JP2010173913A - Magnesia clinker - Google Patents

Magnesia clinker Download PDF

Info

Publication number
JP2010173913A
JP2010173913A JP2009020252A JP2009020252A JP2010173913A JP 2010173913 A JP2010173913 A JP 2010173913A JP 2009020252 A JP2009020252 A JP 2009020252A JP 2009020252 A JP2009020252 A JP 2009020252A JP 2010173913 A JP2010173913 A JP 2010173913A
Authority
JP
Japan
Prior art keywords
content
mass
magnesia clinker
sio
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009020252A
Other languages
Japanese (ja)
Other versions
JP5501629B2 (en
Inventor
Akira Yoshida
彰 吉田
Tomoaki Ebinaga
智昭 海老永
Toru Umeda
徹 梅田
Katsumi Takeuchi
克己 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2009020252A priority Critical patent/JP5501629B2/en
Publication of JP2010173913A publication Critical patent/JP2010173913A/en
Application granted granted Critical
Publication of JP5501629B2 publication Critical patent/JP5501629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesia clinker which exhibits high slaking resistance though a B<SB>2</SB>O<SB>3</SB>content is small and its purity is high. <P>SOLUTION: In the magnesia clinker, an MgO content is ≥98.0 mass%, a CaO content is ≥0.2 mass%, an SiO<SB>2</SB>content is ≥0.2 mass% and a B<SB>2</SB>O<SB>3</SB>content lies in the range of 0.2 to 0.4 mass%, and the CaO content to the SiO<SB>2</SB>content lies in the range of 0.8 to 1.5 by molar ratio. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マグネシアクリンカーに関し、特にアルミナ−マグネシア質キャスタブルなどのキャスタブル耐火物の材料として好適に用いることができるマグネシアクリンカーに関する。   The present invention relates to a magnesia clinker, and more particularly to a magnesia clinker that can be suitably used as a material for castable refractories such as alumina-magnesia castable.

マグネシアクリンカーの用途の一つとして、アルミナ−マグネシア質キャスタブルの材料がある。アルミナ−マグネシア質キャスタブルは、取鍋の内張り用耐火物として用いられている。内張りされたアルミナ−マグネシア質キャスタブルは、溶綱との接触により加熱されて、アルミナとマグネシアとが反応してスピネルを形成し、組織が緻密化して耐食性などの耐熱特性が向上するという利点がある。   One application of the magnesia clinker is an alumina-magnesia castable material. Alumina-magnesia castables are used as refractories for ladle linings. The lined alumina-magnesia castable is heated by contact with the molten steel and reacts with alumina and magnesia to form spinel, and the structure is densified to improve heat resistance characteristics such as corrosion resistance. .

アルミナ−マグネシア質キャスタブル内張り耐火物は、アルミナ−マグネシア質キャスタブルに流動性が得られる程度に水を加えて、取鍋の内壁に流し込み又はショットクリートのような湿式吹付けをして、次いで、養生、乾燥して施工成形体を形成し、形成した施工成形体を焼成して反応・固化させることによって製造するのが一般的である。この施工成形体の形成においては、乾燥時に水分が蒸発して施工成形体内部の水蒸気圧が高くなり、マグネシアクリンカーが消化(水和)して水酸化マグネシウムが生成することによって、体積が膨張して亀裂が生じたり、内壁から剥離し易くなるという問題がある。このため、アルミナ−マグネシア質キャスタブルの材料として用いるマグネシアクリンカーは、耐消化性が高いことが必要となる。   Alumina-magnesia castable lining refractory is prepared by adding water to the alumina-magnesia castable so that fluidity can be obtained, pouring it on the inner wall of the ladle or performing wet spraying such as shot cleat. In general, it is produced by drying to form a construction molded body, and firing and reacting and solidifying the formed construction molded body. In the formation of this construction molded body, moisture evaporates during drying, the water vapor pressure inside the construction molded body increases, and magnesia clinker is digested (hydrated) to produce magnesium hydroxide, thereby expanding the volume. As a result, there are problems such as cracking and easy peeling from the inner wall. For this reason, the magnesia clinker used as an alumina-magnesia castable material needs to have high digestion resistance.

マグネシアクリンカーは、海水に石灰乳などのアルカリを投入して得られた水酸化マグネシウムを焼成することにより製造するのが一般的である。このようにして製造されたマグネシアクリンカーは、通常、海水やアルカリから混入するCaO、SiO2、B23、Fe23、Al23などを不純物として含有する。 The magnesia clinker is generally manufactured by firing magnesium hydroxide obtained by adding alkali such as lime milk to seawater. The magnesia clinker produced in this way usually contains CaO, SiO 2 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3, etc. mixed from seawater or alkali as impurities.

特許文献1には、市販のマグネシアクリンカーとして、B23含有量が0.46質量%のマグネシアクリンカーが開示されている。なお、特許文献1の実施例では、市販のマグネシアクリンカーを0.125mm以下に微粉砕した後、耐消化性を高めるために、マグネシアクリンカーに硼酸、リン酸塩、又はフリットを添加、焼成して用いている。但し、特許文献1には、マグネシアクリンカーの耐熱特性については触れていない。 Patent Document 1 discloses a magnesia clinker having a B 2 O 3 content of 0.46% by mass as a commercially available magnesia clinker. In Examples of Patent Document 1, after pulverizing a commercially available magnesia clinker to 0.125 mm or less, boric acid, phosphate, or frit is added to the magnesia clinker and fired to increase digestion resistance. Used. However, Patent Document 1 does not mention the heat resistance characteristics of magnesia clinker.

一方、マグネシアクリンカー中のB23含有量が多くなると、熱間物性、耐スポーリング性、耐スラグ性、耐食性などの耐熱特性が低下することは知られている。このため、B23含有量を微量にしたマグネシアクリンカーも提案されている。 On the other hand, it is known that when the B 2 O 3 content in the magnesia clinker increases, the heat properties such as hot physical properties, spalling resistance, slag resistance, and corrosion resistance deteriorate. For this reason, a magnesia clinker with a very small B 2 O 3 content has also been proposed.

特許文献2には、B23含有量が微量な高純度マグネシアクリンカーとして、MgO含有量が99.3質量%以上、CaO含有量が0.3質量%以下、SiO2含有量が0.2質量%以下、B23含有量が0.01質量%未満、Fe23とAl23の合計含有量が0.15質量%以下のマグネシアクリンカーが開示されている。この特許文献では、水酸化マグネシウムの生成工程において、水酸化マグネシウムを生成する前に海水中のホウ素をイオン交換樹脂で除去することによって、マグネシアクリンカー中のB23含有量を低減している。 In Patent Document 2, as a high-purity magnesia clinker with a very small B 2 O 3 content, the MgO content is 99.3% by mass or more, the CaO content is 0.3% by mass or less, and the SiO 2 content is 0.00. A magnesia clinker having a content of 2 % by mass or less, a B 2 O 3 content of less than 0.01% by mass, and a total content of Fe 2 O 3 and Al 2 O 3 of 0.15% by mass or less is disclosed. In this patent document, the content of B 2 O 3 in magnesia clinker is reduced by removing boron in seawater with an ion exchange resin before producing magnesium hydroxide in the production process of magnesium hydroxide. .

特開昭61−136955号公報JP-A-61-136955 特開昭59−190217号公報JP 59-190217 A

特許文献2に記載されているように、B23含有量が微量なマグネシアクリンカーは高い耐熱特性を示す。しかしながら、マグネシアクリンカーはB23含有量が微量になるほど耐消化性は低下する。
従って、本発明の目的は、B23含有量が少なく高純度で、かつ高い耐消化性を示すマグネシアクリンカーを提供することにある。
As described in Patent Document 2, a magnesia clinker with a very small B 2 O 3 content exhibits high heat resistance. However, the digestion resistance of the magnesia clinker decreases as the B 2 O 3 content becomes smaller.
Accordingly, an object of the present invention is to provide a magnesia clinker having a low B 2 O 3 content and high purity and high digestion resistance.

本発明者は、マグネシアクリンカーのCaO含有量、SiO2含有量及びB23含有量と、マグネシアクリンカーの耐消化性との関係を詳細に検討した。その結果、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上であって、SiO2含有量に対するCaO含有量(CaO/SiO2)がモル比で0.8〜1.5の範囲にあるマグネシアクリンカーは、B23含有量が0.2〜0.4質量%の範囲と少量で、MgO含有量が98.0質量%以上と高純度であっても、高い耐消化性を示すことを見出し、本発明を完成させた。 The inventor examined in detail the relationship between the CaO content, SiO 2 content and B 2 O 3 content of magnesia clinker and the digestion resistance of magnesia clinker. As a result, the CaO content is 0.2% by mass or more, the SiO 2 content is 0.2% by mass or more, and the CaO content (CaO / SiO 2 ) with respect to the SiO 2 content is 0.8 by molar ratio. magnesia clinker in the range of 1.5 is, B 2 O 3 content as small as a range of 0.2 to 0.4 wt%, MgO content is 98.0 mass% or more and high purity In addition, the present inventors have found that it exhibits high digestion resistance and completed the present invention.

従って、本発明は、MgO含有量が98.0質量%以上、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上、B23含有量が0.2〜0.4質量%の範囲にあって、SiO2含有量に対するCaO含有量がモル比で0.8〜1.5の範囲にあるマグネシアクリンカーにある。 Therefore, in the present invention, the MgO content is 98.0% by mass or more, the CaO content is 0.2% by mass or more, the SiO 2 content is 0.2% by mass or more, and the B 2 O 3 content is 0.2%. in the range of 0.4% by weight, magnesia clinker CaO contents to the SiO 2 content is in the range of 0.8 to 1.5 molar ratio.

本発明のマグネシアクリンカーの好ましい態様は、次の通りである。
(1)B23含有量が0.3〜0.4質量%の範囲にある。
(2)SiO2含有量に対するCaO含有量がモル比で0.9〜1.2の範囲にある。
(3)キャスタブル耐火物用である。
Preferred embodiments of the magnesia clinker of the present invention are as follows.
(1) B 2 O 3 content is in the range of 0.3 to 0.4 wt%.
(2) The CaO content with respect to the SiO 2 content is in the range of 0.9 to 1.2 in terms of molar ratio.
(3) For castable refractories.

本発明のマグネシアクリンカーは、後述の実施例の結果から明らかなように、B23含有量が0.2〜0.4質量%の範囲と比較的少量で、MgO含有量が98質量%以上と高純度でありながらも高い耐消化性を有する。従って、本発明のマグネシアクリンカーは、特にアルミナ−マグネシア質キャスタブルなどのキャスタブル耐火物の材料として有利に用いることができる。 The magnesia clinker of the present invention has a relatively small amount of B 2 O 3 in the range of 0.2 to 0.4% by mass and an MgO content of 98% by mass, as will be apparent from the results of Examples described later. While having high purity as described above, it has high digestion resistance. Therefore, the magnesia clinker of the present invention can be advantageously used as a material for castable refractories such as alumina-magnesia castable.

本発明のマグネシアクリンカーは、MgO含有量が98質量%以上、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上、B23含有量が0.2〜0.4質量%の範囲であって、SiO2含有量に対するCaO含有量(CaO/SiO2)がモル比で0.8〜1.5の範囲にある。MgO含有量は98.5質量%以上であることが好ましい。CaO含有量及びSiO2含有量は0.6質量%以下であることが好ましい。B23含有量は、0.3質量%〜0.4質量%の範囲にあることが好ましい。CaO/SiO2のモル比は0.9〜1.2の範囲にあることが好ましい。 The magnesia clinker of the present invention has an MgO content of 98% by mass or more, a CaO content of 0.2% by mass or more, an SiO 2 content of 0.2% by mass or more, and a B 2 O 3 content of 0.2 to 0.2%. a range of 0.4 mass%, CaO contents to the SiO 2 content (CaO / SiO 2) is in the range of 0.8 to 1.5 molar ratio. The MgO content is preferably 98.5% by mass or more. The CaO content and the SiO 2 content are preferably 0.6% by mass or less. The B 2 O 3 content is preferably in the range of 0.3% by mass to 0.4% by mass. The molar ratio of CaO / SiO 2 is preferably in the range of 0.9 to 1.2.

本発明のマグネシアクリンカーは、Al23とFe23とを含有していてもよい。但し、高純度化の観点からAl23とFe23の含有量は合計量で0.20質量%以下であることが好ましく、0.05〜0.20質量%の範囲であることがより好ましい。 The magnesia clinker of the present invention may contain Al 2 O 3 and Fe 2 O 3 . However, from the viewpoint of high purity, the total content of Al 2 O 3 and Fe 2 O 3 is preferably 0.20% by mass or less, and in the range of 0.05 to 0.20% by mass. Is more preferable.

本発明のマグネシアクリンカーは、嵩密度が3.0〜3.4g/cm3の範囲にあることが好ましい。 The magnesia clinker of the present invention preferably has a bulk density in the range of 3.0 to 3.4 g / cm 3 .

本発明のマグネシアクリンカーは、粒子サイズに特には制限はなく、目的に応じて適宜設定することができる。アルミナ−マグネシア質キャスタブルなどのキャスタブル耐火物の材料として用いる場合、平均粒子径は5〜50μmの範囲にあることが好ましい。   The magnesia clinker of the present invention is not particularly limited in particle size, and can be appropriately set according to the purpose. When used as a material for castable refractories such as alumina-magnesia castable, the average particle size is preferably in the range of 5 to 50 μm.

本発明のマグネシアクリンカーは、例えば、1500℃の温度で焼成して得た焼成物を基準(以下、灼熱基準という)として、MgO含有量が98.0質量%以上、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上、B23含有量が0.2〜0.4質量%の範囲にあって、SiO2含有量に対するCaO含有量(CaO/SiO2)がモル比で0.8〜1.5の範囲にある水酸化マグネシウムを粒状に形成し、得られた水酸化マグネシウム粒状物を1500〜2500℃の温度で焼成することによって製造することができる。 The magnesia clinker of the present invention has, for example, a MgO content of 98.0% by mass or more and a CaO content of 0.2 on the basis of a fired product obtained by firing at a temperature of 1500 ° C. (hereinafter referred to as a burning standard). More than mass%, SiO 2 content is 0.2 mass% or more, B 2 O 3 content is in the range of 0.2 to 0.4 mass%, and CaO content relative to SiO 2 content (CaO / SiO 2 ) can be produced by forming magnesium hydroxide having a molar ratio in the range of 0.8 to 1.5 in the form of granules and firing the obtained magnesium hydroxide granules at a temperature of 1500 to 2500 ° C. it can.

原料の水酸化マグネシウムは、灼熱基準のMgO含有量が98.0質量%よりも高い高純度の水酸化マグネシウムを用意し、これに灼熱基準のCaO含有量、SiO2含有量、B23含有量及びCaO/SiO2のモル比が上記の範囲となるように、CaO源、SiO2源、B23源を添加することによって得ることができる。CaO源の例としては、水酸化カルシウム、酸化カルシウムを挙げることができる。SiO2源の例としては、二酸化ケイ素を挙げることができる。B23源の例としてはホウ酸を挙げることができる。なお、B23源としてホウ酸を用いる場合は、水酸化マグネシウムの焼成時にホウ酸が蒸発することがあるため、ホウ酸は過剰に添加することが好ましい。 As the raw material magnesium hydroxide, highly pure magnesium hydroxide having a flame-based MgO content higher than 98.0% by mass is prepared, and the flame-heated CaO content, SiO 2 content, B 2 O 3 It can be obtained by adding a CaO source, a SiO 2 source, and a B 2 O 3 source so that the content and the molar ratio of CaO / SiO 2 are in the above ranges. Examples of the CaO source include calcium hydroxide and calcium oxide. An example of the SiO 2 source is silicon dioxide. An example of the B 2 O 3 source is boric acid. When boric acid is used as the B 2 O 3 source, boric acid may evaporate during the firing of magnesium hydroxide, so it is preferable to add boric acid in excess.

灼熱基準のMgO含有量が98.0質量%よりも高い高純度の水酸化マグネシウムの製造方法は、前記特許文献2(特開昭59−190217号公報)に記載がある。   A method for producing high-purity magnesium hydroxide having a MgO content on a flame basis higher than 98.0% by mass is described in Patent Document 2 (Japanese Patent Laid-Open No. 59-190217).

本発明のマグネシアクリンカーは、アルミナ−マグネシア質キャスタブルなどのキャスタブル耐火物以外の耐火物、例えば、マグネシア質れんが、マグネシア−カーボン質れんが、マグネシア−クロム質れんが、マグネシア−スピネル質れんがなどの耐火れんがの材料、及び塩基性吹付材やマグネシア質スタンプ材などの不定形耐火物の材料としても利用することができる。また、本発明のマグネシアクリンカーは、るつぼやレトルトなどの耐熱性容器の材料としても利用することができる。   The magnesia clinker of the present invention is a refractory other than a castable refractory such as alumina-magnesia castable, such as magnesia brick, magnesia-carbon brick, magnesia-chromic brick, magnesia-spinel brick, etc. It can also be used as a material and a material for an irregular refractory such as a basic spray material or a magnesia stamp material. The magnesia clinker of the present invention can also be used as a material for heat-resistant containers such as crucibles and retorts.

本実施例において、マグネシアクリンカーの化学組成、嵩密度(かさ比重)、及び耐消化性(オートクレーブ試験後の重量増加率)は以下の方法により測定した。   In this example, the chemical composition, bulk density (bulk specific gravity), and digestion resistance (weight increase rate after autoclave test) of magnesia clinker were measured by the following methods.

[化学組成]
日本学術振興会第124委員会試験法分科会において決定された「学振法1 マグネシアクリンカーの化学分析法」(1981年板 耐火物手帳参照)に準じて測定した。
[Chemical composition]
It was measured in accordance with “Scientific Analysis Method 1 Chemical Analysis Method of Magnesia Clinker” (refer to the 1981 Board Refractory Notebook) determined by the Japan Society for the Promotion of Science 124th Committee.

[嵩密度(かさ比重)]
日本学術振興会第124委員会試験法分科会において決定された「学振法2 マグネシアクリンカーの見掛気孔率、見掛比重およびかさ比重の測定法」(1981年板 耐火物手帳参照)に準じ、下記の計算式により求めた。
かさ比重=S×W1/(W3−W2)
W1:試料の乾燥重量(g)
W2:白灯油で飽和した試料の白灯油中の重量(g)
W3:白灯油で飽和した試料の重量(g)
S:測定温度における白灯油の比重(g/cm3
[Bulk density (bulk specific gravity)]
Conforms to “Study Method 2, Apparent Porosity, Apparent Specific Gravity and Bulk Specific Gravity of Magnesia Clinker” (refer to the 1981 Board Refractory Notebook) determined by the Japan Society for the Promotion of Science 124th Committee It was determined by the following formula.
Bulk specific gravity = S × W1 / (W3-W2)
W1: Dry weight of sample (g)
W2: Weight of the sample saturated with white kerosene in white kerosene (g)
W3: Weight of sample saturated with white kerosene (g)
S: Specific gravity of white kerosene at the measurement temperature (g / cm 3 )

[耐消化性]
日本学術振興会第124委員会試験法分科会において決定された「学振法4 マグネシアクリンカーの消化性試験方法」(1981年板耐火物手帳参照)に準じ、5気圧(152℃)、3時間保持の条件でのオートクレーブ試験後の重量増加率を測定した。重量増加率が少ない方が耐消化性は高い。ただし、試料のマグネシアクリンカーは、粒度を一定にするために、0.3mm以下に粉砕し、0.3〜0.15mm、0.15〜0.075mm、0.075mm以下に篩別して、0.3〜0.15mmの粉砕粉を5質量部、0.15〜0.075mmの粉砕粉を20質量部、0.075mm以下の粉砕粉を75質量部の割合で混合したものを用いた(粒度調整したマグネシアクリンカーのレーザー回折法による平均粒子径は概ね25μmである)。試料の量は10gとし、あらかじめ試料に20gの水(イオン交換水)を加えた状態(浸水条件)でオートクレーブ試験を行なった。
[Digestion resistance]
5 atm (152 ° C), 3 hours, according to “Study Method 4 Magnesia Clinker Digestibility Test Method” (refer to 1981 Board Refractory Notebook) determined by the Japan Society for the Promotion of Science 124th Committee The weight increase rate after the autoclave test under the holding conditions was measured. The smaller the rate of weight increase, the higher the digestion resistance. However, the magnesia clinker of the sample was pulverized to 0.3 mm or less, and sieved to 0.3 to 0.15 mm, 0.15 to 0.075 mm, or 0.075 mm or less in order to make the particle size constant, and 0. 5 mass parts of pulverized powder of 3 to 0.15 mm, 20 mass parts of pulverized powder of 0.15 to 0.075 mm, and 75 mass parts of pulverized powder of 0.075 mm or less were used (particle size). The average particle size of the adjusted magnesia clinker as measured by laser diffraction is approximately 25 μm). The amount of the sample was 10 g, and an autoclave test was performed in a state where 20 g of water (ion exchange water) was added to the sample in advance (immersion conditions).

[実施例1]
灼熱基準でのMgO含有量が99.31質量%、CaO含有量が0.45質量%、SiO2含有量が0.10質量%、Fe23含有量が0.04質量%、Al23含有量が0.03質量%、B23含有量が0.07質量%で、含水率が50質量%の水酸化マグネシウムケークに、SiO2源としてマイクロシリカ(エルケム・ジャパン(株)製、SiO2含有量:91.9質量%)を灼熱基準でのCaO/SiO2比がモル比で1.0となる量、B23源としてホウ酸(Searles Valley Minerals Inc.製、B23含有量:56.5質量%)を灼熱基準でのMgO含有量100質量部に対して、B23量が1.0質量部となる量にて添加した後、乳鉢中で充分な混練を行なった。混練後の水酸化マグネシウムケークを箱型乾燥機に入れて、含水率が6質量%となるまで乾燥した。得られた乾燥物を加圧成形機を用いて、成形圧2.0トン/cm2の条件で、直径20mm×高さ20mmの円柱状ペレットに成形した。得られた成形物を酸素−プロパン炉を用いて、1800℃の温度で30分間焼成してマグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Example 1]
MgO content on ignition basis is 99.31% by mass, CaO content is 0.45% by mass, SiO 2 content is 0.10% by mass, Fe 2 O 3 content is 0.04% by mass, Al 2 A magnesium hydroxide cake having an O 3 content of 0.03% by mass, a B 2 O 3 content of 0.07% by mass, and a water content of 50% by mass was used as a SiO 2 source. ), SiO 2 content: 91.9% by mass), so that the CaO / SiO 2 ratio on a flame basis is 1.0 in terms of molar ratio, boric acid as a B 2 O 3 source (made by Seales Valley Minerals Inc.) , B 2 O 3 content: 56.5% by mass) with respect to 100 parts by mass of MgO content on the basis of ignition, in an amount such that the amount of B 2 O 3 is 1.0 part by mass, Sufficient kneading was carried out. The kneaded magnesium hydroxide cake was put in a box dryer and dried until the water content became 6% by mass. The obtained dried product was molded into a cylindrical pellet having a diameter of 20 mm and a height of 20 mm under a molding pressure of 2.0 ton / cm 2 using a pressure molding machine. The obtained molded product was fired at a temperature of 1800 ° C. for 30 minutes using an oxygen-propane furnace to obtain a magnesia clinker. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.

[比較例1]
水酸化マグネシウムケークへのホウ酸の添加量を、灼熱基準でのMgO含有量100質量部に対して、B23量が0.5質量部となる量としたこと以外は実施例1と同様にして、マグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Comparative Example 1]
Example 1 with the exception that the amount of boric acid added to the magnesium hydroxide cake was set to an amount such that the B 2 O 3 content was 0.5 parts by mass with respect to 100 parts by mass of the MgO content on the basis of ignition. Similarly, a magnesia clinker was obtained. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.

[実施例2]
灼熱基準でのMgO含有量が99.47質量%、CaO含有量が0.25質量%、SiO2含有量が0.15質量%、Fe23含有量が0.05質量%、Al23含有量が0.07質量%、B23含有量が0.01質量%で、含水率が50質量%の水酸化マグネシウムケークに、SiO2源としてマイクロシリカを灼熱基準でのCaO/SiO2比がモル比で1.0となる量、B23源としてホウ酸を灼熱基準のMgO含有量100質量部に対して、B23量が1.5質量部となる量にて添加した後、乳鉢中で充分な混練を行なった。混練後の水酸化マグネシウムケークを箱型乾燥機に入れて、含水率が6質量%となるまで乾燥した。得られた乾燥物を加圧成形機を用いて、成形圧2.0トン/cm2の条件で、直径20mm×高さ20mmの円柱状ペレットに成形した。得られた成形物を酸素−プロパン炉を用いて、1800℃の温度で30分間焼成してマグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Example 2]
MgO content of 99.47% by weight of at burning criteria, CaO content of 0.25 wt%, SiO 2 content of 0.15 mass%, Fe 2 O 3 content of 0.05 wt%, Al 2 A magnesium hydroxide cake having an O 3 content of 0.07% by mass, a B 2 O 3 content of 0.01% by mass and a water content of 50% by mass, microsilica as a SiO 2 source and CaO on an ignition basis. / SiO 2 ratio is 1.0 in terms of molar ratio, boric acid is used as a B 2 O 3 source, and B 2 O 3 content is 1.5 parts by mass with respect to 100 parts by mass of MgO content based on ignition. After the addition in an amount, sufficient kneading was performed in a mortar. The kneaded magnesium hydroxide cake was put in a box dryer and dried until the water content became 6% by mass. The obtained dried product was molded into a cylindrical pellet having a diameter of 20 mm and a height of 20 mm under a molding pressure of 2.0 ton / cm 2 using a pressure molding machine. The obtained molded product was fired at a temperature of 1800 ° C. for 30 minutes using an oxygen-propane furnace to obtain a magnesia clinker. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.

[比較例2]
水酸化マグネシウムケークへのホウ酸の添加量を、灼熱基準でのMgO含有量100質量部に対して、B23量が1.0質量部となる量としたこと以外は実施例2と同様にして、マグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Comparative Example 2]
Example 2 with the exception that the amount of boric acid added to the magnesium hydroxide cake was set to an amount such that the amount of B 2 O 3 was 1.0 part by mass relative to 100 parts by mass of MgO content on the basis of ignition. Similarly, a magnesia clinker was obtained. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.

[比較例3]
水酸化マグネシウムケークへのマイクロシリカの添加量を、灼熱基準でのCaO/SiO2比がモル比で0.5となる量としたこと以外は実施例2と同様にして、マグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Comparative Example 3]
A magnesia clinker was obtained in the same manner as in Example 2, except that the amount of microsilica added to the magnesium hydroxide cake was such that the CaO / SiO 2 ratio on the basis of the ignition temperature was 0.5. . Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.

[実施例3]
灼熱基準でのMgO含有量が99.15質量%、CaO含有量が0.55質量%、SiO2含有量が0.10質量%、Fe23含有量が0.06質量%、Al23含有量が0.06質量%、B23含有量が0.08質量%で、含水率が50質量%の水酸化マグネシウムケークに、SiO2源としてマイクロシリカを灼熱基準でのCaO/SiO2比がモル比で1.0となる量、B23源としてホウ酸を灼熱基準のMgO含有量100質量部に対して、B23量が0.8質量部となる量にて添加した後、パグミルを用いて充分な混練を行なった。混練後の水酸化マグネシウムケークをロータリードライヤーに入れて、含水率が6質量%となるまで乾燥した。得られた乾燥物をブリケッティングマシーンを用いて、油圧ローラ圧150kg/cm2の条件で、アーモンド形状に成形した。得られた成形物をロータリーキルンを用いて、焼成温度1800℃、キルン滞留時間6時間の条件で焼成してマグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Example 3]
MgO content on ignition basis is 99.15% by mass, CaO content is 0.55% by mass, SiO 2 content is 0.10% by mass, Fe 2 O 3 content is 0.06% by mass, Al 2 A magnesium hydroxide cake having an O 3 content of 0.06% by mass, a B 2 O 3 content of 0.08% by mass and a water content of 50% by mass, and microsilica as a SiO 2 source on CaO on an ignition basis. / SiO 2 ratio is 1.0 in terms of molar ratio, and B 2 O 3 content is 0.8 parts by mass with respect to 100 parts by mass of MgO content on the basis of ignition as a B 2 O 3 source. After the addition in an amount, sufficient kneading was performed using a pug mill. The kneaded magnesium hydroxide cake was put in a rotary dryer and dried until the water content became 6% by mass. The obtained dried product was formed into an almond shape using a briquetting machine under the condition of a hydraulic roller pressure of 150 kg / cm 2 . The obtained molded product was fired using a rotary kiln under conditions of a firing temperature of 1800 ° C. and a kiln residence time of 6 hours to obtain a magnesia clinker. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.

[参考例1]
水酸化マグネシウムケークへのホウ酸の添加量を、灼熱基準のMgO含有量100質量部に対して、B23量が1.2質量部となる量としたこと以外は実施例3と同様にして、マグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Reference Example 1]
The amount of boric acid added to the magnesium hydroxide cake was the same as in Example 3 except that the amount of B 2 O 3 was 1.2 parts by mass with respect to 100 parts by mass of the MgO content on the basis of ignition. Thus, a magnesia clinker was obtained. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.

第1表
────────────────────────────────────────
実施例1 比較例1 実施例2 比較例2 比較例3 実施例3 参考例1
────────────────────────────────────────
化学組成(質量%)
MgO 98.71 98.90 99.11 99.28 98.51 98.53 98.20
CaO 0.44 0.44 0.22 0.23 0.27 0.52 0.57
SiO2 0.43 0.43 0.24 0.24 0.74 0.53 0.64
Fe23 0.04 0.04 0.05 0.05 0.06 0.05 0.05
Al23 0.03 0.03 0.07 0.07 0.10 0.06 0.06
23 0.35 0.16 0.31 0.13 0.32 0.31 0.48
────────────────────────────────────────
CaO/SiO2
モル比 1.10 1.10 0.98 1.03 0.39 1.05 0.95
────────────────────────────────────────
嵩密度
(g/cm3) 3.24 3.25 3.06 3.07 3.15 3.21 3.23
────────────────────────────────────────
耐消化性(重量増加率)
(質量%) 3.98 37.1 7.98 27.5 25.9 4.70 5.54
────────────────────────────────────────
Table 1 ─────────────────────────────────────────
Example 1 Comparative Example 1 Example 2 Comparative Example 2 Comparative Example 3 Example 3 Reference Example 1
────────────────────────────────────────
Chemical composition (mass%)
MgO 98.71 98.90 99.11 99.28 98.51 98.53 98.20
CaO 0.44 0.44 0.22 0.23 0.27 0.52 0.57
SiO 2 0.43 0.43 0.24 0.24 0.74 0.53 0.64
Fe 2 O 3 0.04 0.04 0.05 0.05 0.06 0.05 0.05
Al 2 O 3 0.03 0.03 0.07 0.07 0.10 0.06 0.06
B 2 O 3 0.35 0.16 0.31 0.13 0.32 0.31 0.48
────────────────────────────────────────
CaO / SiO 2
Molar ratio 1.10 1.10 0.98 1.03 0.39 1.05 0.95
────────────────────────────────────────
Bulk density (g / cm 3 ) 3.24 3.25 3.06 3.07 3.15 3.21 3.23
────────────────────────────────────────
Digestion resistance (weight increase rate)
(Mass%) 3.98 37.1 7.98 27.5 25.9 4.70 5.54
────────────────────────────────────────

第1表の結果から明らかなように、本発明に従うマグネシアクリンカー(実施例1〜3)と参考例1のマグネシアクリンカーとは、耐消化性は同等である。但し、前記特許文献2(特開昭59−190217号公報)に記載があるように、参考例1のマグネシアクリンカーは、本発明に従うマグネシアクリンカー(実施例1〜3)と比較してB23含有量が多いため、熱間物性、耐スポーリング性、耐スラグ性、耐食性などの耐熱特性が充分でないと理解される。一方、本発明のマグネシアクリンカーよりもB23含有量が少ないマグネシアクリンカー(比較例1、2)、及びCaO/SiO2のモル比が低いマグネシアクリンカー(比較例3)は、耐消化性が低い。 As is clear from the results in Table 1, the magnesia clinker (Examples 1 to 3) according to the present invention and the magnesia clinker of Reference Example 1 have the same digestion resistance. However, as described in Patent Document 2 (Japanese Patent Laid-Open No. 59-190217), the magnesia clinker of Reference Example 1 is B 2 O compared to the magnesia clinker (Examples 1 to 3) according to the present invention. 3 It is understood that the heat-resistant properties such as hot physical properties, spalling resistance, slag resistance, and corrosion resistance are not sufficient due to the high content. On the other hand, the magnesia clinker (Comparative Examples 1 and 2) having a lower B 2 O 3 content than the magnesia clinker of the present invention and the magnesia clinker (Comparative Example 3) having a low molar ratio of CaO / SiO 2 are resistant to digestion. Low.

Claims (4)

MgO含有量が98.0質量%以上、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上、B23含有量が0.2〜0.4質量%の範囲にあって、SiO2含有量に対するCaO含有量がモル比で0.8〜1.5の範囲にあるマグネシアクリンカー。 MgO content is 98.0% by mass or more, CaO content is 0.2% by mass or more, SiO 2 content is 0.2% by mass or more, and B 2 O 3 content is 0.2 to 0.4% by mass. The magnesia clinker in which the CaO content with respect to the SiO 2 content is in the range of 0.8 to 1.5 in terms of molar ratio. 23含有量が0.3〜0.4質量%の範囲にある請求項1に記載のマグネシアクリンカー。 Magnesia clinker according to claim 1, the content of B 2 O 3 is in the range of 0.3 to 0.4 wt%. SiO2含有量に対するCaO含有量がモル比で0.9〜1.2の範囲にある請求項1に記載のマグネシアクリンカー。 Magnesia clinker according to claim 1, CaO contents to the SiO 2 content is in the range of 0.9 to 1.2 molar ratio. キャスタブル耐火物用である請求項1に記載のマグネシアクリンカー。   The magnesia clinker according to claim 1, which is used for castable refractories.
JP2009020252A 2009-01-30 2009-01-30 Magnesia clinker Active JP5501629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020252A JP5501629B2 (en) 2009-01-30 2009-01-30 Magnesia clinker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020252A JP5501629B2 (en) 2009-01-30 2009-01-30 Magnesia clinker

Publications (2)

Publication Number Publication Date
JP2010173913A true JP2010173913A (en) 2010-08-12
JP5501629B2 JP5501629B2 (en) 2014-05-28

Family

ID=42705239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020252A Active JP5501629B2 (en) 2009-01-30 2009-01-30 Magnesia clinker

Country Status (1)

Country Link
JP (1) JP5501629B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041110A1 (en) * 2013-09-17 2015-03-26 宇部マテリアルズ株式会社 Thermally conductive filler and thermally conductive resin composition containing same
CN112321282A (en) * 2020-11-05 2021-02-05 山东瑞泰新材料科技有限公司 High-strength magnesium oxide crucible and preparation method thereof
JPWO2022138037A1 (en) * 2020-12-25 2022-06-30

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469110A (en) * 1977-11-15 1979-06-02 Kawasaki Steel Co Magnesia clinker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469110A (en) * 1977-11-15 1979-06-02 Kawasaki Steel Co Magnesia clinker

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041110A1 (en) * 2013-09-17 2015-03-26 宇部マテリアルズ株式会社 Thermally conductive filler and thermally conductive resin composition containing same
CN105579506A (en) * 2013-09-17 2016-05-11 宇部材料工业株式会社 Thermally conductive filler and thermally conductive resin composition containing same
KR20160058865A (en) * 2013-09-17 2016-05-25 우베 마테리알즈 가부시키가이샤 Thermally conductive filler and thermally conductive resin composition containing same
US20160222273A1 (en) * 2013-09-17 2016-08-04 Ube Materials Industries, Ltd. Thermally conductive filler and thermally conductive resin composition containing same
US9828538B2 (en) * 2013-09-17 2017-11-28 Ube Material Industries, Ltd. Thermally conductive filler and thermally conductive resin composition containing same
TWI630188B (en) * 2013-09-17 2018-07-21 宇部材料股份有限公司 Thermal conductive filler and thermal conductive resin composition containing the same
KR101981636B1 (en) 2013-09-17 2019-05-23 우베 마테리알즈 가부시키가이샤 Thermally conductive filler and thermally conductive resin composition containing same
CN112321282A (en) * 2020-11-05 2021-02-05 山东瑞泰新材料科技有限公司 High-strength magnesium oxide crucible and preparation method thereof
JPWO2022138037A1 (en) * 2020-12-25 2022-06-30
WO2022138037A1 (en) * 2020-12-25 2022-06-30 宇部マテリアルズ株式会社 Magnesium oxide powder, thermally conductive filler, resin composition, and production method for magnesium oxide powder
JP2022125158A (en) * 2020-12-25 2022-08-26 宇部マテリアルズ株式会社 Magnesium oxide powder, heat conductive filler, resin composition, and method of producing magnesium oxide powder
JP7149443B2 (en) 2020-12-25 2022-10-06 宇部マテリアルズ株式会社 Magnesium oxide powder, thermally conductive filler, resin composition, and method for producing magnesium oxide powder
JP7182752B1 (en) * 2020-12-25 2022-12-02 宇部マテリアルズ株式会社 Magnesium oxide powder, thermally conductive filler, resin composition, and method for producing magnesium oxide powder
CN115667147A (en) * 2020-12-25 2023-01-31 宇部材料工业株式会社 Magnesium oxide powder, thermally conductive filler, resin composition, and method for producing magnesium oxide powder
CN115667147B (en) * 2020-12-25 2023-08-22 宇部材料工业株式会社 Magnesium oxide powder, thermally conductive filler, resin composition, and method for producing magnesium oxide powder
US11884553B2 (en) 2020-12-25 2024-01-30 Ube Material Industries, Ltd. Magnesium oxide powder, thermally conductive filler, resin composition, and production method for magnesium oxide powder

Also Published As

Publication number Publication date
JP5501629B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
CN107117976A (en) A kind of transition band of cement kiln Mg-Al spinel brick and preparation method thereof
CN102701759B (en) Pleonaste brick
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
CN101671046B (en) Method for manufacturing high-purity magnesium-aluminum spinel
JP4602379B2 (en) Method for producing alumina cement
US7166551B2 (en) Monothilic refractory composition
JP5501629B2 (en) Magnesia clinker
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
CN1323985C (en) Periclase-olivine light thermal-insulated fireproof materials and method for preparing same
CN103328383B (en) Process for producing ss-2caosio2
CN107244925A (en) A kind of preparation method of glucose combination magnesia carbon brick
CN100429177C (en) Mg-Al light thermal-insulated fireproof materials and method for preparing same
CN102020474A (en) High temperature low heat conduction refractory material and production process thereof
CN103328384A (en) Method for producing gamma-2CaO.SiO2
JP2009096658A (en) Alumina cement composition, and monolithic refractory using the same
CN101768004B (en) Low-pore in situ oriental topaz brick and preparation method thereof
JP4538779B2 (en) Magnesia-alumina clinker and refractory obtained using the same
Pavlova et al. The way of utilization of fused corundum dust waste for the high-alumina chamotte production
JPH0794343B2 (en) Magnesia clinker and method for producing the same
JP2014024689A (en) Magnesia monolithic refractory
JP4785824B2 (en) Shaped refractory brick with spalling resistance and erosion resistance, its manufacturing method and fire wall
KR101129265B1 (en) Synthetic MgO Rich-SiO2 Clinker and Firebrick Containing the Same
CN101747061A (en) Formula of magnesium dolomite tar firebrick and production method thereof
JP3681199B2 (en) Casting calcia and magnesia clinker and method for producing the same
JP4132913B2 (en) Elongated Magnesia Clinker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5501629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250