JP2010174326A - Surface reforming material for iron-based alloy, surface reforming method for iron-based alloy, and casting mold - Google Patents

Surface reforming material for iron-based alloy, surface reforming method for iron-based alloy, and casting mold Download PDF

Info

Publication number
JP2010174326A
JP2010174326A JP2009017984A JP2009017984A JP2010174326A JP 2010174326 A JP2010174326 A JP 2010174326A JP 2009017984 A JP2009017984 A JP 2009017984A JP 2009017984 A JP2009017984 A JP 2009017984A JP 2010174326 A JP2010174326 A JP 2010174326A
Authority
JP
Japan
Prior art keywords
mass
iron
less
based alloy
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009017984A
Other languages
Japanese (ja)
Other versions
JP5366571B2 (en
Inventor
Masabumi Nakamura
正文 中村
Naoji Yamamoto
直司 山本
Tokuyuki Miyazaki
徳幸 宮崎
Yasunobu Ogawa
泰伸 小川
Michiharu Hasegawa
道治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009017984A priority Critical patent/JP5366571B2/en
Publication of JP2010174326A publication Critical patent/JP2010174326A/en
Application granted granted Critical
Publication of JP5366571B2 publication Critical patent/JP5366571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface reforming material with which the surface of an iron-based alloy can be reformed at a relatively low temperature, and to provide a surface reforming method. <P>SOLUTION: The surface reforming material having the fowllowing component ratios is dissolved in an epoxy resin and a thinner to obtain a paste. Then, the paste is applied on the surface of a mold subjected to a soft-nitriding treatment, and the resulting mold is subjected to a heat treatment. The component ratios are as follows, by mass: 6-10% iron (Fe); 24-40% nickel (Ni); 5-10% cobalt (Co); 5-10% chromium (Cr); 1.3-10% aluminum (Al); 3-10% silicon (Si); 15-25% manganese (Mn); ≤15% tungsten (W); 0.1-2% boron (B); ≤2% carbon (C); ≤3.2% molybdenum (Mo); and ≤1% titanium (Ti). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は鉄系合金の表面改質材料、鉄系合金の表面改質方法およびこれらを適用した鋳造用の金型に関する。 The present invention relates to an iron-based alloy surface modifying material, an iron-based alloy surface modifying method, and a casting mold to which these are applied.

ダイカスト金型の表面温度は各ショットごとに100℃〜700℃の急激な温度変化が繰り返されるため、熱衝撃によって金型成形面に多数のヒートチェックが発生し、これがクラックに進行する。クラックが発生すると、製品表面にそれが転写されるため使用できなくなり、金型の寿命が短くなる。   Since the surface temperature of the die casting mold is repeatedly changed rapidly from 100 ° C. to 700 ° C. for each shot, a large number of heat checks are generated on the mold forming surface by thermal shock, and this progresses to cracks. When cracks occur, they are transferred to the surface of the product and cannot be used, and the life of the mold is shortened.

このため、従来から金型表面を改質してクラックが発生し難くする技術として、特許文献1,2が提案され、また発生したクラックを補修する技術として、特許文献3,4が提案されている。   For this reason, Patent Documents 1 and 2 have been proposed as techniques for improving the mold surface to make it difficult for cracks to occur, and Patent Documents 3 and 4 have been proposed as techniques for repairing the generated cracks. Yes.

特許文献1には、金型表面にTiAlN層のハードコーティング成膜を形成させて、耐溶損性ならびに耐ヒートチェック性を付与する技術が開示されている。   Patent Document 1 discloses a technique for forming a hard coating film of a TiAlN layer on a mold surface to impart resistance to melting damage and heat check.

特許文献2には、金型ではないが鋳鉄製摺動部品の表面改質法として、アルミナイズ処理によって、鋳鉄製摺動部品の表面にAlN及びFeAlが混在する高硬度層を形成することが提案されている。 In Patent Document 2, as a surface modification method for a cast iron sliding part that is not a mold, a high hardness layer in which AlN and FeAl 3 are mixed is formed on the surface of the cast iron sliding part by aluminizing treatment. Has been proposed.

特許文献3,4には、Mn(マンガン):15%以上20%以下、W(タングステン):8%以上15%以下、Fe(鉄):2%以上12%以下、Co(コバルト):7%以下、Cr(クロム):7%以下、Si(シリコン):7%以下、C(炭素):2%以下、B(ホウ素):2%以下、Ni(ニッケル):残部を含むペーストを、クラックを覆うように盛り付け、この表面を酸化抑制材でコーティングした後に、前記ペーストを加熱溶融せしめてクラック内に浸透させて合金化する内容が開示されている。 In Patent Documents 3 and 4, Mn (manganese): 15% to 20%, W (tungsten): 8% to 15%, Fe (iron): 2% to 12%, Co (cobalt): 7 %, Cr (chromium): 7% or less, Si (silicon): 7% or less, C (carbon): 2% or less, B (boron): 2% or less, Ni (nickel): paste containing the remainder, It is disclosed that the cracks are covered so that the surface is coated with an oxidation inhibitor, and then the paste is heated and melted to penetrate into the cracks to be alloyed.

