JP6062352B2 - Hot press parts - Google Patents

Hot press parts Download PDF

Info

Publication number
JP6062352B2
JP6062352B2 JP2013257128A JP2013257128A JP6062352B2 JP 6062352 B2 JP6062352 B2 JP 6062352B2 JP 2013257128 A JP2013257128 A JP 2013257128A JP 2013257128 A JP2013257128 A JP 2013257128A JP 6062352 B2 JP6062352 B2 JP 6062352B2
Authority
JP
Japan
Prior art keywords
hot
less
mass
parent phase
cementite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013257128A
Other languages
Japanese (ja)
Other versions
JP2015113500A (en
Inventor
村上 俊夫
俊夫 村上
純也 内藤
純也 内藤
圭介 沖田
圭介 沖田
伸志 佐藤
伸志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013257128A priority Critical patent/JP6062352B2/en
Publication of JP2015113500A publication Critical patent/JP2015113500A/en
Application granted granted Critical
Publication of JP6062352B2 publication Critical patent/JP6062352B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、自動車部品の構造部材に使用されるような、高強度が必要とされる熱間プレス部品に関する。   The present invention relates to a hot-pressed part requiring high strength, such as used for a structural member of an automobile part.

近年、自動車の燃費向上および衝突安全性の向上を両立させるため、自動車用鋼板をできるだけ高強度化することが要請されている。しかしながら、鋼板を高強度化していくと、伸びやr値が低下し、プレス成形性や形状凍結性が劣化することとなる。   In recent years, in order to achieve both improvement in automobile fuel efficiency and improvement in collision safety, it has been demanded to increase the strength of automobile steel plates as much as possible. However, as the strength of the steel sheet increases, the elongation and r value decrease, and the press formability and shape freezeability deteriorate.

このような課題を解決するために、鋼板を例えば、オーステナイト相となる温度に加熱して強度を低下させて、成形を容易にした状態で、鋼板に比べて低温(例えば室温)の金型で成形することによって、鋼板に形状を付与すると同時に、両者の温度差を利用した焼入れを行って、成形後の強度を確保する熱間プレス成形法が部品製造に採用されている。   In order to solve such a problem, the steel sheet is heated to a temperature at which it becomes an austenite phase to reduce the strength, and in a state in which forming is facilitated, a mold having a temperature lower than that of the steel sheet (for example, room temperature) is used. A hot press forming method is used for producing parts by forming a steel sheet by forming and at the same time performing quenching utilizing the temperature difference between the two to ensure strength after forming.

しかしながら、熱間プレス成形法で製造した部品は、高強度を得るために、高温から成形と同時に焼き入れを行うため、マルテンサイト主体の組織となる。このため、特に引張強度1180MPa以上の超高強度部品では水素脆化起因による遅れ破壊が懸念される。   However, a part manufactured by the hot press molding method is hardened simultaneously with molding from a high temperature in order to obtain high strength, and therefore has a martensite-based structure. For this reason, there is a concern about delayed fracture due to hydrogen embrittlement particularly in ultra-high strength parts having a tensile strength of 1180 MPa or more.

ここで、従来、プレス成形法にて製造された部品の耐水素脆性を改善するため、以下のような提案がなされている。   Heretofore, in order to improve the hydrogen embrittlement resistance of parts manufactured by the press molding method, the following proposals have been made.

例えば、特許文献1には、合金炭窒化物形成元素を所定量添加し、熱間プレス処理でマルテンサイト60%以上のミクロ組織にした後に、150〜700℃の温度範囲で1〜1000分熱処理する、耐水素脆性に優れた自動車用部材の製造方法が提案されている。この方法により、熱間プレス後の部材中に合金炭窒化物を水素トラップサイトとして均等かつ微細に分散させることで、耐水素脆性が改善するとしている。   For example, in Patent Document 1, a predetermined amount of an alloy carbonitride-forming element is added, and after forming a microstructure of martensite 60% or more by hot pressing, heat treatment is performed at a temperature range of 150 to 700 ° C. for 1 to 1000 minutes. In addition, a method for manufacturing a member for an automobile having excellent hydrogen embrittlement resistance has been proposed. According to this method, hydrogen embrittlement resistance is improved by uniformly and finely dispersing the alloy carbonitride as hydrogen trap sites in the member after hot pressing.

しかしながら、単に部材中に合金炭窒化物を分散させ、加熱プレス後に熱処理しただけでは、部材の強度低下が不可避で、かつ、セメンタイトが粗大化し、耐水素脆性を低下させる要因となるため、さらなる改善が求められる。   However, simply dispersing the alloy carbonitride in the member and heat-treating it after hot pressing inevitably results in a reduction in strength of the member, and cementite becomes coarse and causes a decrease in hydrogen embrittlement resistance. Is required.

また、特許文献2には、熱間プレス後に下死点近傍でせん断加工を施すことで、残留応力を低下させて耐水素脆性を改善する方法、特許文献3には、熱間プレス後にシャー角を有するパンチまたはダイス工具を用いてせん断加工を行うことで、残留応力を低下させて耐水素脆性を改善する方法、特許文献4には、熱間プレス後に部品の一部を溶融して切断する加工を施すことで、残留応力を低下させて耐水素脆性を改善する方法が、それぞれ提案されている。   Patent Document 2 discloses a method of reducing residual stress and improving hydrogen embrittlement resistance by performing shearing in the vicinity of bottom dead center after hot pressing, and Patent Document 3 discloses a shear angle after hot pressing. A method of reducing residual stress and improving hydrogen embrittlement resistance by performing a shearing process using a punch or a die tool having a material, Patent Document 4 discloses that a part of a part is melted and cut after hot pressing. Methods have been proposed for improving the hydrogen embrittlement resistance by reducing the residual stress by processing.

このように、切断部の遅れ破壊を防止する技術については散見されるが、母材に関する耐遅れ破壊特性の改善に関する技術についてはほとんど存在しないのが実情である。   As described above, the technology for preventing the delayed fracture of the cut portion is often seen, but the reality is that there is almost no technology for improving the delayed fracture resistance of the base material.

特許4288201号公報Japanese Patent No. 4288201 特開2006−104526号公報JP 2006-104526 A 特開2008−266721号公報JP 2008-266721 A 特開2006−110713号公報JP 2006-110713 A

本発明は上記事情に着目してなされたものであり、その目的は、1180MPa以上の引張強度を付与された熱間プレス部品においても、従来技術では得ることができなかった、優れた耐遅れ破壊性を有する熱間プレス部品を提供することにある。   The present invention has been made paying attention to the above circumstances, and the purpose thereof is excellent delayed fracture resistance that could not be obtained by the prior art even in a hot press part having a tensile strength of 1180 MPa or more. An object of the present invention is to provide a hot-pressed part having properties.

