JP2010174361A - Film deposition apparatus - Google Patents

Film deposition apparatus Download PDF

Info

Publication number
JP2010174361A
JP2010174361A JP2009021222A JP2009021222A JP2010174361A JP 2010174361 A JP2010174361 A JP 2010174361A JP 2009021222 A JP2009021222 A JP 2009021222A JP 2009021222 A JP2009021222 A JP 2009021222A JP 2010174361 A JP2010174361 A JP 2010174361A
Authority
JP
Japan
Prior art keywords
electrode
substrate
film
processed
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009021222A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tachiki
洋幸 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009021222A priority Critical patent/JP2010174361A/en
Publication of JP2010174361A publication Critical patent/JP2010174361A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition apparatus capable of improving coverage performance by means of thin film and suppressing defective film deposition. <P>SOLUTION: The film deposition apparatus comprises: a vacuum container 2 for housing a substrate W to be treated; a holder 3 for loading the substrate W to be treated thereon in the vacuum container 2 and conveying the substrate W to be treated in a prescribed conveyance direction; hearths 4A, 4B which are disposed in the vacuum container 2 opposite to the conveyed substrate W to be treated; plasma guns 6, 7 for irradiating the hearths with plasma beams; and a distortion means 15A which faces the hearths and is disposed on the side opposite to the hearths via the substrate W to be treated. Therein, the distortion means 15A comprises an electrode and a power source device which is connected to the electrode and applies a voltage, wherein a potential which generates an electric charge inverse to the electric charge of film material scattered from the hearths is applied onto the electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、成膜装置に関するものである。   The present invention relates to a film forming apparatus.

情報機器の多様化等に伴い、消費電力が少なく軽量化された平面表示装置のニーズが高まっている。この様な平面表示装置の一つとして、有機発光層を備えた有機エレクトロルミネッセンス装置(以下「有機EL装置」という)が知られている。   With the diversification of information equipment, the need for flat display devices that consume less power and are lighter is increasing. As one of such flat display devices, an organic electroluminescence device (hereinafter referred to as “organic EL device”) having an organic light emitting layer is known.

有機EL装置は、陽極と陰極との間に有機発光層(発光層)や、電子注入層などの機能層が挟持される構成の有機発光素子(有機EL素子)を複数備えている。これらのうち、陰極や電子注入層は、電子を放出しやすい特性を備える材料で形成することから、大気中に存在する水分と反応し劣化しやすい。これらが劣化すると、ダークスポットと呼ばれる非発光領域を形成してしまう。そのため、有機EL装置では、有機発光素子から大気中の水分を遮断する封止構造が重要となる。   The organic EL device includes a plurality of organic light emitting elements (organic EL elements) having a structure in which an organic light emitting layer (light emitting layer) and a functional layer such as an electron injection layer are sandwiched between an anode and a cathode. Among these, the cathode and the electron injection layer are formed of a material having a characteristic of easily emitting electrons, and thus easily react with moisture present in the atmosphere and deteriorate. When these deteriorate, a non-light-emitting region called a dark spot is formed. Therefore, in the organic EL device, a sealing structure that blocks moisture in the atmosphere from the organic light emitting element is important.

上述の封止構造について、近年では、数μmの厚みの薄い無機封止膜を用いて有機発光素子を外部雰囲気と遮断する薄膜封止技術が提案されている。このような封止技術を用いると、内部に気体や液体を封入するための中空構造を備えない完全な固体構造が実現可能となる。固体構造を備える有機EL装置は、大幅な薄型化や軽量化が可能となり、更なる高機能・高品質な有機EL装置とすることが期待できことから、薄膜封止技術には大きな期待が寄せられている(特許文献1参照)。   In recent years, a thin film sealing technique for blocking the organic light emitting element from the external atmosphere using a thin inorganic sealing film having a thickness of several μm has been proposed. When such a sealing technique is used, a complete solid structure without a hollow structure for enclosing a gas or a liquid inside can be realized. Organic EL devices with a solid structure can be significantly reduced in thickness and weight, and can be expected to be organic EL devices with higher functionality and quality. (See Patent Document 1).

特開2007−42367号公報JP 2007-42367 A

上述の無機封止膜の成膜には、例えば、図10に示すようなイオンプレーテイング装置が用いられている。   For example, an ion plating apparatus as shown in FIG. 10 is used to form the inorganic sealing film.

このイオンプレーテイング装置1000は、真空容器(成膜室)1001と、この真空容器1001内に配設されるハース1002と、このハース1002にプラズマビームPBを照射するプラズマガン1003と、この真空容器1001内かつハース1002に対向して設けられ被処理基板Wを搬送する搬送機構1004とにより構成されている。このハース1002の貫通孔1005には成膜材料ロッド1006が挿入され、このハース1002の下方には、成膜材料ロッド1006を徐々に突き上げる供給装置1007が設けられている。   The ion plating apparatus 1000 includes a vacuum vessel (film formation chamber) 1001, a hearth 1002 disposed in the vacuum vessel 1001, a plasma gun 1003 for irradiating the hearth 1002 with a plasma beam PB, and the vacuum vessel. A transport mechanism 1004 that transports the substrate W to be processed is provided in 1001 and facing the hearth 1002. A film forming material rod 1006 is inserted into the through hole 1005 of the hearth 1002, and a supply device 1007 for gradually pushing up the film forming material rod 1006 is provided below the hearth 1002.

このイオンプレーテイング装置1000では、プラズマガン1003からプラズマビームPBが真空容器1001中に照射される。このプラズマビームPBは、ハース1002の正電位を適当な値に制御することにより、確実にハース1002に導かれ、このハース1002中の成膜材料ロッド1006の上端部を加熱する。この成膜材料ロッド1006では、その上端部が加熱されることで成膜材料が蒸発し、この蒸発した成膜材料がプラズマビームPB中にてイオン化され、このイオン化した成膜材料粒子が被処理基板Wの表面に付着され成膜される。   In this ion plating apparatus 1000, a plasma beam PB is irradiated from a plasma gun 1003 into a vacuum vessel 1001. This plasma beam PB is reliably guided to the hearth 1002 by controlling the positive potential of the hearth 1002 to an appropriate value, and heats the upper end portion of the film forming material rod 1006 in the hearth 1002. In this film-forming material rod 1006, the film-forming material evaporates by heating the upper end portion thereof, the evaporated film-forming material is ionized in the plasma beam PB, and the ionized film-forming material particles are processed. A film is deposited on the surface of the substrate W.

上述の無機封止膜を形成する有機EL装置の表面には、発光領域を画素毎に分割する隔壁や、駆動素子、あるいは表面に付着した異物等に起因した多くの段差、凹凸がある。しかし、このような表面に上記装置を用いて無機封止膜を成膜すると、ハース1002に対向していない段差部分の側壁部分や、異物や段差の陰となる部分等に成膜材料粒子が付着しにくく成膜不良となりやすい。   On the surface of the organic EL device that forms the inorganic sealing film described above, there are many steps and irregularities caused by partition walls that divide the light emitting region for each pixel, drive elements, or foreign substances attached to the surface. However, when an inorganic sealing film is formed on such a surface using the above apparatus, film forming material particles are formed on the side wall portion of the step portion not facing the hearth 1002 or on the portion that is behind the foreign matter or step. It is difficult to adhere and tends to cause film formation failure.