特開平7−112266号公報JP-A-7-112266 特開平8−176795号公報Japanese Patent Application Laid-Open No. 8-176695 特開2007−160390号公報JP 2007-160390 A 特開2007−160392号公報JP 2007-160392 A

特許文献1に開示されるTiAlN層は、800℃まで分解しないため、耐熱性に優れ鋳造用金型に適している。しかしながら、TiAlN層を形成するには高度の技術と高価な設備が必要となり更に加工日数も長い。鋳造用金型に適用して金型の寿命を延長しても、日程やコストなど課題が多い。また特許文献2に開示されるアルミナイズ処理温度は鉄系窒化物が分解する高温が望ましいが、素材の変性変形を伴わない600℃前後が処理温度の上限である。したがってそれ以上の高温に曝される物品には適さない。
更に特許文献2の方法で小型部品は、請求項2のようにアルミニウム又はアルミニウム合金溶湯に浸漬し、表面効果処理が可能であろうと思われる。しかし大型製品や長尺物は前記方法では対応困難であり、より一般的方法が望まれている。
Since the TiAlN layer disclosed in Patent Document 1 does not decompose up to 800 ° C., it has excellent heat resistance and is suitable for a casting mold. However, in order to form a TiAlN layer, advanced technology and expensive equipment are required, and the processing days are also long. Even if it is applied to a casting mold to extend the life of the mold, there are many problems such as schedule and cost. Further, the aluminizing treatment temperature disclosed in Patent Document 2 is desirably a high temperature at which iron-based nitride decomposes, but the upper limit of the treating temperature is around 600 ° C. without modification and deformation of the material. Therefore, it is not suitable for articles exposed to higher temperatures.
Further, it is considered that a small part is immersed in aluminum or a molten aluminum alloy by the method of Patent Document 2 and surface effect treatment is possible. However, large products and long objects are difficult to handle by the above method, and a more general method is desired.

一方、特許文献3,4にあってはペーストを溶解せしめて合金を形成するために、1000℃を超える温度で処理する必要がある。1000℃を超える高温で処理するのは作業が困難であるばかりでなく、環境も悪化し、更に金型に歪みが発生したり、クラック近傍も高温になって硬度が増して脆くなってしまう問題がある。 On the other hand, in Patent Documents 3 and 4, it is necessary to process at a temperature exceeding 1000 ° C. in order to dissolve the paste and form an alloy. Processing at a high temperature exceeding 1000 ° C. not only makes the work difficult, but also deteriorates the environment, causes distortion in the mold, and increases the hardness in the vicinity of the crack to increase the hardness and become brittle. There is.

上記課題を解決するべく本発明に係る鉄系合金の表面改質材料は、Fe(鉄)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、アルミニウム(Al)、シリコン(Si)、マンガン(Mn)、タングステン(W)、ホウ素(B)、炭素(C)、モリブデン(Mo)およびチタン(Ti)からなる。 In order to solve the above problems, the surface modification material of the iron-based alloy according to the present invention includes Fe (iron), nickel (Ni), cobalt (Co), chromium (Cr), aluminum (Al), silicon (Si), It consists of manganese (Mn), tungsten (W), boron (B), carbon (C), molybdenum (Mo) and titanium (Ti).

好ましい成分割合は以下の記述とし、これを樹脂(エポキシ樹脂など)と有機溶剤(シンナーなど)を加え混合物状(ペースト状)にして用いる。
Fe(鉄):6質量%以上10質量%以下
ニッケル(Ni):24質量%以上40質量%以下
コバルト(Co):5質量%以上10質量%以下
クロム(Cr):5質量%以上10質量%以下
アルミニウム(Al):1.3質量%以上10質量%以下
シリコン(Si):3質量%以上10質量%以下
マンガン(Mn):15質量%以上25質量%以下
タングステン(W):15質量%以下
ホウ素(B):0.1質量%以上2質量%以下
炭素(C):2質量%以下
モリブデン(Mo):3.2質量%以下
チタン(Ti):1質量%以下
Preferred component ratios are described below, and this is used in the form of a mixture (paste) by adding a resin (such as an epoxy resin) and an organic solvent (such as thinner).
Fe (iron): 6 mass% to 10 mass% Nickel (Ni): 24 mass% to 40 mass% Cobalt (Co): 5 mass% to 10 mass% Chromium (Cr): 5 mass% to 10 mass Aluminum (Al): 1.3 mass% or more and 10 mass% or less Silicon (Si): 3 mass% or more and 10 mass% or less Manganese (Mn): 15 mass% or more and 25 mass% or less Tungsten (W): 15 mass % Or less Boron (B): 0.1% by mass or more and 2% by mass or less Carbon (C): 2% by mass or less Molybdenum (Mo): 3.2% by mass or less Titanium (Ti): 1% by mass or less

各成分を上記の割合としたのは、以下の理由による。
鉄(Fe)は合金形成上の準基幹成分であり、少なすぎても多すぎても合金としての特性を発揮できなくなるため、上記の割合とする。
The reason why each component is set to the above ratio is as follows.
Iron (Fe) is a quasi-base component in forming the alloy, and if it is too little or too much, it will not be possible to exhibit the properties as an alloy, so the above ratio is used.

ニッケル(Ni)は超耐熱合金形成材料で、Feと同様に合金形成上の基幹成分であり、少量添加することで焼入れ性と靭性を増大させるが、過剰に加えるとオーステナイトを生じ、脆化するため、上記の割合とする。 Nickel (Ni) is a super heat-resistant alloy-forming material, and is a key component for alloy formation like Fe. Addition of a small amount increases hardenability and toughness, but when added in excess, austenite is formed and embrittles. Therefore, the above ratio is set.

コバルト(Co)の一般的な特性は、マルテンサイト地を強化し、耐磨耗性と高温での硬度を増し、熱間強度の保持性向上のために添加する。本発明にあっては、生成合金の熱間強度保持を主目的として上記の割合を添加する。   The general properties of cobalt (Co) are added to strengthen martensite, increase wear resistance and hardness at high temperatures, and improve hot strength retention. In the present invention, the above ratio is added mainly for maintaining the hot strength of the produced alloy.

クロム(Cr)の一般的な特性は、安定した炭化物をつくり耐蝕性と耐磨耗性を増し、炭化物は結晶粒の成長を抑え、浸炭を促進し、焼入れ性を向上し、耐酸化性を増し、靭性を改善する。またV、Mo、Wなどと複合炭化物をつくり焼き戻し抵抗が増大する。本発明にあっては、生成合金の耐磨耗性向上を主目的として上記の割合を添加する。   The general characteristics of chromium (Cr) are the formation of stable carbides to increase corrosion resistance and wear resistance, and carbides suppress the growth of crystal grains, promote carburization, improve hardenability and improve oxidation resistance. Increase and improve toughness. In addition, composite carbides such as V, Mo, and W are produced, and the tempering resistance is increased. In the present invention, the above ratio is added mainly for the purpose of improving the wear resistance of the produced alloy.

アルミニウム(Al)は脱酸効果を目的として上記の割合を添加する。アルミニウムの融点は660℃であり、この混合物では一番低温であり、次に融点の低いのはマンガンで1245℃である。したがって本願処理によりアルミニウムをベースとした共晶の合金膜が生成すると考えられる。単なる金属化合物ではなく、融点の低いアルミニウムを加えることにより共晶の合金膜を鉄系合金表面に作り、その表面改質が可能になったと考えられる。   Aluminum (Al) is added in the above proportion for the purpose of deoxidizing effect. Aluminum has a melting point of 660 ° C., the lowest temperature in this mixture, and the next lowest melting point is manganese at 1245 ° C. Therefore, it is considered that an eutectic alloy film based on aluminum is formed by the treatment of the present application. It is considered that the eutectic alloy film was formed on the surface of the iron-based alloy by adding aluminum having a low melting point instead of a mere metal compound, and the surface modification was made possible.

シリコン(Si)の一般的な特性は、脱酸効果が高く、低温の焼き戻し抵抗性を増大させる。多量に加えるとセメンタイトを黒鉛化して脆化したり、可鍛性を害する。また少量の添加で硬さと強度が増し、耐酸化性が増し、加熱による結晶粒の成長を抑制する。本発明にあっては、生成合金の耐酸化性向上を主目的として上記の割合を添加する。   The general properties of silicon (Si) have a high deoxidation effect and increase low temperature tempering resistance. If added in a large amount, the cementite becomes graphitized and becomes brittle, and the malleability is impaired. Further, addition of a small amount increases hardness and strength, increases oxidation resistance, and suppresses crystal grain growth due to heating. In the present invention, the above ratio is added mainly for the purpose of improving the oxidation resistance of the resulting alloy.

マンガン(Mn)の一般的な特性は、焼入れ性、耐磨耗性及び強度向上のために添加する。また脱酸剤としての効果も発揮し、S(硫黄)による脆化を防止する。しかしながら、多量に加えると、焼き割れを起こしたり、残留オーステナイトを生じ脆化する。本発明にあっては、生成合金の耐磨耗性向上を主目的として上記の割合を添加する。 The general properties of manganese (Mn) are added to improve hardenability, wear resistance and strength. Moreover, the effect as a deoxidizer is exhibited and the embrittlement by S (sulfur) is prevented. However, if it is added in a large amount, it causes burning cracks or residual austenite, resulting in embrittlement. In the present invention, the above ratio is added mainly for the purpose of improving the wear resistance of the produced alloy.

タングステン(W)の一般的な特性は、(構造)炭化物をつくり、硬さを上昇させ、焼き戻し抵抗性を増大させるために添加する。特にCrの存在によって焼き戻し抵抗性が更に増大し、二次硬化を起こし、耐磨耗性が増大する。しかしながら、多量に加えると脆くなる。本発明にあっては、生成合金の焼き戻し抵抗性向上を主目的として上記の割合を添加する。 The general properties of tungsten (W) are added to create (structural) carbides, increase hardness and increase tempering resistance. In particular, the presence of Cr further increases tempering resistance, causes secondary hardening, and increases wear resistance. However, it becomes brittle when added in a large amount. In the present invention, the above ratio is added mainly for the purpose of improving the tempering resistance of the produced alloy.

ホウ素(B)の一般的な特性は、微量の添加で焼入れ性が著しく増す一方、過剰に加えるとFeBを生じ赤熱脆性を起こす。少量添加であれば切削耐久性を増す。また、共晶炭化物を小さくする。本発明にあっては、生成合金の共晶炭化物の微細化を主目的として上記の割合を添加する。 As for the general characteristics of boron (B), hardenability is remarkably increased by addition of a small amount, but when added excessively, Fe 2 B is generated and red hot brittleness is caused. Addition of a small amount increases cutting durability. Also, the eutectic carbide is reduced. In the present invention, the above ratio is added mainly for the purpose of refining the eutectic carbide of the produced alloy.

炭素(C)の一般的な特性は、マルテンサイトのひずみ率を上昇させて焼入れ硬さを増す。Fe、Cr、Mo、Vなどと炭化物をつくり強度を増す。引張強度を増す。炭化物量が多くなると耐磨耗性が増す。本発明にあっては、生成合金の耐引張強度向上を主目的として上記の割合を添加する。   A general characteristic of carbon (C) is to increase the quenching hardness by increasing the strain rate of martensite. Form carbides with Fe, Cr, Mo, V, etc. to increase strength. Increase tensile strength. As the amount of carbide increases, wear resistance increases. In the present invention, the above ratio is added mainly for the purpose of improving the tensile strength of the resulting alloy.

モリブデン(Mo)は焼き戻しによる脆弱性防止を目的として、上記の割合を添加する。 Molybdenum (Mo) is added in the above proportion for the purpose of preventing brittleness by tempering.

チタン(Ti)は結晶粒子の微細化を目的として、上記の割合を添加する。 Titanium (Ti) is added in the above proportion for the purpose of refining crystal grains.

樹脂はバインダー(接合材)として機能し、天然、合成いずれの樹脂でもよいが、性状が安定し入手が容易で安価な合成樹脂が好ましい。特に熱硬化性のエポキシ樹脂は硬化後は硬くて溶剤に強く、好ましい。
有機溶剤は本願材料を鉄系合金の表面に塗布するために、系全体を液体状とするために加える。
有機溶剤としては、炭化水素系:例えばトルエン、アルコール類:例えばエタノール、ケトン系:例えばアセトン、エステル系:例えば酢酸エチル、エーテル系:例えばメチルセルソルブ、ハロゲン系:例えばメチレンクロライド(ジクロロメタン)などがよいが、塗料を薄めて粘度を下げるために開発された有機溶剤であるシンナーが本願材料を鉄系合金の表面に塗布する際、乾燥が早すぎず遅すぎず、好適である。
シンナーは有機系複合混合剤である有機溶剤であり、製造各社により成分は多少異なるがトルエンを中心とし、キシレン、メタノール、エアタノール、酢酸メチル、エチルベンゼンなどが含まれる。
The resin functions as a binder (bonding material) and may be either natural or synthetic resin. However, it is preferable to use a synthetic resin that has stable properties, is easily available, and is inexpensive. In particular, a thermosetting epoxy resin is preferable because it is hard after curing and strong against solvents.
The organic solvent is added to make the entire system liquid in order to apply the present material to the surface of the iron-based alloy.
Examples of the organic solvent include hydrocarbon type: for example toluene, alcohols: for example ethanol, ketone type: for example acetone, ester type: for example ethyl acetate, ether type: for example methyl cellosolve, halogen type: for example methylene chloride (dichloromethane) and the like. Although it is good, thinner which is an organic solvent developed for thinning the paint and lowering the viscosity is suitable for applying the material of the present application to the surface of the iron-based alloy, not drying too early or too late.
Thinner is an organic solvent that is an organic composite mixture. Components differ slightly depending on the manufacturer, but mainly toluene, and includes xylene, methanol, air ethanol, methyl acetate, ethylbenzene, and the like.

また、本発明に係る鉄系合金の表面改質方法は、工程1として、鉄系合金の表面をガス軟窒化方法によって硬化せしめ、工程2として、工程1によって硬化せしめられた鉄系合金の表面に、前記表面改質材料を塗布し、工程3として、工程2によって表面改質材料が塗布された鉄系合金を、非酸素雰囲気中、焼鈍温度で熱処理する。
焼鈍は鋼をオーステナイト組織の状態で十分保持し炉中で徐冷する処理で、オーステナイト組織は純鉄で911℃〜1392℃の温度領域にある鉄の相のことである。ステンレス(例えばSUS304)では温度領域は低く700℃以上にてオーステナイト組織化が可能である。
Moreover, the surface modification method of the iron-based alloy according to the present invention is a step 1 in which the surface of the iron-based alloy is hardened by a gas soft nitriding method, and in step 2, the surface of the iron-based alloy cured in step 1 is used. Then, the surface-modified material is applied, and in step 3, the iron-based alloy to which the surface-modified material is applied in step 2 is heat-treated in a non-oxygen atmosphere at an annealing temperature.
Annealing is a treatment in which the steel is sufficiently retained in the austenite structure state and gradually cooled in the furnace, and the austenite structure is an iron phase in a temperature range of 911 ° C. to 1392 ° C. with pure iron. Stainless steel (for example, SUS304) has a low temperature range and can form austenite at 700 ° C. or higher.

請求項3または請求項4に記載の鉄系合金の表面改質方法であって、前記非酸素雰囲気は、脱炭防止剤または酸化抑制剤を使用するか、還元性雰囲気とすることを特徴とする鉄系合金の表面改質方法。 The surface modification method for an iron-based alloy according to claim 3 or 4, wherein the non-oxygen atmosphere uses a decarburization inhibitor or an oxidation inhibitor, or is a reducing atmosphere. To improve the surface of iron-based alloys.

