gap between the adjacent heat exchange pipes (4) (see arrows X in FIG. 1 and FIG. 6) and heat After replacement, the refrigerant flows out as a gas phase.

冷媒が、最上流側熱交換管群(7A)の熱交換管(4)の管路(22)内を下方に流れる際には、図3に示すように、略蛇行状に流れて第2ヘッダタンク(3)内に入る。すなわち、第1流れ制御部材(23)の後端と管路(22)の後縁との間を下方に流れ、第2流れ制御部材(24)に当たって流れ方向を変えて前方に流れ、管路(22)の前縁に当たって流れ方向を変えて第2流れ制御部材(24)の前端と管路(22)の前縁との間を下方に流れ、さらに第1流れ制御部材(23)に当たって流れ方向を変えて後方に流れるということを繰り返して下方に流れ、第2ヘッダタンク(3)内に入る。また、冷媒が、最下流側熱交換管群(7B)の熱交換管(4)の管路(22)内を上方に流れる際には、最上流側熱交換管群(7A)の熱交換管(4)の管路(22)内を下方に流れる際とは逆の態様で略蛇行状に上方に流れて第1ヘッダタンク(2)の冷媒出口ヘッダ部(18)内に入る。   When the refrigerant flows downward in the pipe line (22) of the heat exchange pipe (4) of the uppermost stream side heat exchange pipe group (7A), as shown in FIG. Enter the header tank (3). That is, it flows downward between the rear end of the first flow control member (23) and the rear edge of the pipe line (22), hits the second flow control member (24), changes the flow direction, and flows forward. The flow direction is changed by hitting the front edge of (22), and flows downward between the front end of the second flow control member (24) and the front edge of the pipe (22), and further hits the first flow control member (23). It repeats that it changes the direction and flows backward, flows downward, and enters the second header tank (3). When the refrigerant flows upward in the pipe (22) of the heat exchange pipe (4) of the most downstream heat exchange pipe group (7B), the heat exchange of the most upstream heat exchange pipe group (7A) It flows upwardly in a meandering manner in a manner opposite to that flowing downward in the pipe line (22) of the pipe (4) and enters the refrigerant outlet header portion (18) of the first header tank (2).

冷媒が、熱交換管(4)の管路(22)内における第1流れ制御部材(23)の後端と管路(22)の後縁との間の間隙を流れる際には、当該間隙の後寄り(通風方向上流側)を流れる冷媒は高温の空気により加熱されることになって短時間で蒸発し気相となるが、当該間隙の前寄り(通風方向下流側)を流れた冷媒の大部分は液相であるから、管路(22)内において流れ方向を変える際に、気相の冷媒と液相の冷媒と効率良く混合される。その結果、冷媒が完全に気相となって過熱状態となる部位、すなわちスーパヒート部は、最下流側熱交換管群(7B)の上端部のみに現れることになり、スーパーヒート部の領域を小さくすることができる。   When the refrigerant flows through the gap between the rear end of the first flow control member (23) and the rear edge of the pipe (22) in the pipe (22) of the heat exchange pipe (4), the gap Refrigerant flowing downstream (upstream side in the ventilation direction) is heated by high-temperature air and evaporates in a short time to become a gas phase. However, the refrigerant flows in front of the gap (downstream in the ventilation direction). Since most of the liquid is in the liquid phase, the gas phase refrigerant and the liquid phase refrigerant are efficiently mixed when the flow direction is changed in the pipe (22). As a result, the part where the refrigerant is completely vaporized and overheated, that is, the superheat part, appears only at the upper end part of the most downstream heat exchange pipe group (7B), and the area of the superheat part is reduced. can do.

図7は、最下流側熱交換管群(7B)の熱交換管の変形例を示す。   FIG. 7 shows a modification of the heat exchange pipe of the most downstream side heat exchange pipe group (7B).