このような成膜不良部分では、封止が不十分となりやすく、水分が浸入しやすいために非発光領域であるダークスポットが発生しやすい。更に、水分が浸入し続けることでダークスポットが成長し、非発光部分を周囲に広げてしまうため、製品寿命が著しく短くなってしまう。   In such poorly formed film portions, sealing is likely to be insufficient, and moisture is likely to enter, so that dark spots that are non-light emitting regions are likely to occur. Furthermore, since the dark spot grows due to the infiltration of moisture and spreads the non-light emitting portion around, the product life is remarkably shortened.

また、例えば半導体基板における層間絶縁膜のように、有機EL装置以外にも薄膜を有する機器は多数存在するが、形成する薄膜に成膜が不十分な箇所が存在すると、絶縁が破られて誤作動を起こすなど、機器の信頼性の低下に繋がる。   In addition, for example, there are many devices having a thin film other than an organic EL device such as an interlayer insulating film in a semiconductor substrate. However, if there is an insufficiently formed portion in the thin film to be formed, the insulation is broken and an error occurs. This will lead to a decrease in the reliability of the equipment, such as operation.

本発明はこのような事情に鑑みてなされたものであって、薄膜によるカバレッジ性を改善し、成膜不良を抑制する成膜装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a film forming apparatus that improves the coverage by a thin film and suppresses film formation defects.

上記の課題を解決するため、本発明の成膜装置は、被処理基板を収納する真空容器と、前記被処理基板に対向して前記真空容器内に設けられる材料源と、前記材料源にプラズマビームを照射するプラズマガンと、前記材料源に対向するとともに、前記被処理基板を挟んで前記材料源と反対側に設けられる歪曲手段と、を備え、前記歪曲手段は、電極と、該電極に接続され電圧を印加する電源装置と、を有し、前記電極は、前記材料源から飛来する蒸着粒子が有する電荷と逆の電荷を生じる電位が印加されることを特徴とする。   In order to solve the above-described problems, a film forming apparatus of the present invention includes a vacuum container that accommodates a substrate to be processed, a material source that is provided in the vacuum container so as to face the substrate to be processed, and a plasma that is applied to the material source. A plasma gun for irradiating a beam; and a distortion means facing the material source and provided on the opposite side of the material source across the substrate to be processed, the distortion means including an electrode and the electrode And a power supply device that applies a voltage to the electrode, and the electrode is applied with a potential that generates a charge opposite to that of the vapor deposition particles flying from the material source.

この構成によれば、材料源から飛来する蒸着粒子が有する電荷と、歪曲手段の電極が有する蒸着粒子の電荷と逆の電荷と、によって生じる静電力により、蒸着粒子の飛行経路を歪曲させ、電極と重なる箇所に蒸着粒子を引き寄せることができる。そのため、被処理基板の被処理面に存在する段差部分の側壁部分や、異物や段差の陰となる部分等にも飛来する蒸着粒子が付着しやすくなり、成膜不良なく成膜を行うことが可能な成膜装置とすることができる。   According to this configuration, the flight path of the vapor deposition particles is distorted by the electrostatic force generated by the charge of the vapor deposition particles flying from the material source and the charge opposite to the charge of the vapor deposition particles possessed by the electrode of the distortion means. Vapor deposition particles can be attracted to the overlapping area. For this reason, the vapor deposition particles flying on the side wall of the stepped portion existing on the surface of the substrate to be processed, the foreign matter or the portion behind the step, etc. are likely to adhere, and film formation can be performed without film formation defects. A possible film forming apparatus can be obtained.

本発明においては、前記真空容器内において前記被処理基板を戴置すると共に、所定の搬送方向に搬送する搬送機構を有することが望ましい。
この構成によれば、被処理基板の表面に対して蒸着粒子の飛行経路が歪曲する領域を走査しながら成膜を行うことができるため、被処理基板の表面全面に不良の無い成膜が可能となる。
In the present invention, it is desirable that the substrate to be processed be placed in the vacuum vessel and have a transport mechanism for transporting in a predetermined transport direction.
According to this configuration, the film formation can be performed while scanning the region where the flight path of the vapor deposition particles is distorted with respect to the surface of the substrate to be processed. It becomes.

本発明においては、前記電極は、前記搬送方向に交差する方向を長手方向として平面視帯状に延在していることが望ましい。
この構成によれば、帯状に延在する電極に蒸着粒子が引き寄せられるために、蒸着粒子の飛行経路が歪曲する領域が帯状に分布することとなる。このような領域を横切って被処理基板が搬送されるため、被処理基板の表面に対する成膜走査が効果的に行われ、被処理基板の表面全面に不良の無い成膜が可能となる。
In the present invention, it is desirable that the electrode extends in a band shape in plan view with a direction intersecting the transport direction as a longitudinal direction.
According to this configuration, since the vapor deposition particles are attracted to the electrode extending in a belt shape, a region where the flight path of the vapor deposition particles is distorted is distributed in a belt shape. Since the substrate to be processed is transported across such a region, film formation scanning on the surface of the substrate to be processed is effectively performed, and film formation without defects can be performed on the entire surface of the substrate to be processed.

本発明においては、前記搬送方向に直交する方向における前記電極の幅は、前記搬送方向に直交する方向における前記被処理基板の幅よりも長いことが望ましい。
この構成によれば、蒸着粒子の飛行経路の歪曲が被処理基板の全面に渡って行われるため、被処理基板全面に渡って成膜を均一に行うことが可能となる。
In the present invention, it is desirable that a width of the electrode in a direction orthogonal to the transport direction is longer than a width of the substrate to be processed in a direction orthogonal to the transport direction.
According to this configuration, since the distortion of the flight path of the vapor deposition particles is performed over the entire surface of the substrate to be processed, it is possible to perform film formation uniformly over the entire surface of the substrate to be processed.

本発明においては、前記歪曲手段は、前記蒸着粒子の電荷と逆の電荷を生じる電位が印加される第1の電極と、前記第1の電極と隣り合って配置され、前記蒸着粒子の電荷と同じ電荷を生じる電位またはグラウンド電位が印加される第2の電極と、を含む複数の前記電極を有することが望ましい。
この構成によれば、第2の電極と重なって飛来する蒸着粒子を第1の電極へと効果的に導くことが可能な成膜装置とすることができる。特に、第2の電極に蒸着粒子の電荷と同じ電荷が生じる場合、第2の電極による蒸着粒子の反発と、第1の電極による蒸着粒子の引き寄せが同時に行われるため効果的である。
In the present invention, the distortion means is disposed adjacent to the first electrode to which a potential that generates a charge opposite to the charge of the vapor deposition particles is applied, and the charge of the vapor deposition particles. It is desirable to have a plurality of the electrodes including a second electrode to which a potential that generates the same charge or a ground potential is applied.
According to this configuration, it is possible to provide a film forming apparatus capable of effectively guiding the vapor deposition particles flying in a manner overlapping the second electrode to the first electrode. In particular, when the same charge as the charge of the vapor deposition particles is generated in the second electrode, the repulsion of the vapor deposition particles by the second electrode and the pulling of the vapor deposition particles by the first electrode are performed at the same time, which is effective.

本発明においては、前記歪曲手段は、各々複数の前記第1の電極と前記第2の電極とが、縞状に交互に配置されていることが望ましい。
この構成によれば、被処理基板は、一度の搬送で蒸着粒子の飛行経路が歪曲する領域を複数回通過するため、複数回の成膜を行ったのと同様にムラの無い良好な成膜を実現できる成膜装置とすることができる。
In the present invention, it is preferable that in the distortion means, a plurality of the first electrodes and the second electrodes are alternately arranged in stripes.
According to this configuration, the substrate to be processed passes through the region where the flight path of the vapor deposition particles is distorted several times by one transport, so that good film formation with no unevenness is performed as in the case of film formation multiple times. It can be set as the film-forming apparatus which can implement | achieve.

本発明においては、隣り合う前記複数の電極は、絶縁性材料を形成材料とする絶縁部材を挟持していることが望ましい。
この構成によれば、隣り合う電極間で生じうる不要な放電を抑制することができ、安定した成膜を実現することができる。
In the present invention, it is desirable that the plurality of adjacent electrodes sandwich an insulating member made of an insulating material.
According to this configuration, unnecessary discharge that can occur between adjacent electrodes can be suppressed, and stable film formation can be realized.

本発明においては、前記歪曲手段は、前記被処理基板の法線方向に設定された回転軸周りに、前記被処理基板に対して相対的に回転可能に設けられていることが望ましい。
この構成によれば、被処理基板の被処理面に対して、飛行経路が歪曲する蒸着粒子を全方位的にムラ無く付着させることができ、良好な成膜を実現できる成膜装置とすることができる。
In the present invention, it is desirable that the distortion means is provided to be rotatable relative to the substrate to be processed around a rotation axis set in a normal direction of the substrate to be processed.
According to this configuration, it is possible to provide a deposition apparatus that can adhere vapor deposition particles whose flight path is distorted in all directions without unevenness to the surface to be processed of the substrate to be processed, and realize good film formation. Can do.

本発明が適用される有機EL装置の構成を示す断面図である。It is sectional drawing which shows the structure of the organic electroluminescent apparatus with which this invention is applied. 本発明の実施形態に係る成膜装置の構成を示す概略図である。It is the schematic which shows the structure of the film-forming apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る成膜装置の構成を示す概略図である。It is the schematic which shows the structure of the film-forming apparatus which concerns on embodiment of this invention. 本発明の成膜装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the film-forming apparatus of this invention. 本発明の成膜装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the film-forming apparatus of this invention. 本発明の成膜装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the film-forming apparatus of this invention. 本発明の実施形態に係る成膜装置の変形例を示す概略図である。It is the schematic which shows the modification of the film-forming apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る成膜装置の変形例を示す概略図である。It is the schematic which shows the modification of the film-forming apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る成膜装置の変形例を示す概略図である。It is the schematic which shows the modification of the film-forming apparatus which concerns on embodiment of this invention. 従来の成膜装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional film-forming apparatus.

以下、図1〜図9を参照しながら、本発明の実施形態に係る成膜装置について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の膜厚や寸法の比率などは適宜異ならせてある。   Hereinafter, a film forming apparatus according to an embodiment of the present invention will be described with reference to FIGS. In all the drawings below, the film thicknesses and dimensional ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.

ここでは、まず図1を用いて、本発明が製造に適用される有機EL装置について説明した後に、図2,3を用いて成膜装置1について説明を行う。   Here, the organic EL device to which the present invention is applied is first described with reference to FIG. 1, and then the film forming device 1 is described with reference to FIGS.

図1は、有機EL装置100の構成を示す断面図である。有機EL装置100は、基材101aに素子層101bが設けられた素子基板101と、素子層101b上に設けられた画素電極102と、画素電極102上に設けられた有機発光層103と、有機発光層103を覆って設けられた共通電極104と、を有している。   FIG. 1 is a cross-sectional view showing the configuration of the organic EL device 100. The organic EL device 100 includes an element substrate 101 in which an element layer 101b is provided on a base material 101a, a pixel electrode 102 provided on the element layer 101b, an organic light emitting layer 103 provided on the pixel electrode 102, an organic And a common electrode 104 provided to cover the light emitting layer 103.

有機発光層103は、複数の隔壁105で分割されており、分割された有機発光層103は、これを挟持する画素電極102,共通電極104と複数の有機EL素子110を形成している。また、素子基板101に対向配置され有機EL素子110を保護する保護基板120を備えており、素子基板101と保護基板120とは、シール層130および接着層135を介して貼り合わされている。   The organic light emitting layer 103 is divided by a plurality of partition walls 105, and the divided organic light emitting layer 103 forms a pixel electrode 102, a common electrode 104, and a plurality of organic EL elements 110 sandwiching the organic light emitting layer 103. In addition, a protective substrate 120 that is disposed opposite to the element substrate 101 and protects the organic EL element 110 is provided. The element substrate 101 and the protective substrate 120 are bonded to each other with a seal layer 130 and an adhesive layer 135 interposed therebetween.

また、複数の有機EL素子110は、順に積層して形成される電極保護層107と有機緩衝層108とガスバリア層109と、からなる保護層に覆われている。   In addition, the plurality of organic EL elements 110 are covered with a protective layer including an electrode protective layer 107, an organic buffer layer 108, and a gas barrier layer 109 that are sequentially stacked.

これらの保護層のうち、有機緩衝層108は、隔壁105の形状を反映して凹凸状に形成された電極保護層107の凹凸部分を埋め平坦化するために設けられ、エポキシ樹脂などの樹脂材料を用いて形成される。また、電極保護層107およびガスバリア層109は、透明性や密着性、耐水性、絶縁性、更にはガスバリア性を考慮し、無機材料を形成材料として形成されており、有機EL素子110への水分浸入を防ぐ機能を有している。本実施形態では、酸化シリコン(SiO)、酸窒化シリコン(SiON)、窒化シリコン(SiN)などのケイ素化合物を用いて形成される。 Among these protective layers, the organic buffer layer 108 is provided to fill and flatten the uneven portions of the electrode protective layer 107 formed in an uneven shape reflecting the shape of the partition wall 105, and is made of a resin material such as an epoxy resin. It is formed using. Further, the electrode protective layer 107 and the gas barrier layer 109 are formed using an inorganic material as a forming material in consideration of transparency, adhesion, water resistance, insulation, and gas barrier properties, and moisture to the organic EL element 110 is formed. Has a function to prevent intrusion. In this embodiment, it is formed using a silicon compound such as silicon oxide (SiO 2 ), silicon oxynitride (SiON), or silicon nitride (SiN).

電極保護層107は気相反応を用いて形成されるが、隔壁105の上に形成されるため、図において符号AR1で示す隔壁105の頂面部と重なる領域と比べ、符号AR2で示す隔壁105の側壁部と重なる部分では段差の陰となり成膜不良が生じ易い。また、電極保護層107やガスバリア層109の形成面に異物が付着した状態で成膜を行うと、ピンホールを生じやすく、信頼性が低下する。   The electrode protective layer 107 is formed by using a gas phase reaction, but is formed on the partition wall 105. Therefore, the electrode protective layer 107 is formed on the partition wall 105. In the portion overlapping the side wall portion, it becomes a shadow of the step, and film formation failure is likely to occur. In addition, when film formation is performed in a state where foreign matters are attached to the formation surface of the electrode protection layer 107 and the gas barrier layer 109, pinholes are easily generated, and reliability is lowered.

本発明の成膜装置は、隔壁105、有機EL素子110が形成された素子基板101(被処理基板W)に対し、このような電極保護層107およびガスバリア層109を形成する際に好適に用いられる。   The film forming apparatus of the present invention is preferably used when such an electrode protective layer 107 and a gas barrier layer 109 are formed on the element substrate 101 (substrate W to be processed) on which the partition wall 105 and the organic EL element 110 are formed. It is done.

図2は、本実施形態の成膜装置1を示す断面図である。図に示すように、成膜装置1は、被処理基板Wを収納する真空容器2と、真空容器2の上部に設けられ被処理基板Wを真空容器2内に搬送するためのホルダー(搬送機構)3と、真空容器2内の底部において被処理基板Wの被処理面Wsに対向して配設されたハース(材料源)4A、4Bと、ハース4Aに高密度プラズマHPを入射させるプラズマガン6と、ハース4Bに高密度プラズマHPを入射させるプラズマガン7と、真空容器2には、窒素ガス(N)等を導入するための配管10と、真空容器2の上部に設けられホルダー3を挟んでハース4A,4Bに対向する歪曲手段15Aと、を備えている。 FIG. 2 is a cross-sectional view showing the film forming apparatus 1 of the present embodiment. As shown in the figure, a film forming apparatus 1 includes a vacuum container 2 that accommodates a substrate to be processed W, and a holder (conveying mechanism) that is provided above the vacuum container 2 and transports the substrate W to be processed into the vacuum container 2. 3), a hearth (material source) 4A, 4B disposed at the bottom of the vacuum vessel 2 so as to face the processing surface Ws of the substrate W to be processed, and a plasma gun for making the high-density plasma HP incident on the hearth 4A 6, a plasma gun 7 for injecting high-density plasma HP into the hearth 4B, a pipe 10 for introducing nitrogen gas (N 2 ) or the like into the vacuum vessel 2, and a holder 3 provided on the upper portion of the vacuum vessel 2 And a distortion means 15A facing the hearths 4A and 4B.

ハース4A、4B各々には、酸化ケイ素(SiO)等の成膜材料が充填され、これらハース4A、4B各々の周囲には、各々に入射する高密度プラズマHPの向きを制御するハースコイル8が設けられている。また、プラズマガン6の高密度プラズマHPの出射側にも高密度プラズマHPの向きを制御するステアリングコイル9が設けられている。   Each of the hearths 4A and 4B is filled with a film forming material such as silicon oxide (SiO), and a hearth coil 8 is provided around each of the hearths 4A and 4B for controlling the direction of the high-density plasma HP incident thereon. It has been. A steering coil 9 for controlling the direction of the high-density plasma HP is also provided on the exit side of the high-density plasma HP of the plasma gun 6.

プラズマガン6から出射された高密度プラズマHPは、制御装置(図示略)にてハース4Aの放電電圧を適当な値に制御することにより、確実にハース4Aに導かれ、ハース4A中の成膜材料を加熱し蒸発させる。同様に、プラズマガン7から出射された高密度プラズマHPもハース4Bに導かれ、ハース4B中の成膜材料を加熱し蒸発させる。この蒸発した成膜材料は、高密度プラズマHP中にてイオン化するとともに窒素ガス等の雰囲気ガスと反応し、この反応生成物が被処理基板Wの表面に付着し、成膜される。   The high-density plasma HP emitted from the plasma gun 6 is reliably guided to the hearth 4A by controlling the discharge voltage of the hearth 4A to an appropriate value by a control device (not shown), and film formation in the hearth 4A is performed. The material is heated and evaporated. Similarly, the high-density plasma HP emitted from the plasma gun 7 is also guided to the hearth 4B, and the film forming material in the hearth 4B is heated and evaporated. The evaporated film forming material is ionized in the high density plasma HP and reacts with an atmospheric gas such as nitrogen gas, and the reaction product adheres to the surface of the substrate W to be processed.

歪曲手段15Aは、ハース4A,4Bから直線状に飛来する成膜材料または反応生成物(以下、両者を併せて膜材料と称する)の飛行経路を、ホルダー3の近傍で歪曲する機能を有する。   The distortion means 15 </ b> A has a function of distorting the flight path of the film forming material or reaction product (hereinafter collectively referred to as film material) flying linearly from the hearts 4 </ b> A and 4 </ b> B in the vicinity of the holder 3.

図3は、歪曲手段15Aの概要を示す模式図である。図に示すように、歪曲手段15Aは、平面視略矩形で帯状に延在する板体であり一方向に延在する複数の電極(第1の電極)15a、電極(第2の電極)15bと、同様に平面視略矩形を呈し一方向に延在する複数の絶縁部材15cと、を有している。電極15a,15bはそれぞれの長辺同士が隣り合うように所定の配列軸に沿って縞状に交互に配列しており、隣り合う電極15a,15bの間には、それぞれの長辺と自身の長辺とが隣り合うように絶縁部材15cが配置されている。   FIG. 3 is a schematic diagram showing an outline of the distortion means 15A. As shown in the drawing, the distorting means 15A is a plate body that is substantially rectangular in plan view and extends in a band shape, and a plurality of electrodes (first electrodes) 15a and electrodes (second electrodes) 15b extending in one direction. And a plurality of insulating members 15c that are substantially rectangular in plan view and extend in one direction. The electrodes 15a and 15b are alternately arranged in a striped pattern along a predetermined arrangement axis so that the long sides are adjacent to each other. Between the adjacent electrodes 15a and 15b, the long sides and their own The insulating member 15c is arranged so that the long side is adjacent.

電極15a、15bには、電源装置15dが接続されており、電極15aおよび電極15bに異なる電位を印加する。図では、電極15aにはプラス(+)電位を、電極15bにはマイナス(−)電位を印加することとしている。   A power supply device 15d is connected to the electrodes 15a and 15b, and different potentials are applied to the electrodes 15a and 15b. In the figure, a positive (+) potential is applied to the electrode 15a, and a negative (−) potential is applied to the electrode 15b.

近接する位置に逆電位の電極を配置していると電極間で放電するおそれがあるが、例えば、図2に示す真空容器2内の圧力が成膜時に1E−3Paであるとすると、両電極に±2keVの電位を印加する場合には、電極間の離間距離を1cm以上とすることで放電を抑制することができる。 If electrodes of opposite potentials are arranged at close positions, there is a risk of discharge between the electrodes. For example, if the pressure in the vacuum vessel 2 shown in FIG. 2 is 1E −3 Pa during film formation, When a potential of ± 2 keV is applied to the electrodes, the discharge can be suppressed by setting the distance between the electrodes to 1 cm or more.

また、絶縁部材15cは上記のような放電を抑制する機能を有する。絶縁部材15cの形成材料としては、窒化ホウ素(BN)、酸化アルミニウム(Al)、窒化アルミニウム(AlN)などの無機化合物や、セラミック材料を好適に用いることができる。 The insulating member 15c has a function of suppressing the above discharge. As a material for forming the insulating member 15c, an inorganic compound such as boron nitride (BN), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), or a ceramic material can be preferably used.

電極15a,15bの長辺の長さL1は、後述する歪曲手段15Aの影響を被処理基板Wの全面に行き渡らせ成膜を均一に行うために、被処理基板Wにおける電極15a,15bの長辺と同方向の長さL2よりも長いことが望ましい。また、電極15a,15b、絶縁部材15cの短辺の長さ(幅)は、成膜レートや被処理基板Wの搬送速度に応じて適宜設定することができる。   The length L1 of the long sides of the electrodes 15a and 15b is the length of the electrodes 15a and 15b on the substrate W to be processed in order to spread the influence of the distortion means 15A described later over the entire surface of the substrate W to be processed. It is desirable that the length is longer than the length L2 in the same direction as the side. The lengths (widths) of the short sides of the electrodes 15a and 15b and the insulating member 15c can be appropriately set according to the film formation rate and the transport speed of the substrate W to be processed.

不図示のホルダーに保持された被処理基板Wは、電極15a,15bの延在方向と交差する方向に移動し、被処理基板Wに対して歪曲手段15Aと反対の方向から飛来する膜材料Mを用いて被処理面に成膜される。   The substrate W to be processed held by a holder (not shown) moves in a direction intersecting with the extending direction of the electrodes 15a and 15b, and the film material M flying from the direction opposite to the distortion means 15A with respect to the substrate W to be processed. Is formed on the surface to be processed.

このような歪曲手段15Aの近傍においては、飛来する膜材料Mは次のような挙動を示す。図4は、歪曲手段15A近傍の様子について示した概略断面図である。   In the vicinity of the distorting means 15A, the flying film material M exhibits the following behavior. FIG. 4 is a schematic cross-sectional view showing the state in the vicinity of the distortion means 15A.

図に示すように、成膜装置内において歪曲手段15Aに向かって飛来する膜材料Mは、加熱に用いられる高密度プラズマの電荷に起因して電荷を有している。ここでは、成膜材料としてSiOを用いた場合を想定し、膜材料Mがマイナスに帯電していることとして図示している。   As shown in the figure, the film material M flying toward the distortion means 15A in the film forming apparatus has a charge due to the charge of the high-density plasma used for heating. Here, assuming that SiO is used as the film forming material, the film material M is illustrated as being negatively charged.

一方、歪曲手段15Aでは、隣り合う電極15a,15bに異なるプラスとマイナスの電位が生じるように印加がされているため、電極間において電界EFが発生している。このような歪曲手段15Aに向かって飛来する膜材料Mは、電界EFの影響により飛行経路が曲がると共に、膜材料Mの帯電電荷と同じ電荷が発生している電極15bから斥力を受けて反発し、膜材料Mの帯電電荷とは逆の電荷が発生している電極15aから引力を受けて引き寄せられる事となる。結果、膜材料Mは、被処理基板に対して斜め方向から付着して成膜が行われる。   On the other hand, in the distorting means 15A, application is made so that different positive and negative potentials are generated in the adjacent electrodes 15a and 15b, so that an electric field EF is generated between the electrodes. The film material M flying toward the distorting means 15A bends the flight path due to the influence of the electric field EF and repels the repulsive force from the electrode 15b in which the same charge as the charge of the film material M is generated. The film material M is attracted by receiving an attractive force from the electrode 15a in which a charge opposite to the charged charge of the film material M is generated. As a result, the film material M adheres to the substrate to be processed from an oblique direction to form a film.

ここで、図では電極15a,15bの幅を等しいものとして示しているが、互いに幅が異なることとしても良い。図5は、電極15a,15bの幅を変化させた場合の膜材料Mの挙動を示す概略図である。ここでは、飛行経路のみを示すことで膜材料Mを図示している。   Here, although the widths of the electrodes 15a and 15b are shown as being equal in the figure, the widths may be different from each other. FIG. 5 is a schematic view showing the behavior of the film material M when the widths of the electrodes 15a and 15b are changed. Here, the membrane material M is illustrated by showing only the flight path.

図5(a)に示すように、電極15aの幅を電極15bの幅よりも短くすると、膜材料Mに対して斥力を生じる電極15bと平面的に重なって飛来する膜材料Mが増えるために、多くの膜材料Mが斥力を受け、結果、電極15a,15bの幅が等しい場合よりも、飛行経路が歪曲する膜材料Mが増える。   As shown in FIG. 5A, when the width of the electrode 15a is made shorter than the width of the electrode 15b, the film material M flying in a plane overlaps with the electrode 15b that generates repulsive force on the film material M increases. Many film materials M are subjected to repulsive force. As a result, the number of film materials M whose flight path is distorted is larger than when the widths of the electrodes 15a and 15b are equal.

逆に、図5(b)に示すように、電極15aの幅を電極15bの幅よりも長くすると、膜材料Mに対して引力を生じる電極15aと平面的に重なって飛来する膜材料Mが増えるために、多くの膜材料Mが引力を受け、結果、電極15a,15bの幅が等しい場合よりも、飛行経路が直進する膜材料Mが増える。   On the other hand, as shown in FIG. 5B, when the width of the electrode 15a is longer than the width of the electrode 15b, the film material M flying in a plane overlaps with the electrode 15a that generates an attractive force with respect to the film material M. As a result, many film materials M receive an attractive force, and as a result, more film materials M travel in the flight path than when the widths of the electrodes 15a and 15b are equal.

これら電極の幅に対する膜材料Mの挙動を利用し、膜材料Mが帯電する電荷量、膜材料Mの飛来速度、膜材料Mの飛来密度に応じて好適な幅の電極を設定し、飛来する膜材料Mの向きを歪曲して良好な成膜を行うことができる。
本実施形態の成膜装置1は、以上のような構成となっている。
By utilizing the behavior of the film material M with respect to the width of the electrodes, an electrode having a suitable width is set according to the amount of charge charged by the film material M, the flying speed of the film material M, and the flying density of the film material M, and then flying. The direction of the film material M can be distorted and good film formation can be performed.
The film forming apparatus 1 of the present embodiment has the above configuration.

次に、上記の成膜装置1の機能について、例を示して説明する。図6は、被処理基板Wに成膜する様子を示す工程図である。ここでは、図1で示した有機EL装置100の製造工程において、隔壁105、有機EL素子110が形成された素子基板101(被処理基板W)に対し、電極保護層107を形成する様子を示す。   Next, the function of the film forming apparatus 1 will be described with an example. FIG. 6 is a process diagram showing how a film is formed on the substrate W to be processed. Here, in the manufacturing process of the organic EL device 100 shown in FIG. 1, a state in which the electrode protective layer 107 is formed on the element substrate 101 (substrate W to be processed) on which the partition wall 105 and the organic EL element 110 are formed is shown. .

図6(a)に示すように、不図示のホルダーに保持された被処理基板Wは、隔壁105や有機EL素子110が形成された側を被処理面Wsとして膜材料Mの飛来する側に向け、歪曲手段15Aと平面的に重なるように移動する。飛来する膜材料Mは、歪曲手段15Aから生じる電界の影響を受けて飛行経路が歪曲しながら被処理面Wsに達する。そのため、膜材料Mが直進して飛来するよりも、符号AR2で示す隔壁105の側壁部と重なる部分に膜材料Mが付着しやすく、結果、成膜不良が生じにくい。   As shown in FIG. 6A, the substrate to be processed W held by a holder (not shown) is on the side on which the film material M flies, with the side on which the partition walls 105 and the organic EL elements 110 are formed as the surface to be processed Ws. And so as to overlap the distortion means 15A in a plane. The flying film material M reaches the surface to be processed Ws while the flight path is distorted due to the influence of the electric field generated from the distortion means 15A. Therefore, the film material M is more likely to adhere to the portion overlapping the side wall portion of the partition wall 105 indicated by the symbol AR2, rather than the film material M flying straight ahead, and as a result, film formation defects are less likely to occur.

被処理基板Wと歪曲手段15Aとの離間距離は、歪曲手段15Aに印加される電圧や膜材料Mの成膜レート等によって任意に決める事が出来るが、上記のような機能を良好に発揮するためには、膜材料Mの飛行経路が曲がり始める位置よりは歪曲手段15Aに近い位置に被処理基板Wを配置する必要がある。   The separation distance between the substrate W to be processed and the distorting means 15A can be arbitrarily determined depending on the voltage applied to the distorting means 15A, the film forming rate of the film material M, etc., but the above functions are exhibited well. For this purpose, it is necessary to arrange the substrate to be processed W at a position closer to the distortion means 15A than a position at which the flight path of the film material M starts to bend.

また、図6(b)に示すように、被処理基板Wが歪曲手段15Aに対して相対的に移動しながら成膜されるため、被処理面Wsが有する段差部分の全面において膜材料Mが良好に付着し、成膜が行われる。被処理基板Wの近傍では、複数の電極15aと重なる位置において帯状に膜材料Mの引き寄せが行われており、このような帯状に膜材料Mの飛行経路が歪曲している箇所を被処理基板Wが横断することで、1つの電極を用いて被処理基板Wの全面に複数回走査して成膜を行ったのと同様のムラの無い成膜ができる。更に、必要に応じて被処理基板Wを往復させながら複数回の成膜を行うことで、成膜不良が無い良好な電極保護層107が形成される。
以上のようにして、本実施形態の成膜装置を用いた成膜が行われる。
Further, as shown in FIG. 6B, since the substrate to be processed W is formed while moving relative to the distortion means 15A, the film material M is formed over the entire step portion of the surface to be processed Ws. Good adhesion and film formation. In the vicinity of the substrate to be processed W, the film material M is attracted in a band shape at a position overlapping with the plurality of electrodes 15a, and a portion where the flight path of the film material M is distorted in such a band shape is processed. By traversing W, film formation without unevenness can be performed as in the case where film formation is performed by scanning the entire surface of the substrate W to be processed a plurality of times using one electrode. Furthermore, a good electrode protection layer 107 free from film formation defects is formed by performing film formation a plurality of times while reciprocating the substrate to be processed W as necessary.
As described above, film formation using the film formation apparatus of the present embodiment is performed.

以上のような構成の成膜装置1によれば、飛来する膜材料Mが有する電荷と、歪曲手段15Aの電極15aが有する電荷と、によって生じる静電力により、膜材料Mの飛行経路を歪曲させることができる。そのため、被処理基板Wの被処理面Wsに存在する隔壁の側壁部分にも歪曲して飛来する膜材料Mが付着しやすくなり、成膜不良なく成膜を行うことが可能な成膜装置1とすることができる。   According to the film forming apparatus 1 having the above-described configuration, the flight path of the film material M is distorted by the electrostatic force generated by the charge of the film material M flying and the charge of the electrode 15a of the distortion means 15A. be able to. Therefore, the film material M that is distorted and flying easily adheres to the side wall portion of the partition wall existing on the processing surface Ws of the processing target substrate W, and the film forming apparatus 1 that can perform film formation without film formation defects. It can be.

また、本実施形態では、歪曲手段15Aは、膜材料Mの電荷と逆の電荷を有する電極15aと、電極15aと隣り合って配置され、膜材料Mの電荷と同じ電荷を有する電極15bと、を有することとしている。そのため、電極15bによる膜材料Mの反発と、電極15aによる膜材料Mの引き寄せが同時に行われ、電極15bと重なって飛来する膜材料Mを電極15aへと効果的に導くことが可能な成膜装置1とすることができる。   In the present embodiment, the distortion means 15A includes an electrode 15a having a charge opposite to the charge of the film material M, an electrode 15b disposed adjacent to the electrode 15a and having the same charge as the charge of the film material M, To have. Therefore, repulsion of the film material M by the electrode 15b and drawing of the film material M by the electrode 15a are performed at the same time, and the film material M that overlaps and flies over the electrode 15b can be effectively guided to the electrode 15a. The device 1 can be obtained.

また、本実施形態では、電極15aと電極15bとが縞状に交互に配置されていることとしている。そのため、歪曲手段15Aと重なって搬送される被処理基板Wに対して複数箇所で膜材料Mの引き寄せが行われ、一度の搬送で複数層重ねた成膜を行ったのと同様にムラの無い良好な成膜を実現できる成膜装置とすることができる。   In the present embodiment, the electrodes 15a and the electrodes 15b are alternately arranged in a stripe pattern. Therefore, the film material M is drawn at a plurality of locations with respect to the substrate to be processed W that is transported overlapping the distorting means 15A, and there is no unevenness as in the case where a plurality of layers are deposited by a single transport. It can be set as the film-forming apparatus which can implement | achieve favorable film-forming.

なお、本実施形態においては、電極15bには電極15aと反対の電位を印加することとしたが、電極15bの電位がグラウンド電位であることとしても構わない。   In the present embodiment, a potential opposite to that of the electrode 15a is applied to the electrode 15b. However, the potential of the electrode 15b may be a ground potential.

また、本実施形態においては、電極15a,15bを平面視略矩形の板体としているが、角柱、円柱などの棒状の形状であっても良い。   In the present embodiment, the electrodes 15a and 15b are substantially rectangular plates in plan view, but may be rod-like shapes such as prisms and cylinders.

また、本実施形態においては、歪曲手段15Aには電極15a,15bが互いに複数存在することとしているが、電極の数はこれに限らない。図7は、歪曲手段の変形例を示す模式図である。図7では、飛来する膜材料Mの帯電電荷とは反対の電荷を生じる電位に印加される電極を15aとしている。   In the present embodiment, the distortion means 15A has a plurality of electrodes 15a and 15b, but the number of electrodes is not limited to this. FIG. 7 is a schematic diagram showing a modification of the distortion means. In FIG. 7, the electrode 15a is applied to a potential that generates a charge opposite to the charged charge of the flying film material M.

例えば、図7(a)に示すように、2つの電極15aで1つの電極15bを挟持した歪曲手段15Bとしても良い。この場合には、間に挟まれた電極15bで2つの電極15aに膜材料Mが引き寄せられることとなるが、印加する電荷を逆にして、2つの電極15bで1つの電極15aを挟持する構成としても構わない。また、図7(b)に示すように、1つの電極15aのみを用いて歪曲手段15Cとすることもできる。   For example, as shown in FIG. 7A, a distortion means 15B in which one electrode 15b is sandwiched between two electrodes 15a may be used. In this case, the film material M is attracted to the two electrodes 15a by the electrode 15b sandwiched therebetween, but the structure is such that the applied charge is reversed and one electrode 15a is sandwiched by the two electrodes 15b. It does not matter. Further, as shown in FIG. 7B, the distortion means 15C can be formed by using only one electrode 15a.

また、本実施形態においては、被処理基板Wの搬送方向と交わる方向に延在する電極を有する歪曲手段を1つ設けることとしているが、複数の歪曲手段を備える成膜装置とすることとしても良い。   In the present embodiment, one distortion means having an electrode extending in a direction intersecting the transport direction of the substrate W to be processed is provided. However, a film forming apparatus having a plurality of distortion means may be used. good.

例えば、図8に示すように、2つの歪曲手段15D,15Eが有する電極15a,15bの延在方向が交わるように配置すると、歪曲手段と重なって行われる成膜毎に膜材料Mの付着する方位が異なるため、被処理基板Wに対して複数の方位から膜材料Mの付着を行う事が出来る。従って、膜材料Mの付着方向の偏りを無くし、成膜不良を良好に防ぐことができる。   For example, as shown in FIG. 8, when the extending directions of the electrodes 15a and 15b of the two distortion means 15D and 15E cross each other, the film material M adheres at every film formation performed overlapping the distortion means. Since the orientation is different, the film material M can be attached to the substrate W to be processed from a plurality of orientations. Therefore, it is possible to eliminate unevenness in the adhesion direction of the film material M and to prevent poor film formation.

また、本実施形態においては、被処理基板Wと歪曲手段15Aとは、相対的な直線運動を行うこととしているが、平面的に重なる被処理基板Wと歪曲手段15Aとが、相対的に回転運動を行う構成とすることとしても良い。   In the present embodiment, the substrate W to be processed and the distortion means 15A perform relative linear motion, but the substrate W to be processed and the distortion means 15A that overlap in a plane are relatively rotated. It may be configured to exercise.

例えば、図9(a)に示すように、歪曲手段15Fの法線と平行に設定された回転軸R1のまわりを歪曲手段15Fが回転可能とし、歪曲手段15Fを回転させながら本実施形態と同様に歪曲手段15Fに対向する被処理基板Wを移動させる。このような動作を行う成膜装置で成膜を行うと、膜材料Mは、被処理面に対して全方位的に様々な方向から飛来して成膜される。そのため、例えば、凹凸形状が格子状に設けられているような場合であっても、成膜の陰となる箇所がなくなり、好適に成膜を行うことができる。   For example, as shown in FIG. 9A, the distortion means 15F can rotate around a rotation axis R1 set parallel to the normal line of the distortion means 15F, and the distortion means 15F is rotated and the same as in this embodiment. Next, the substrate W to be processed facing the distortion means 15F is moved. When film formation is performed by a film forming apparatus that performs such an operation, the film material M is deposited from various directions in all directions with respect to the surface to be processed. Therefore, for example, even in the case where the uneven shape is provided in a lattice shape, there is no portion that becomes a shadow of the film formation, and the film formation can be suitably performed.

上記のように複数の歪曲手段を用いる場合には、歪曲手段毎に各々回転可能とすることとしても良い。   When a plurality of distortion means are used as described above, each distortion means may be rotatable.

あるいは、図9(b)に示すように、被処理基板Wの法線と平行に設定された回転軸R2のまわりを被処理基板Wが回転可能とし、被処理基板Wを回転させながら、歪曲手段15Aに対向する被処理基板Wを移動させることとしても良い。   Alternatively, as shown in FIG. 9B, the substrate to be processed W can rotate around the rotation axis R2 set parallel to the normal line of the substrate to be processed W, and the substrate W is distorted while being rotated. The target substrate W facing the means 15A may be moved.

図9で示した歪曲手段15Fまたは被処理基板Wの回転運動は、一方向に回転し続ける回転運動であっても良く、一方向に一定の角度回転した後に逆方向に一定の角度回転することを繰り返すこととしても良い。この構成だと、例えば90度の角度変更が可能であれば、結果として被処理面に対し全方位的に様々な方向から膜材料Mを付着させて成膜を行うことができる。   The rotational movement of the distorting means 15F or the substrate W to be processed shown in FIG. 9 may be a rotational movement that continues to rotate in one direction, and is rotated by a certain angle in one direction and then by a certain angle in the opposite direction. May be repeated. With this configuration, if the angle can be changed by 90 degrees, for example, the film material M can be deposited from various directions in all directions with respect to the surface to be processed.

更に、例えば、被処理基板Wを往復させて複数回の走査により成膜を行う場合には、往復の切り替え時に被処理基板Wと歪曲手段との相対角度を変更することとして、搬送中は互いの相対角度を固定した状態で成膜を行っても良い。   Further, for example, when film formation is performed by reciprocating the substrate to be processed W and performing a plurality of scans, the relative angle between the substrate to be processed and the distorting means is changed at the time of switching between reciprocations, so The film may be formed in a state where the relative angle is fixed.

以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

本実施形態では、膜材料Mがマイナスに帯電していることとしたために、プラスに帯電する電極15aに膜材料Mが引き寄せられるとして記載したが、プラズマにより加熱された膜材料がプラスに帯電している場合には、マイナスに帯電する電極に引き寄せられることとなる。その場合には、上述の電極15a,15bの電位を逆に設定することで、同様の効果が得られる成膜装置とすることができる。   In the present embodiment, since the film material M is negatively charged, it is described that the film material M is attracted to the positively charged electrode 15a. However, the film material heated by the plasma is positively charged. If it is, it will be attracted to the negatively charged electrode. In that case, by setting the potentials of the electrodes 15a and 15b in reverse, it is possible to obtain a film forming apparatus that can obtain the same effect.

1…成膜装置、2…真空容器、3…ホルダー(搬送機構)、4A,4B…ハース(材料源)、6,7…プラズマガン、15A〜15F…歪曲手段、15a…電極(第1の電極)、15b…電極(第2の電極)、15c…絶縁部材、15d…電源装置、M…膜材料(蒸着粒子)、W…被処理基板、 DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus, 2 ... Vacuum container, 3 ... Holder (conveyance mechanism), 4A, 4B ... Hearth (material source), 6, 7 ... Plasma gun, 15A-15F ... Distortion means, 15a ... Electrode (1st Electrode), 15b ... electrode (second electrode), 15c ... insulating member, 15d ... power supply device, M ... film material (deposited particles), W ... substrate to be treated,

Claims (9)

被処理基板を収納する真空容器と、
前記被処理基板に対向して前記真空容器内に設けられる材料源と、
前記材料源にプラズマビームを照射するプラズマガンと、
前記材料源に対向するとともに、前記被処理基板を挟んで前記材料源と反対側に設けられる歪曲手段と、を備え、
前記歪曲手段は、電極と、該電極に接続され電圧を印加する電源装置と、を有し、
前記電極は、前記材料源から飛来する蒸着粒子が有する電荷と逆の電荷を生じる電位が印加されることを特徴とする成膜装置。
A vacuum container for storing the substrate to be processed;
A material source provided in the vacuum container facing the substrate to be processed;
A plasma gun for irradiating the material source with a plasma beam;
A distortion means facing the material source and provided on the opposite side of the material source across the substrate to be processed,
The distortion means includes an electrode and a power supply device connected to the electrode and applying a voltage,
The film forming apparatus, wherein the electrode is applied with a potential that generates a charge opposite to a charge of vapor deposition particles flying from the material source.
前記真空容器内において前記被処理基板を戴置すると共に、所定の搬送方向に搬送する搬送機構を有することを特徴とする請求項1に記載の成膜装置。   2. The film forming apparatus according to claim 1, further comprising a transport mechanism that places the substrate to be processed in the vacuum container and transports the substrate in a predetermined transport direction. 前記電極は、前記搬送方向に交差する方向を長手方向として平面視帯状に延在していることを特徴とする請求項2に記載の成膜装置。   The film forming apparatus according to claim 2, wherein the electrode extends in a band shape in a plan view with a direction intersecting the transport direction as a longitudinal direction. 前記搬送方向に直交する方向における前記電極の幅は、前記搬送方向に直交する方向における前記被処理基板の幅よりも長いことを特徴とする請求項2または3に記載の成膜装置。   4. The film forming apparatus according to claim 2, wherein a width of the electrode in a direction orthogonal to the transport direction is longer than a width of the substrate to be processed in a direction orthogonal to the transport direction. 前記歪曲手段は、前記蒸着粒子の電荷と逆の電荷を生じる電位が印加される第1の電極と、
前記第1の電極と隣り合って配置され、前記蒸着粒子の電荷と同じ電荷を生じる電位またはグラウンド電位が印加される第2の電極と、を含む複数の前記電極を有することを特徴とする請求項1から4のいずれか1項に記載の成膜装置。
The distortion means includes a first electrode to which a potential that generates a charge opposite to the charge of the vapor deposition particles is applied;
A plurality of the electrodes including a second electrode disposed adjacent to the first electrode and applied with a potential that generates the same charge as the charge of the vapor deposition particles or a ground potential. Item 5. The film forming apparatus according to any one of Items 1 to 4.
前記歪曲手段は、各々複数の前記第1の電極と前記第2の電極とが、縞状に交互に配置されていることを特徴とする請求項5に記載の成膜装置。   6. The film forming apparatus according to claim 5, wherein each of the distortion means includes a plurality of the first electrodes and the second electrodes alternately arranged in a stripe pattern. 隣り合う前記複数の電極は、絶縁性材料を形成材料とする絶縁部材を挟持していることを特徴とする請求項5または6に記載の成膜装置。   The film forming apparatus according to claim 5, wherein the plurality of adjacent electrodes sandwich an insulating member made of an insulating material as a forming material. 前記搬送方向に沿って配列する複数の歪曲手段を有し、
各々の前記歪曲手段が有する前記第1の電極および前記第2の電極は、延在方向が互いに交差する方向に設定されていることを特徴とする請求項5から7のいずれか1項に記載の成膜装置。
A plurality of distortion means arranged along the conveying direction;
8. The method according to claim 5, wherein the first electrode and the second electrode included in each of the distortion means are set in a direction in which extending directions intersect each other. Film forming equipment.
前記歪曲手段は、前記被処理基板の法線方向に設定された回転軸周りに、前記被処理基板に対して相対的に回転可能に設けられていることを特徴とする請求項1から8のいずれか1項に記載の成膜装置   9. The distortion device according to claim 1, wherein the distortion means is provided to be rotatable relative to the substrate to be processed around a rotation axis set in a normal direction of the substrate to be processed. The film-forming apparatus of any one of Claims
JP2009021222A 2009-02-02 2009-02-02 Film deposition apparatus Withdrawn JP2010174361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021222A JP2010174361A (en) 2009-02-02 2009-02-02 Film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021222A JP2010174361A (en) 2009-02-02 2009-02-02 Film deposition apparatus

Publications (1)

Publication Number Publication Date
JP2010174361A true JP2010174361A (en) 2010-08-12

Family

ID=42705600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021222A Withdrawn JP2010174361A (en) 2009-02-02 2009-02-02 Film deposition apparatus

Country Status (1)

Country Link
JP (1) JP2010174361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023108313A1 (en) * 2021-12-13 2023-06-22 湘潭宏大真空技术股份有限公司 Vacuum coating apparatus for improving film coating uniformity of workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023108313A1 (en) * 2021-12-13 2023-06-22 湘潭宏大真空技术股份有限公司 Vacuum coating apparatus for improving film coating uniformity of workpiece

Similar Documents

Publication Publication Date Title
JP6371820B2 (en) Film-forming method and light-emitting device manufacturing method
US8859043B2 (en) Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
JP5985796B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method
TWI575090B (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus
KR101678056B1 (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140018046A (en) Organic layer deposition assembly, apparatus for organic layer deposition, organic light emitting display apparatus and method for manufacturing the same
JP6348691B2 (en) Flat panel display
KR102391346B1 (en) Organic light display apparatus, apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
JP5579177B2 (en) Encapsulated optoelectronic device and method of manufacturing an encapsulated optoelectronic device
JP2014198903A (en) Vapor deposition device, and method for manufacturing organic light emitting display device
KR20170012577A (en) Reactive sputtering device
US20040043525A1 (en) Method of forming protection film for covering electronic component and electronic device having protection film
KR20140135562A (en) Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
JP2010174361A (en) Film deposition apparatus
KR20170041310A (en) Deposition sorce and method of manufacturing the same
JP2011076798A (en) Electroluminescent element and method of manufacturing the same
JP4087645B2 (en) ITO film, manufacturing method thereof, and organic EL element
JP2010174362A (en) Film deposition apparatus
KR102075525B1 (en) Deposition apparatus for organic layer, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
JP2020117787A (en) Film deposition apparatus by magnetron sputtering method and film deposition method
JP2010272229A (en) Method for manufacturing transparent electrode of organic electroluminescent element
JP4964591B2 (en) ORGANIC EL ELEMENT AND METHOD FOR PRODUCING ORGANIC EL ELEMENT
JP2011076770A (en) Electroluminescent element and method of manufacturing the same
JP2006233305A (en) Film deposition method and film deposition apparatus, and method and device for manufacturing light emitting element
JP2009512131A (en) Voltage operating layer circuit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403