前記脱炭防止剤は加熱炉で加熱中のスラブ表面の脱酸を防止することが可能な酸化防止剤、または還元剤を含有する酸化防止剤とする。酸化防止剤は一般にCrなどの酸化物、無水水ガラス、アクリル樹脂成分からなる。また還元剤を含有する酸化防止剤は、例えば、Crなどの酸化物と、無水水ガラス、アクリル樹脂と、ホウ素(B)、アルミニウム(Al)、SiCなどの還元成分からなる。脱炭防止剤としては、還元剤を含有する酸化防止剤とするのが還元剤を含有しない酸化防止剤よりもスラブ表面の脱酸防止効果が大きいので好ましい。但し、無水水ガラスに代えて水ガラスを用いてもよい。
酸化物としては、Al、Cr3、ZrOのうちから選ばれる1種または2種以上とするのが加熱炉雰囲気中の酸素との酸化に伴うフェライト系ステンレス鋼スラブの側端部の脱炭を抑制できるので好ましい。
また還元剤は、Si、SiC、Al、B、Cのうちから選ばれる1種または2種以上とするのが、入手しやすく安価であって、加熱炉で加熱時に、酸化スケールに起因するスラブ側端部の脱炭が進行する以前に、還元剤が酸化スケールを還元し脱炭を抑制するので好ましい。
また還元剤をBとSiC、またはBとAlとするのが、スラブ側端部における酸化スケールとの参加に伴う脱炭をほぼ完全に抑制でき、最もエッジシーム疵回り込み量を小さくできるので更に好ましい。
The decarburization inhibitor is an antioxidant capable of preventing deoxidation of the slab surface being heated in a heating furnace, or an antioxidant containing a reducing agent. Antioxidants generally comprise oxides such as Cr 2 O 3 , anhydrous water glass, and acrylic resin components. The antioxidant containing a reducing agent, for example, an oxide such as Cr 2 O 3, anhydrous water glass, acrylic resin, boron (B), aluminum (Al), consisting of reducing components, such as SiC. As a decarburization inhibitor, an antioxidant containing a reducing agent is preferable because it has a greater deoxidation preventing effect on the slab surface than an antioxidant containing no reducing agent. However, water glass may be used instead of anhydrous water glass.
As the oxide, one or more selected from Al 2 O 3 , Cr 2 O 3, and ZrO 2 is the ferritic stainless steel slab side that accompanies oxidation with oxygen in the furnace atmosphere. It is preferable because decarburization at the end can be suppressed.
In addition, the reducing agent is one or more selected from Si, SiC, Al, B, and C. It is easy to obtain and inexpensive, and it is a slab caused by oxide scale when heated in a heating furnace. Before the decarburization at the side end proceeds, the reducing agent is preferable because it reduces the oxide scale and suppresses decarburization.
Further, it is more preferable to use B and SiC or B and Al as the reducing agent because decarburization accompanying the participation of the oxide scale at the end portion on the slab side can be almost completely suppressed and the amount of edge seam penetration can be minimized.

前記酸化抑制剤は塩化ナトリウムが考えられ、前記還元性雰囲気は大気を、窒素ガス、ヘリウムガス、ネオンガスまたはアルゴンガスに置換するか、真空とすることが考えられる。 The oxidation inhibitor may be sodium chloride, and the reducing atmosphere may be that the atmosphere is replaced with nitrogen gas, helium gas, neon gas, argon gas, or a vacuum.

更に本発明の対象には、前記した鉄系合金の表面改質方法によってキャビティ面が改質された鋳造用金型を含む。 Further, the object of the present invention includes a casting mold whose cavity surface is modified by the above-described surface modification method of an iron-based alloy.

本発明に係る鉄系合金の表面改質材料及び改質方法によれば、比較的低い熱処理温度によって、耐熱性に優れ、ヒートクラックの発生の少ない改質された鉄系合金部材の表面を得ることができる。 According to the surface modification material and the modification method for an iron-based alloy according to the present invention, a surface of a modified iron-based alloy member having excellent heat resistance and less heat cracking is obtained by a relatively low heat treatment temperature. be able to.

アルミ溶湯に対する溶損量を試験する装置の断面図。Sectional drawing of the apparatus which tests the amount of molten loss with respect to molten aluminum. アルミ溶湯への浸漬時間と溶損量との関係をしめす表とグラフ。Table and graph showing the relationship between the immersion time in molten aluminum and the amount of erosion. 500サイクル後のヒートクラック性評価試験結果を示す写真で、(a)は軟窒化処理のみを行った場合、(b)は軟窒化処理後に本発明に係る表面改質を施した場合を示す。It is the photograph which shows the heat crack property evaluation test result after 500 cycles, (a) shows the case where only the soft nitriding treatment is performed, and (b) shows the case where the surface modification according to the present invention is performed after the soft nitriding treatment. 1000サイクル後のヒートクラック性評価試験結果を示す写真で、(a)は軟窒化処理のみを行った場合、(b)は軟窒化処理後に本発明に係る表面改質を施した場合を示す。It is the photograph which shows the heat crack property evaluation test result after 1000 cycles, (a) shows the case where only the soft nitriding treatment is performed, and (b) shows the case where the surface modification according to the present invention is performed after the soft nitriding treatment. (a)は軟窒化処理のみを行った場合と軟窒化処理後に本発明に係る表面改質を施した場合の最大クラック深さを比較したグラフ、(b)は軟窒化処理のみを行った場合と軟窒化処理後に本発明に係る表面改質を施した場合のヒートチェック発生数を比較したグラフ。(A) is a graph comparing the maximum crack depth when only soft nitriding is performed and when surface modification according to the present invention is performed after soft nitriding, (b) is when only soft nitriding is performed And a graph comparing the number of heat checks generated when surface modification according to the present invention was performed after soft nitriding.