図7に示す最下流側熱交換管群(7B)の熱交換管(30)の場合、隣り合う第1流れ制御部材(23)と第2流れ制御部材(24)との間隔が、第2空間(13)の右側の区画(15B)、すなわち冷媒出口ヘッダ部(18)に向かって広くなっている。   In the case of the heat exchange pipe (30) of the most downstream side heat exchange pipe group (7B) shown in FIG. 7, the distance between the adjacent first flow control member (23) and second flow control member (24) is the second. It is widened toward the right partition (15B) of the space (13), that is, toward the refrigerant outlet header (18).

なお、最上流側熱交換管群(7A)の熱交換管(4)においても、隣り合う第1流れ制御部材(23)と第2流れ制御部材(24)との間隔が、第2ヘッダタンク(3)、すなわち冷媒の流れ方向下流側に向かって広くなっていることが好ましい。   In the heat exchange pipe (4) of the uppermost stream side heat exchange pipe group (7A), the distance between the adjacent first flow control member (23) and second flow control member (24) is the second header tank. (3) That is, it is preferably widened toward the downstream side in the refrigerant flow direction.

図8は、実施形態1の熱交換管の他の変形例を示す。   FIG. 8 shows another modification of the heat exchange tube of the first embodiment.

図8に示す熱交換管(31)は、2枚のアルミニウム板の前後両側縁部どうしをろう付する代わりに、1枚のアルミニウム板(32)を折り曲げるとともに、側縁部どうしの合わせ部をろう付することにより形成されたものである。   In the heat exchange pipe (31) shown in FIG. 8, instead of brazing the front and rear side edges of two aluminum plates, one aluminum plate (32) is bent and the side edge portions are joined together. It is formed by brazing.

図9は、エバポレータの他の実施形態を示す。   FIG. 9 shows another embodiment of the evaporator.

図9に示すエバポレータ(35)は、左右方向にのびるとともに上下方向に間隔をおいて配置されたアルミニウム製第1ヘッダタンク(2)およびアルミニウム製第2ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に、幅方向が前後方向を向くとともに左右方向に間隔をおいて1列に並ぶように配置され、かつ上下両端部が両ヘッダタンク(2)(3)に接続された熱交換管(4)と、隣り合う熱交換管(4)どうしの間の通風間隙および左右両端の熱交換管(4)の外側に配置されて熱交換管(4)にろう付されたアルミニウム製コルゲートフィン(図示略)と、両端のコルゲートフィンの外側に配置されてコルゲートフィンにろう付されたアルミニウム製サイドプレート(図示略)とを備えている。なお、第1ヘッダタンク(2)内は、2つの空間には分割されていない。   The evaporator (35) shown in FIG. 9 includes an aluminum first header tank (2) and an aluminum second header tank (3) that extend in the left-right direction and are spaced apart in the vertical direction, and both header tanks ( Between 2) and (3), the width direction is oriented in the front-rear direction and arranged in a line at intervals in the left-right direction, and the upper and lower ends are connected to both header tanks (2) and (3). Aluminum which is placed outside the heat exchange pipe (4) between the heat exchange pipe (4) and the adjacent heat exchange pipe (4) and outside the heat exchange pipe (4) at the left and right ends and brazed to the heat exchange pipe (4) Corrugated fins (not shown) made of aluminum, and aluminum side plates (not shown) brazed to the corrugated fins are provided outside the corrugated fins at both ends. The first header tank (2) is not divided into two spaces.

第2ヘッダタンク(3)の右端部に冷媒入口(36)が形成され、第1ヘッダタンク(1)の右端部に冷媒出口(37)が形成されている。そして、第1ヘッダタンク(2)全体が冷媒入口ヘッダ部(38)となっているとともに、第2ヘッダタンク(3)全体が冷媒出口ヘッダ部(39)となっている。   A refrigerant inlet (36) is formed at the right end of the second header tank (3), and a refrigerant outlet (37) is formed at the right end of the first header tank (1). The entire first header tank (2) is a refrigerant inlet header portion (38), and the entire second header tank (3) is a refrigerant outlet header portion (39).