請求項1に記載の発明は、
成分組成が、質量%で(以下、化学成分について同じ。)、
C :0.1〜0.4%、
Si:2.0%以下(0%を含まない)、
Mn:0.3〜3.5%、
Ti:0.01〜0.2%
をそれぞれ含み、残部が鉄および不可避的不純物からなるとともに、 ミクロ組織が、
マルテンサイト+残留オーステナイトを面積率で80%以上含み、残部がフェライトからなり、
合金炭窒化物:0.05質量%以上、
母相と整合性を有する前記合金炭窒化物:5.0×1010個/m以上、
セメンタイト:2質量%以下
をそれぞれ含む
ことを特徴とする耐遅れ破壊性に優れた熱間プレス部品である。
The invention described in claim 1
Ingredient composition is in mass% (hereinafter the same for chemical ingredients)
C: 0.1 to 0.4%
Si: 2.0% or less (excluding 0%),
Mn: 0.3 to 3.5%
Ti: 0.01 to 0.2%
And the balance is composed of iron and inevitable impurities, and the microstructure is
Martensite + retained austenite is included in the area ratio 80% or more, the remainder is made of ferrite,
Alloy carbonitride: 0.05% by mass or more,
The alloy carbonitride having consistency with the parent phase: 5.0 × 10 10 pieces / m 2 or more,
Cementite: A hot-pressed part excellent in delayed fracture resistance, characterized by containing 2% by mass or less.

請求項2に記載の発明は、
成分組成が、さらに、
Cu:0.005〜5%、
Ni:0.005〜5%
Cr:0.001〜3%、
Mo:0.001〜3%、
B:0.0002〜0.1%
よりなる群から選ばれる少なくとも1種
を含むものである請求項1に記載の熱間プレス部品である。
The invention described in claim 2
Ingredient composition further
Cu: 0.005 to 5%,
Ni: 0.005 to 5%
Cr: 0.001 to 3%,
Mo: 0.001 to 3%,
B: 0.0002 to 0.1%
The hot-pressed part according to claim 1, comprising at least one selected from the group consisting of:

請求項3に記載の発明は、
成分組成が、さらに、
V:0.001〜0.1%、
Nb:0.001〜0.1%
よりなる群から選ばれる少なくとも1種
を含むものである請求項1または2に記載の熱間プレス部品である。
The invention according to claim 3
Ingredient composition further
V: 0.001 to 0.1%
Nb: 0.001 to 0.1%
It is a hot press part of Claim 1 or 2 containing at least 1 sort (s) chosen from the group which consists of.

本発明によれば、母材と整合性を有する合金炭窒化物を所定量確保することで、1180MPa以上の引張強度を付与された熱間プレス部品においても、従来技術では得ることができなかった、優れた耐遅れ破壊性を有する熱間プレス部品を提供できるようになった。   According to the present invention, by securing a predetermined amount of alloy carbonitride having consistency with the base material, even a hot-pressed part having a tensile strength of 1180 MPa or more could not be obtained by the prior art. It has become possible to provide hot-pressed parts having excellent delayed fracture resistance.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

まず、本発明に係る熱間プレス部品(以下、「本発明部品」ともいう。)を特徴づけるミクロ組織について説明する。   First, the microstructure characterizing the hot-pressed part according to the present invention (hereinafter also referred to as “the present invention part”) will be described.

〔本発明部品のミクロ組織〕
上述したとおり、本発明部品は、そのミクロ組織が、マルテンサイト+残留オーステナイト(以下、「残留γ」とも表記する。)を面積率で80%以上含み、残部がフェライトからなり、合金炭窒化物:0.05質量%以上、母相と整合性を有する前記合金炭窒化物:5.0×1010個/m以上、セメンタイト:2質量%以下をそれぞれ含むことを特徴とするものである。
以下、このような数値限定を要件とする理由を説明する。
[Microstructure of parts of the present invention]
As described above, the component of the present invention has a microstructure including martensite + residual austenite (hereinafter also referred to as “residual γ”) in an area ratio of 80% or more, and the balance is composed of ferrite, and alloy carbonitride : 0.05% by mass or more, the alloy carbonitride having consistency with the parent phase: 5.0 × 10 10 pieces / m 2 or more, cementite: 2% by mass or less, respectively. .
The reason why such numerical limitation is a requirement will be described below.

<マルテンサイト+残留オーステナイト:面積率で80%以上、残部:フェライト>
フェライトが多く存在しすぎると部品の強度が確保できなくなるため、マルテンサイトと残留オーステナイトの合計量を面積率で80%以上とする。また、フェライトが中途半端に存在すると、亀裂の発生サイトやその伝播経路となるため、マルテンサイトと残留オーステナイトの合計量は、90%以上とするのが好ましく、特に100%とするのがさらに好ましい。
<Martensite + retained austenite: area ratio 80% or more, balance: ferrite>
If too much ferrite is present, the strength of the component cannot be secured, so the total amount of martensite and retained austenite is 80% or more in terms of area ratio. Further, if ferrite is present halfway, it becomes a crack generation site and its propagation path, so the total amount of martensite and retained austenite is preferably 90% or more, and more preferably 100%. .

<合金炭窒化物:0.05質量%以上、母相と整合性を有する前記合金炭窒化物:5.0×1010個/m以上>
合金炭窒化物の析出量を確保することに加え、そのうちの一部もしくは全量を母相と整合性良く析出させることで、水素のトラップ能力を高め、耐遅れ破壊性を向上させる。このような作用を有効に発揮させるためには、合金炭窒化物の析出量は、0.05質量%以上を必要とし、好ましくは0.08質量%以上、さらに好ましくは0.10質量%であり、母相と整合性を有する前記合金炭窒化物(以下、「整合析出物」ともいう。)の析出量は、5.0×1010個/m以上を必要とし、好ましくは1.0×1011個/m以上、さらに好ましくは2.0×1011個/m以上である。
<Alloy carbonitride: 0.05% by mass or more, alloy carbonitride having consistency with parent phase: 5.0 × 10 10 pieces / m 2 or more>
In addition to ensuring the precipitation amount of alloy carbonitrides, a part or all of them are precipitated with good consistency with the parent phase, thereby increasing the hydrogen trapping ability and improving delayed fracture resistance. In order to exhibit such an action effectively, the precipitation amount of the alloy carbonitride needs to be 0.05% by mass or more, preferably 0.08% by mass or more, more preferably 0.10% by mass. The amount of precipitation of the alloy carbonitride having consistency with the parent phase (hereinafter also referred to as “consistent precipitate”) needs to be 5.0 × 10 10 pieces / m 2 or more, preferably 1. It is 0 × 10 11 pieces / m 2 or more, more preferably 2.0 × 10 11 pieces / m 2 or more.

<セメンタイト:2質量%以下>
焼入時の冷却過程における自己焼戻し、および/または、焼入れ後に熱処理を施すことで、セメンタイトが形成される。セメンタイトは旧γ粒界にそって形成されやすく、旧γ粒界の強度を低下させるため、遅れ破壊が発生しやすくなる。また、加熱時に未固溶のセメンタイトが残存していた場合、セメンタイトが粗大化して応力集中源となり、特に旧γ粒界の近傍に残存していた場合は亀裂の発生サイトとして働くようになるため、耐遅れ破壊性を劣化させる。そのため、セメンタイトの析出量を全体的に低減させることで、マルテンサイトの旧γ粒界に形成されるセメンタイト量を低減でき、旧γ粒界の強度低下を防止し、耐遅れ破壊性を向上できる。このような作用を有効に発揮させるため、セメンタイトの析出量は2質量%以下とする必要があり、好ましくは、1.8質量%以下、さらに好ましくは1.5質量%以下である。
<Cementite: 2% by mass or less>
Cementite is formed by performing self-tempering in the cooling process during quenching and / or heat treatment after quenching. Cementite tends to be formed along the old γ grain boundary and lowers the strength of the old γ grain boundary, so that delayed fracture is likely to occur. In addition, if undissolved cementite remains during heating, the cementite coarsens and becomes a stress concentration source, especially if it remains in the vicinity of the old γ grain boundary, it acts as a crack initiation site. Deteriorating delayed fracture resistance. Therefore, by reducing the amount of cementite precipitation as a whole, the amount of cementite formed at the former γ grain boundary of martensite can be reduced, the strength of the former γ grain boundary can be prevented from decreasing, and the delayed fracture resistance can be improved. . In order to effectively exhibit such an action, the amount of cementite deposited must be 2% by mass or less, preferably 1.8% by mass or less, and more preferably 1.5% by mass or less.

〔各相の面積率の測定方法〕
熱間プレス部品サンプルを鏡面研磨した後、ナイタール腐食をして光学顕微鏡で観察し、フェライト、マルテンサイト、ベイナイト、パーライトを同定し、各相の面積率を算出する。このとき、マルテンサイトについては、マルテンサイト内に残留オーステナイトが含有されるため、マルテンサイト+残留オーステナイトの合計量で面積率を算出する。
[Measurement method of area ratio of each phase]
The hot pressed part sample is mirror-polished, then subjected to nital corrosion, observed with an optical microscope, ferrite, martensite, bainite and pearlite are identified, and the area ratio of each phase is calculated. At this time, for martensite, since retained austenite is contained in martensite, the area ratio is calculated by the total amount of martensite + residual austenite.

〔析出物の含有量の測定方法〕
熱間プレス部品サンプルを所定量電解して析出物をはじめとする粒子を電解液中に分散させ、この電解液を0.1μm径の孔を有するメッシュで濾過して粒子を抽出し、これをX線回折装置にかけてX線の回折ピークプロファイルを採取した。その後、ピークフィッティング法により、抽出した粒子の種類を同定した。なお、本発明部品サンプルではセメンタイト(FeC)、合金炭窒化物((Ti,V,Nb)(C,N))、マンガン硫化物(MnS)が存在することが確認できている。これらの粒子のピークのうち、セメンタイト(FeC)については、(002)面および(200)面、マンガン硫化物(MnS)については(200)面、合金炭窒化物((Ti,V,Nb)(C,N))については(111)面のピーク強度(Yn,ここでn=FeC,MnS,(Ti,V,Nb)(C,N))を用いて、下記式(1)で抽出粒子中の相対濃度(Cn;質量%)を算出した。
[Measurement method of precipitate content]
A predetermined amount of hot-pressed part sample is electrolyzed to disperse particles such as precipitates in the electrolytic solution, and the electrolytic solution is filtered through a mesh having pores with a diameter of 0.1 μm to extract the particles. An X-ray diffraction peak profile was collected using an X-ray diffractometer. Then, the kind of extracted particle | grains was identified by the peak fitting method. In addition, it has been confirmed that cementite (Fe 3 C), alloy carbonitride ((Ti, V, Nb) (C, N)), and manganese sulfide (MnS) are present in the component sample of the present invention. Among these particle peaks, for cementite (Fe 3 C), the (002) plane and (200) plane, for manganese sulfide (MnS), the (200) plane, alloy carbonitride ((Ti, V, (Nb) (C, N)), the peak intensity (Yn, where n = Fe 3 C, MnS, (Ti, V, Nb) (C, N)) on the (111) plane is In 1), the relative concentration (Cn; mass%) in the extracted particles was calculated.

Cn=Yn×An/Σ(Yi×Ai) …式(1)
ここで、An:相対感度係数、FeC:1.000,MnS:0.118,(Ti,V,Nb)(C,N):0.700とした。
Cn = Yn × An / Σ (Yi × Ai) (1)
Here, An: relative sensitivity coefficient, Fe 3 C: 1.000, MnS: 0.118, (Ti, V, Nb) (C, N): 0.700.

そして、下記式(2)により、熱間プレス部品サンプル中の絶対析出量(=含有量;質量%)を求めた。   And the absolute precipitation amount (= content; mass%) in the hot-pressed part sample was calculated | required by following formula (2).

[絶対析出量]=[抽出粒子中の相対濃度]×[抽出粒子の総質量]/[電解により溶解した総質量] …式(2)     [Absolute precipitation amount] = [Relative concentration in extracted particles] × [Total mass of extracted particles] / [Total mass dissolved by electrolysis] Formula (2)

〔母相と整合性を有する合金炭窒化物の個数密度の測定方法〕
熱間プレス部品サンプルの薄膜試料を作製し、透過型電子顕微鏡で観察する。観察する際に電子線の入射方向を母相(マルテンサイト)の<001>方向と平行になるように調整すると、図1に示す3種類の回折パターン(diffraction pattern)のうちの1つが得られる(H.J.Kestenbach et al:Acta Microscopica,vol.7(1998),p22参照)。図1中の白丸が析出物からの回折パターン(diffraction pattern)である。白丸で印した回折パターン(diffraction pattern)のうち、任意のものを用いた暗視野像を撮影する。このとき、撮影された暗視野像に白い粒状の粒子が観察されたら、それが母相と整合性を有する合金炭窒化物(以下、「整合析出物」ともいう。)である。そこで、母相に対して<001>方向から入射した視野を10万倍以上で5視野以上観察し、そのときに上記手段で特定された粒子の個数密度を算出し、それを母相と整合性を有する合金炭窒化物の個数密度とした。
[Method for measuring number density of alloy carbonitride having consistency with parent phase]
A thin film sample of a hot pressed part sample is prepared and observed with a transmission electron microscope. When the observation is adjusted so that the incident direction of the electron beam is parallel to the <001> direction of the parent phase (martensite), one of the three types of diffraction patterns shown in FIG. 1 is obtained. (See HJKestenbach et al: Acta Microscopica, vol. 7 (1998), p22). A white circle in FIG. 1 is a diffraction pattern from the precipitate. A dark field image using a diffraction pattern marked with a white circle is taken. At this time, if white granular particles are observed in the captured dark field image, they are alloy carbonitrides (hereinafter also referred to as “matched precipitates”) having consistency with the parent phase. Therefore, the field of view incident on the parent phase from the <001> direction is observed more than five times at 100,000 times or more, and the number density of the particles specified by the above means is calculated at that time, and it is matched with the parent phase. The number density of the alloy carbonitride having the properties was determined.

次に、本発明部品を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition which comprises this invention components is demonstrated. Hereinafter, all the units of chemical components are mass%.

〔本発明部品の成分組成〕
C :0.1〜0.4%
Cは、鋼板の強度を確保するうえで重要な元素である。特にマルテンサイトやオーステナイトなどの硬質相を生成し高強度化には必須の元素であり、1180MPa以上の引張強度を得るためには、0.1%以上、好ましくは0.12%以上、さらに好ましくは0.15%以上が必要である。一方、多く含有させすぎると、脆性破壊の起点となるセメンタイトを増加させるため、水素脆性を生じやすくなるので、0.4%以下、好ましくは0.35%以下、さらに好ましくは0.3%以下とする。
[Component composition of the parts of the present invention]
C: 0.1 to 0.4%
C is an important element in securing the strength of the steel sheet. In particular, it is an essential element for generating a hard phase such as martensite and austenite and increasing the strength. In order to obtain a tensile strength of 1180 MPa or more, 0.1% or more, preferably 0.12% or more, more preferably Is required to be 0.15% or more. On the other hand, if too much is included, the cementite that is the starting point of brittle fracture is increased, and hydrogen embrittlement is likely to occur, so 0.4% or less, preferably 0.35% or less, more preferably 0.3% or less. And

Si:2.0%以下(0%を含まない)
Siは、焼入れ性を向上し、鋼板の強度を上昇させるとともに、セメンタイトの析出を抑制するのに有効な元素であるが、含有量が多すぎると熱間圧延でのスケール除去にコストがかかり経済的に不利なため、2.0%以下、好ましくは1.7%以下、さらに好ましくは1.5%以下とする。下限は特に定めないが、含有量を0%に近づけることは製造コストの高騰を招くことから、0.01%以上とするのが望ましい。
Si: 2.0% or less (excluding 0%)
Si is an element effective for improving the hardenability, increasing the strength of the steel sheet, and suppressing the precipitation of cementite. However, if the content is too large, the cost for removing the scale in hot rolling is high and the economy is high. Therefore, it is 2.0% or less, preferably 1.7% or less, and more preferably 1.5% or less. Although the lower limit is not particularly defined, it is desirable that the content be close to 0% because bringing the content close to 0% causes an increase in manufacturing cost.

Mn:0.3〜3.5%
Mnは、製鋼過程において脱酸および脱硫の作用を有する元素である。さらに、焼入れ性の向上に有効な元素である。このような作用を有効に発揮させるため、0.3%以上、好ましくは0.5%以上、さらに好ましくは0.8%以上とする。一方、含有量が多すぎると、焼入れ、焼戻し後の衝撃特性を助長するとともに、Mn系の介在物量が増加し、冷間加工性、耐疲労特性を劣化させるため、3.5%以下、好ましくは3.0%以下、さらに好ましくは2.5%以下とする。
Mn: 0.3 to 3.5%
Mn is an element having a deoxidizing and desulfurizing action in the steel making process. Furthermore, it is an element effective for improving hardenability. In order to effectively exhibit such an action, the content is 0.3% or more, preferably 0.5% or more, and more preferably 0.8% or more. On the other hand, if the content is too large, the impact properties after quenching and tempering are promoted, the amount of Mn-based inclusions is increased, and cold workability and fatigue resistance properties are deteriorated. Is 3.0% or less, more preferably 2.5% or less.

Ti:0.01〜0.2%
Tiは、鋼中に微細な炭窒化物として存在することで水素トラップサイトとして働き、耐遅れ破壊特性の向上に寄与する重要な元素である。特に、母相であるマルテンサイトと整合するように析出させておくと、水素トラップ能力が高まり、耐遅れ破壊特性を一層改善する効果が得られる。このような作用を有効に発揮させるため、0.01%以上、好ましくは0.02%以上、さらに好ましくは0.03%以上とする。一方、含有量が多すぎると粗大な析出物が多量に生成し、加工性および耐遅れ破壊性が低下するため、0.2%以下、好ましくは0.15%以下、さらに好ましくは0.1%以下とする。
Ti: 0.01 to 0.2%
Ti is an important element that acts as a hydrogen trap site by existing as fine carbonitride in steel and contributes to the improvement of delayed fracture resistance. In particular, if it is deposited so as to match the martensite which is the parent phase, the hydrogen trapping capability is enhanced, and the effect of further improving the delayed fracture resistance can be obtained. In order to effectively exhibit such an action, the content is 0.01% or more, preferably 0.02% or more, and more preferably 0.03% or more. On the other hand, if the content is too large, a large amount of coarse precipitates are produced, and the workability and delayed fracture resistance deteriorate, so that it is 0.2% or less, preferably 0.15% or less, more preferably 0.1 % Or less.

本発明部品は上記成分を基本的に含有し、残部が鉄および不可避的不純物である。不可避的不純物としては、P、S、N、Oが挙げられるが、これらの元素はできるだけ含まないようにするのが好ましく、Pは0.020%以下、Sは0.010%以下、Nは0.008%以下、Oは0.002%以下に制限するのが望ましい。   The component of the present invention basically contains the above components, with the balance being iron and inevitable impurities. Inevitable impurities include P, S, N, and O, but it is preferable not to include these elements as much as possible. P is 0.020% or less, S is 0.010% or less, and N is It is desirable to limit it to 0.008% or less and O to 0.002% or less.

本発明部品は、その他、本発明の作用を損なわない範囲で、以下の許容成分を含有させることができる。   The component of the present invention can contain the following permissible components as long as the effects of the present invention are not impaired.

Cu:0.005〜5%、
Ni:0.005〜5%
Cr:0.001〜3%、
Mo:0.001〜3%、
B:0.0002〜0.1%
よりなる群から選ばれる少なくとも1種
これらの元素は、フェライト変態、パーライト変態およびベイナイト変態を抑制するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、マルテンサイト+残留オーステナイトの確保に有効に作用する。こうした作用を有効に発揮させるためには、各下限値以上含有させるのが好ましい。特性だけを考慮すると含有量は多いほうが好ましいが、合金添加のコストが上昇することから、各上限値以下とするのが好ましい。これらの元素含有量のより好ましい下限は、Cuは0.02%、Niは0.02%、Crは0.02%、Moは0.02%、Bは0.0003%であり、より好ましい上限は、Cuは1%、Niは1%、Crは1%、Moは1%、Bは0.01%である。
Cu: 0.005 to 5%,
Ni: 0.005 to 5%
Cr: 0.001 to 3%,
Mo: 0.001 to 3%,
B: 0.0002 to 0.1%
At least one selected from the group consisting of these elements suppresses ferrite transformation, pearlite transformation, and bainite transformation, and thus prevents formation of ferrite, pearlite, and bainite during cooling after heating, and martensite + retained austenite It works effectively to ensure. In order to exhibit such an action effectively, it is preferable to contain each lower limit value or more. Considering only the characteristics, it is preferable that the content is large. However, since the cost of alloy addition increases, it is preferable to set the content to the upper limit value or less. More preferable lower limits of the content of these elements are 0.02% for Cu, 0.02% for Ni, 0.02% for Cr, 0.02% for Mo, and 0.0003% for B, and more preferable. The upper limit is 1% for Cu, 1% for Ni, 1% for Cr, 1% for Mo, and 0.01% for B.

V:0.001〜0.1%、
Nb:0.001〜0.1%
よりなる群から選ばれる少なくとも1種
VおよびNbは、Tiと同様に、鋼中に微細な炭窒化物として存在することで水素トラップサイトとして働き、耐遅れ破壊特性の向上に寄与する元素である。こうした作用を有効に発揮させるためには、それぞれ0.001%以上含有させることが好ましい。しかしながら、これらの元素の含有量が過剰になると、粗大な炭窒化物が形成され、破壊の起点になることで却って延性を劣化させるので、それぞれ0.1%以下とするのが好ましい。これらの元素含有量のより好ましい下限は、それぞれ0.01%であり、より好ましい上限はそれぞれ0.05%である。
V: 0.001 to 0.1%
Nb: 0.001 to 0.1%
At least one selected from the group consisting of V and Nb, like Ti, is an element that acts as a hydrogen trap site by existing as fine carbonitride in steel and contributes to the improvement of delayed fracture resistance. . In order to exhibit such an action effectively, it is preferable to contain each 0.001% or more. However, if the content of these elements is excessive, coarse carbonitrides are formed and the ductility is deteriorated by becoming the starting point of destruction. Therefore, the content is preferably 0.1% or less. The more preferable lower limit of the content of these elements is 0.01%, respectively, and the more preferable upper limit is 0.05%.

次に、上記本発明部品を得るための好ましい製造方法を以下に説明する。   Next, a preferred manufacturing method for obtaining the above-described component of the present invention will be described below.

〔本発明部品の好ましい製造方法〕
鋼の溶製、鋼片の鋳造、および、鋼片を熱延ラインの加熱炉(熱延加熱炉)に装入するまでの工程については、特に限定するものではなく、例えば、(1)鋳造後の鋼片を冷却せずに熱延加熱炉に装入してもよいし、(2)鋳造後の鋼片を一旦冷却した後、熱延加熱炉に装入してもよいし、(3)鋳造後の鋼塊を分塊圧延した後に鋼片を熱延加熱炉に装入してもよい。
[Preferred production method of the component of the present invention]
There are no particular limitations on the steps of melting the steel, casting the steel slab, and charging the steel slab into the heating furnace (hot rolling heating furnace) of the hot rolling line. For example, (1) casting You may charge a hot-rolling heating furnace without cooling a steel slab after, (2) After cooling the steel slab after casting once, you may insert into a hot-rolling heating furnace, 3) The steel slab may be charged into a hot-rolling heating furnace after the ingot after casting is subjected to ingot rolling.

そして、熱間圧延後、500〜750℃で巻取りを行い、冷間圧延を施さない、または、施しても冷延率45%以下の小圧下とする。ここで、熱間プレス前に、鋼板に溶融めっきを施す場合は、焼鈍温度を650℃以下とするとよい。次いで、圧延まま鋼板、または、溶融めっき鋼板を熱間プレス工程に供するが、それらの鋼板の加熱速度を20℃/s以上、加熱温度を900〜1200℃、加熱時間を1〜600sとし、プレス終了時点から400℃までの平均冷却速度を30℃/s以上、400℃から200℃までの平均冷却速度を10℃/s以上とするのが推奨される。
なお、熱間プレス後の部品にさらに熱処理を施す場合は、100〜250℃×1〜60minの条件で行うことが推奨される。
以下、このような条件を推奨する理由を説明する。
And after hot rolling, it winds at 500-750 degreeC, and does not give cold rolling, or even if it gives, it is set as the small reduction of 45% or less of cold rolling. Here, when hot-plating a steel plate before hot pressing, the annealing temperature may be set to 650 ° C. or lower. Next, the rolled steel sheet or hot-dipped steel sheet is subjected to a hot pressing step as it is rolled. The heating rate of these steel sheets is 20 ° C./s or more, the heating temperature is 900 to 1200 ° C., the heating time is 1 to 600 s, and the press is performed. It is recommended that the average cooling rate from the end point to 400 ° C. is 30 ° C./s or more, and the average cooling rate from 400 ° C. to 200 ° C. is 10 ° C./s or more.
In addition, when further heat-processing to the components after a hot press, it is recommended to carry out on the conditions of 100-250 degreeC x 1-60min.
The reason why such a condition is recommended will be described below.

<巻取り温度:500〜750℃>
500℃以上の高温で巻き取ることにより、フェライト・パーライト変態をさせると同時に、組織の内部に析出物(合金炭窒化物)を母相に整合するように分散させることができる。ただし、巻取り温度が高すぎると、上記母相との整合性が失われてしまうので、750℃以下とするのが好ましい。
<Winding temperature: 500 to 750 ° C.>
By winding at a high temperature of 500 ° C. or higher, ferrite-pearlite transformation can be performed, and at the same time, precipitates (alloy carbonitrides) can be dispersed inside the structure so as to match the parent phase. However, if the coiling temperature is too high, the consistency with the parent phase is lost, and therefore it is preferable to set the temperature to 750 ° C. or lower.

<冷間圧延なし、または、冷延率:45%以下>
鋼板を冷間で強圧下すると、せっかく母相と整合するように分散した析出物(合金炭窒化物)の整合性が失われてしまうため、熱延まま、または、冷間圧延する場合でも冷延率を45%以下とするのが好ましい。
<No cold rolling or cold rolling rate: 45% or less>
When the steel sheet is strongly squeezed cold, the consistency of the precipitates (alloy carbonitride) dispersed so as to be consistent with the parent phase is lost. Therefore, even when hot rolling or cold rolling is performed, The ductility is preferably 45% or less.

<溶融めっき鋼板の場合、焼鈍温度:650℃以下>
連続溶融めっきラインでの焼鈍温度を650℃以下の低温に限定することで、母相を再結晶させずにめっきを付与することができるため、鋼板内に母相と整合する析出物(合金炭窒化物)を多く残存させることが可能となる。一方、焼鈍温度が650℃を超えて高くなると、母相の再結晶化が起こり、析出物(合金炭窒化物)との整合性が失われてしまい、熱間プレス後の部品中に、母相と整合性を有する析出物(合金炭窒化物)を確保することが難しくなる。なお、焼鈍時間は、特に限定されないが、30〜600sとするのが好ましい。
<In the case of hot dip plated steel sheet, annealing temperature: 650 ° C. or less>
By limiting the annealing temperature in the continuous hot dipping line to a low temperature of 650 ° C. or lower, plating can be applied without recrystallizing the parent phase. A large amount of (nitride) can be left. On the other hand, when the annealing temperature is higher than 650 ° C., recrystallization of the parent phase occurs, and the consistency with the precipitate (alloy carbonitride) is lost. It becomes difficult to secure precipitates (alloy carbonitrides) having consistency with the phases. In addition, although annealing time is not specifically limited, It is preferable to set it as 30-600 s.

<熱間プレスに供する鋼板の加熱速度:20℃/s以上、加熱温度:900〜1100℃、加熱時間:1〜600s>
母相と整合性を有する析出物(合金炭窒化物)を含有する鋼板を急速に加熱することで、母相をできるだけ再結晶させないままで逆変態させることで、一部の析出物は母相との整合性を失うものの、残りの析出物は母相との整合性を有したままで逆変態させることが可能となる。その結果、その後の熱間プレス、焼入れの工程で、母相がマルテンサイトに変態した場合にも、母相との整合性を維持したまま存在する析出物を多く残存させることができる。
このような作用を有効に発揮させるため、熱間プレスに供する鋼板の加熱速度は20℃/s以上、さらには50℃/s以上、特に100℃/s以上とするのが好ましい。
熱間プレスに供する鋼板の加熱温度および加熱時間は、鋼板のミクロ組織をオーステナイト化する(その後の焼入れにより部品のミクロ組織をマルテンサイト化するため)とともに、加熱時にセメンタイトが未固溶状態で残存することを防止するために、高温で所定時間加熱する必要がある。ただし、高温で長時間加熱しすぎると、母相と整合性を有して分散させていた析出物が溶解してしまい、熱間プレス後の部品中に整合析出物を確保できなくなる。
このため、熱間プレスに供する鋼板の加熱温度は900〜1100℃、さらには950〜1070℃、特に1000〜1050℃とし、加熱時間は1〜600s、さらには1〜300s、特に1〜150sとするのが好ましい。
<Heating rate of steel sheet to be subjected to hot pressing: 20 ° C./s or more, heating temperature: 900 to 1100 ° C., heating time: 1 to 600 s>
By rapidly heating a steel sheet containing precipitates (alloy carbonitrides) that are consistent with the parent phase, some of the precipitates are transformed into the parent phase by reverse transformation without recrystallizing the parent phase as much as possible. However, it is possible to reversely transform the remaining precipitates while maintaining the consistency with the parent phase. As a result, even when the parent phase is transformed into martensite in the subsequent hot pressing and quenching steps, a large amount of precipitates can be left while maintaining consistency with the parent phase.
In order to effectively exhibit such an effect, the heating rate of the steel sheet to be subjected to hot pressing is preferably 20 ° C./s or more, more preferably 50 ° C./s or more, and particularly preferably 100 ° C./s or more.
The heating temperature and heating time of the steel sheet subjected to hot pressing change the microstructure of the steel sheet to austenite (to make the microstructure of the part martensite by subsequent quenching), and the cementite remains in an insoluble state during heating. In order to prevent this, it is necessary to heat at a high temperature for a predetermined time. However, if it is heated for a long time at a high temperature, the precipitate that has been dispersed with consistency with the matrix phase will dissolve, and it will not be possible to ensure the consistent precipitate in the part after hot pressing.
For this reason, the heating temperature of the steel sheet to be subjected to hot pressing is 900 to 1100 ° C., further 950 to 1070 ° C., particularly 1000 to 1050 ° C., and the heating time is 1 to 600 s, further 1 to 300 s, particularly 1 to 150 s. It is preferable to do this.

<プレス終了時点から400℃までの平均冷却速度:30℃/s以上、400℃から200℃までの平均冷却速度:10℃/s以上>
焼入れ中にフェライト、パーライト、ベイナイトなどの形成を防止するために、プレス終了時点から400℃までの平均冷却速度は30℃/s以上、さらには40℃/s以上とするのが好ましい。
また、400℃から200℃までの冷却速度を高く維持することで、セメンタイトの析出を防止することにより、耐遅れ破壊特性を向上させることができる。このような作用を有効に発揮させるためには、400℃から200℃までの平均冷却速度は10℃/s以上、さらには15℃/s以上とするのが好ましい。
<Average cooling rate from the end of pressing to 400 ° C .: 30 ° C./s or more, average cooling rate from 400 ° C. to 200 ° C .: 10 ° C./s or more>
In order to prevent the formation of ferrite, pearlite, bainite and the like during quenching, the average cooling rate from the end of pressing to 400 ° C. is preferably 30 ° C./s or more, more preferably 40 ° C./s or more.
Further, by maintaining a high cooling rate from 400 ° C. to 200 ° C., the delayed fracture resistance can be improved by preventing the precipitation of cementite. In order to effectively exhibit such an action, the average cooling rate from 400 ° C. to 200 ° C. is preferably 10 ° C./s or more, more preferably 15 ° C./s or more.

<熱間プレス後の熱処理条件:100〜250℃×1〜60min>
また、熱間プレス後にセメンタイトの形成が顕著に起こらない範囲での再加熱あるいは焼戻し処理は低炭素鋼の靱性改善などに有効である。一般的には100〜250℃×1〜60minの熱処理が行われる。
<Heat treatment conditions after hot pressing: 100-250 ° C. × 1-60 min>
In addition, reheating or tempering in a range where no formation of cementite occurs after hot pressing is effective in improving the toughness of low carbon steel. Generally, heat treatment is performed at 100 to 250 ° C. for 1 to 60 minutes.

以下、本発明を実施例によってさらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

真空誘導炉(VIF)を用い、表1に示した化学成分を含有する供試鋼を溶製し、50kgのインゴットに鋳造して冷却した。得られたインゴットを1200℃に加熱した後、いったん板厚25mmに熱間圧延し、これを供試材とした。この供試材を、再度1200℃に加熱した後、仕上げ圧延温度900℃で各板厚に熱間圧延し、その後、巻取りを模擬するため、20℃/sの冷却速度で急冷して、各巻取り温度で急冷を停止し、巻取り温度に加熱した大気炉に投入して30分間保持した後、炉冷して熱延板とした。そして、この熱延板に冷間圧延を施し、板厚1.4mmの冷延板とした。この冷延板をそのまま熱間プレスに供するものと、表面にめっきを施した後に熱間プレスに供するものとに分け、後者については、めっきシミュレータを用いて、各焼鈍加熱温度に加熱した後、めっき浴に浸漬し、めっきを付与し、溶融めっき板とした。   Using a vacuum induction furnace (VIF), a test steel containing chemical components shown in Table 1 was melted, cast into a 50 kg ingot, and cooled. After heating the obtained ingot to 1200 ° C., it was once hot-rolled to a plate thickness of 25 mm and used as a test material. After heating this test material to 1200 ° C. again, it is hot-rolled to a plate thickness at a finish rolling temperature of 900 ° C., and then rapidly cooled at a cooling rate of 20 ° C./s in order to simulate winding, Rapid cooling was stopped at each coiling temperature, and the steel sheet was placed in an atmospheric furnace heated to the coiling temperature and held for 30 minutes. And this hot-rolled sheet was cold-rolled to obtain a cold-rolled sheet having a thickness of 1.4 mm. This cold-rolled sheet is divided into what is subjected to hot pressing as it is and what is subjected to hot pressing after plating the surface, and the latter is heated to each annealing heating temperature using a plating simulator, It was immersed in a plating bath and plated to give a hot-dip plated plate.

このようにして作製した冷延板と溶融めっき板とを、通電加熱装置にて各加熱速度で所定の加熱温度まで加熱した後、その温度で各所定時間保持した。その後直ちにプレスを施し、金型焼入れを行った。そして、400℃に到達後、金型で冷却を継続するか、大気中に取り出して空冷するか、金型ごとガラスウールで覆って冷却するか、のいずれか手段により、400℃から200℃までの冷却速度を変化させて熱間プレス部品サンプルを作製した。また、一部の溶融めっき板については、冷却後、さらに所定温度で所定時間の熱処理を施して熱間プレス部品サンプルを作製した。各製造条件を表2に示す。   The cold-rolled plate and hot-dip plated plate thus produced were heated to a predetermined heating temperature at each heating rate with an electric heating device, and then held at that temperature for each predetermined time. Immediately after that, pressing was performed and mold hardening was performed. Then, after reaching 400 ° C., the cooling is continued with a mold, taken out into the atmosphere and air-cooled, or covered with glass wool and cooled together with the mold from 400 ° C. to 200 ° C. The hot-pressed part sample was produced by changing the cooling rate. In addition, some of the hot-dip plated plates were further subjected to heat treatment at a predetermined temperature for a predetermined time after cooling to produce hot pressed part samples. Each manufacturing condition is shown in Table 2.

このようにして得られた各熱間プレス部品サンプル(以下、単に「部品サンプル」ともいう。)について、上記[発明を実施するための形態]の項で説明した各測定方法により、部品サンプル中の各相の面積率、析出物の含有量、母相と整合性を有する合金炭窒化物の個数密度などを調査した。なお、母相と整合性を有する合金炭窒化物の個数密度については、熱間プレス処理前の冷延板に対しても測定を行った。   Each hot-pressed part sample thus obtained (hereinafter, also simply referred to as “part sample”) is subjected to the measurement method described in the above [Mode for carrying out the invention] The area ratio of each phase, the content of precipitates, and the number density of alloy carbonitride having consistency with the parent phase were investigated. In addition, about the number density of the alloy carbonitride which has consistency with a parent phase, it measured also on the cold rolled sheet before a hot press process.

さらに、上記各部品サンプルについて、機械的特性を評価するため、以下に説明する方法により、引張強度および耐遅れ破壊性をそれぞれ測定した。   Further, in order to evaluate the mechanical characteristics of each of the above component samples, tensile strength and delayed fracture resistance were measured by the methods described below.

<引張強度>
JIS Z 2201に記載の5号試験片を作製し、JIS Z 2241に従って引張試験を行い、引張強度を測定した。
<Tensile strength>
A No. 5 test piece described in JIS Z 2201 was produced, a tensile test was performed according to JIS Z 2241, and a tensile strength was measured.

<耐遅れ破壊性>
100mm×30mmの短冊状試験片を作製し、これに曲げ半径10mmのU曲げ加工を施した後、それぞれ800MPaと1000MPaの応力を付与した状態で、濃度3質量%塩酸に浸漬して最大96時間保持し、割れの発生の有無を調査した。96時間保持しても割れが発生しなかったものは「>96h」とし、途中で割れが発生した場合はその割れ発生までの保持時間を記録した。そして、耐遅れ破壊性は、1000MPaの応力を付与した場合における割れ発生までの保持時間で判定し、48時間以上のものを合格とし、48時間に満たないものを不合格とした。
<Delayed fracture resistance>
A strip-shaped test piece of 100 mm × 30 mm was prepared, subjected to U-bending with a bending radius of 10 mm, and then immersed in hydrochloric acid at a concentration of 3% by mass with a stress of 800 MPa and 1000 MPa, respectively, for a maximum of 96 hours. It was held and examined for the presence of cracks. A sample in which no crack was generated even after being held for 96 hours was set as “> 96h”, and when a crack occurred in the middle, a holding time until the crack was generated was recorded. The delayed fracture resistance was determined based on the holding time until the occurrence of cracking when a stress of 1000 MPa was applied, with 48 hours or longer being accepted and those less than 48 hours being rejected.

これらの測定結果を下記表3に示す。   The measurement results are shown in Table 3 below.

Figure 0006062352
Figure 0006062352

Figure 0006062352
Figure 0006062352

Figure 0006062352
Figure 0006062352

上記表3に示すように、試験No.14〜16、18〜20、22〜25、27、29は本発明で規定する成分組成およびミクロ組織の要件のうち少なくともいずれかを満足しない比較部品であり、引張強度および耐遅れ破壊性のいずれかが合格基準を満たしていない。   As shown in Table 3 above, Test No. Reference numerals 14 to 16, 18 to 20, 22 to 25, 27, and 29 are comparative parts that do not satisfy at least one of the requirements of the component composition and microstructure defined in the present invention, and any of tensile strength and delayed fracture resistance Does not meet the acceptance criteria.

これに対し、試験No.1〜13、17、21、26、28はいずれも、本発明の成分組成の範囲を満足する鋼種を用い、推奨の製造条件で製造した結果、本発明のミクロ組織規定の要件を全て充足する発明部品であり、引張強度および耐遅れ破壊性はともに合格基準を満たしており、1180MPa以上の超高強度において、従来技術で得られる熱間プレス部品よりも、耐遅れ破壊性に優れた熱間プレス部品が得られることが確認できた。   In contrast, test no. 1 to 13, 17, 21, 26 and 28 all satisfy the requirements of the microstructure definition of the present invention as a result of being manufactured under the recommended manufacturing conditions using steel types satisfying the range of the component composition of the present invention. It is an invention part, both tensile strength and delayed fracture resistance satisfy the acceptance criteria, and it is hot superior in delayed fracture resistance than the hot-pressed parts obtained by the prior art at ultra-high strength of 1180 MPa or higher. It was confirmed that press parts were obtained.

なお、同表に示すように、いずれの試験においても、整合析出物(母相と整合性を有する炭窒化物)の個数密度は、熱間プレス処理により、すなわち冷延板から熱間プレス部品に加工された際に、大幅に減少しているが、それでも、発明部品では、規定量以上の個数密度が確保されていることがわかる。   As shown in the table, in any test, the number density of matched precipitates (carbonitride having consistency with the parent phase) is determined by hot pressing, that is, from cold-rolled sheets to hot-pressed parts. However, it can be seen that the number density exceeding the specified amount is still secured in the invention parts.

Claims (3)

成分組成が、質量%で(以下、化学成分について同じ。)、
C :0.1〜0.4%、
Si:2.0%以下(0%を含まない)、
Mn:0.3〜3.5%、
Ti:0.01〜0.2%
をそれぞれ含み、残部が鉄および不可避的不純物からなるとともに、 ミクロ組織が、
マルテンサイト+残留オーステナイトを面積率で80%以上含み、残部がフェライトからなり、
合金炭窒化物:0.05質量%以上、
母相と整合性を有する前記合金炭窒化物:5.0×1010個/m以上、
セメンタイト:2質量%以下
をそれぞれ含む
ことを特徴とする耐遅れ破壊性に優れた熱間プレス部品。
Ingredient composition is in mass% (hereinafter the same for chemical ingredients)
C: 0.1 to 0.4%
Si: 2.0% or less (excluding 0%),
Mn: 0.3 to 3.5%
Ti: 0.01 to 0.2%
And the balance is composed of iron and inevitable impurities, and the microstructure is
Martensite + retained austenite is included in the area ratio 80% or more, the remainder is made of ferrite,
Alloy carbonitride: 0.05% by mass or more,
The alloy carbonitride having consistency with the parent phase: 5.0 × 10 10 pieces / m 2 or more,
Cementite: Hot pressed parts with excellent delayed fracture resistance characterized by containing 2% by mass or less.
成分組成が、さらに、
Cu:0.005〜5%、
Ni:0.005〜5%
Cr:0.001〜3%、
Mo:0.001〜3%、
B:0.0002〜0.1%
よりなる群から選ばれる少なくとも1種
を含むものである請求項1に記載の熱間プレス部品。
Ingredient composition further
Cu: 0.005 to 5%,
Ni: 0.005 to 5%
Cr: 0.001 to 3%,
Mo: 0.001 to 3%,
B: 0.0002 to 0.1%
The hot-pressed part according to claim 1, comprising at least one selected from the group consisting of:
成分組成が、さらに、
V:0.001〜0.1%、
Nb:0.001〜0.1%
よりなる群から選ばれる少なくとも1種
を含むものである請求項1または2項に記載の熱間プレス部品。
Ingredient composition further
V: 0.001 to 0.1%
Nb: 0.001 to 0.1%
The hot-pressed part according to claim 1 or 2, comprising at least one selected from the group consisting of:
JP2013257128A 2013-12-12 2013-12-12 Hot press parts Expired - Fee Related JP6062352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013257128A JP6062352B2 (en) 2013-12-12 2013-12-12 Hot press parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013257128A JP6062352B2 (en) 2013-12-12 2013-12-12 Hot press parts

Publications (2)

Publication Number Publication Date
JP2015113500A JP2015113500A (en) 2015-06-22
JP6062352B2 true JP6062352B2 (en) 2017-01-18

Family

ID=53527596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013257128A Expired - Fee Related JP6062352B2 (en) 2013-12-12 2013-12-12 Hot press parts

Country Status (1)

Country Link
JP (1) JP6062352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044510A1 (en) 2020-08-28 2022-03-03 Jfeスチール株式会社 Hot-pressed member and manufacturing method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767773B1 (en) 2015-12-23 2017-08-14 주식회사 포스코 Utlra high strength hot-rolled steel sheet having excellent ductility and method of manufacturing the same
CN106399837B (en) * 2016-07-08 2018-03-13 东北大学 Hot press-formed steel, hot press-formed technique and hot press-formed component
WO2019003447A1 (en) 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
WO2019003445A1 (en) 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-press member and method for producing same, and cold-rolled steel sheet for hot pressing
CN109518083A (en) * 2018-11-28 2019-03-26 武汉钢铁集团鄂城钢铁有限责任公司 A kind of creeper tread Micro Alloying high-strength wearable steel
CN112771184B (en) 2019-02-05 2022-05-17 日本制铁株式会社 Coated steel member, coated steel sheet, and methods for producing same
KR102528152B1 (en) 2019-02-05 2023-05-04 닛폰세이테츠 가부시키가이샤 Steel member, steel plate, and manufacturing method thereof
EP3929321B1 (en) 2019-02-21 2023-09-27 JFE Steel Corporation Hot-pressed member, cold-rolled steel sheet for hot pressing, and manufacturing methods therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288201B2 (en) * 2003-09-05 2009-07-01 新日本製鐵株式会社 Manufacturing method of automotive member having excellent hydrogen embrittlement resistance
JP6001883B2 (en) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 Manufacturing method of press-molded product and press-molded product
JP5802155B2 (en) * 2012-03-09 2015-10-28 株式会社神戸製鋼所 Manufacturing method of press-molded product and press-molded product
JP6040753B2 (en) * 2012-12-18 2016-12-07 新日鐵住金株式会社 Hot stamping molded article excellent in strength and hydrogen embrittlement resistance and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044510A1 (en) 2020-08-28 2022-03-03 Jfeスチール株式会社 Hot-pressed member and manufacturing method therefor
KR20230038239A (en) 2020-08-28 2023-03-17 제이에프이 스틸 가부시키가이샤 Hot-pressed member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015113500A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6062352B2 (en) Hot press parts
JP6252713B1 (en) High strength steel plate and manufacturing method thereof
JP6354919B1 (en) Thin steel plate and manufacturing method thereof
JP5352793B2 (en) High-strength hot-dip galvanized steel sheet with excellent delayed fracture resistance and method for producing the same
JP6306711B2 (en) Martensitic steel with delayed fracture resistance and manufacturing method
KR102119373B1 (en) Steel sheet for hot press and method of manufacturing same, and hot-press forming part and method of manufacturing same
JP6354268B2 (en) High-strength hot-rolled steel sheet having a maximum tensile strength of 980 MPa or more excellent in punching hole expandability and low-temperature toughness, and a method for producing the same
JP6234845B2 (en) High strength galvannealed steel sheet with excellent bake hardenability and bendability
JP6423083B2 (en) HPF molded member with excellent bendability and manufacturing method thereof
JP6950835B2 (en) Manufacturing method of high-strength member, high-strength member and steel plate for high-strength member
JPWO2014185405A1 (en) Hot-rolled steel sheet and manufacturing method thereof
CN107406930A (en) High strength cold rolled steel plate and its manufacture method
JP6223905B2 (en) High strength galvannealed steel sheet with excellent yield strength and workability
JP5958667B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JPWO2013121963A1 (en) Steel plate, plated steel plate, and manufacturing method thereof
KR20150048885A (en) High-strength cold-rolled steel sheet and method for manufacturing same
JPWO2019003540A1 (en) Hot pressed member, method for producing the same, cold rolled steel sheet for hot pressing, and method for producing the same
EP2792762A1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP2022028885A (en) High-strength member and method for manufacturing high-strength member
JP5632759B2 (en) Method for forming high-strength steel members
WO2017009938A1 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor
JP6284813B2 (en) Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
JP6103160B1 (en) High strength thin steel sheet and method for producing the same
JP6434348B2 (en) High strength steel plate with excellent workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6062352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees