JP2010174275A - Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process - Google Patents
Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process Download PDFInfo
- Publication number
- JP2010174275A JP2010174275A JP2009016078A JP2009016078A JP2010174275A JP 2010174275 A JP2010174275 A JP 2010174275A JP 2009016078 A JP2009016078 A JP 2009016078A JP 2009016078 A JP2009016078 A JP 2009016078A JP 2010174275 A JP2010174275 A JP 2010174275A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- tin
- die
- steel plate
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、ダイクエンチ工法を用いて熱間プレスを行なう際に好適な、打ち抜き性に優れたダイクエンチ用鋼板及び該鋼板を用いたダイクエンチ工法による部材の製造方法に関する。なお、ダイクエンチ後の鋼板の引張強さは980MPa級(900MPa〜1.1GPa近傍)である。 The present invention relates to a die quench steel plate excellent in punchability, which is suitable when hot pressing is performed using a die quench method, and a member manufacturing method using the die quench method using the steel plate. In addition, the tensile strength of the steel plate after die quenching is 980 MPa class (900 MPa to 1.1 GPa vicinity).
自動車の軽量化では、高強度鋼板の使用量の増加および、さらなる高強度の鋼板の使用が検討されている。しかしながら、複雑形状への鋼板のプレス加工や980MPa級を超える高強度鋼板の冷間プレス加工では、形状凍結性やプレス割れなどの種種の問題が生じやすく、高強度化したい部品が必ずしも高強度化できていないのが現状である。こうした状況を解決する方法の一つとしてダイクエンチ工法があげられる。ダイクエンチ工法は、加工される鋼板をオーステナイト単相域まで加熱して軟質化した後、水冷した常温の金型で成形すると当時に急速に冷却し、鋼板に焼きを入れて成形品の強度を確保する工法である。このダイクエンチ工法においては、焼き入れ(クエンチ)後の鋼板強度は980MPaを超えるため、成形品に部品取り付けのための穴をあけることが困難となってくる。また、あけることができたとしても、残留応力が大きいため、遅れ破壊の原因ともなる。そのため、一般にダイクエンチ工法ではクエンチ後にレーザーで穴をあけることがおこなわれている。ところが、最近、ダイクエンチ工法が普及するにつれて高価なレーザー設備に頼らず穴をあける方法が検討され始めている。ダイクエンチ工法により部品に穴をあける場合、鋼板(ブランク材)を加熱した後、クエンチ前に穴を打ち抜いてしまい、穴をあけたブランク材をダイクエンチする方法が考えられる。このとき、熱間で柔らかくした鋼板を打ち抜くため、打ち抜き端面にバリが大きくでてしまう。このバリは、クエンチ後にも硬質化して残留するため、部品形状を劣化させるとともに、搬送時に引っかかりやすく搬送のじゃまになるだけではなく、場合によっては、プレス型を傷めてしまうことになる。 In reducing the weight of automobiles, the use of high-strength steel sheets and the use of higher-strength steel sheets are being studied. However, when pressing steel sheets into complex shapes and cold pressing high-strength steel sheets exceeding 980 MPa, various problems such as shape freezing and press cracking are likely to occur, and the parts that you want to increase are not always strong. The current situation is not done. One method for solving this situation is the die quench method. In the die quench method, the steel sheet to be processed is heated to the austenite single-phase region and softened, and then molded with a water-cooled normal temperature mold, then rapidly cooled, and the steel sheet is baked to ensure the strength of the molded product. It is a construction method. In this die quench method, the strength of the steel plate after quenching (quenching) exceeds 980 MPa, so it becomes difficult to make holes for attaching parts to the molded product. Moreover, even if it can be opened, since the residual stress is large, it may cause delayed fracture. Therefore, generally, in the die quench method, holes are drilled with a laser after quenching. However, recently, as the die-quenching method has become widespread, a method for drilling holes without relying on expensive laser equipment has begun to be studied. When making a hole in a part by the die quench method, after heating a steel plate (blank material), the hole is punched out before quenching, and the method of die quenching the blank material which made the hole can be considered. At this time, since the hot-softened steel plate is punched, burrs are greatly formed on the punched end surface. Since the burrs are hardened and remain after quenching, the shape of the parts is deteriorated, and the burr is easily caught during transportation, which not only interferes with transportation but also damages the press die in some cases.
特許文献1には、Vを0.002〜0.5%、Mgを0.0002〜0.01%含み、平均粒径0.01〜5μmのMg酸化物、硫化物、複合晶出物および複合析出物のいずれかを1平方mm当たり、102〜107個含むことを特徴とする打ち抜き性にすぐれた熱間プレス用高強度鋼板が開示されている。この技術は、Mg酸化物を核に分散させて、打ち抜き時の粗大クラック発生を抑制するとともに水素のトラップサイトとすることで遅れ破壊も抑制するものである。すなわち、この技術における打ち抜き性とは、焼き入れ後の高強度化した材料の打ち抜き端面の遅れ破壊の生じやすさを言うものであり、打ち抜き後の形状については問題にしていない。また、マルテンサイトと結晶系の異なる、高温でのオーステナイトでの打ち抜き性を改善するために用いることはできない技術である。 In Patent Document 1, any one of Mg oxide, sulfide, composite crystallized product, and composite precipitate containing V of 0.002 to 0.5% and Mg of 0.0002 to 0.01% and having an average particle size of 0.01 to 5 μm is 1 mm 2. A high-strength steel sheet for hot pressing having excellent punching characteristics, characterized by containing 10 2 to 10 7 hits, is disclosed. In this technique, Mg oxide is dispersed in nuclei to suppress the generation of coarse cracks at the time of punching and to suppress delayed fracture by using hydrogen trap sites. In other words, the punchability in this technique refers to the likelihood of delayed fracture of the punched end face of a material having increased strength after quenching, and does not have a problem with the shape after punching. In addition, this technique cannot be used to improve the punchability of austenite at a high temperature, which is different from martensite and crystal system.
打ち抜き性に言及するものではないが、特許文献2では、Ceを0.002〜0.02%含み、2μm以下のCe酸化物の個数を4個/mm2以上とすることで、疲労強度を上げる技術が開示されている。この技術では、Ce-Ti-Oの微粒子にMnSを付着させることで、ダイクエンチ後の疲労特性を向上させるものである。この技術におけるCe-Ti-Oの微粒子にMnSを付着させたものは、高温でのオーステナイトの打ち抜き性を何ら左右するものではない。また、ダイクエンチ前にこのような微粒子が存在してもダイクエンチの加熱中では溶解分散してしまうことから、ダイクエンチ工法を用いる際にはその効果は認められない。 Although it does not mention punchability, Patent Document 2 discloses a technique for increasing fatigue strength by including 0.002 to 0.02% of Ce and making the number of Ce oxides of 2 μm or less 4 pieces / mm 2 or more. Has been. This technique improves the fatigue properties after die quenching by attaching MnS to Ce-Ti-O fine particles. In this technique, Ce-Ti-O fine particles with MnS adhered do not affect the austenite punchability at high temperatures. In addition, even if such fine particles are present before die quenching, they are dissolved and dispersed during the heating of die quench, so that the effect is not recognized when using the die quench method.
特許文献3では、Siを多量に添加して溶接部の強度を上げ、Si添加による熱間加工性の低下をB添加で補い、かつ、TiをNよりも原子濃度で多量に添加することで、BNの生成を抑制して焼き入れ性を確保する技術が開示されている。この技術では、Si添加で鋼に高温での粘りを与えて熱間成形できるようにすることができるが、それにより高温では逆に打ち抜き時にバリが発生してしまい、打ち抜き性は低下するという問題がある。 In Patent Document 3, a large amount of Si is added to increase the strength of the welded portion, a decrease in hot workability due to the addition of Si is compensated for by B addition, and Ti is added in a larger amount at an atomic concentration than N. In addition, a technique for ensuring hardenability by suppressing the generation of BN is disclosed. With this technology, it is possible to give hot forming to steel by adding Si to Si, but this causes a problem that burrs are generated at the time of punching at the high temperature, and the punchability is reduced. There is.
以上のように、上記の従来技術では、ダイクエンチ工法により部品に穴をあける場合、鋼板を加熱した後、クエンチ前に穴を打ち抜いてからダイクエンチする際に、打ち抜き端面に大きなバリが発生する問題を解決することは困難である。 As described above, in the above prior art, when a hole is made in a part by the die quench method, when a steel plate is heated and then a hole is punched before quenching and die quenching is performed, there is a problem that large burrs are generated on the punched end face. It is difficult to solve.
本発明は、こうした状況下でなされたものであって、ダイクエンチ工法において熱間で行われる打ち抜きの際に発生するバリの高さが低い、打ち抜き性に優れたダイクエンチ用鋼板およびダイクエンチ工法による部材の製造方法を提供することを目的とする。 The present invention has been made under such circumstances, and the die quench steel sheet having excellent punchability and the member of the die quench technique having a low height of burrs generated during the punching performed hot in the die quench technique. An object is to provide a manufacturing method.
上記目的を達成するためには、高温で安定で、かつオーステナイトの打ち抜き性を良好とする析出物を見いだす必要があると考えられる。本発明者らは、TiNが高温で、ある程度の大きさまで成長することから、ダイクエンチ工法での打ち抜きで、TiNを用いた場合の最適な大きさと量と分散状態を実現できれば、打ち抜き性の良好なダイクエンチ用鋼板ができると着想した。通常の鋼板の加工とは異なり、ダイクエンチでは加工を行なうブランク材を加熱する。そのため、空気中のNが通常の鋼板よりも鋼板表面に入りやすい。通常これらのTiNは表面傷の原因となることから、従来は加熱雰囲気制御あるいは酸化防止剤やめっきによる大気とブランクの遮断が行われている。しかし本発明者らは、TiNの生成を防止するのではなく、逆にTiNを利用することができないか鋭意研究をかさねた結果、表層に粗大なTiNを配置することで、打ち抜き性が向上しバリ発生の問題を解決できることを知見して、本発明を完成した。 In order to achieve the above object, it is considered necessary to find precipitates that are stable at high temperatures and have good austenite punchability. Since the TiN grows to a certain size at a high temperature, if the optimum size, amount, and dispersion state when using TiN can be realized by punching with the die quench method, the punching property is good. The idea was that a die quench steel sheet could be made. Unlike normal steel plate processing, die quenching heats a blank material to be processed. Therefore, N in the air is more likely to enter the steel sheet surface than a normal steel sheet. Since these TiNs usually cause surface scratches, conventionally, the atmosphere and the blank are shielded by controlling the heating atmosphere or using an antioxidant or plating. However, the present inventors did not prevent the formation of TiN, but conversely, as a result of intensive research on whether or not TiN could be used, the punchability was improved by arranging coarse TiN on the surface layer. Knowing that the problem of burrs can be solved, the present invention has been completed.
上記課題を解決した本発明の特徴は以下の通りである。
(1)質量%で、C:0.05%以上、0.10%未満、Si:0.05〜0.5%、Mn:1.0〜1.8%、P:0.03%以下、S:0.002%以上、0.020%未満、Al:0.015〜0.07%、N:0.0025〜0.010%、Ti:0.02〜0.06%を含み、さらに質量%で、Cr:0.15〜1%、Mo:0.1〜0.5%の1種以上を含み、残部が鉄および不可避不純物よりなる組成を有する鋼板であって、該鋼板をオーステナイト単相域まで加熱した後の、前記鋼板の少なくとも最表面から深さ100μmまでの範囲にTiNが散在し、該TiNの最も長い辺の長さの平均が0.1〜1μmであることを特徴とする熱間打ち抜き性に優れたダイクエンチ用鋼板。
(2)鋼板が、さらに質量%で、B:0.0008〜0.0030%、およびW:0.05〜1%の1種または2種の元素を含有することを特徴とする(1)に記載の熱間打ち抜き性に優れたダイクエンチ用鋼板。
(3)前記加熱した後の鋼板厚さ方向断面において、最表面から深さ100μmまで、かつ板面に平行な5mmの長さの範囲内の表層部のTiNの個数が10個以上であることを特徴とする(1)または(2)に記載の熱間打ち抜き性に優れたダイクエンチ用鋼板。
(4)鋼板中のTiNの密度が30個/mm2以上であることを特徴とする(1)ないし(3)のいずれかに記載の熱間打ち抜き性に優れたダイクエンチ用鋼板。
(5)少なくともオーステナイト単相域まで鋼板を加熱した後、熱間打ち抜きを施し、次いで金型で成形することで焼き入れる工程を有するダイクエンチ工法による部材の製造方法において、質量%で、C:0.05%以上、0.10%未満、Si:0.05〜0.5%、Mn:1.0〜1.8%、P:0.03%以下、S:0.002%以上、0.020%未満、Al:0.015〜0.07%、N:0.0025〜0.01%、Ti:0.02〜0.06%を含み、さらに質量%で、Cr:0.15〜1%、Mo:0.1〜0.5%の1種以上を含み残部が鉄および不可避不純物よりなる組成を有する鋼板を素材とし、熱間打ち抜きを施す際に、少なくとも該鋼板表面から深さ100μmまでの範囲にTiNが散在し、該TiNの最も長い辺の長さの平均が0.1〜1μmとなるようにすることを特徴とするダイクエンチ工法による部材の製造方法。
(6)鋼板が、さらに質量%で、B:0.0008〜0.0030%、およびW:0.05〜1%の1種または2種の元素を含有することを特徴とする(5)に記載のダイクエンチ工法による部材の製造方法。
(7)前記加熱した後の鋼板厚さ方向断面において、最表面から深さ100μmまで、かつ板面に平行な5mmの長さの範囲内の表層部のTiNの個数が10個以上であることを特徴とする(5)または(6)に記載のダイクエンチ工法による部材の製造方法。
(8)鋼板中のTiNの密度が30個/mm2以上であることを特徴とする(5)ないし(7)のいずれかに記載のダイクエンチ工法による部材の製造方法。
The features of the present invention that have solved the above problems are as follows.
(1) By mass%, C: 0.05% or more, less than 0.10%, Si: 0.05-0.5%, Mn: 1.0-1.8%, P: 0.03% or less, S: 0.002% or more, less than 0.020%, Al: 0.015 ~ 0.07%, N: 0.0025 ~ 0.010%, Ti: 0.02 ~ 0.06% included, and more than 1% by mass, Cr: 0.15 ~ 1%, Mo: 0.1 ~ 0.5%, the balance being iron and inevitable A steel plate having a composition comprising impurities, and after heating the steel plate to an austenite single phase region, TiN is scattered in a range from at least the outermost surface of the steel plate to a depth of 100 μm, the longest side of the TiN. A die quench steel sheet excellent in hot punching, characterized in that the average length is 0.1 to 1 μm.
(2) The hot punching according to (1), wherein the steel sheet further contains one or two elements of B: 0.0008 to 0.0030% and W: 0.05 to 1% in mass%. Steel plate for die quenching with excellent properties.
(3) In the cross section in the thickness direction of the steel sheet after the heating, the number of TiNs in the surface layer portion within the range of 5 mm in length from the outermost surface to a depth of 100 μm and parallel to the plate surface is 10 or more. (1) or (2) characterized in that the steel plate for die quenching excellent in hot punching property.
(4) The die quench steel sheet excellent in hot punching according to any one of (1) to (3), wherein the density of TiN in the steel sheet is 30 pieces / mm 2 or more.
(5) In a method for producing a member by a die quench method having a step of heating a steel plate to at least an austenite single phase region, then performing hot punching and then quenching by molding with a mold, in mass%, C: 0.05 %: Less than 0.10%, Si: 0.05 to 0.5%, Mn: 1.0 to 1.8%, P: 0.03% or less, S: 0.002% or more, less than 0.020%, Al: 0.015 to 0.07%, N: 0.0025 to 0.01% , Ti: 0.02 to 0.06%, further mass%, Cr: 0.15 to 1%, Mo: 0.1 to 0.5% of one or more steel plate having a composition composed of iron and inevitable impurities, When hot stamping, TiN is scattered at least in the range from the steel plate surface to a depth of 100 μm, and the average length of the longest side of TiN is 0.1 to 1 μm. The manufacturing method of the member by the die quench method.
(6) According to the die quench method according to (5), the steel sheet further contains one or two elements of B: 0.0008 to 0.0030% and W: 0.05 to 1% in mass%. Manufacturing method of member.
(7) In the cross section in the thickness direction of the steel sheet after heating, the number of TiNs in the surface layer portion within the range of 5 mm in length from the outermost surface to a depth of 100 μm and parallel to the plate surface is 10 or more. (5) Or the manufacturing method of the member by the die quench method as described in (6) characterized by the above-mentioned.
(8) The method for producing a member by the die quench method according to any one of (5) to (7), wherein the density of TiN in the steel sheet is 30 pieces / mm 2 or more.
本発明によれば、TiNの大きさと分散状態を制御することで、ダイクエンチ工法においてダイクエンチ直前に熱間で行われる打ち抜きの際に発生するバリの高さが低い、打ち抜き性に優れた鋼板を得て、形状の良好な打ち抜き部材を得ることができる。 According to the present invention, by controlling the size and dispersion state of TiN, in the die quench method, a steel plate excellent in punchability is obtained, in which the height of burrs generated when punching is performed immediately before die quench is low. Thus, a punching member having a good shape can be obtained.
これにより高価なレーザー設備を用いることなく穴あけ加工が可能となり、ダイクエンチ工法を用いた熱間プレス加工のコストを削減できる。 As a result, drilling can be performed without using expensive laser equipment, and the cost of hot pressing using the die quench method can be reduced.
高温のオーステナイトは、析出物を溶解するため、高温のオーステナイトに溶解しない析出物でなければ、ダイクエンチ工程での打ち抜き性改善効果は得られない。そこで本発明者らは、高温でも安定な窒化物に着目した。ただし、従来の鋼板で窒化物に着目する際には、冷間プレスの成形性を重視してN量を下げ、TiNを低減する、もしくはフェライト中のTiNを活用するのが目的であった。このため、オーステナイトで打ち抜き性を向上させるTiNの状態を新たに研究した。オーステナイト中では、フェライトよりも塑性変形時に活動するすべり系が少ないため、直方体のTiNの大きさが塑性変形に大きな影響を及ぼし、TiNの大きさを制御することで、熱間打ち抜き性が良好となることを見いだした。 Since the high temperature austenite dissolves the precipitate, unless it is a precipitate that does not dissolve in the high temperature austenite, the punching improvement effect in the die quench process cannot be obtained. Therefore, the present inventors have focused on nitrides that are stable even at high temperatures. However, when focusing on nitrides in conventional steel sheets, the aim was to reduce the amount of N by focusing on the formability of the cold press, to reduce TiN, or to use TiN in ferrite. For this reason, the state of TiN that improves punchability with austenite was newly studied. In austenite, there are fewer slip systems that are active during plastic deformation than ferrite, so the size of TiN in the cuboid has a large effect on plastic deformation, and by controlling the size of TiN, hot punching is good. I found out.
以下に本発明の各構成要件を説明する。 Each component of the present invention will be described below.
まず本発明に用いる鋼板の化学成分について説明する。なお、以下の説明において、成分元素の含有量%は全て質量%を意味するものである。 First, chemical components of the steel sheet used in the present invention will be described. In the following description, the content% of component elements means mass%.
C:0.05%以上、0.10%未満
Cは焼入後に強度を出すために最も重要な元素である。0.05%を下回ると引張強さが低くなりすぎ980MPa級を満足することが困難となる。そのため、下限を0.05%とした。また、0.10%以上では焼き入れ後の強度が目標よりも高くなりすぎることから、C量の上限を0.10%未満とした。
C: 0.05% or more, less than 0.10%
C is the most important element for increasing the strength after quenching. If it is less than 0.05%, the tensile strength becomes too low to satisfy the 980 MPa class. Therefore, the lower limit was made 0.05%. Further, when the content is 0.10% or more, the strength after quenching is too high than the target, so the upper limit of the C amount is set to less than 0.10%.
Si:0.05〜0.5%
Siは焼戻軟化抵抗を高める元素であり、ダイクエンチ直後のマルテンサイト中に型から離れた後の余熱で炭化物が析出し、強度が低下することを防止する。0.05%未満では耐焼戻軟化抵抗が低く、マルテンサイトが焼き戻されやすくなり、生じた粗大な炭化物でマルテンサイトも脆くなる。そのため、Si添加の下限を0.05%とした。また、0.5%を超えて添加すると、冷却中にフェライトが析出開始して焼きが入りにくくなることから、上限を0.5%とした。
Si: 0.05-0.5%
Si is an element that increases the temper softening resistance, and prevents carbides from precipitating in the martensite immediately after die quenching due to residual heat after leaving the mold, resulting in a decrease in strength. If it is less than 0.05%, the resistance to softening by tempering is low, the martensite is easily tempered, and the resulting coarse carbide makes the martensite brittle. Therefore, the lower limit of Si addition is set to 0.05%. Further, if added over 0.5%, ferrite starts to precipitate during cooling and it becomes difficult to cause firing, so the upper limit was made 0.5%.
Mn:1.0〜1.8%
Mnは鋼の焼き入れ性向上に効果的な元素である。1.0%未満では焼き入れ性が乏しく、焼き入れ時にパーライトが生じて引張強さが著しく低下する。そのため、添加の下限を1.0%とした。一方、1.8%を超えて添加すると偏析しやすくなり、偏析した中央部で鋼板が2枚に分離してプレス欠陥となる。このため、Mnの上限を1.8%とした。
Mn: 1.0-1.8%
Mn is an element effective for improving the hardenability of steel. If it is less than 1.0%, the hardenability is poor, pearlite is generated during quenching, and the tensile strength is significantly reduced. Therefore, the lower limit of addition is set to 1.0%. On the other hand, if it exceeds 1.8%, segregation is likely to occur, and the steel sheet is separated into two at the segregated central part, resulting in press defects. Therefore, the upper limit of Mn is set to 1.8%.
P:0.03%以下
Pは、オーステナイト粒界に偏析して打ち抜き端面で亀裂の進展を促進し、顕著な時には割れに発展する。そのため、Pの添加量の上限を0.03%とする。
P: 0.03% or less
P segregates at the austenite grain boundary and promotes the growth of cracks at the punched end face. Therefore, the upper limit of the addition amount of P is set to 0.03%.
S:0.002%以上、0.020%未満
SはMnSを形成して打ち抜きでのボイドの発生を促進し、本発明のTiNの効果を顕著な物とする。このため、ボイドの連結で破断が進行する打ち抜きではバリ高さが低減するので、S添加量の下限を0.002%とした。また、Sが0.020%以上となると熱間での延性が劣化して打ち抜き部周辺表面に割れが生じ、脱スケール性が劣化したり、疲労強度や、衝突吸収エネルギーが低下したりすることから、Sの上限を0.020%未満とした。好ましくは0.019%以下である。
S: 0.002% or more, less than 0.020%
S forms MnS and promotes the generation of voids by punching, and makes the effect of TiN of the present invention remarkable. For this reason, since the burr height is reduced in the punching in which the breakage progresses by connecting the voids, the lower limit of the S addition amount is set to 0.002%. Also, when S is 0.020% or more, the hot ductility deteriorates and cracks occur on the surface around the punched part, the descalability deteriorates, fatigue strength, and impact absorption energy decreases, The upper limit of S was made less than 0.020%. Preferably it is 0.019% or less.
Al:0.015〜0.07%
Alは脱酸剤として用いられる。脱酸作用を得るには0.015%以上の添加が必要であることから、Al量の下限を0.015%とした。また、0.07%を超えて含有すると、微細なAlNが多数析出するようになり焼き入れ性が低下する。このため、Al量の上限を0.07%とした。
Al: 0.015-0.07%
Al is used as a deoxidizer. Since addition of 0.015% or more is necessary to obtain the deoxidation action, the lower limit of the Al content is set to 0.015%. On the other hand, if the content exceeds 0.07%, a lot of fine AlN precipitates and the hardenability deteriorates. For this reason, the upper limit of the Al content is set to 0.07%.
N:0.0025〜0.01%
NはTiNを形成してその周りからの亀裂により打ち抜き性を向上させる働きがある。含有量が0.0025%を下回るとオーステナイト中で溶解または凝集粗大化して打ち抜き性が劣化するため、添加量の下限を0.0025%とした。一方、0.01%を超えると破断面の亀裂が大きくなりすぎて割れを誘発することから、添加量の上限を0.01%とした。
N: 0.0025 to 0.01%
N forms TiN and has a function of improving punchability by cracking from the surroundings. When the content is less than 0.0025%, the punching property deteriorates due to dissolution or agglomeration in austenite, so the lower limit of the addition amount is set to 0.0025%. On the other hand, if it exceeds 0.01%, cracks on the fracture surface become too large and induce cracks, so the upper limit of the addition amount was set to 0.01%.
Ti:0.02〜0.06%
Ti含有量が0.02%を下回ると、十分な大きさにTiNが成長しないため、打ち抜き性の改善は期待できない。そのためTi含有量の下限を0.02%とした。また、0.06%を超えるとTiNが凝集粗大化し密度が散漫になることから破断面の亀裂が大きくなりすぎて割れを誘発することから、添加量の上限を0.06%とした。
Ti: 0.02 to 0.06%
When the Ti content is less than 0.02%, TiN does not grow to a sufficient size, so improvement in punchability cannot be expected. Therefore, the lower limit of the Ti content is set to 0.02%. On the other hand, if it exceeds 0.06%, TiN aggregates and becomes coarse and the density becomes diffuse, so the cracks on the fracture surface become too large and induce cracks, so the upper limit of the addition amount was set to 0.06%.
本発明では、上記に加えて、さらにCr、Moの中から選ばれる1種以上を含有する。 In addition to the above, the present invention further contains one or more selected from Cr and Mo.
Cr:0.15〜1%
Crは高温からの冷却時にフェライト変態を遅らせて、焼き入れ性を向上する。このため、Crは0.15%以上添加することが好ましい。添加する場合、1%を超えて添加するとダイクエンチ工法における加熱時に析出したCr炭化物が溶解しなくなるため、Crの添加量は1%以下とした。
Cr: 0.15 to 1%
Cr delays ferrite transformation during cooling from high temperatures and improves hardenability. For this reason, it is preferable to add 0.15% or more of Cr. When adding over 1%, Cr carbide precipitated during heating in the die quench method will not dissolve, so the amount of Cr added is set to 1% or less.
Mo:0.1〜0.5%
Moは焼き入れ性を向上させる元素であることから添加することが好ましい。Mo添加による焼き入れ性の向上のために、添加量の下限は0.1%とする。一方、0.5%を超えると溶解しにくいMo炭化物が析出し焼き入れ性が低下することから、添加量の上限は0.5%以下とした。
Mo: 0.1-0.5%
Mo is preferably added because it is an element that improves hardenability. In order to improve the hardenability by adding Mo, the lower limit of the addition amount is 0.1%. On the other hand, if it exceeds 0.5%, Mo carbide that is difficult to dissolve precipitates and the hardenability decreases, so the upper limit of the amount added is set to 0.5% or less.
本発明では、BおよびWの1種または2種の元素を添加することができる。 In the present invention, one or two elements of B and W can be added.
B:0.0008〜0.0030%
Bはフェライト変態を劇的に遅延させて焼き入れ性を確保できる元素であることから、ダイクエンチ工法の工程に応じて添加することが好ましい。0.0008%未満では焼き入れ性が不十分となるため、0.0008%を下限とした。一方、0.0030%を超えるとダイクエンチ工法における加熱の際に溶解しにくいFe23(CB)6が析出しやすくなるため、B添加量の上限を0.0030%とした。
B: 0.0008-0.0030%
Since B is an element that can delay the ferrite transformation dramatically and ensure hardenability, it is preferably added according to the step of the die quench method. If it is less than 0.0008%, the hardenability becomes insufficient, so 0.0008% was made the lower limit. On the other hand, if it exceeds 0.0030%, Fe 23 (CB) 6 which is difficult to dissolve during heating in the die quench method is likely to precipitate, so the upper limit of the B addition amount is set to 0.0030%.
W:0.05〜1%
Wは焼き入れ性を向上させる元素であることから添加することができる。W添加による焼き入れ性の向上のために、添加量の下限は0.05%とする。一方、1%を超えると溶解しにくいW炭化物が析出し焼き入れ性が低下することから、添加量の上限は1%とすることが好ましい。
W: 0.05 to 1%
W can be added because it is an element that improves hardenability. In order to improve the hardenability by adding W, the lower limit of the addition amount is 0.05%. On the other hand, if it exceeds 1%, W carbide that is difficult to dissolve precipitates and the hardenability decreases, so the upper limit of the addition amount is preferably 1%.
上記以外の成分は、鉄および不可避不純物からなる。Nb、Vが合計で0.3%程度まで混入しても本発明の効果に変化はない。また、Cu、Ni、Snなどのスクラップ原料などから混入する元素については、合計で0.2%以下程度までであれば、本発明効果に影響を及ぼすものではない。 Components other than the above consist of iron and inevitable impurities. Even if Nb and V are mixed up to about 0.3% in total, the effect of the present invention does not change. Further, the elements mixed from scrap raw materials such as Cu, Ni, and Sn do not affect the effects of the present invention as long as the total is up to about 0.2% or less.
本発明の部材は、上記本発明のダイクエンチ用鋼板を用いて、ダイクエンチ工法により製造される。本発明の鋼板はダイクエンチ工法における熱処理を経ることにより、所定のTiNの分布を形成し、上記したようなバリの抑制等、うち抜きなどに対する効果を有するものとなる。
すなわち、本発明の鋼板は、上記の組成を有する鋼板をダイクエンチ工法における熱処理である、オーステナイト単相域までの加熱を施した際に、下記のようにTiNが散在する。オーステナイト単相域までの加熱は、大気中、又は窒素を含む雰囲気中で行なえばよく、例えば900℃で15分程度とし、大気中で行えばよい。
The member of this invention is manufactured by the die quench method using the steel plate for die quenches of the said invention. The steel sheet of the present invention is subjected to heat treatment in the die quench method, thereby forming a predetermined TiN distribution, and has an effect on punching such as suppression of burrs as described above.
That is, when the steel sheet of the present invention is heated to the austenite single-phase region, which is a heat treatment in the die quench method, the TiN is scattered as follows. The heating to the austenite single phase region may be performed in the air or in an atmosphere containing nitrogen, for example, at 900 ° C. for about 15 minutes and may be performed in the air.
鋼板表面のTiNの最も長い辺の長さの平均:0.1〜1μm
TiNは概ね直方体形状で析出する。その直方体形状の最も長い辺の長さを測定する。なお、析出物の観察を、鋼板断面で行なう場合、直方体ではない多角形形状で観察される場合がある。この場合は、観察される多角形形状のTiNの最も長い辺の長さをもって、TiNの最も長い辺の長さとする。TiNの最も長い辺の長さが平均値で0.1μmに満たない場合、打ち抜き時のボイドの発生が期待できず、打ち抜き性の向上効果が小さい。一方、TiNの最も長い辺の長さの平均が1μmを超えると、密度が散漫になることから破断面の亀裂が大きくなりすぎて割れを誘発するため、TiNの最も長い辺の長さの平均を1μm以下とした。また、0.1〜1μmのTiNを散在させるのは、少なくとも鋼板表面において最表面から深さ100μmまでの範囲であれば効果がある。前記範囲以外の部分にTiNが散在してもよく、鋼板全体に散在させれば打ち抜き性はより向上する。
Average length of the longest side of TiN on the steel sheet surface: 0.1-1 μm
TiN precipitates in a generally rectangular parallelepiped shape. The length of the longest side of the rectangular parallelepiped shape is measured. In addition, when performing observation of a precipitate in a steel plate cross section, it may be observed in a polygonal shape that is not a rectangular parallelepiped. In this case, the length of the longest side of TiN that is observed is defined as the length of the longest side of TiN. When the average length of the longest side of TiN is less than 0.1 μm, voids cannot be expected during punching, and the effect of improving punchability is small. On the other hand, if the average length of the longest side of TiN exceeds 1 μm, the density becomes diffuse, so the crack on the fracture surface becomes too large and induces cracking, so the average length of the longest side of TiN Was 1 μm or less. Further, it is effective to disperse 0.1 to 1 μm of TiN at least in the range from the outermost surface to a depth of 100 μm on the steel sheet surface. TiN may be scattered in a portion other than the above range, and if it is scattered throughout the steel plate, the punchability is further improved.
最表面から深さ100μmまで、かつ板面に平行な長さ5mmの範囲内のTiNの個数が10個以上
上記の表面のTiNのサイズに加えて、その数も多いことが好ましい。バリ高さを基準とする打ち抜き性では、鋼板表面に存在するボイドの起点が重要な役割を示す。特に、深さ100μmまでの間にTiNが分布していることでバリ高さは低くなることから、100μm×5mmの範囲の表層でのTiN個数を10個以上とすることが好ましい。なお、個数の測定は下記と同様に鋼板の断面方向で行なうことになる。
The number of TiNs in the range of 5 mm in length from the outermost surface to a depth of 100 μm and parallel to the plate surface is preferably 10 or more. In addition to the above-mentioned surface TiN size, the number is preferably large. In the punchability based on the burr height, the origin of voids existing on the steel sheet surface plays an important role. In particular, since the burr height is lowered by the distribution of TiN up to a depth of 100 μm, the number of TiNs on the surface layer in the range of 100 μm × 5 mm is preferably 10 or more. The number is measured in the cross-sectional direction of the steel plate as described below.
鋼板中のTiNの密度:30個/mm2以上
鋼板中のTiNはボイドの起点となり鋼板自体の打ち抜き性を向上させる。ただし、TiNが数少なく散在しているだけでは打ち抜き性は改善されない。本発明では、素材である鋼板中のTiNの密度が30個/mm2を下回ると打ち抜き性が低下することから、鋼板中のTiNの密度を30個/mm2以上とすることが好ましい。TiNの個数の測定は、鋼板の断面での観察により求め、断面1mm2当たりの個数で評価する。
TiN density in steel sheet: 30 pieces / mm 2 or more TiN in steel sheet serves as a starting point for voids and improves the punchability of the steel sheet itself. However, the punchability is not improved only by a few scattered TiN. In the present invention, when the density of TiN in the steel plate as the raw material is less than 30 pieces / mm 2 , the punchability is lowered. Therefore, the density of TiN in the steel plate is preferably 30 pieces / mm 2 or more. The number of TiN is measured by observing the cross section of the steel sheet and evaluated by the number per 1 mm 2 cross section.
本発明では上記の組成を有する鋼板をダイクエンチ工法で加工し、熱間打ち抜き穴を有する部材を製造する。ダイクエンチ工法では、鋼板をオーステナイト単相域まで加熱した後打ち抜き穴をあけ、ダイクエンチ(加工と焼き入れ)を行ない、オーステナイト単相域における加熱後熱間打ち抜き加工の際の鋼板中に上記のようにTiN析出物を散在させる。尚、加熱状態で上記のように存在しているTiNは、ダイクエンチ工法で製造された部材にも同様の状態で存在する。 In this invention, the steel plate which has said composition is processed by the die quench method, and the member which has a hot punching hole is manufactured. In the die quench method, the steel plate is heated to the austenite single-phase region, punched holes are punched out, die quenching (processing and quenching) is performed, and the steel plate during hot stamping after heating in the austenite single-phase region is as described above. Scatter TiN precipitates. In addition, TiN which exists as mentioned above in a heating state exists in the same state also in the member manufactured by the die quench method.
TiNを上記のような析出状態とするには、鋼板の組成を上記範囲内として、熱処理前の鋼板のTi量、N量を調整すると共に、ダイクエンチ工法における焼入れ前の加熱雰囲気(窒素量)を調整することで、所望の状態にすることができる。 To bring TiN into the precipitation state as described above, the steel sheet composition is within the above range, the Ti amount and N amount of the steel plate before heat treatment are adjusted, and the heating atmosphere (nitrogen amount) before quenching in the die quench method is set. By adjusting, it can be in a desired state.
表1に示す素材の鋼板を溶製後、加熱温度1200℃、仕上圧延温度850℃、巻取温度600℃で熱間圧延して製造した。得られた熱延板を酸洗後冷間圧延し、板厚1.4mmの冷間圧延まま材を作製した。 After melting the steel plate of the material shown in Table 1, it was manufactured by hot rolling at a heating temperature of 1200 ° C, a finish rolling temperature of 850 ° C, and a winding temperature of 600 ° C. The obtained hot-rolled sheet was pickled and cold-rolled to produce a material with a sheet thickness of 1.4 mm as cold-rolled.
これらの鋼No.1〜23を900℃で大気雰囲気で15分間加熱後、直径10mmのポンチで熱間で打ち抜いた。打ち抜く温度は750℃〜500℃の間に制御した。打ち抜きのクリアランスは板厚の12%とした。打ち抜き後、そのまま放冷を行い、バリ高さを測定した。バリの高さは、穴から2mm離れた位置の表面を基準にバリの一番高い頂点の高さとした。 These steel Nos. 1 to 23 were heated at 900 ° C. in an air atmosphere for 15 minutes, and then punched hot with a punch having a diameter of 10 mm. The punching temperature was controlled between 750 ° C and 500 ° C. The punching clearance was 12% of the plate thickness. After punching, it was allowed to cool, and the burr height was measured. The height of the burr was set to the height of the highest vertex of the burr based on the surface at a position 2 mm away from the hole.
また、打ち抜き後の材料の断面を研磨し、電子顕微鏡(SEM)でTiNを観察した。表面から深さ100μmの範囲でのTiNの長さは、倍率1000倍〜5000倍にて10視野観察してTiNの長さ(最大長さ)を測定し、その平均値を求めた。なお、ここでTiNの長さは観察される多角形形状の最も長い辺の長さとした。また、表層でのTiNの個数は、SEMにて倍率5000倍で、表面から深さ100μm×長さ5mmの範囲を観察し、観察されたTiNの個数を数えた。また鋼板中のTiNの密度については、加熱前の鋼板の断面を研磨し、SEMで倍率1000倍にて板厚の1/4位置〜3/4位置で合計10視野観察して、面積換算を行い鋼板中のTiNの密度を測定した。 Moreover, the cross section of the material after punching was ground, and TiN was observed with an electron microscope (SEM). The length of TiN in the range of 100 μm depth from the surface was observed at 10 magnifications at a magnification of 1000 to 5000, the TiN length (maximum length) was measured, and the average value was obtained. Here, the length of TiN is the length of the longest side of the observed polygonal shape. Further, the number of TiNs on the surface layer was observed by observing a range of depth of 100 μm × length 5 mm from the surface by SEM at a magnification of 5000 times, and the number of TiNs observed was counted. Regarding the density of TiN in the steel plate, the cross section of the steel plate before heating is polished, and a total of 10 fields of view are observed with a SEM at a magnification of 1000 times at 1/4 to 3/4 positions of the plate thickness. The TiN density in the steel sheet was measured.
さらに、打ち抜き後の鋼板の表層100μm部分のN量も測定した。測定結果を表1に併せて示す。なお、ここで鋼板表層のN量の測定にあたっては、表層100μm部分を削り、この削った部分を分析した。 Further, the amount of N in the surface layer 100 μm portion of the steel plate after punching was also measured. The measurement results are also shown in Table 1. Here, in measuring the N amount of the steel sheet surface layer, the surface layer of 100 μm was shaved, and the shaved portion was analyzed.
鋼No.1〜4は、S量が変化した場合の実施例である。S含有量が本発明範囲より低い鋼No.1は、バリ高さが高い。一方で、S含有量が本発明範囲内の鋼No.2〜4はバリ高さが40μm以下と低く、良好な打ち抜き性を示している。 Steel No. 1-4 is an Example when the amount of S changes. Steel No. S having a S content lower than the range of the present invention. 1 has a high burr height. On the other hand, the S content is within the range of the present invention. In Nos. 2 to 4, the burr height is as low as 40 μm or less, indicating good punchability.
鋼No.5〜9は、鋼中のN含有量を変化させた実施例である。鋼No.5はTiNの長さが短く微細であり、表層の個数も少なく、密度も低く打ち抜き性が劣位にある。鋼No.9はN含有量が多く、TiN長さが長く、打ち抜き部で割れが生じてしまい本発明の効果は得られていない。化学成分が本発明範囲内の鋼No.6〜8はバリ高さが低く、良好な打ち抜き性を示している。 Steel No. 5-9 is the Example which changed N content in steel. Steel No. In No. 5, the length of TiN is short and fine, the number of surface layers is small, the density is low, and the punchability is inferior. Steel No. No. 9 has a large N content, a long TiN length, and cracks are produced in the punched portion, so that the effect of the present invention is not obtained. Steel No. with chemical composition within the scope of the present invention. Nos. 6 to 8 have a low burr height and exhibit good punchability.
鋼No.10〜12はほぼ同一組成の鋼板について焼き入れ前の加熱で雰囲気(N2量)を変え、熱処理後のN量を特に変化させたものである。鋼No.10はAr90体積%+窒素10体積%のもの、鋼No.11はAr50体積%+窒素50体積%のもの、鋼No.12はAr15体積%+窒素85体積%のものである。加熱雰囲気中の窒素量の増大により、表層のTiNの個数が増加し、バリ高さが低くなることがわかる。いずれの場合も表層でのTiN長さは本発明範囲内であり、本発明例である。 Steel No. Nos. 10 to 12 are those in which the atmosphere (N 2 amount) was changed by heating before quenching for steel sheets having substantially the same composition, and the N amount after heat treatment was particularly changed. Steel No. No. 10 is Ar 90 volume% + nitrogen 10 volume%. No. 11 is Ar 50% by volume + Nitrogen 50% by volume. 12 is Ar 15% by volume + nitrogen 85% by volume. It can be seen that as the amount of nitrogen in the heating atmosphere increases, the number of TiN in the surface layer increases and the burr height decreases. In any case, the TiN length on the surface layer is within the scope of the present invention and is an example of the present invention.
鋼No.13〜19は、Ti含有量を変化させた場合の実施例である。Ti含有量の低い鋼No.13、14はTiNの長さが短く微細で、TiN密度も低く、バリ高さが高い。鋼No.19はTiNの長さが長く粗大であり、バリ高さが高く、打ち抜き部で割れが生じている。鋼No.15〜18は化学成分が本発明範囲内であり、TiNの長さが本発明範囲内であり、良好な打ち抜き性を示した。 Steel No. Examples 13 to 19 are examples when the Ti content is changed. Steel No. with low Ti content In Nos. 13 and 14, the length of TiN is short and fine, the TiN density is low, and the burr height is high. Steel No. No. 19 is long and coarse in TiN, has a high burr height, and has cracks in the punched portion. Steel No. In Nos. 15 to 18, the chemical components were within the scope of the present invention, the length of TiN was within the scope of the present invention, and good punchability was exhibited.
鋼No.20〜23は、Cr含有量を変化させた場合の実施例である。いずれも化学成分が本発明範囲内で、TiNの長さが本発明範囲内であり、良好な打ち抜き性を示した。 Steel No. 20-23 is an Example at the time of changing Cr content. In both cases, the chemical components were within the scope of the present invention, and the length of TiN was within the scope of the present invention, indicating good punchability.
なお、別途ダイクエンチ工法を適用し、ダイクエンチ後の本発明の鋼板の引張り強さが980MPa級を満足することを確認している。 In addition, the die quench method was applied separately and it was confirmed that the tensile strength of the steel plate of the present invention after die quench satisfies the 980 MPa class.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009016078A JP2010174275A (en) | 2009-01-28 | 2009-01-28 | Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009016078A JP2010174275A (en) | 2009-01-28 | 2009-01-28 | Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010174275A true JP2010174275A (en) | 2010-08-12 |
Family
ID=42705522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009016078A Pending JP2010174275A (en) | 2009-01-28 | 2009-01-28 | Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010174275A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018527457A (en) * | 2015-07-09 | 2018-09-20 | アルセロールミタル | Press-hardened steel and press-hardened parts made from such steel |
-
2009
- 2009-01-28 JP JP2009016078A patent/JP2010174275A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018527457A (en) * | 2015-07-09 | 2018-09-20 | アルセロールミタル | Press-hardened steel and press-hardened parts made from such steel |
JP2020073724A (en) * | 2015-07-09 | 2020-05-14 | アルセロールミタル | Steel for press hardening and press hardened part manufactured from such steel |
JP2020073723A (en) * | 2015-07-09 | 2020-05-14 | アルセロールミタル | Steel for press hardening and press hardened part manufactured from such steel |
JP2022017398A (en) * | 2015-07-09 | 2022-01-25 | アルセロールミタル | Steel for press-hardening, press-hardened component manufactured from the press-hardened steel material |
JP2022023173A (en) * | 2015-07-09 | 2022-02-07 | アルセロールミタル | Steel for press-hardening, and press-hardened component produced from the steel material |
US11319610B2 (en) | 2015-07-09 | 2022-05-03 | Arcelormittal | Steel for press hardening and press hardened part manufactured from such steel |
JP7299957B2 (en) | 2015-07-09 | 2023-06-28 | アルセロールミタル | Steel for press hardening and press hardened parts manufactured from such steel |
JP7299956B2 (en) | 2015-07-09 | 2023-06-28 | アルセロールミタル | Method for manufacturing steel plate for press hardening and method for manufacturing laser welded blank for press hardening |
US11814696B2 (en) | 2015-07-09 | 2023-11-14 | Arcelormittal | Steel for press hardening and press hardened part manufactured from such steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI513524B (en) | High-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet excellent in mechanical truncation characteristics, and the like | |
JP6950835B2 (en) | Manufacturing method of high-strength member, high-strength member and steel plate for high-strength member | |
JP5303856B2 (en) | Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy | |
JPWO2020090303A1 (en) | High-strength steel sheet and its manufacturing method | |
JP5093118B2 (en) | Tool steel manufacturing method | |
JP6062352B2 (en) | Hot press parts | |
JP5280324B2 (en) | High carbon steel sheet for precision punching | |
TW201712130A (en) | High-carbon cold-rolled steel sheet and method for manufacturing same | |
JP2020020033A (en) | Steel and method for producing the same | |
TWI544086B (en) | High carbon hot-rolled steel sheet and manufacturing method thereof | |
TWI557239B (en) | High-carbon hot rolled steel sheet and manufacturing method thereof | |
JP2009242840A (en) | High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same | |
JP2022028885A (en) | High-strength member and method for manufacturing high-strength member | |
JP2008013811A (en) | Method for manufacturing pearlite-based rail having excellent toughness and ductility | |
JP2010174278A (en) | Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process | |
JP2020059919A (en) | Steel material and method for manufacturing the same | |
JP5316025B2 (en) | Die quench steel plate with excellent hot punchability | |
JP2010174276A (en) | Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process | |
JP2010174293A (en) | Steel sheet to be die-quenched superior in hot-punchability | |
JP2010174275A (en) | Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process | |
JP2010174277A (en) | Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process | |
JP2010174279A (en) | Steel sheet for die quenching having excellent hot punchability and method for producing member by die quenching process | |
WO2021140901A1 (en) | Steel sheet and method for manufacturing same | |
JP5316028B2 (en) | Die quench steel plate with excellent hot punchability | |
JP5466897B2 (en) | Low carbon martensitic stainless steel and its manufacturing method |