熱交換管(4)に代えて、図7に示すような、隣り合う第1流れ制御部材(23)と第2流れ制御部材(24)との間隔が、第1ヘッダタンク(2)、すなわち冷媒出口ヘッダ部(39)に向かって広くなっている熱交換管(30)が用いられてもよい。   Instead of the heat exchange pipe (4), the distance between the adjacent first flow control member (23) and the second flow control member (24) as shown in FIG. A heat exchange pipe (30) that is widened toward the refrigerant outlet header (39) may be used.

この発明によるエバポレータは、カーエアコンを構成する冷凍サイクルに好適に用いられる。   The evaporator according to the present invention is suitably used for a refrigeration cycle constituting a car air conditioner.

(1)(35):エバポレータ
(2)(3):ヘッダタンク
(4)(30)(31):熱交換管
(5):コルゲートフィン
(7A):最上流側熱交換管群
(7B):最下流側熱交換管群
(8)(36):冷媒入口
(9)(37):冷媒出口
(11):分流制御部材
(12):第1空間
(13):第2空間
(15A)(15B):区画
(17)(38):冷媒入口ヘッダ部
(18)(39):冷媒出口ヘッダ部
(22):管路
(23):第1流れ制御部材
(24):第2流れ制御部材
(25):突起
(1) (35): Evaporator
(2) (3): Header tank
(4) (30) (31): Heat exchange pipe
(5): Corrugated fin
(7A): Most upstream heat exchange tube group
(7B): Most downstream heat exchange tube group
(8) (36): Refrigerant inlet
(9) (37): Refrigerant outlet
(11): Shunt control member
(12): First space
(13): Second space
(15A) (15B): Section
(17) (38): Refrigerant inlet header
(18) (39): Refrigerant outlet header
(22): Pipe line
(23): First flow control member
(24): Second flow control member
(25): Projection

Claims (6)

互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に、幅方向を前後方向に向けるとともにヘッダタンクの長さ方向に間隔をおいて1列に並ぶように配置され、かつ両端部がそれぞれ両ヘッダタンクに接続された複数の扁平状熱交換管と、隣り合う熱交換管どうしの間に配置されたフィンとを備えており、熱交換管の管路内に、管路の前縁から後方にのびる第1流れ制御部材と、管路の後縁から前方にのびる第2流れ制御部材とが、熱交換管の長さ方向に間隔をおいて交互に設けられており、両流れ制御部材の長さが、熱交換管における管路の前後方向の幅の1/2以上となっているエバポレータ。 A pair of header tanks spaced apart from each other, and arranged between the header tanks so that the width direction is directed in the front-rear direction and the header tanks are arranged in a line at intervals in the length direction; and It is provided with a plurality of flat heat exchange pipes whose both ends are connected to both header tanks, and fins arranged between adjacent heat exchange pipes. The first flow control member extending backward from the front edge of the pipe and the second flow control member extending forward from the rear edge of the pipe are alternately provided in the length direction of the heat exchange pipe, An evaporator in which the lengths of both flow control members are at least 1/2 of the width in the front-rear direction of the pipe line in the heat exchange pipe. すべての第1流れ制御部材の後端と管路の後縁との距離が等しくなっているとともに、すべての第2流れ制御部材の前端と管路の前縁との距離が等しくなっており、熱交換管の有効熱交換長さをL、第1流れ制御部材と第2流れ制御部材との合計数をN、第1流れ制御部材の後端と管路の後縁との距離をD1、第2流れ制御部材の前端と管路の前縁との距離をD2とした場合、1.5L<(D1+D2)/2×(N−1)+L<2.5Lという関係を満たす請求項1記載のエバポレータ。 The distances between the rear ends of all the first flow control members and the rear edge of the pipe line are equal, and the distances between the front ends of all the second flow control members and the front edge of the pipe line are equal; The effective heat exchange length of the heat exchange pipe is L, the total number of the first flow control member and the second flow control member is N, the distance between the rear end of the first flow control member and the rear edge of the pipe is D1, 2. The relationship of 1.5L <(D1 + D2) / 2 * (N-1) + L <2.5L is satisfied, where D2 is a distance between the front end of the second flow control member and the front edge of the pipe. The evaporator. 第1流れ制御部材の後端と管路の後縁との距離D1と、第2流れ制御部材の前端と管路の前縁との距離D2とが等しくなっており、隣り合う第1流れ制御部材と第2流れ制御部材との間隔をSとした場合、0.5D1<S<1.5D1という関係を満たす請求項2記載のエバポレータ。 The distance D1 between the rear end of the first flow control member and the rear edge of the pipe is equal to the distance D2 between the front end of the second flow control member and the front edge of the pipe, and the adjacent first flow control The evaporator according to claim 2, wherein when the distance between the member and the second flow control member is S, the relationship of 0.5D1 <S <1.5D1 is satisfied. いずれか一方のヘッダタンクに、冷媒出口を有する冷媒出口ヘッダ部が設けられており、冷媒出口ヘッダ部に通じさせられた熱交換管における隣り合う第1流れ制御部材と第2流れ制御部材との間隔が、冷媒出口ヘッダ部に向かって広くなっている請求項1〜3のうちのいずれかに記載のエバポレータ。 Either one of the header tanks is provided with a refrigerant outlet header portion having a refrigerant outlet, and the adjacent first flow control member and second flow control member in the heat exchange pipe communicated with the refrigerant outlet header portion. The evaporator according to any one of claims 1 to 3, wherein the interval is widened toward the refrigerant outlet header. 熱交換管の互いに対向する1対の側壁内面にそれぞれ複数の突起が内方突出状に形成されており、一方の側壁の突起が他方の側壁の突起に接合されている請求項1〜4のうちのいずれかに記載のエバポレータ。 5. A plurality of projections are formed inwardly projecting from the inner surfaces of a pair of opposite side walls of the heat exchange tube, respectively, and the projections on one side wall are joined to the projections on the other side wall. The evaporator as described in any one of them. ヘッダタンクの長さ方向に連続して並んだ複数の熱交換管からなる熱交換管群が、ヘッダタンクの長さ方向に並んで2以上設けられ、ヘッダタンクの長さ方向の一端部の熱交換管群が、当該熱交換管群を構成する熱交換管内を冷媒が最初に流れる最上流側熱交換管群となり、ヘッダタンクの長さ方向の他端部の熱交換管群が、当該熱交換管群を構成する熱交換管内を冷媒が最後に流れる最下流側熱交換管群となっており、冷媒が、一方の第1ヘッダタンク側から他方の第2ヘッダタンク側への流れ、および第1ヘッダタンク側から第2ヘッダタンク側への流れに続く第2ヘッダタンク側から第1ヘッダタンク側への流れを含んで、最上流側熱交換管群から最下流側熱交換管群に向かって流れるようになされ、第1ヘッダタンクにおける最下流側熱交換管群が設けられている側の端部に冷媒入口および冷媒出口が形成され、第1ヘッダタンク内が、分流制御部材によって第1ヘッダタンクの全長にわたり、かつ冷媒が流入する第1空間と、第1ヘッダタンクの全長にわたり、かつ熱交換管に通じる第2空間とに分割されており、第2空間内が、仕切部材により第1ヘッダタンクの長さ方向に並んだ複数の区画に分割されるとともに、各熱交換管群の熱交換管が第2空間の区画に通じさせられ、第1空間が冷媒入口に通じるとともに、第2空間における最下流側熱交換管群の熱交換管が通じている区画が冷媒出口に通じ、第1ヘッダタンク内の第1空間と第2空間における最上流側熱交換管群の熱交換管が通じている区画とが連通させられ、第2空間における最上流側熱交換管群の熱交換管が通じている区画が冷媒入口ヘッダ部となっているとともに、同じく最下流側熱交換管群の熱交換管が通じている区画が冷媒出口ヘッダ部となっている請求項1〜4のうちのいずれかに記載のエバポレータ。 Two or more heat exchange tube groups comprising a plurality of heat exchange tubes arranged continuously in the length direction of the header tank are provided side by side in the length direction of the header tank, and heat at one end of the header tank in the length direction is provided. The exchange tube group becomes the most upstream side heat exchange tube group in which the refrigerant first flows in the heat exchange tube constituting the heat exchange tube group, and the heat exchange tube group at the other end in the length direction of the header tank The most downstream side heat exchange pipe group in which the refrigerant flows last in the heat exchange pipe constituting the exchange pipe group, and the refrigerant flows from one first header tank side to the other second header tank side, and Including the flow from the second header tank side to the first header tank side following the flow from the first header tank side to the second header tank side, the most upstream side heat exchange tube group is changed to the most downstream side heat exchange tube group. The most downstream in the first header tank A refrigerant inlet and a refrigerant outlet are formed at the end portion on the side where the heat exchange pipe group is provided, and the first header tank has a first space in which the refrigerant flows through the entire length of the first header tank by the flow control member. And the second space that extends over the entire length of the first header tank and communicates with the heat exchange pipe, and the second space is divided into a plurality of sections arranged in the length direction of the first header tank by the partition member. In addition to being divided, the heat exchange tubes of each heat exchange tube group are communicated with a section of the second space, the first space communicates with the refrigerant inlet, and the heat exchange tube of the most downstream heat exchange tube group in the second space. Is connected to the refrigerant outlet, and the first space in the first header tank and the section in the second space through which the heat exchange pipe of the most upstream heat exchange pipe group communicates are communicated with each other. Heat exchange in the most upstream heat exchange tube group The section through which the pipe communicates serves as the refrigerant inlet header, and the section through which the heat exchange pipe of the most downstream heat exchange pipe group communicates serves as the refrigerant outlet header. The evaporator as described in any one of.
JP2009019303A 2009-01-30 2009-01-30 Heat exchanger Withdrawn JP2010175168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019303A JP2010175168A (en) 2009-01-30 2009-01-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019303A JP2010175168A (en) 2009-01-30 2009-01-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2010175168A true JP2010175168A (en) 2010-08-12

Family

ID=42706316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019303A Withdrawn JP2010175168A (en) 2009-01-30 2009-01-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2010175168A (en)

Similar Documents

Publication Publication Date Title
JP5142109B2 (en) Evaporator
JP5486782B2 (en) Evaporator
JP4047891B2 (en) Heat exchanger
JP5693346B2 (en) Evaporator
JP2006132920A (en) Heat exchanger
JP2006170598A (en) Heat exchanger
JP2006105581A (en) Laminated heat exchanger
US6431264B2 (en) Heat exchanger with fluid-phase change
JP2007232287A (en) Heat exchanger and integral type heat exchanger
JP2013002758A (en) Cooling device for vehicle
JP5636215B2 (en) Evaporator
JP6842915B6 (en) Evaporator
JP2011257111A5 (en)
JP2013024517A (en) Laminated heat exchanger
JP5194279B2 (en) Evaporator
JP6220692B2 (en) Heat exchanger
JP6785137B2 (en) Evaporator
JP2016118314A (en) Evaporator
JP2010065880A (en) Condenser
JP2015148392A5 (en)
JP5238408B2 (en) Heat exchanger
JP5508818B2 (en) Evaporator
JP2010175168A (en) Heat exchanger
JP2009299923A (en) Heat exchanger
JP2014070860A (en) Heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403