JP2010173919A - Mold, method for manufacturing optical element and optical instrument - Google Patents

Mold, method for manufacturing optical element and optical instrument Download PDF

Info

Publication number
JP2010173919A
JP2010173919A JP2009020926A JP2009020926A JP2010173919A JP 2010173919 A JP2010173919 A JP 2010173919A JP 2009020926 A JP2009020926 A JP 2009020926A JP 2009020926 A JP2009020926 A JP 2009020926A JP 2010173919 A JP2010173919 A JP 2010173919A
Authority
JP
Japan
Prior art keywords
mold
glass
die
upper mold
lower mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009020926A
Other languages
Japanese (ja)
Inventor
Shigeki Fukuda
繁樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2009020926A priority Critical patent/JP2010173919A/en
Publication of JP2010173919A publication Critical patent/JP2010173919A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold in which slidability between a body mold and a lower die or an upper die is enhanced while adjusting the relative position of an installation face for glass and a pressing face in high precision, and with which assembling of a press mold for glass or pressing of glass can be thereby smoothly performed. <P>SOLUTION: The mold 1a is used for pressing glass G and includes: a lower die 11a having an installation face 111 on which the glass G is installed; an upper die 12a for pressing the glass G by the approach to the lower die 11a and the separation from the lower die 11a; and a body mold 13a for regulating the orbital of the approach and the separation by surrounding the lower die 11a and the upper die 12a. The mold 1a has an abutting part 141a and 143a where the body mold 13a abuts with the lower die 11a or the upper die 12a and a separation part 142a where the body mold 13a separates from the lower die 11a or the upper die 12a. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、成形型、光学素子の製造方法及び光学機器に関する。   The present invention relates to a mold, an optical element manufacturing method, and an optical apparatus.

近年、光学素子、例えばデジタルカメラ等のレンズには、所定の形状に成形された光学レンズが用いられる。この光学レンズを高精度且つ大量に製造するため、例えば、以下のような方法が知られている。すなわち、まず、溶融ガラスを用いて、光学レンズの形状に近似した形状のガラス塊(以降、プリフォームと呼ぶ)を形成し、その後、このプリフォームを成形型でプレス成形して熱間加工する。   In recent years, optical lenses formed into a predetermined shape have been used for lenses of optical elements such as digital cameras. In order to manufacture this optical lens with high accuracy and in large quantities, for example, the following methods are known. That is, first, a molten glass is used to form a glass lump (hereinafter referred to as a preform) having a shape approximate to the shape of the optical lens, and then the preform is press-molded with a mold and hot-worked. .

この方法によれば、溶融ガラスからプリフォームを経て光学レンズを成形するため、板状のガラスから切断、加工、プレス、研削、及び研磨等の多段階の工程を経て光学レンズを製造する方法に比べ、リードタイムを短縮できるとともに、加工不良による歩留まりの低下を抑えることができ、結果としてコストを大幅に削減できる、といった利点がある。   According to this method, since an optical lens is molded from molten glass through a preform, the optical lens is manufactured from a plate-like glass through a multi-step process such as cutting, processing, pressing, grinding, and polishing. In comparison, the lead time can be shortened, and a decrease in yield due to processing defects can be suppressed. As a result, the cost can be greatly reduced.

ここで、プレス成形に用いられる成形型として、例えば、図8に示すように、上型を胴型に滑らかに挿入できるようにするために、押圧胴型93と下型91及び上型92との摺動部に気体を導入する手段として空隙Kが設けられ、下型91及び上型92と胴型93とが非接触の状態にある成形型90が開示されている(特許文献1参照)。   Here, as a mold used for press molding, for example, as shown in FIG. 8, in order to allow the upper mold to be smoothly inserted into the trunk mold, a pressing cylinder mold 93, a lower mold 91, an upper mold 92, As a means for introducing gas into the sliding portion, a molding die 90 is disclosed in which a gap K is provided and the lower die 91 and the upper die 92 are not in contact with the body die 93 (see Patent Document 1). .

特開2002−104833号公報JP 2002-104833 A

しかしながら、特許文献1で開示された成形型では、下型及び上型と胴型との隙間が大きくなることがあり、下型に設けられたガラスの設置面を、上型に設けられたガラスの押圧面に対して一定の位置にすることが困難であり、結果として成形された光学素子の偏芯性に不利益となることがある。このため、特に成型された形状が最終製品の形状となる精密プレス成形では、設置面及び押圧面の位置関係の高精度が要求されるため、特許文献1で開示された成形型を用いることが困難である。   However, in the mold disclosed in Patent Document 1, the gap between the lower mold and the upper mold and the trunk mold may become large, and the glass installation surface provided on the lower mold is the glass provided on the upper mold. It is difficult to make the position constant with respect to the pressing surface, and as a result, the eccentricity of the molded optical element may be disadvantageous. For this reason, particularly in precision press molding in which the molded shape becomes the shape of the final product, high accuracy of the positional relationship between the installation surface and the pressing surface is required, so the molding die disclosed in Patent Document 1 should be used. Have difficulty.

一方で、下型91及び上型92との摺動部に空隙Kを設けない手段も考えられるが、この場合は下型又は上型と胴型との摺動性が悪くなる。   On the other hand, a means of not providing the gap K in the sliding portion between the lower mold 91 and the upper mold 92 is also conceivable, but in this case, the slidability between the lower mold or the upper mold and the trunk mold is deteriorated.

本発明は上記問題点に鑑みてなされたものであって、その目的とするところは、設置面の位置を押圧面の位置に高精度に合わせつつ、下型又は上型と胴型との摺動性を高めてガラスの押圧成形型の組立やガラスの押圧を円滑に行うことが可能な成形型を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to adjust the position of the installation surface to the position of the pressing surface with high accuracy while sliding the lower mold or the upper mold to the trunk mold. An object of the present invention is to provide a mold capable of increasing the mobility and smoothly assembling the glass pressing mold and pressing the glass.

本発明者らは、上記課題を解決するために鋭意試験研究を重ねた結果、胴型と下型又は上型とが当接する当接部と、胴型と下型又は上型とが離間する離間部と、を設けることにより、当接部によって上型の位置が規定されつつ、ガラスの近傍の空所と、離間部によって形成された空間とが気体のやり取りを行い易くなること、及び、離間部によって胴型と下型又は上型との接触面積が低減することを見出し、本発明を完成するに至った。   As a result of intensive studies and studies to solve the above-mentioned problems, the present inventors have separated the contact portion where the body mold and the lower mold or the upper mold are in contact with each other, and the body mold and the lower mold or the upper mold are separated from each other. By providing the separation portion, the position of the upper mold is defined by the contact portion, and the space near the glass and the space formed by the separation portion can easily exchange gas, and It has been found that the contact area between the body mold and the lower mold or the upper mold is reduced by the separation portion, and the present invention has been completed.

(1) ガラスをプレスするために用いられる成形型であって、設置面に前記ガラスが設置される下型と、前記下型に接近及び離隔して前記ガラスを押圧する上型と、前記下型及び前記上型を包囲して前記接近及び離隔の軌道を規定する胴型と、を備え、前記胴型と前記下型又は前記上型とが当接する当接部と、前記胴型と前記下型又は前記上型とが離間する離間部と、を有する成形型。   (1) A mold used for pressing glass, a lower mold in which the glass is installed on an installation surface, an upper mold that presses the glass close to and away from the lower mold, and the lower mold A body mold that surrounds the mold and the upper mold to define the approaching and separating tracks, a contact portion where the body mold and the lower mold or the upper mold abut, the body mold and the A mold having a lower part or a separating part from which the upper mold is separated.

(2) 前記離間部は、前記当接部によって前記成形型の外部と隔てられる(1)記載の成形型。   (2) The mold according to (1), wherein the separation part is separated from the outside of the mold by the contact part.

(3) 前記離間部は、前記胴型のうち前記下型又は前記上型と対向する面に設けられた第1凹部を有する(1)又は(2)記載の成形型。   (3) The mold according to (1) or (2), wherein the separation portion includes a first recess provided on a surface of the body mold that faces the lower mold or the upper mold.

(4) 前記離間部は、前記下型及び/又は前記上型のうち前記胴型と対向する面に設けられた第2凹部をさらに有する(1)から(3)のいずれか記載の成形型。   (4) The mold according to any one of (1) to (3), wherein the separation portion further includes a second recess provided on a surface of the lower mold and / or the upper mold that faces the body mold. .

(5) 前記第1凹部及び/又は第2凹部が、前記胴型、前記下型及び/又は前記上型の軸方向を含む方向に延びる溝を有する(3)又は(4)記載の成形型。   (5) The mold according to (3) or (4), wherein the first recess and / or the second recess has a groove extending in a direction including the axial direction of the body mold, the lower mold, and / or the upper mold. .

(6) 前記第1凹部及び/又は第2凹部が、前記胴型、前記下型及び/又は前記上型に螺旋状に延びる溝を有する(5)記載の成形型。   (6) The mold according to (5), wherein the first recess and / or the second recess has a groove extending spirally in the body mold, the lower mold, and / or the upper mold.

(7) 前記下型及び/又は前記上型は、前記下型及び前記上型を接近させた際に前記胴型の端部と密着して係止される鍔部を備える(5)又は(6)記載の成形型。   (7) The lower mold and / or the upper mold includes a flange portion that is brought into close contact with and locked to an end of the trunk mold when the lower mold and the upper mold are brought close to each other (5) or ( 6) The mold according to the above.

(8) (1)から(7)のいずれか記載の成形型を用いた光学素子の製造方法。   (8) A method for manufacturing an optical element using the mold according to any one of (1) to (7).

(9) (8)記載の製造方法で製造される光学素子を用いた光学機器。   (9) An optical apparatus using the optical element manufactured by the manufacturing method according to (8).

本発明によれば、胴型と下型又は上型とが当接する当接部と、これらが離間する離間部と、を設けることにより、当接部によって上型の位置が規定されつつ、ガラスの近傍の空所と、離間部によって形成された空間とが気体のやり取りを行い易くなる。また、離間部によって胴型と下型又は上型との接触面積が低減する。従って、設置面及び押圧面の位置を高精度に合わせつつ、下型又は上型と胴型との摺動性を高めて成形型の組立やガラスの押圧を円滑に行うことが可能な成形型を提供できる。   According to the present invention, the position of the upper mold is regulated by the abutment portion by providing the abutment portion where the body mold and the lower mold or the upper mold abut, and the separation portion where the abutment mold is separated from each other. It is easy to exchange gas between a space near the space and a space formed by the separation portion. Further, the contact area between the body mold and the lower mold or the upper mold is reduced by the separation portion. Therefore, a mold that can smoothly assemble the mold and press the glass by improving the slidability between the lower mold or the upper mold and the body mold while aligning the positions of the installation surface and the pressing surface with high accuracy. Can provide.

本発明の第1実施形態に係る成形型の断面図である。It is sectional drawing of the shaping | molding die concerning 1st Embodiment of this invention. 図1の成形型の動作を示す断面図である。It is sectional drawing which shows operation | movement of the shaping | molding die of FIG. 本発明の成形型に用いられる胴型の一例を示す断面図である。It is sectional drawing which shows an example of the trunk | drum type | mold used for the shaping | molding die of this invention. 本発明の成形型に用いられる胴型の変形例を示す断面図である。It is sectional drawing which shows the modification of the trunk | drum type | mold used for the shaping | molding die of this invention. 本発明の成形型に用いられる下型の変形例を示す断面図である。It is sectional drawing which shows the modification of the lower mold | type used for the shaping | molding die of this invention. 本発明の成形型を用いた光学素子の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the optical element using the shaping | molding die of this invention. 本発明の成形型を用いた光学素子の製造方法の一例を示す平面図である。It is a top view which shows an example of the manufacturing method of the optical element using the shaping | molding die of this invention. 従来技術に係る成形型の動作を示す断面図である。It is sectional drawing which shows operation | movement of the shaping | molding die concerning a prior art.

本発明の成形型は、ガラスをプレスするために用いられる成形型であって、設置面に前記ガラスが設置される下型と、前記下型に接近及び離隔して前記ガラスを押圧する上型と、前記下型及び前記上型を包囲して前記接近及び離隔の軌道を規定する胴型と、を備え、前記胴型と前記下型又は前記上型とが当接する当接部と、前記胴型と前記下型又は前記上型とが離間する離間部と、を有する。   The mold according to the present invention is a mold used for pressing glass, a lower mold in which the glass is installed on an installation surface, and an upper mold that presses the glass while approaching and separating from the lower mold. And a barrel mold that surrounds the lower mold and the upper mold to define the approaching and separating tracks, and the abutting portion where the trunk mold and the lower mold or the upper mold abut, A body part and a separation part that separates the lower mold or the upper mold.

以下、本発明の成形型、光学素子の製造方法及び光学機器の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。   Hereinafter, embodiments of the mold, the optical element manufacturing method, and the optical apparatus of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and is within the scope of the object of the present invention. However, it can implement by changing suitably. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the meaning of invention is not limited.

<第1実施形態>
本発明の第1実施形態は、ガラスGを押圧する下型11a及び上型12aと、下型11a及び上型12aを包囲する胴型13aと、を備える成形型1aである。図1は、本発明の第1実施形態に係る成形型の断面図である。図2は、図1の成形型の動作を示す断面図である。図3は、本発明の成形型に用いられる胴型の一例を示す断面図である。図4は、本発明の成形型に用いられる胴型の変形例を示す断面図である。図5は、本発明の成形型に用いられる下型の変形例を示す断面図である。図6は、本発明の成形型を用いた光学素子の製造方法の一例を示す断面図である。図7は、本発明の成形型を用いた光学素子の製造方法の一例を示す平面図である。
<First Embodiment>
1st Embodiment of this invention is the shaping | molding die 1a provided with the lower mold | type 11a and the upper mold | type 12a which press the glass G, and the trunk | drum 13a surrounding the lower mold | type 11a and the upper mold | type 12a. FIG. 1 is a cross-sectional view of a mold according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the operation of the mold shown in FIG. FIG. 3 is a cross-sectional view showing an example of a body mold used in the mold of the present invention. FIG. 4 is a cross-sectional view showing a modification of the body mold used in the mold of the present invention. FIG. 5 is a cross-sectional view showing a modification of the lower mold used in the mold of the present invention. FIG. 6 is a cross-sectional view showing an example of a method for producing an optical element using the mold of the present invention. FIG. 7 is a plan view showing an example of a method for producing an optical element using the mold of the present invention.

〔下型及び上型〕
成形型1aは、図1に示すように、下型11a及び上型12aを有する。このうち、下型11aの上側の面は、上側にガラスGが設置される設置面111を有する。また、上型12aの下側の面は、下型11aの設置面111に対向し、設置面111に接近及び離隔してガラスGを押圧する押圧面121を有する。
[Lower mold and upper mold]
As shown in FIG. 1, the molding die 1a has a lower die 11a and an upper die 12a. Among these, the upper surface of the lower mold 11a has an installation surface 111 on which the glass G is installed on the upper side. The lower surface of the upper mold 12a has a pressing surface 121 that faces the installation surface 111 of the lower mold 11a and presses the glass G while approaching and separating from the installation surface 111.

ここで、下型11a及び上型12aの材質は、ガラスGの硬さやガラス転移点(Tg)等に応じて適宜設定されるが、ガラスGを押圧する際の圧力に耐えられる点で、タングステンカーバイト(WC)等の超硬部材を用いることが好ましい。また、下型11a及び上型12aの形状は、押圧により作製されるガラス成形体の形状に応じて適宜設定される。なお、設置面111及び押圧面121には、それぞれ図示しない保護膜が形成されていてもよい。   Here, the material of the lower mold 11a and the upper mold 12a is appropriately set according to the hardness of the glass G, the glass transition point (Tg), etc., but is tungsten in that it can withstand the pressure when the glass G is pressed. It is preferable to use a cemented carbide member such as carbide (WC). Moreover, the shape of the lower mold | type 11a and the upper mold | type 12a is suitably set according to the shape of the glass molded object produced by press. Note that a protective film (not shown) may be formed on each of the installation surface 111 and the pressing surface 121.

〔胴型〕
成形型1aは、図1に示すように、下型11a及び上型12aの一部と当接し且つこれらの側面を包囲するように胴型13aを有する。これにより、胴型13aと下型11a又は上型12aとが当接する当接部141aが形成され、この当接部141aによって下型11a及び上型12aの接近及び離隔の軌道が規定される。そのため、図2(a)のように上型12aを胴型13a内に挿入し、次いで図2(b)のように下型11a及び上型12aを接近させたときに、設置面111及び押圧面121の位置関係を一定に保つことができる。従って、所望の形状を有するガラスGの成形体を作製することができる。なお、本発明において胴型13aと下型11a又は上型12aとが「当接する」とは、胴型13aと下型11a又は上型12aとの間隔が、好ましくは0.010mm以下であり、より好ましくは0.005mm以下であり、最も好ましくは0.003mm以下である。
[Body type]
As shown in FIG. 1, the molding die 1 a has a body die 13 a so as to abut against a part of the lower die 11 a and the upper die 12 a and to surround these side surfaces. As a result, an abutting portion 141a where the body mold 13a and the lower mold 11a or the upper mold 12a abut is formed, and the abutting portion 141a defines the path of approach and separation between the lower mold 11a and the upper mold 12a. Therefore, when the upper mold 12a is inserted into the trunk mold 13a as shown in FIG. 2 (a) and then the lower mold 11a and the upper mold 12a are brought close as shown in FIG. The positional relationship of the surface 121 can be kept constant. Accordingly, a glass G molded body having a desired shape can be produced. In the present invention, the body mold 13a and the lower mold 11a or the upper mold 12a "contact" means that the distance between the cylinder mold 13a and the lower mold 11a or the upper mold 12a is preferably 0.010 mm or less, More preferably, it is 0.005 mm or less, and most preferably 0.003 mm or less.

胴型13aの材質は、ガラスGを押圧する際の熱に耐え且つ変形し難い材質であれば特に限定されないが、下型11a及び上型12aよりも熱伝導率の低い材料で形成してもよい。これにより、胴型13aに熱が伝わり難くなり、胴型13aを通じた外部との熱交換が低減されるため、成型工程における熱効率を高めることができる。また、胴型13aの形状は、ガラスGを均等な力で押圧できる点で円筒形状であることが好ましいが、これに限定されず、例えば角筒形状であってもよく、複数の下型11a及び上型12aを並列して収納可能なものであってもよい。   The material of the body mold 13a is not particularly limited as long as it is a material that can withstand the heat when the glass G is pressed and is not easily deformed, but may be formed of a material having lower thermal conductivity than the lower mold 11a and the upper mold 12a. Good. Thereby, it becomes difficult for heat to be transmitted to the trunk mold 13a, and heat exchange with the outside through the trunk mold 13a is reduced, so that the thermal efficiency in the molding process can be increased. Further, the shape of the body mold 13a is preferably a cylindrical shape in that the glass G can be pressed with an equal force, but is not limited thereto, and may be, for example, a rectangular tube shape, and a plurality of lower molds 11a. The upper mold 12a may be stored in parallel.

〔離間部〕
成形型1aは、図1に示すように、当接部141aに隣接して、胴型13aと上型12aとが離間する離間部142aが設けられる。これにより、上型12aと胴型13aとの間の離間部142aに空間が形成される。そのため、胴型13a内で上型12aを下型11aに接近させる際(図2(b))、及び、その後に下型11aの設置面111及び上型12aの押圧面121でガラスGを押圧する際(図2(c))に、ガラスGの近傍の空所Hにある気体を、離間部142aに逃げ易くできる。また、ガラスGの押圧後に上型12aを下型11aから離隔させる際(図2(d))には、離間部142aに逃げた気体を空所Hに戻し易くできる。
(Separation part)
As shown in FIG. 1, the molding die 1 a is provided with a separation portion 142 a adjacent to the contact portion 141 a so that the body die 13 a and the upper die 12 a are separated. Thereby, a space is formed in the separation portion 142a between the upper mold 12a and the trunk mold 13a. Therefore, when the upper mold 12a is brought close to the lower mold 11a in the body mold 13a (FIG. 2B), and thereafter, the glass G is pressed by the installation surface 111 of the lower mold 11a and the pressing surface 121 of the upper mold 12a. In doing so (FIG. 2C), the gas in the space H near the glass G can be easily escaped to the separation portion 142a. Further, when the upper mold 12a is separated from the lower mold 11a after the glass G is pressed (FIG. 2D), the gas escaped to the separating portion 142a can be easily returned to the void H.

さらに、上述のように離間部142aを有することにより、上型12aと胴型13aとの接触面積が、離間部142aの分だけ低減される。そのため、上型12aと胴型13aとの摩擦力を低減することができる。   Furthermore, by providing the separation part 142a as described above, the contact area between the upper mold 12a and the body mold 13a is reduced by the separation part 142a. Therefore, the frictional force between the upper mold 12a and the trunk mold 13a can be reduced.

以上のことから、設置面111及び押圧面121の位置関係を高精度に合わせつつ、下型11a又は上型12aと胴型13aとの摺動性を高めて成形型の組立やガラスの押圧を円滑に行うことが可能な成形型を提供できる。   From the above, while maintaining the positional relationship between the installation surface 111 and the pressing surface 121 with high accuracy, the slidability between the lower mold 11a or the upper mold 12a and the body mold 13a is improved, so that the molding mold can be assembled and the glass can be pressed. A mold that can be smoothly performed can be provided.

ここで、離間部142aは、下型11a及び上型12aの側面に設けられる当接部141aによって成形型1aの外部と隔てられてもよい。これにより、空所Hにある気体が離間部142aに逃げながらも、この気体の移動が当接部141aによって妨げられ、離間部142aを通じた成形型1aの外部への気体の流出が低減される。そのため、ガラスGと成形型1aの外部との熱交換を低減でき、上型12aと胴型13aとの摺動性とガラスの保温性とを両立できる。   Here, the separation part 142a may be separated from the outside of the mold 1a by a contact part 141a provided on the side surfaces of the lower mold 11a and the upper mold 12a. Thereby, while the gas in the void H escapes to the separation portion 142a, the movement of the gas is hindered by the contact portion 141a, and the outflow of the gas to the outside of the mold 1a through the separation portion 142a is reduced. . Therefore, heat exchange between the glass G and the outside of the mold 1a can be reduced, and both the slidability between the upper mold 12a and the body mold 13a and the heat retention of the glass can be achieved.

また、離間部142aは、その設けられる位置によって、胴型13aの側に設けられる第1凹部と、下型11a及び上型12aの側に設けられる第2凹部と、に大別される。   The separation portion 142a is roughly classified into a first recess provided on the body mold 13a side and a second recess provided on the lower mold 11a and upper mold 12a side, depending on the position of the separation part 142a.

このうち、第1凹部131aは、胴型13aのうち下型11a又は上型12aと対向する面に設けられる。これにより、上型12aを下型11aに接近させる際(図2(b))や、上型12aを下型11aから離隔させる際(図2(d))に、少なくとも一時的に第1凹部と空所Hとが連通する。そのため、空所Hと離間部142aとの気体のやり取りを円滑に行うことができ、上型12aと胴型13aとの摺動性をより高めることができる。   Among these, the 1st recessed part 131a is provided in the surface facing the lower mold | type 11a or the upper mold | type 12a among the trunk molds 13a. Thereby, when the upper mold 12a is brought close to the lower mold 11a (FIG. 2B) or when the upper mold 12a is separated from the lower mold 11a (FIG. 2D), at least temporarily the first recess And void H communicate. Therefore, gas exchange between the space H and the separation portion 142a can be performed smoothly, and the slidability between the upper mold 12a and the trunk mold 13a can be further improved.

一方、第2凹部122aは、下型11a及び上型12aの少なくとも一方のうち、胴型13aと対向する面に設けられる。これにより、上型12aに形成された第2凹部122aが上型12aの動作に従って摺動するようになり、上型12aを下型11aに接近させる際(図2(b))、上型12aを下型11aから離隔させる際(図2(d))、又は、下型11a及び胴型13aを組み立てる際に、第2凹部122aが成形型1aの外部と連通し易くなる。ここで、上型12aを下型11aに接近させる際や、成形型1aを加熱する際には、第2凹部122aが加圧状態になり、上型12aが第2凹部122aから遠ざかる方向に力を受けるようになる。一方、上型12aを下型11aから離隔させる際や、成形型1aを冷却する際には、第2凹部122aが減圧状態になり、上型12aが第2凹部122aに吸い寄せられる方向に力を受けるようになる。第2凹部122aが加圧又は減圧状態になることで上型12aが受ける力は、下型11a及び上型12aと胴型13aとの摩擦力を高める原因となる。従って、第2凹部122aが成形型1aの外部と連通し易くなることで、離間部142aの内部気圧の調整を容易にでき、下型11a及び上型12aと胴型13aとの摩擦力の増加を抑えることができる。   On the other hand, the 2nd recessed part 122a is provided in the surface facing the trunk | drum 13a among at least one of the lower mold | type 11a and the upper mold | type 12a. As a result, the second recess 122a formed in the upper mold 12a slides according to the operation of the upper mold 12a, and when the upper mold 12a approaches the lower mold 11a (FIG. 2B), the upper mold 12a. When separating the lower mold 11a from the lower mold 11a (FIG. 2 (d)), or when assembling the lower mold 11a and the body mold 13a, the second recess 122a is easily communicated with the outside of the mold 1a. Here, when the upper mold 12a is brought close to the lower mold 11a or when the mold 1a is heated, the second recess 122a is in a pressurized state, and the upper mold 12a is moved away from the second recess 122a. To receive. On the other hand, when the upper mold 12a is separated from the lower mold 11a or when the mold 1a is cooled, the second recess 122a is in a reduced pressure state, and a force is exerted in a direction in which the upper mold 12a is attracted to the second recess 122a. To receive. The force received by the upper mold 12a when the second recess 122a is in a pressurized or depressurized state increases the frictional force between the lower mold 11a and the upper mold 12a and the trunk mold 13a. Accordingly, since the second recess 122a is easily communicated with the outside of the mold 1a, the internal pressure of the separation portion 142a can be easily adjusted, and the frictional force between the lower mold 11a and the upper mold 12a and the body mold 13a is increased. Can be suppressed.

本実施形態の第1凹部131aは、胴型13aの軸方向Aを含む方向に延びる溝である。溝が軸方向Aを含む方向に延びることにより、上型12aが胴型13a内に挿入されている際に、空所Hから溝への軸方向Aについての距離、及び溝から成形型1aの外部への軸方向Aについての距離が短くなる。そのため、溝を介した空所Hにおける内部気圧の調整を容易に行える。   The 1st recessed part 131a of this embodiment is a groove | channel extended in the direction containing the axial direction A of the trunk | drum 13a. By extending the groove in a direction including the axial direction A, when the upper mold 12a is inserted into the body mold 13a, the distance from the void H to the groove in the axial direction A and the groove 1a of the mold 1a. The distance in the axial direction A to the outside is shortened. Therefore, it is possible to easily adjust the internal atmospheric pressure in the void H through the groove.

ここで、胴型13aの軸方向Aを含む方向に延びる溝は、より具体的には、図3に示すような螺旋状に延びる溝である。特に、図3のように溝が螺旋状に延びることにより、胴型13aの中心軸Xを中心にして胴型13aを回転させながら工具を接触させることで溝が形成できる。そのため、溝の形成をより効率的に行うことができる。   Here, the groove | channel extended in the direction containing the axial direction A of the trunk | drum 13a is a groove | channel extended helically as shown in FIG. 3 more specifically. In particular, as shown in FIG. 3, the groove extends in a spiral shape, so that the groove can be formed by contacting the tool while rotating the body mold 13a around the center axis X of the body mold 13a. Therefore, the groove can be formed more efficiently.

なお、第1凹部の形状は、図3のような螺旋状に延びる形態に限定されず、例えば図4(a)のように軸方向Aに沿って延びる溝であってもよく、図4(b)のように螺旋状に延びる溝同士が交差していてもよい。また、第1凹部は軸方向Aを含む方向に延びる形態に限定されず、例えば図4(c)に示すように軸方向Aに対して垂直な方向に延びて設けられていてもよい。また、例えば図5(a)〜(c)に示すように、第2凹部が軸方向Aを含む方向に延びる溝であってもよい。   The shape of the first recess is not limited to the form extending in a spiral shape as shown in FIG. 3, but may be a groove extending along the axial direction A as shown in FIG. As shown in b), the spirally extending grooves may intersect each other. Further, the first recess is not limited to the form extending in the direction including the axial direction A, and may be provided extending in a direction perpendicular to the axial direction A as shown in FIG. For example, as shown in FIGS. 5A to 5C, the second recess may be a groove extending in a direction including the axial direction A.

本実施形態では、上型12aが胴型13a内を摺動する際、より具体的には上型12aがガラスGを押圧する際に、軸方向Aを含む方向に延びる第1凹部131aは、第2凹部122aと連通可能である(図1の範囲α参照)。これにより、空所Hの気体が第1凹部131aに逃げ、その後に第1凹部131aに逃げた気体が第2凹部122aに逃げる。ここで特に、第1凹部131aは、空所Hと第2凹部122aの両方に同時に連通可能であることがより好ましい。これにより、空所Hにある気体が第1凹部131aを通じて第2凹部122aに流れ込む。従って、上型12aと胴型13aとの摺動性をより高めることができる。   In the present embodiment, when the upper mold 12a slides in the body mold 13a, more specifically, when the upper mold 12a presses the glass G, the first recess 131a extending in the direction including the axial direction A is: Communication with the second recess 122a is possible (see range α in FIG. 1). Thereby, the gas in the void H escapes to the first recess 131a, and then the gas escaped to the first recess 131a escapes to the second recess 122a. In particular, the first recess 131a is more preferably capable of communicating with both the space H and the second recess 122a at the same time. Thereby, the gas in the void H flows into the second recess 122a through the first recess 131a. Therefore, the slidability between the upper mold 12a and the trunk mold 13a can be further enhanced.

このとき、下型11a及び上型12aの少なくとも一方は、下型11a及び上型12aを接近させた際に胴型13aの端部と密着して係止される鍔部113a、123aを備えることが好ましい。これにより、胴型13aの断面や外面と鍔部123aとが当接して当接部143a、144aが形成され、成形型1aの内部からの熱や気体の漏れが低減されるため、下型11a及び上型12aの摺動性とガラスGの保温性とを両立できる。ここで、下型11aが鍔部113aを備える場合は、胴型13aの自重によって当接部143aの密着性が高められる一方、上型12aが鍔部123aを備える場合は、上型12aの自重によって当接部144aの密着性が高められる。   At this time, at least one of the lower mold 11a and the upper mold 12a includes flanges 113a and 123a that are brought into close contact with the end of the body mold 13a when the lower mold 11a and the upper mold 12a are approached. Is preferred. As a result, the cross section or outer surface of the body mold 13a abuts against the flange 123a to form contact parts 143a and 144a, and heat and gas leakage from the inside of the mold 1a is reduced. And the slidability of the upper mold | type 12a and the heat retention of glass G can be made compatible. Here, when the lower mold 11a includes the flange portion 113a, the adhesion of the contact portion 143a is enhanced by the weight of the trunk mold 13a, while when the upper mold 12a includes the flange portion 123a, the weight of the upper mold 12a. This improves the adhesion of the contact portion 144a.

なお、離間部142aは、成形型1aの上型12aに隣接して設けられる場合に限られず、下型11aの側に設けられてもよい。この場合、下型11aと胴型13aとの接触面積が低減され、下型11aと胴型13aとの摺動性が高められるため、成形型1aを組み立てる際に胴型13aを円滑に下型11aに装着できる。   The spacing portion 142a is not limited to being provided adjacent to the upper mold 12a of the mold 1a, and may be provided on the lower mold 11a side. In this case, the contact area between the lower mold 11a and the trunk mold 13a is reduced, and the slidability between the lower mold 11a and the trunk mold 13a is improved. Therefore, when the molding mold 1a is assembled, the trunk mold 13a is smoothly lowered. 11a can be mounted.

〔プレス成形装置〕
この成形型1は、ガラスをプレスして光学素子Lを製造するプレス成形装置で用いられる。ここで、プレス成形装置は、成形型1を移動させて停止させる工程と、ガラスを加熱してプレス成形する工程と、を行う限り特に限定されないが、例えば図6及び図7に示すように、成形型1の下型11及び上型12の間にガラスGを供給する供給手段31と、ガラスGを軟化する加熱ステージ32と、ガラスGを押圧する押圧ステージ33と、ガラスGを冷却する冷却ステージ34と、を備えたプレス成形装置3を用いることが好ましい。これにより、押圧ステージ33におけるガラスGの押圧が円滑に行え、押圧に要する時間が短縮されるため、光学素子Lの生産性を高めることができる。
[Press forming equipment]
The mold 1 is used in a press molding apparatus that manufactures an optical element L by pressing glass. Here, the press molding device is not particularly limited as long as the step of moving and stopping the molding die 1 and the step of heating and pressing the glass are performed, but as shown in FIGS. 6 and 7, for example, Supply means 31 for supplying the glass G between the lower mold 11 and the upper mold 12 of the mold 1, a heating stage 32 for softening the glass G, a pressing stage 33 for pressing the glass G, and cooling for cooling the glass G It is preferable to use a press molding apparatus 3 including a stage 34. Thereby, the glass G can be smoothly pressed on the pressing stage 33, and the time required for pressing can be shortened, so that the productivity of the optical element L can be increased.

〔供給手段〕
下型11及び上型12の間にガラスGを供給する供給手段31は、ガラスGの大きさや成形型1の形状等に応じて適宜選択できるが、例えば、ポンプの吸引力によってガラスGを吸着して保持し、下型11にガラスGを供給する吸着手段(図示せず)を用いることができる。
[Supply means]
The supply means 31 for supplying the glass G between the lower mold 11 and the upper mold 12 can be appropriately selected according to the size of the glass G, the shape of the mold 1, and the like. For example, the glass G is adsorbed by the suction force of the pump. An adsorbing means (not shown) for holding and supplying the glass G to the lower mold 11 can be used.

このプレス成形装置3では、供給手段31を用いてガラスGを成形型1の下型11に供給した後で成形型1を組み立て、この成形型1aを加熱ステージ32に移動する。成形型1を移動する手段は、成形型1の移動及び停止が行える限り特に限定されないが、例えば図6及び図7に示されるような金型搬送ユニット36を用いて成形型1を押し込んで搬送してもよく、ベルトコンベアを用いて成形型1を搬送してもよい。   In this press molding apparatus 3, the glass G is supplied to the lower mold 11 of the mold 1 using the supply means 31, the mold 1 is assembled, and the mold 1 a is moved to the heating stage 32. The means for moving the mold 1 is not particularly limited as long as the mold 1 can be moved and stopped. For example, the mold 1 is pushed in and transported by using a mold transport unit 36 as shown in FIGS. Alternatively, the mold 1 may be transported using a belt conveyor.

[加熱ステージ]
加熱ステージ32では、成形型1及びガラスGを加熱し、ガラスGをプレス成形可能な程度に軟化する。加熱ステージ32の熱源は、成形型1をガラスGの成形温度に加熱できる手段であれば特に限定されないが、例えば赤外線加熱、ガスバーナー、誘導コイル、電熱線等を用いることができる。その中でも、成形型1が設置された面を加熱して下型11及び上型12を介してガラスGに熱を付加する手段を用いることが好ましい。これにより、付加された熱が外気等を通じて逃げていく割合が低減されるため、ガラスGを加熱する際の熱効率を高めることができる。
[Heating stage]
In the heating stage 32, the mold 1 and the glass G are heated, and the glass G is softened to the extent that it can be press-molded. The heat source of the heating stage 32 is not particularly limited as long as it is a means capable of heating the mold 1 to the molding temperature of the glass G. For example, infrared heating, a gas burner, an induction coil, a heating wire, or the like can be used. Among them, it is preferable to use means for heating the surface on which the mold 1 is installed and applying heat to the glass G through the lower mold 11 and the upper mold 12. Thereby, since the rate at which the added heat escapes through the outside air or the like is reduced, the thermal efficiency when the glass G is heated can be increased.

〔押圧ステージ〕
押圧ステージ33は、加熱ステージ32で軟化されたガラスGを押圧してプレス成形し、ガラスGを所望の形状にプレス成形する。
[Pressing stage]
The pressing stage 33 presses and press-molds the glass G softened by the heating stage 32, and press-molds the glass G into a desired shape.

〔冷却ステージ〕
冷却ステージ34は、プレス成形後の成形型1を順次移動させながら成形型1を徐々に冷却する。これにより、ガラスG及び成形型1の急激な温度変化によるダメージが軽減されるため、ガラスGの損傷を低減しながらも成形型1の長寿命化を図ることができる。
[Cooling stage]
The cooling stage 34 gradually cools the mold 1 while sequentially moving the mold 1 after press molding. Thereby, since the damage by the rapid temperature change of the glass G and the shaping | molding die 1 is reduced, the lifetime of the shaping | molding die 1 can be extended, reducing the damage of the glass G. FIG.

〔取出手段〕
取出手段35は、冷却ステージ34から取り出された成形型1を下型11及び上型12に分解し、光学素子Lを取り出す。ここで、成形型1を分解して光学素子Lを取り出す手段は、ガラスGの大きさや成形型1の形状等に応じて適宜選択できるが、例えば上型12を図示しない保持具で持ち上げて取り外した後、図示しないポンプの吸引力によってガラスGを吸着して保持する手段を用いることができる。
[Removal means]
The take-out means 35 disassembles the molding die 1 taken out from the cooling stage 34 into the lower die 11 and the upper die 12 and takes out the optical element L. Here, means for disassembling the mold 1 and taking out the optical element L can be appropriately selected according to the size of the glass G, the shape of the mold 1 and the like. For example, the upper mold 12 is lifted and removed by a holder (not shown). After that, means for adsorbing and holding the glass G by a suction force of a pump (not shown) can be used.

[光学機器の作製]
上述のプレス成形装置3によって、レンズやプリズム等の光学素子Lが作製される。また、プレス成形装置3を有する光学素子製造装置によって製造される光学素子Lを用いて、カメラやプロジェクタ等の光学機器を製造することも好ましい。これにより、高い熱効率で円滑にガラスGがプレス成形されるため、光学素子L及び光学機器の製造コストを低減することができる。
[Production of optical equipment]
An optical element L such as a lens or a prism is produced by the press molding apparatus 3 described above. It is also preferable to manufacture an optical device such as a camera or a projector using the optical element L manufactured by the optical element manufacturing apparatus having the press molding apparatus 3. Thereby, since the glass G is smoothly press-molded with high thermal efficiency, the manufacturing cost of the optical element L and the optical apparatus can be reduced.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to a following example.

プレス成形用の金型ユニットとして、各々直径15.0mmの型本体と、型本体のうち設置面又は押圧面と反対側の面に隣接した直径20.0mm、高さ2.0mmの鍔部と、を有するWCからなる下型及び上型と、内径15.0mm、外径20.0mm、高さ22.0mmのWCからなる円筒形状の胴型と、を用いて成形型を作成した。ここで、下型及び上型の合計の高さは、25.0mmである。このうち、胴型の内面には幅1.0mm、深さ0.1mmの螺旋状の溝を、胴型の軸方向についての間隔が1.0mmとなるように設けた。また、上型及び下型の外面のうち鍔部に隣接する部分に、幅1.0mm、深さ0.1mmの円環形状の溝を設けた。   As a die unit for press molding, a mold main body having a diameter of 15.0 mm and a flange part having a diameter of 20.0 mm and a height of 2.0 mm adjacent to the surface opposite to the installation surface or the pressing surface of the mold main body, , And a cylindrical body mold made of WC having an inner diameter of 15.0 mm, an outer diameter of 20.0 mm, and a height of 22.0 mm. Here, the total height of the lower mold and the upper mold is 25.0 mm. Among these, a spiral groove having a width of 1.0 mm and a depth of 0.1 mm was provided on the inner surface of the trunk mold so that the interval in the axial direction of the trunk mold was 1.0 mm. In addition, an annular groove having a width of 1.0 mm and a depth of 0.1 mm was provided in a portion adjacent to the collar portion of the outer surfaces of the upper mold and the lower mold.

この成形型をプレス成形装置の所定の位置に取り付け、保持具を用いて上型を持ち上げてガラスを成形型の下型に供給し、胴型を下型に嵌め込み、上型を胴型に嵌め込んで、下型、上型及び胴型を成形型に組み立てた。次いで、金型搬送ユニットを用いて成形型をプレス成形装置に移動させた。   Attach this mold to a predetermined position of the press molding device, lift the upper mold using a holder, supply glass to the lower mold of the mold, fit the barrel mold to the lower mold, and fit the upper mold to the barrel mold The lower mold, the upper mold, and the body mold were assembled into a mold. Next, the mold was moved to the press molding apparatus using the mold conveying unit.

プレス成形装置は、加熱ステージ、押圧ステージ、及び冷却ステージを順に備えているものを用いた。プレス成形装置に移動された成形型は、金型搬送ユニットを用いて加熱ステージ上を移動し、ガラスを加熱して軟化した。そして、成形型が押圧ステージの所定位置に来たところで成形型の移動を停止させ、100kgfの力で押圧手段を用いて上型を降ろしてガラスを押圧し、ガラスをプレス成形した。プレス成形後、金型搬送ユニットを用いて成形型をさらに移動させ、冷却ステージ上を順次移動させながら成形型を徐々に冷却した。冷却ステージを過ぎてプレス成形装置から取り出された成形型を上型及び下型に分解し、光学素子を取り出した。   The press molding apparatus used was equipped with a heating stage, a pressing stage, and a cooling stage in this order. The mold moved to the press molding apparatus moved on the heating stage using a mold conveying unit, and the glass was heated and softened. Then, when the mold reached a predetermined position on the pressing stage, the movement of the mold was stopped, the upper mold was lowered using a pressing means with a force of 100 kgf to press the glass, and the glass was press-molded. After press molding, the mold was further moved using a mold conveying unit, and the mold was gradually cooled while being sequentially moved on the cooling stage. The molding die taken out from the press molding apparatus after passing through the cooling stage was disassembled into an upper die and a lower die, and the optical element was taken out.

比較例として、下型、上型及び胴型に離間部を設けない場合についても、実施例と同様の試験を行った。   As a comparative example, the same test as that of the example was performed when the lower mold, the upper mold, and the trunk mold were not provided with the separation portion.

その結果、下型、上型及び胴型を成形型に組み立てるのに要する時間は、下型、上型及び胴型に離間部を設けなかった場合は10秒であったが、離間部を設けた場合は5秒に短縮された。また、ガラスの押圧に要する時間は、離間部を設けなかった場合は60秒であったが、離間部を設けた場合は50秒に短縮された。一方で、成型後の成型面の中心位置の精度(偏芯性)は、離間部を設けなかった場合は±0.03mmであったが、離間部を設けた場合は±0.03mmであり、大きな差は見られなかった。実施例と比較例のプレス成形工程について比較すると、成型面の位置関係を高精度に合わせつつ、下型又は上型と胴型との摺動性が高められて成形型の組立やガラスの押圧が円滑に行え、ガラスの押圧に要する時間が短縮されるため、プレス成形工程の生産性を向上できることがわかる。   As a result, the time required to assemble the lower mold, the upper mold and the barrel mold into the molding mold was 10 seconds when the lower mold, the upper mold and the barrel mold were not provided with the separation section, but the separation section was provided. In this case, it was shortened to 5 seconds. Further, the time required for pressing the glass was 60 seconds when the separation portion was not provided, but was shortened to 50 seconds when the separation portion was provided. On the other hand, the accuracy (eccentricity) of the center position of the molding surface after molding was ± 0.03 mm when the separation portion was not provided, but ± 0.03 mm when the separation portion was provided. There was no significant difference. Comparing the press molding process of the example and the comparative example, the slidability between the lower mold or the upper mold and the body mold is improved while the positional relationship of the molding surface is adjusted with high accuracy, and the mold is assembled and the glass is pressed. Since the time required for pressing the glass can be reduced smoothly, it can be seen that the productivity of the press molding process can be improved.

1 成形型
11 下型
111 設置面
112 押圧面
12 上型
121 押圧面
122a 第2凹部
123a 鍔部
13 胴型
131a 第1凹部
141a、143a、144a 当接部
142a 離間部
3 プレス成形装置
31 供給手段
32 加熱ステージ
33 押圧ステージ
34 冷却ステージ
35 取出手段
36 金型搬送ユニット
DESCRIPTION OF SYMBOLS 1 Mold 11 Lower mold 111 Installation surface 112 Press surface 12 Upper mold 121 Press surface 122a 2nd recessed part 123a Ridge part 13 Body mold 131a 1st recessed part 141a, 143a, 144a Contact part 142a Separation part 3 Press molding apparatus
31 Supply means 32 Heating stage 33 Pressing stage 34 Cooling stage 35 Extraction means 36 Mold transfer unit

Claims (9)

ガラスをプレスするために用いられる成形型であって、
設置面に前記ガラスが設置される下型と、前記下型に接近及び離隔して前記ガラスを押圧する上型と、前記下型及び前記上型を包囲して前記接近及び離隔の軌道を規定する胴型と、を備え、
前記胴型と前記下型又は前記上型とが当接する当接部と、前記胴型と前記下型又は前記上型とが離間する離間部と、を有する成形型。
A mold used to press glass,
A lower mold in which the glass is installed on the installation surface, an upper mold that presses the glass by approaching and separating from the lower mold, and a track for the approach and separation by enclosing the lower mold and the upper mold A torso mold,
A molding die having a contact portion where the barrel die and the lower die or the upper die abut, and a separation portion where the barrel die and the lower die or the upper die are separated.
前記離間部は、前記当接部によって前記成形型の外部と隔てられる請求項1記載の成形型。   The mold according to claim 1, wherein the spacing portion is separated from the outside of the mold by the contact portion. 前記離間部は、前記胴型のうち前記下型又は前記上型と対向する面に設けられた第1凹部を有する請求項1又は2記載の成形型。   3. The mold according to claim 1, wherein the separation portion includes a first recess provided on a surface of the body mold that faces the lower mold or the upper mold. 前記離間部は、前記下型及び/又は前記上型のうち前記胴型と対向する面に設けられた第2凹部をさらに有する請求項1から3のいずれか記載の成形型。   4. The molding die according to claim 1, wherein the separation portion further includes a second recess provided on a surface of the lower die and / or the upper die facing the body die. 5. 前記第1凹部及び/又は第2凹部が、前記胴型、前記下型及び/又は前記上型の軸方向を含む方向に延びる溝を有する請求項3又は4記載の成形型。   The mold according to claim 3 or 4, wherein the first recess and / or the second recess has a groove extending in a direction including an axial direction of the body mold, the lower mold, and / or the upper mold. 前記第1凹部及び/又は第2凹部が、前記胴型、前記下型及び/又は前記上型に螺旋状に延びる溝を有する請求項5記載の成形型。   The mold according to claim 5, wherein the first recess and / or the second recess has a groove extending spirally in the body mold, the lower mold and / or the upper mold. 前記下型及び/又は前記上型は、前記下型及び前記上型を接近させた際に前記胴型の端部と密着して係止される鍔部を備える請求項5又は6記載の成形型。   The molding according to claim 5 or 6, wherein the lower mold and / or the upper mold includes a flange portion that is brought into close contact with an end portion of the trunk mold when the lower mold and the upper mold are brought close to each other. Type. 請求項1から7のいずれか記載の成形型を用いた光学素子の製造方法。   The manufacturing method of the optical element using the shaping | molding die in any one of Claim 1 to 7. 請求項8記載の製造方法で製造される光学素子を用いた光学機器。   An optical apparatus using the optical element manufactured by the manufacturing method according to claim 8.
JP2009020926A 2009-01-30 2009-01-30 Mold, method for manufacturing optical element and optical instrument Pending JP2010173919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020926A JP2010173919A (en) 2009-01-30 2009-01-30 Mold, method for manufacturing optical element and optical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020926A JP2010173919A (en) 2009-01-30 2009-01-30 Mold, method for manufacturing optical element and optical instrument

Publications (1)

Publication Number Publication Date
JP2010173919A true JP2010173919A (en) 2010-08-12

Family

ID=42705246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020926A Pending JP2010173919A (en) 2009-01-30 2009-01-30 Mold, method for manufacturing optical element and optical instrument

Country Status (1)

Country Link
JP (1) JP2010173919A (en)

Similar Documents

Publication Publication Date Title
US20140283555A1 (en) Molding apparatus and molding method of glass casings
CN101528616B (en) Mold press forming die and molded article manufacturing method
JP4818685B2 (en) Glass optical element molding method
KR20060100937A (en) Mold press-forming apparatus, press head thereof and method of manufacturing optical device
JP5317962B2 (en) Method for producing glass molded body and mold press molding apparatus
JP5021196B2 (en) Mold press mold, optical element manufacturing method, and concave meniscus lens
TWI331987B (en) Press-molding apparatus, press-molding method and method of producing an optical element
JP2011105559A (en) Mold for optical device and method for molding the optical device
JP2010173919A (en) Mold, method for manufacturing optical element and optical instrument
CN100341807C (en) Press-molding apparatus and method of producing an optical element
JP4460339B2 (en) Mold press molding apparatus and optical element manufacturing method
JP5269477B2 (en) Optical element manufacturing method, optical element manufacturing apparatus, and optical element
JP2010173920A (en) Press-molding apparatus and method for manufacturing optical element
JP2005281053A (en) Forming apparatus for mold press, method of manufacturing optical device, and optical device
JPH11180722A (en) Forming device for optical element
JP2011132096A (en) Forming apparatus and forming method for optical element
JP4118668B2 (en) Molding apparatus for press molding and method for producing molded body using the same
WO2018181507A1 (en) Mold set for manufacturing optical element
JP2010155747A (en) Mold, detachable overturn prevention structure, and method for producing optical element
JP5867260B2 (en) Optical element molding die and optical element molding method
JP2007191361A (en) Forming mold, forming apparatus, and production method using the same
JP2009107867A (en) Method and device for manufacturing optical device
JP2007112010A (en) Method and apparatus for molding thermoplastic material
JP2011126758A (en) Molding die for optical element and method for molding optical element by using the same
JP2005247609A (en) Mold press forming apparatus and method for manufacturing optical element