以下に本発明の実施例を添付図面に基づいて説明する。図1はアルミ溶湯に対する溶損量を試験する装置の断面図であり、この試験装置はヒータ1を内蔵した外側容器2内に坩堝3を配置し、この坩堝3内にアルミ溶湯4を保持している。 Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of an apparatus for testing the amount of erosion with respect to molten aluminum. In this test apparatus, a crucible 3 is arranged in an outer container 2 containing a heater 1, and the molten aluminum 4 is held in the crucible 3. ing.

坩堝3の上方には回転体5を配置し、この回転体5に棒状のテストピース6を3〜6本吊り下げることが可能になっている。本実施例では、表面処理を施していないテストピース、軟窒化処理を施したテストピース及び軟窒化処理を施した上に更に本発明にかかる表面改質方法を施したテストピースを取り付け、最大240rpmの速度でアルミ溶湯中を浸漬回転するようにしている。 A rotating body 5 is disposed above the crucible 3, and 3 to 6 rod-shaped test pieces 6 can be suspended from the rotating body 5. In this example, a test piece not subjected to surface treatment, a test piece subjected to soft nitriding treatment, and a test piece subjected to soft nitriding treatment and further subjected to the surface modification method according to the present invention are attached, and a maximum of 240 rpm It is designed to rotate by dipping in the molten aluminum at a speed of.

軟窒化処理の条件は一般的なガス軟窒化条件を採用した。具体的には、急熱型変性ガス(Endo Gas)あるいは有機溶剤の熱分解ガスなどの浸炭性ガスまたは窒素ガス雰囲気中にNHガスを30〜50%添加し、550〜600℃の温度範囲で1〜5時間加熱保持し、窒素を侵入拡散させ、表面に炭窒化物を形成させる。 General gas soft nitriding conditions were adopted for the soft nitriding treatment. Specifically, NH 3 gas is added in an amount of 30 to 50% in a carburizing gas or nitrogen gas atmosphere such as a rapidly denatured gas (Endo Gas) or a pyrolysis gas of an organic solvent, and a temperature range of 550 to 600 ° C. And heated for 1 to 5 hours to allow nitrogen to penetrate and diffuse to form carbonitrides on the surface.

ここで、本発明にかかる表面改質方法は、軟窒化処理後のテストピースの表面に、以下の(表1)に示された表面改質材料を塗布し、更に、非酸素雰囲気中において焼鈍温度で熱処理する。 Here, in the surface modification method according to the present invention, the surface modification material shown in the following (Table 1) is applied to the surface of the test piece after the soft nitriding treatment, and further annealed in a non-oxygen atmosphere. Heat treatment at temperature.

図2はアルミ溶湯への浸漬時間と溶損量との関係をしめす表とグラフである。この図2から、何ら表面処理を施していないテストピースの溶損量は極めて大きく、また軟窒化処理を施すことで溶損量は少なくなり、更に本発明の表面処理を施すことで溶損量が大幅に少なくなることが分かる。 FIG. 2 is a table and graph showing the relationship between the immersion time in the molten aluminum and the amount of erosion. From FIG. 2, the amount of erosion of the test piece that has not been subjected to any surface treatment is extremely large, and the amount of erosion is reduced by applying soft nitriding, and the amount of erosion is reduced by applying the surface treatment of the present invention. It can be seen that is significantly reduced.

図3は500サイクル後のヒートクラック性評価試験結果を示す写真で、(a)は軟窒化処理のみを行った場合、(b)は軟窒化処理後に本発明に係る表面改質を施した場合を示す。また、図4は1000サイクル後のヒートクラック性評価試験結果を示す写真で、(a)は軟窒化処理のみを行った場合、(b)は軟窒化処理後に本発明に係る表面改質を施した場合を示す。 FIG. 3 is a photograph showing the results of a heat crack property evaluation test after 500 cycles, where (a) shows only the soft nitriding treatment, and (b) shows the case where the surface modification according to the present invention is applied after the soft nitriding treatment. Indicates. FIG. 4 is a photograph showing the results of a heat crack property evaluation test after 1000 cycles, where (a) shows only the soft nitriding treatment, and (b) shows the surface modification according to the present invention after the soft nitriding treatment. Shows the case.

また、図5(a)は軟窒化処理のみを行った場合と軟窒化処理後に本発明に係る表面改質を施した場合の最大クラック深さを比較したグラフ、(b)は軟窒化処理のみを行った場合と軟窒化処理後に本発明に係る表面改質を施した場合のヒートチェック発生数を比較したグラフである。 FIG. 5 (a) is a graph comparing the maximum crack depth when only soft nitriding is performed and when surface modification according to the present invention is performed after soft nitriding, and FIG. 5 (b) is only soft nitriding. 6 is a graph comparing the number of heat checks generated when the surface modification according to the present invention is performed after the soft nitriding treatment.

上記の図3〜図5から、軟窒化処理のみを行った場合よりも軟窒化処理後に本発明に係る表面改質を施した場合の方が、発生するヒートチェック数が1/4まで減少し、また最大クラックの深さも1/4まで浅くなっていることが分かる。 From FIG. 3 to FIG. 5, the number of heat checks generated is reduced to ¼ when the surface modification according to the present invention is performed after the soft nitriding treatment than when only the soft nitriding treatment is performed. It can also be seen that the maximum crack depth is also reduced to 1/4.

本発明に係る鉄系合金の表面改質材料は、鋳造用金型などの鉄系合金からなる部材の表面改質に利用することができる。 The iron alloy surface modification material according to the present invention can be used for surface modification of a member made of an iron alloy such as a casting mold.

1…ヒータ、2…外側容器、3…坩堝、4…アルミ溶湯、5…回転体、6…テストピース。 DESCRIPTION OF SYMBOLS 1 ... Heater, 2 ... Outer container, 3 ... Crucible, 4 ... Molten aluminum, 5 ... Rotating body, 6 ... Test piece.

Claims (8)

Fe(鉄)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、アルミニウム(Al)、シリコン(Si)、マンガン(Mn)、タングステン(W)、ホウ素(B)、炭素(C)、モリブデン(Mo)およびチタン(Ti)からなることを特徴とする鉄系合金の表面改質材料。 Fe (iron), nickel (Ni), cobalt (Co), chromium (Cr), aluminum (Al), silicon (Si), manganese (Mn), tungsten (W), boron (B), carbon (C), An iron-based alloy surface modification material comprising molybdenum (Mo) and titanium (Ti). 請求項1に記載の鉄系合金の表面改質材料であって、以下の各成分割合とし、樹脂と有機溶剤を加え混合物状にしていることを特徴とする鉄系合金の表面改質材料。
Fe(鉄):6質量%以上10質量%以下、ニッケル(Ni):24質量%以上40質量%以下、コバルト(Co):5質量%以上10質量%以下、クロム(Cr):5質量%以上10質量%以下、アルミニウム(Al):1.3質量%以上10質量%以下、シリコン(Si):3質量%以上10質量%以下、マンガン(Mn):15質量%以上25質量%以下、タングステン(W):15質量%以下、ホウ素(B):0.1質量%以上2質量%以下、炭素(C):2質量%以下、モリブデン(Mo):3.2質量%以下、チタン(Ti):1質量%以下。
The iron-based alloy surface modifying material according to claim 1, wherein the ratio is as follows, and a resin and an organic solvent are added to form a mixture.
Fe (iron): 6 mass% to 10 mass%, nickel (Ni): 24 mass% to 40 mass%, cobalt (Co): 5 mass% to 10 mass%, chromium (Cr): 5 mass% 10 mass% or less, aluminum (Al): 1.3 mass% or more and 10 mass% or less, silicon (Si): 3 mass% or more and 10 mass% or less, manganese (Mn): 15 mass% or more and 25 mass% or less, Tungsten (W): 15 mass% or less, boron (B): 0.1 mass% or more and 2 mass% or less, carbon (C): 2 mass% or less, molybdenum (Mo): 3.2 mass% or less, titanium ( Ti): 1 mass% or less.
以下の工程1〜3からなることを特徴とする鉄系合金の表面改質方法。
工程1
鉄系合金の表面をガス軟窒化方法によって硬化せしめる。
工程2
工程1によって硬化せしめられた鉄系合金の表面に、Fe(鉄)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、アルミニウム(Al)、シリコン(Si)、マンガン(Mn)、タングステン(W)、ホウ素(B)、炭素(C)、モリブデン(Mo)、およびチタン(Ti)からなる表面改質材料を塗布する。
工程3
工程2によって表面改質材料が塗布された鉄系合金を、非酸素雰囲気中、焼鈍温度で熱処理する。
A method for modifying the surface of an iron-based alloy comprising the following steps 1 to 3.
Process 1
The surface of the iron-based alloy is hardened by a gas soft nitriding method.
Process 2
Fe (iron), nickel (Ni), cobalt (Co), chromium (Cr), aluminum (Al), silicon (Si), manganese (Mn), tungsten on the surface of the iron-based alloy cured in step 1 A surface modification material made of (W), boron (B), carbon (C), molybdenum (Mo), and titanium (Ti) is applied.
Process 3
The iron-based alloy coated with the surface modifying material in step 2 is heat-treated at an annealing temperature in a non-oxygen atmosphere.
請求項3に記載の鉄系合金の表面改質方法であって、前記表面改質材料を以下の各成分割合とし、樹脂と有機溶剤を加え混合物状にしていることを特徴とする鉄系合金の表面改質材料。
Fe(鉄):6質量%以上10質量%以下、ニッケル(Ni):24質量%以上40質量%以下、コバルト(Co):5質量%以上10質量%以下、クロム(Cr):5質量%以上10質量%以下、アルミニウム(Al):1.3質量%以上10質量%以下、シリコン(Si):3質量%以上10質量%以下、マンガン(Mn):15質量%以上25質量%以下、タングステン(W):15質量%以下、ホウ素(B):0.1質量%以上2質量%以下、炭素(C):2質量%以下、モリブデン(Mo):3.2質量%以下、チタン(Ti):1質量%以下。
The iron-based alloy surface modification method according to claim 3, wherein the surface-modified material has the following component ratios, and a resin and an organic solvent are added to form a mixture. Surface modification material.
Fe (iron): 6 mass% to 10 mass%, nickel (Ni): 24 mass% to 40 mass%, cobalt (Co): 5 mass% to 10 mass%, chromium (Cr): 5 mass% 10 mass% or less, aluminum (Al): 1.3 mass% or more and 10 mass% or less, silicon (Si): 3 mass% or more and 10 mass% or less, manganese (Mn): 15 mass% or more and 25 mass% or less, Tungsten (W): 15 mass% or less, boron (B): 0.1 mass% or more and 2 mass% or less, carbon (C): 2 mass% or less, molybdenum (Mo): 3.2 mass% or less, titanium ( Ti): 1 mass% or less.
請求項3または請求項4に記載の鉄系合金の表面改質方法であって、前記非酸素雰囲気は、脱炭防止剤または酸化抑制剤を使用するか、還元性雰囲気とすることを特徴とする鉄系合金の表面改質方法。 The surface modification method for an iron-based alloy according to claim 3 or 4, wherein the non-oxygen atmosphere uses a decarburization inhibitor or an oxidation inhibitor, or is a reducing atmosphere. To improve the surface of iron-based alloys. 請求項5に記載の鉄系合金の表面改質方法であって、前記酸化抑制剤は塩化ナトリウムであることを特徴とする鉄系合金の表面改質方法。 6. The surface modification method for an iron-based alloy according to claim 5, wherein the oxidation inhibitor is sodium chloride. 請求項5に記載の鉄系合金の表面改質方法であって、前記還元性雰囲気は大気を、窒素ガス、ヘリウムガス、ネオンガスまたはアルゴンガスに置換するか、真空とすることを特徴とする鉄系合金の表面改質方法。 6. The method of modifying a surface of an iron-based alloy according to claim 5, wherein the reducing atmosphere replaces the atmosphere with nitrogen gas, helium gas, neon gas, or argon gas, or makes a vacuum. For surface modification of aluminum alloys. 請求項3乃至請求項7に記載のいずれかの鉄系合金の表面改質方法によってキャビティ面が改質されたことを特徴とする鋳造用金型。 A casting mold, wherein a cavity surface is modified by the surface modification method for an iron-based alloy according to any one of claims 3 to 7.
JP2009017984A 2009-01-29 2009-01-29 Iron-based alloy surface modification material, iron-based alloy surface modification method, and casting mold Expired - Fee Related JP5366571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017984A JP5366571B2 (en) 2009-01-29 2009-01-29 Iron-based alloy surface modification material, iron-based alloy surface modification method, and casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017984A JP5366571B2 (en) 2009-01-29 2009-01-29 Iron-based alloy surface modification material, iron-based alloy surface modification method, and casting mold

Publications (2)

Publication Number Publication Date
JP2010174326A true JP2010174326A (en) 2010-08-12
JP5366571B2 JP5366571B2 (en) 2013-12-11

Family

ID=42705569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017984A Expired - Fee Related JP5366571B2 (en) 2009-01-29 2009-01-29 Iron-based alloy surface modification material, iron-based alloy surface modification method, and casting mold

Country Status (1)

Country Link
JP (1) JP5366571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439152A (en) * 2014-11-17 2015-03-25 哈尔滨工业大学 High-temperature alloy material for die-casting die and method and application of high-temperature alloy material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136317A (en) * 2002-10-17 2004-05-13 Itokoh Co Ltd Metal mold for titanium casting
JP2007160390A (en) * 2005-12-16 2007-06-28 Honda Motor Co Ltd Paste agent for metallic mold repair
JP2008119727A (en) * 2006-11-13 2008-05-29 Honda Motor Co Ltd Metallic mold for casting and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136317A (en) * 2002-10-17 2004-05-13 Itokoh Co Ltd Metal mold for titanium casting
JP2007160390A (en) * 2005-12-16 2007-06-28 Honda Motor Co Ltd Paste agent for metallic mold repair
JP2008119727A (en) * 2006-11-13 2008-05-29 Honda Motor Co Ltd Metallic mold for casting and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439152A (en) * 2014-11-17 2015-03-25 哈尔滨工业大学 High-temperature alloy material for die-casting die and method and application of high-temperature alloy material
CN104439152B (en) * 2014-11-17 2017-08-08 哈尔滨工业大学 A kind of high-temperature alloy material and its methods and applications for die casting

Also Published As

Publication number Publication date
JP5366571B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP6784960B2 (en) Martensitic stainless steel member
JP2005344211A (en) Martensitic stainless steel surface-hardened by carbonitriding
JP2012072427A (en) Case hardened steel and method for manufacturing the same
JP6068158B2 (en) Cast products having an alumina barrier layer
WO2017120987A1 (en) Steel material for manufacturing bearing, method for performing heat treatment thereto and formed part
JP2006213951A (en) Steel for carburized component excellent in cold workability, preventing coarsening of crystal grains in carburizing impact resistance and impact fatigue resistance
JP7152832B2 (en) machine parts
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
JP2010255099A (en) Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment
JP4752635B2 (en) Method for manufacturing soft nitrided parts
JP4258772B2 (en) Cold die steel with excellent size reduction characteristics
JP2006348321A (en) Steel for nitriding treatment
Birol Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures
JP4721185B2 (en) Mold repair paste
JP5405325B2 (en) Differential gear and manufacturing method thereof
JP5366571B2 (en) Iron-based alloy surface modification material, iron-based alloy surface modification method, and casting mold
JP6191357B2 (en) Steel heat treatment method
KR20160022258A (en) Piercer plug for manufacturing a seamless pipe
JP6438253B2 (en) GAME STEEL BALL AND MANUFACTURING METHOD THEREOF
JP6635100B2 (en) Case hardened steel
JP5582296B2 (en) Iron-based material and manufacturing method thereof
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method
JP2020122212A (en) Method for producing spheroidal graphite cast iron product
RU2329331C2 (en) Method of reduction thermal treatment of items made out of heat resistant chromium nickel alloys
JP2009079253A (en) Shaft and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees