JP5501629B2 - Magnesia clinker - Google Patents
Magnesia clinker Download PDFInfo
- Publication number
- JP5501629B2 JP5501629B2 JP2009020252A JP2009020252A JP5501629B2 JP 5501629 B2 JP5501629 B2 JP 5501629B2 JP 2009020252 A JP2009020252 A JP 2009020252A JP 2009020252 A JP2009020252 A JP 2009020252A JP 5501629 B2 JP5501629 B2 JP 5501629B2
- Authority
- JP
- Japan
- Prior art keywords
- content
- mass
- magnesia clinker
- sio
- cao
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 title claims description 178
- 239000000395 magnesium oxide Substances 0.000 title claims description 89
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 44
- 239000000203 mixture Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000011819 refractory material Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- 239000000292 calcium oxide Substances 0.000 description 39
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 39
- 230000029087 digestion Effects 0.000 description 20
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 20
- 239000000347 magnesium hydroxide Substances 0.000 description 20
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 20
- 239000004327 boric acid Substances 0.000 description 10
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000010304 firing Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 239000011449 brick Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000003350 kerosene Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 229910021487 silica fume Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATRMIFNAYHCLJR-UHFFFAOYSA-N [O].CCC Chemical compound [O].CCC ATRMIFNAYHCLJR-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000283216 Phocidae Species 0.000 description 1
- 241000220304 Prunus dulcis Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000005619 boric acid group Chemical group 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011378 shotcrete Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
本発明は、マグネシアクリンカーに関し、特にアルミナ−マグネシア質キャスタブルなどのキャスタブル耐火物の材料として好適に用いることができるマグネシアクリンカーに関する。 The present invention relates to a magnesia clinker, and more particularly to a magnesia clinker that can be suitably used as a material for castable refractories such as alumina-magnesia castable.
マグネシアクリンカーの用途の一つとして、アルミナ−マグネシア質キャスタブルの材料がある。アルミナ−マグネシア質キャスタブルは、取鍋の内張り用耐火物として用いられている。内張りされたアルミナ−マグネシア質キャスタブルは、溶綱との接触により加熱されて、アルミナとマグネシアとが反応してスピネルを形成し、組織が緻密化して耐食性などの耐熱特性が向上するという利点がある。 One application of the magnesia clinker is an alumina-magnesia castable material. Alumina-magnesia castables are used as refractories for ladle linings. The lined alumina-magnesia castable is heated by contact with the molten steel and reacts with alumina and magnesia to form spinel, and the structure is densified to improve heat resistance characteristics such as corrosion resistance. .
アルミナ−マグネシア質キャスタブル内張り耐火物は、アルミナ−マグネシア質キャスタブルに流動性が得られる程度に水を加えて、取鍋の内壁に流し込み又はショットクリートのような湿式吹付けをして、次いで、養生、乾燥して施工成形体を形成し、形成した施工成形体を焼成して反応・固化させることによって製造するのが一般的である。この施工成形体の形成においては、乾燥時に水分が蒸発して施工成形体内部の水蒸気圧が高くなり、マグネシアクリンカーが消化(水和)して水酸化マグネシウムが生成することによって、体積が膨張して亀裂が生じたり、内壁から剥離し易くなるという問題がある。このため、アルミナ−マグネシア質キャスタブルの材料として用いるマグネシアクリンカーは、耐消化性が高いことが必要となる。 Alumina-magnesia castable lining refractory is prepared by adding water to the alumina-magnesia castable so that fluidity can be obtained, pouring it on the inner wall of the ladle or wet spraying such as shotcrete, and then curing. In general, it is produced by drying to form a construction molded body, and firing and reacting and solidifying the formed construction molded body. In the formation of this construction molded body, moisture evaporates during drying, the water vapor pressure inside the construction molded body increases, and magnesia clinker is digested (hydrated) to produce magnesium hydroxide, thereby expanding the volume. As a result, there are problems such as cracking and easy peeling from the inner wall. For this reason, the magnesia clinker used as an alumina-magnesia castable material needs to have high digestion resistance.
マグネシアクリンカーは、海水に石灰乳などのアルカリを投入して得られた水酸化マグネシウムを焼成することにより製造するのが一般的である。このようにして製造されたマグネシアクリンカーは、通常、海水やアルカリから混入するCaO、SiO2、B2O3、Fe2O3、Al2O3などを不純物として含有する。 The magnesia clinker is generally manufactured by firing magnesium hydroxide obtained by adding alkali such as lime milk to seawater. The magnesia clinker produced in this way usually contains CaO, SiO 2 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3, etc. mixed from seawater or alkali as impurities.
特許文献1には、市販のマグネシアクリンカーとして、B2O3含有量が0.46質量%のマグネシアクリンカーが開示されている。なお、特許文献1の実施例では、市販のマグネシアクリンカーを0.125mm以下に微粉砕した後、耐消化性を高めるために、マグネシアクリンカーに硼酸、リン酸塩、又はフリットを添加、焼成して用いている。但し、特許文献1には、マグネシアクリンカーの耐熱特性については触れていない。 Patent Document 1 discloses a magnesia clinker having a B 2 O 3 content of 0.46% by mass as a commercially available magnesia clinker. In Examples of Patent Document 1, after pulverizing a commercially available magnesia clinker to 0.125 mm or less, boric acid, phosphate, or frit is added to the magnesia clinker and fired in order to improve digestion resistance. Used. However, Patent Document 1 does not mention the heat resistance characteristics of magnesia clinker.
一方、マグネシアクリンカー中のB2O3含有量が多くなると、熱間物性、耐スポーリング性、耐スラグ性、耐食性などの耐熱特性が低下することは知られている。このため、B2O3含有量を微量にしたマグネシアクリンカーも提案されている。 On the other hand, it is known that when the B 2 O 3 content in the magnesia clinker increases, the heat properties such as hot physical properties, spalling resistance, slag resistance, and corrosion resistance deteriorate. For this reason, a magnesia clinker with a very small B 2 O 3 content has also been proposed.
特許文献2には、B2O3含有量が微量な高純度マグネシアクリンカーとして、MgO含有量が99.3質量%以上、CaO含有量が0.3質量%以下、SiO2含有量が0.2質量%以下、B2O3含有量が0.01質量%未満、Fe2O3とAl2O3の合計含有量が0.15質量%以下のマグネシアクリンカーが開示されている。この特許文献では、水酸化マグネシウムの生成工程において、水酸化マグネシウムを生成する前に海水中のホウ素をイオン交換樹脂で除去することによって、マグネシアクリンカー中のB2O3含有量を低減している。 In Patent Document 2, as a high-purity magnesia clinker with a very small B 2 O 3 content, the MgO content is 99.3% by mass or more, the CaO content is 0.3% by mass or less, and the SiO 2 content is 0.00. A magnesia clinker having a content of 2 % by mass or less, a B 2 O 3 content of less than 0.01% by mass, and a total content of Fe 2 O 3 and Al 2 O 3 of 0.15% by mass or less is disclosed. In this patent document, the content of B 2 O 3 in magnesia clinker is reduced by removing boron in seawater with an ion exchange resin before producing magnesium hydroxide in the production process of magnesium hydroxide. .
特許文献2に記載されているように、B2O3含有量が微量なマグネシアクリンカーは高い耐熱特性を示す。しかしながら、マグネシアクリンカーはB2O3含有量が微量になるほど耐消化性は低下する。
従って、本発明の目的は、B2O3含有量が少なく高純度で、かつ高い耐消化性を示すマグネシアクリンカーを提供することにある。
As described in Patent Document 2, a magnesia clinker with a very small B 2 O 3 content exhibits high heat resistance. However, the digestion resistance of the magnesia clinker decreases as the B 2 O 3 content becomes smaller.
Accordingly, an object of the present invention is to provide a magnesia clinker having a low B 2 O 3 content and high purity and high digestion resistance.
本発明者は、マグネシアクリンカーのCaO含有量、SiO2含有量及びB2O3含有量と、マグネシアクリンカーの耐消化性との関係を詳細に検討した。その結果、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上であって、SiO2含有量に対するCaO含有量(CaO/SiO2)がモル比で0.8〜1.5の範囲にあるマグネシアクリンカーは、B2O3含有量が0.2〜0.4質量%の範囲と少量で、MgO含有量が98.0質量%以上と高純度であっても、高い耐消化性を示すことを見出し、本発明を完成させた。 The inventor examined in detail the relationship between the CaO content, SiO 2 content and B 2 O 3 content of magnesia clinker and the digestion resistance of magnesia clinker. As a result, the CaO content is 0.2% by mass or more, the SiO 2 content is 0.2% by mass or more, and the CaO content (CaO / SiO 2 ) with respect to the SiO 2 content is 0.8 by molar ratio. magnesia clinker in the range of 1.5 is, B 2 O 3 content as small as a range of 0.2 to 0.4 wt%, MgO content is 98.0 mass% or more and high purity In addition, the present inventors have found that it exhibits high digestion resistance and completed the present invention.
従って、本発明は、MgO含有量が98.0質量%以上、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上、B2O3含有量が0.2〜0.4質量%の範囲にあって、SiO2含有量に対するCaO含有量がモル比で0.8〜1.5の範囲にあるマグネシアクリンカーにある。 Therefore, in the present invention, the MgO content is 98.0% by mass or more, the CaO content is 0.2% by mass or more, the SiO 2 content is 0.2% by mass or more, and the B 2 O 3 content is 0.2%. in the range of 0.4% by weight, magnesia clinker CaO contents to the SiO 2 content is in the range of 0.8 to 1.5 molar ratio.
本発明のマグネシアクリンカーの好ましい態様は、次の通りである。
(1)B2O3含有量が0.3〜0.4質量%の範囲にある。
(2)SiO2含有量に対するCaO含有量がモル比で0.9〜1.2の範囲にある。
(3)キャスタブル耐火物用である。
Preferred embodiments of the magnesia clinker of the present invention are as follows.
(1) B 2 O 3 content is in the range of 0.3 to 0.4 wt%.
(2) The CaO content with respect to the SiO 2 content is in the range of 0.9 to 1.2 in terms of molar ratio.
(3) For castable refractories.
本発明のマグネシアクリンカーは、後述の実施例の結果から明らかなように、B2O3含有量が0.2〜0.4質量%の範囲と比較的少量で、MgO含有量が98質量%以上と高純度でありながらも高い耐消化性を有する。従って、本発明のマグネシアクリンカーは、特にアルミナ−マグネシア質キャスタブルなどのキャスタブル耐火物の材料として有利に用いることができる。 The magnesia clinker of the present invention has a relatively small amount of B 2 O 3 in the range of 0.2 to 0.4% by mass and an MgO content of 98% by mass, as will be apparent from the results of Examples described later. While having high purity as described above, it has high digestion resistance. Therefore, the magnesia clinker of the present invention can be advantageously used as a material for castable refractories such as alumina-magnesia castable.
本発明のマグネシアクリンカーは、MgO含有量が98質量%以上、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上、B2O3含有量が0.2〜0.4質量%の範囲であって、SiO2含有量に対するCaO含有量(CaO/SiO2)がモル比で0.8〜1.5の範囲にある。MgO含有量は98.5質量%以上であることが好ましい。CaO含有量及びSiO2含有量は0.6質量%以下であることが好ましい。B2O3含有量は、0.3質量%〜0.4質量%の範囲にあることが好ましい。CaO/SiO2のモル比は0.9〜1.2の範囲にあることが好ましい。 The magnesia clinker of the present invention has an MgO content of 98% by mass or more, a CaO content of 0.2% by mass or more, an SiO 2 content of 0.2% by mass or more, and a B 2 O 3 content of 0.2 to 0.2%. a range of 0.4 mass%, CaO contents to the SiO 2 content (CaO / SiO 2) is in the range of 0.8 to 1.5 molar ratio. The MgO content is preferably 98.5% by mass or more. The CaO content and the SiO 2 content are preferably 0.6% by mass or less. The B 2 O 3 content is preferably in the range of 0.3% by mass to 0.4% by mass. The molar ratio of CaO / SiO 2 is preferably in the range of 0.9 to 1.2.
本発明のマグネシアクリンカーは、Al2O3とFe2O3とを含有していてもよい。但し、高純度化の観点からAl2O3とFe2O3の含有量は合計量で0.20質量%以下であることが好ましく、0.05〜0.20質量%の範囲であることがより好ましい。 The magnesia clinker of the present invention may contain Al 2 O 3 and Fe 2 O 3 . However, from the viewpoint of high purity, the total content of Al 2 O 3 and Fe 2 O 3 is preferably 0.20% by mass or less, and in the range of 0.05 to 0.20% by mass. Is more preferable.
本発明のマグネシアクリンカーは、嵩密度が3.0〜3.4g/cm3の範囲にあることが好ましい。 The magnesia clinker of the present invention preferably has a bulk density in the range of 3.0 to 3.4 g / cm 3 .
本発明のマグネシアクリンカーは、粒子サイズに特には制限はなく、目的に応じて適宜設定することができる。アルミナ−マグネシア質キャスタブルなどのキャスタブル耐火物の材料として用いる場合、平均粒子径は5〜50μmの範囲にあることが好ましい。 The magnesia clinker of the present invention is not particularly limited in particle size, and can be appropriately set according to the purpose. When used as a material for castable refractories such as alumina-magnesia castable, the average particle size is preferably in the range of 5 to 50 μm.
本発明のマグネシアクリンカーは、例えば、1500℃の温度で焼成して得た焼成物を基準(以下、灼熱基準という)として、MgO含有量が98.0質量%以上、CaO含有量が0.2質量%以上、SiO2含有量が0.2質量%以上、B2O3含有量が0.2〜0.4質量%の範囲にあって、SiO2含有量に対するCaO含有量(CaO/SiO2)がモル比で0.8〜1.5の範囲にある水酸化マグネシウムを粒状に形成し、得られた水酸化マグネシウム粒状物を1500〜2500℃の温度で焼成することによって製造することができる。 The magnesia clinker of the present invention has, for example, a MgO content of 98.0% by mass or more and a CaO content of 0.2 on the basis of a fired product obtained by firing at a temperature of 1500 ° C. (hereinafter referred to as a burning standard). More than mass%, SiO 2 content is 0.2 mass% or more, B 2 O 3 content is in the range of 0.2 to 0.4 mass%, and CaO content relative to SiO 2 content (CaO / SiO 2 ) can be produced by forming magnesium hydroxide having a molar ratio in the range of 0.8 to 1.5 in the form of granules and firing the obtained magnesium hydroxide granules at a temperature of 1500 to 2500 ° C. it can.
原料の水酸化マグネシウムは、灼熱基準のMgO含有量が98.0質量%よりも高い高純度の水酸化マグネシウムを用意し、これに灼熱基準のCaO含有量、SiO2含有量、B2O3含有量及びCaO/SiO2のモル比が上記の範囲となるように、CaO源、SiO2源、B2O3源を添加することによって得ることができる。CaO源の例としては、水酸化カルシウム、酸化カルシウムを挙げることができる。SiO2源の例としては、二酸化ケイ素を挙げることができる。B2O3源の例としてはホウ酸を挙げることができる。なお、B2O3源としてホウ酸を用いる場合は、水酸化マグネシウムの焼成時にホウ酸が蒸発することがあるため、ホウ酸は過剰に添加することが好ましい。 As the raw material magnesium hydroxide, highly pure magnesium hydroxide having a flame-based MgO content higher than 98.0% by mass is prepared, and the flame-heated CaO content, SiO 2 content, B 2 O 3 It can be obtained by adding a CaO source, a SiO 2 source, and a B 2 O 3 source so that the content and the molar ratio of CaO / SiO 2 are in the above ranges. Examples of the CaO source include calcium hydroxide and calcium oxide. An example of the SiO 2 source is silicon dioxide. An example of the B 2 O 3 source is boric acid. When boric acid is used as the B 2 O 3 source, boric acid may evaporate during the firing of magnesium hydroxide, so it is preferable to add boric acid in excess.
灼熱基準のMgO含有量が98.0質量%よりも高い高純度の水酸化マグネシウムの製造方法は、前記特許文献2(特開昭59−190217号公報)に記載がある。 A method for producing high-purity magnesium hydroxide having a MgO content on the basis of ignition of higher than 98.0% by mass is described in Patent Document 2 (Japanese Patent Laid-Open No. 59-190217).
本発明のマグネシアクリンカーは、アルミナ−マグネシア質キャスタブルなどのキャスタブル耐火物以外の耐火物、例えば、マグネシア質れんが、マグネシア−カーボン質れんが、マグネシア−クロム質れんが、マグネシア−スピネル質れんがなどの耐火れんがの材料、及び塩基性吹付材やマグネシア質スタンプ材などの不定形耐火物の材料としても利用することができる。また、本発明のマグネシアクリンカーは、るつぼやレトルトなどの耐熱性容器の材料としても利用することができる。 The magnesia clinker of the present invention is a refractory other than castable refractories such as alumina-magnesia castable, for example, magnesia brick, magnesia-carbon brick, magnesia-chromic brick, magnesia-spinel brick, and other refractory bricks. It can also be used as a material and a material for an irregular refractory such as a basic spray material or a magnesia stamp material. The magnesia clinker of the present invention can also be used as a material for heat-resistant containers such as crucibles and retorts.
本実施例において、マグネシアクリンカーの化学組成、嵩密度(かさ比重)、及び耐消化性(オートクレーブ試験後の重量増加率)は以下の方法により測定した。 In this example, the chemical composition, bulk density (bulk specific gravity), and digestion resistance (weight increase rate after autoclave test) of magnesia clinker were measured by the following methods.
[化学組成]
日本学術振興会第124委員会試験法分科会において決定された「学振法1 マグネシアクリンカーの化学分析法」(1981年板 耐火物手帳参照)に準じて測定した。
[Chemical composition]
It was measured in accordance with “Scientific Analysis Method 1 Chemical Analysis Method of Magnesia Clinker” (refer to the 1981 Board Refractory Notebook) determined by the Japan Society for the Promotion of Science 124th Committee.
[嵩密度(かさ比重)]
日本学術振興会第124委員会試験法分科会において決定された「学振法2 マグネシアクリンカーの見掛気孔率、見掛比重およびかさ比重の測定法」(1981年板 耐火物手帳参照)に準じ、下記の計算式により求めた。
かさ比重=S×W1/(W3−W2)
W1:試料の乾燥重量(g)
W2:白灯油で飽和した試料の白灯油中の重量(g)
W3:白灯油で飽和した試料の重量(g)
S:測定温度における白灯油の比重(g/cm3)
[Bulk density (bulk specific gravity)]
Conforms to “Study Method 2, Apparent Porosity, Apparent Specific Gravity, and Bulk Specific Gravity of Magnesia Clinker” (see 1981 Board Refractory Notebook) determined by the Japan Society for the Promotion of Science 124th Committee It was determined by the following formula.
Bulk specific gravity = S × W1 / (W3-W2)
W1: Dry weight of sample (g)
W2: Weight of the sample saturated with white kerosene in white kerosene (g)
W3: Weight of sample saturated with white kerosene (g)
S: Specific gravity of white kerosene at the measurement temperature (g / cm 3 )
[耐消化性]
日本学術振興会第124委員会試験法分科会において決定された「学振法4 マグネシアクリンカーの消化性試験方法」(1981年板耐火物手帳参照)に準じ、5気圧(152℃)、3時間保持の条件でのオートクレーブ試験後の重量増加率を測定した。重量増加率が少ない方が耐消化性は高い。ただし、試料のマグネシアクリンカーは、粒度を一定にするために、0.3mm以下に粉砕し、0.3〜0.15mm、0.15〜0.075mm、0.075mm以下に篩別して、0.3〜0.15mmの粉砕粉を5質量部、0.15〜0.075mmの粉砕粉を20質量部、0.075mm以下の粉砕粉を75質量部の割合で混合したものを用いた(粒度調整したマグネシアクリンカーのレーザー回折法による平均粒子径は概ね25μmである)。試料の量は10gとし、あらかじめ試料に20gの水(イオン交換水)を加えた状態(浸水条件)でオートクレーブ試験を行なった。
[Digestion resistance]
5 atm (152 ° C), 3 hours, according to “Study Method 4, Magnesia Clinker Digestibility Test Method” (refer to 1981 Board Refractory Notebook) determined by the Japan Society for the Promotion of Science 124th Committee The weight increase rate after the autoclave test under the holding conditions was measured. The smaller the rate of weight increase, the higher the digestion resistance. However, the magnesia clinker of the sample was pulverized to 0.3 mm or less, and sieved to 0.3 to 0.15 mm, 0.15 to 0.075 mm, or 0.075 mm or less in order to make the particle size constant, and 0. 5 mass parts of pulverized powder of 3 to 0.15 mm, 20 mass parts of pulverized powder of 0.15 to 0.075 mm, and 75 mass parts of pulverized powder of 0.075 mm or less were used (particle size). The average particle size of the adjusted magnesia clinker as measured by laser diffraction is approximately 25 μm). The amount of the sample was 10 g, and an autoclave test was performed in a state where 20 g of water (ion exchange water) was added to the sample in advance (immersion conditions).
[実施例1]
灼熱基準でのMgO含有量が99.31質量%、CaO含有量が0.45質量%、SiO2含有量が0.10質量%、Fe2O3含有量が0.04質量%、Al2O3含有量が0.03質量%、B2O3含有量が0.07質量%で、含水率が50質量%の水酸化マグネシウムケークに、SiO2源としてマイクロシリカ(エルケム・ジャパン(株)製、SiO2含有量:91.9質量%)を灼熱基準でのCaO/SiO2比がモル比で1.0となる量、B2O3源としてホウ酸(Searles Valley Minerals Inc.製、B2O3含有量:56.5質量%)を灼熱基準でのMgO含有量100質量部に対して、B2O3量が1.0質量部となる量にて添加した後、乳鉢中で充分な混練を行なった。混練後の水酸化マグネシウムケークを箱型乾燥機に入れて、含水率が6質量%となるまで乾燥した。得られた乾燥物を加圧成形機を用いて、成形圧2.0トン/cm2の条件で、直径20mm×高さ20mmの円柱状ペレットに成形した。得られた成形物を酸素−プロパン炉を用いて、1800℃の温度で30分間焼成してマグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Example 1]
MgO content on ignition basis is 99.31% by mass, CaO content is 0.45% by mass, SiO 2 content is 0.10% by mass, Fe 2 O 3 content is 0.04% by mass, Al 2 A magnesium hydroxide cake having an O 3 content of 0.03% by mass, a B 2 O 3 content of 0.07% by mass, and a water content of 50% by mass was used as a SiO 2 source. ), SiO 2 content: 91.9% by mass), so that the CaO / SiO 2 ratio on a flame basis is 1.0 in terms of molar ratio, boric acid as a B 2 O 3 source (made by Seales Valley Minerals Inc.) , B 2 O 3 content: 56.5% by mass) with respect to 100 parts by mass of MgO content on the basis of ignition, in an amount such that the amount of B 2 O 3 is 1.0 part by mass, Sufficient kneading was carried out. The kneaded magnesium hydroxide cake was put in a box dryer and dried until the water content became 6% by mass. The obtained dried product was molded into a cylindrical pellet having a diameter of 20 mm and a height of 20 mm under a molding pressure of 2.0 ton / cm 2 using a pressure molding machine. The obtained molded product was fired at a temperature of 1800 ° C. for 30 minutes using an oxygen-propane furnace to obtain a magnesia clinker. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.
[比較例1]
水酸化マグネシウムケークへのホウ酸の添加量を、灼熱基準でのMgO含有量100質量部に対して、B2O3量が0.5質量部となる量としたこと以外は実施例1と同様にして、マグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Comparative Example 1]
Example 1 with the exception that the amount of boric acid added to the magnesium hydroxide cake was set to an amount such that the B 2 O 3 content was 0.5 parts by mass with respect to 100 parts by mass of the MgO content on the basis of ignition. Similarly, a magnesia clinker was obtained. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.
[実施例2]
灼熱基準でのMgO含有量が99.47質量%、CaO含有量が0.25質量%、SiO2含有量が0.15質量%、Fe2O3含有量が0.05質量%、Al2O3含有量が0.07質量%、B2O3含有量が0.01質量%で、含水率が50質量%の水酸化マグネシウムケークに、SiO2源としてマイクロシリカを灼熱基準でのCaO/SiO2比がモル比で1.0となる量、B2O3源としてホウ酸を灼熱基準のMgO含有量100質量部に対して、B2O3量が1.5質量部となる量にて添加した後、乳鉢中で充分な混練を行なった。混練後の水酸化マグネシウムケークを箱型乾燥機に入れて、含水率が6質量%となるまで乾燥した。得られた乾燥物を加圧成形機を用いて、成形圧2.0トン/cm2の条件で、直径20mm×高さ20mmの円柱状ペレットに成形した。得られた成形物を酸素−プロパン炉を用いて、1800℃の温度で30分間焼成してマグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Example 2]
MgO content of 99.47% by weight of at burning criteria, CaO content of 0.25 wt%, SiO 2 content of 0.15 mass%, Fe 2 O 3 content of 0.05 wt%, Al 2 A magnesium hydroxide cake having an O 3 content of 0.07% by mass, a B 2 O 3 content of 0.01% by mass and a water content of 50% by mass, microsilica as a SiO 2 source and CaO on an ignition basis. / SiO 2 ratio is 1.0 in terms of molar ratio, boric acid is used as a B 2 O 3 source, and B 2 O 3 content is 1.5 parts by mass with respect to 100 parts by mass of MgO content based on ignition. After the addition in an amount, sufficient kneading was performed in a mortar. The kneaded magnesium hydroxide cake was put in a box dryer and dried until the water content became 6% by mass. The obtained dried product was molded into a cylindrical pellet having a diameter of 20 mm and a height of 20 mm under a molding pressure of 2.0 ton / cm 2 using a pressure molding machine. The obtained molded product was fired at a temperature of 1800 ° C. for 30 minutes using an oxygen-propane furnace to obtain a magnesia clinker. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.
[比較例2]
水酸化マグネシウムケークへのホウ酸の添加量を、灼熱基準でのMgO含有量100質量部に対して、B2O3量が1.0質量部となる量としたこと以外は実施例2と同様にして、マグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Comparative Example 2]
Example 2 with the exception that the amount of boric acid added to the magnesium hydroxide cake was set to an amount such that the amount of B 2 O 3 was 1.0 part by mass relative to 100 parts by mass of MgO content on the basis of ignition. Similarly, a magnesia clinker was obtained. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.
[比較例3]
水酸化マグネシウムケークへのマイクロシリカの添加量を、灼熱基準でのCaO/SiO2比がモル比で0.5となる量としたこと以外は実施例2と同様にして、マグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Comparative Example 3]
A magnesia clinker was obtained in the same manner as in Example 2, except that the amount of microsilica added to the magnesium hydroxide cake was such that the CaO / SiO 2 ratio on the basis of the ignition temperature was 0.5. . Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.
[実施例3]
灼熱基準でのMgO含有量が99.15質量%、CaO含有量が0.55質量%、SiO2含有量が0.10質量%、Fe2O3含有量が0.06質量%、Al2O3含有量が0.06質量%、B2O3含有量が0.08質量%で、含水率が50質量%の水酸化マグネシウムケークに、SiO2源としてマイクロシリカを灼熱基準でのCaO/SiO2比がモル比で1.0となる量、B2O3源としてホウ酸を灼熱基準のMgO含有量100質量部に対して、B2O3量が0.8質量部となる量にて添加した後、パグミルを用いて充分な混練を行なった。混練後の水酸化マグネシウムケークをロータリードライヤーに入れて、含水率が6質量%となるまで乾燥した。得られた乾燥物をブリケッティングマシーンを用いて、油圧ローラ圧150kg/cm2の条件で、アーモンド形状に成形した。得られた成形物をロータリーキルンを用いて、焼成温度1800℃、キルン滞留時間6時間の条件で焼成してマグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Example 3]
MgO content on ignition basis is 99.15% by mass, CaO content is 0.55% by mass, SiO 2 content is 0.10% by mass, Fe 2 O 3 content is 0.06% by mass, Al 2 A magnesium hydroxide cake having an O 3 content of 0.06% by mass, a B 2 O 3 content of 0.08% by mass and a water content of 50% by mass, and microsilica as a SiO 2 source on CaO on an ignition basis. / SiO 2 ratio is 1.0 in terms of molar ratio, and B 2 O 3 content is 0.8 parts by mass with respect to 100 parts by mass of MgO content on the basis of ignition as a B 2 O 3 source. After the addition in an amount, sufficient kneading was performed using a pug mill. The kneaded magnesium hydroxide cake was put in a rotary dryer and dried until the water content became 6% by mass. The obtained dried product was formed into an almond shape using a briquetting machine under the condition of a hydraulic roller pressure of 150 kg / cm 2 . The obtained molded product was fired using a rotary kiln under conditions of a firing temperature of 1800 ° C. and a kiln residence time of 6 hours to obtain a magnesia clinker. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.
[参考例1]
水酸化マグネシウムケークへのホウ酸の添加量を、灼熱基準のMgO含有量100質量部に対して、B2O3量が1.2質量部となる量としたこと以外は実施例3と同様にして、マグネシアクリンカーを得た。得られたマグネシアクリンカーの化学組成、CaO/SiO2モル比、嵩密度、及び耐消化性の測定結果を第1表に示す。
[Reference Example 1]
The amount of boric acid added to the magnesium hydroxide cake was the same as in Example 3 except that the amount of B 2 O 3 was 1.2 parts by mass with respect to 100 parts by mass of the MgO content on the basis of ignition. Thus, a magnesia clinker was obtained. Table 1 shows the chemical composition, the CaO / SiO 2 molar ratio, the bulk density, and the digestion resistance measurement results of the obtained magnesia clinker.
第1表
────────────────────────────────────────
実施例1 比較例1 実施例2 比較例2 比較例3 実施例3 参考例1
────────────────────────────────────────
化学組成(質量%)
MgO 98.71 98.90 99.11 99.28 98.51 98.53 98.20
CaO 0.44 0.44 0.22 0.23 0.27 0.52 0.57
SiO2 0.43 0.43 0.24 0.24 0.74 0.53 0.64
Fe2O3 0.04 0.04 0.05 0.05 0.06 0.05 0.05
Al2O3 0.03 0.03 0.07 0.07 0.10 0.06 0.06
B2O3 0.35 0.16 0.31 0.13 0.32 0.31 0.48
────────────────────────────────────────
CaO/SiO2
モル比 1.10 1.10 0.98 1.03 0.39 1.05 0.95
────────────────────────────────────────
嵩密度
(g/cm3) 3.24 3.25 3.06 3.07 3.15 3.21 3.23
────────────────────────────────────────
耐消化性(重量増加率)
(質量%) 3.98 37.1 7.98 27.5 25.9 4.70 5.54
────────────────────────────────────────
Table 1 ─────────────────────────────────────────
Example 1 Comparative Example 1 Example 2 Comparative Example 2 Comparative Example 3 Example 3 Reference Example 1
────────────────────────────────────────
Chemical composition (mass%)
MgO 98.71 98.90 99.11 99.28 98.51 98.53 98.20
CaO 0.44 0.44 0.22 0.23 0.27 0.52 0.57
SiO 2 0.43 0.43 0.24 0.24 0.74 0.53 0.64
Fe 2 O 3 0.04 0.04 0.05 0.05 0.06 0.05 0.05
Al 2 O 3 0.03 0.03 0.07 0.07 0.10 0.06 0.06
B 2 O 3 0.35 0.16 0.31 0.13 0.32 0.31 0.48
────────────────────────────────────────
CaO / SiO 2
Molar ratio 1.10 1.10 0.98 1.03 0.39 1.05 0.95
────────────────────────────────────────
Bulk density (g / cm 3 ) 3.24 3.25 3.06 3.07 3.15 3.21 3.23
────────────────────────────────────────
Digestion resistance (weight increase rate)
(Mass%) 3.98 37.1 7.98 27.5 25.9 4.70 5.54
────────────────────────────────────────
第1表の結果から明らかなように、本発明に従うマグネシアクリンカー(実施例1〜3)と参考例1のマグネシアクリンカーとは、耐消化性は同等である。但し、前記特許文献2(特開昭59−190217号公報)に記載があるように、参考例1のマグネシアクリンカーは、本発明に従うマグネシアクリンカー(実施例1〜3)と比較してB2O3含有量が多いため、熱間物性、耐スポーリング性、耐スラグ性、耐食性などの耐熱特性が充分でないと理解される。一方、本発明のマグネシアクリンカーよりもB2O3含有量が少ないマグネシアクリンカー(比較例1、2)、及びCaO/SiO2のモル比が低いマグネシアクリンカー(比較例3)は、耐消化性が低い。 As is clear from the results in Table 1, the magnesia clinker (Examples 1 to 3) according to the present invention and the magnesia clinker of Reference Example 1 have the same digestion resistance. However, as described in Patent Document 2 (Japanese Patent Laid-Open No. 59-190217), the magnesia clinker of Reference Example 1 is B 2 O compared to the magnesia clinker (Examples 1 to 3) according to the present invention. 3 It is understood that the heat-resistant properties such as hot physical properties, spalling resistance, slag resistance, and corrosion resistance are not sufficient due to the high content. On the other hand, the magnesia clinker (Comparative Examples 1 and 2) having a lower B 2 O 3 content than the magnesia clinker of the present invention and the magnesia clinker (Comparative Example 3) having a low molar ratio of CaO / SiO 2 are resistant to digestion. Low.
Claims (3)
オートクレーブ試験
マグネシアクリンカーを0.3mm以下に粉砕し、0.3〜0.15mm、0.15〜0.075mm、0.075mm以下に篩別して、0.3〜0.15mmの粉砕粉を5質量部、0.15〜0.075mmの粉砕粉を20質量部、0.075mm以下の粉砕粉を75質量部の割合で混合した試料10gに20gの水を加えて、オートクレーブに入れて5気圧、152℃にて3時間保持する。 MgO content is 98.0% by mass or more, CaO content is 0.2% by mass or more, SiO 2 content is 0.2% by mass or more, and B 2 O 3 content is 0.2 to 0.4% by mass. in the range of a range near the 0.9 to 1.2 at CaO content molar ratio SiO 2 content is, the weight increasing rate after autoclaving the following test is not more than 7.98 wt%, Magnesia clinker that does not contain Cr 2 O 3 :
Autoclave test
Crush the magnesia clinker to 0.3 mm or less, sieve to 0.3 to 0.15 mm, 0.15 to 0.075 mm, 0.075 mm or less, 5 parts by mass of 0.3 to 0.15 mm pulverized powder, 20 g of water was added to 10 g of a sample obtained by mixing 20 parts by mass of 0.15-0.075 mm of pulverized powder and 75 parts by mass of pulverized powder of 0.075 mm or less, and the mixture was placed in an autoclave at 5 atm, 152 ° C. Hold for 3 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009020252A JP5501629B2 (en) | 2009-01-30 | 2009-01-30 | Magnesia clinker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009020252A JP5501629B2 (en) | 2009-01-30 | 2009-01-30 | Magnesia clinker |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010173913A JP2010173913A (en) | 2010-08-12 |
JP5501629B2 true JP5501629B2 (en) | 2014-05-28 |
Family
ID=42705239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009020252A Active JP5501629B2 (en) | 2009-01-30 | 2009-01-30 | Magnesia clinker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5501629B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5993824B2 (en) * | 2013-09-17 | 2016-09-14 | 宇部マテリアルズ株式会社 | Thermally conductive resin composition, method for producing the same, and article |
CN112321282B (en) * | 2020-11-05 | 2022-04-12 | 山东瑞泰新材料科技有限公司 | High-strength magnesium oxide crucible and preparation method thereof |
KR102595134B1 (en) * | 2020-12-25 | 2023-10-30 | 우베 마테리알즈 가부시키가이샤 | Magnesium oxide powder, thermally conductive filler, resin composition, and method for producing magnesium oxide powder |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5469110A (en) * | 1977-11-15 | 1979-06-02 | Kawasaki Steel Co | Magnesia clinker |
-
2009
- 2009-01-30 JP JP2009020252A patent/JP5501629B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010173913A (en) | 2010-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104822637B (en) | The non-industrial furnace for firing refractory product as the purposes of high-capacity industrial inner lining of furnace and using the non-firing refractory product as liner | |
CN107117976A (en) | A kind of transition band of cement kiln Mg-Al spinel brick and preparation method thereof | |
CN102701759B (en) | Pleonaste brick | |
JP5943032B2 (en) | Manufacturing method of lightweight heat-insulating alumina / magnesia refractory | |
CN101671046B (en) | Method for manufacturing high-purity magnesium-aluminum spinel | |
US7166551B2 (en) | Monothilic refractory composition | |
JP5501629B2 (en) | Magnesia clinker | |
CN1323985C (en) | Periclase-olivine light thermal-insulated fireproof materials and method for preparing same | |
CN103328383A (en) | Process for producing ss-2caosio2 | |
JP2008303087A (en) | Method of manufacturing alumina cement, and monolithic refractory | |
CN107244925A (en) | A kind of preparation method of glucose combination magnesia carbon brick | |
CN100429177C (en) | Mg-Al light thermal-insulated fireproof materials and method for preparing same | |
CN102020474A (en) | High-temperature low-heat-conductivity refractory material and production method thereof | |
CN103328384A (en) | Method for producing gamma-2CaO.SiO2 | |
Pavlova et al. | The way of utilization of fused corundum dust waste for the high-alumina chamotte production | |
CN101768004B (en) | Low-pore in situ oriental topaz brick and preparation method thereof | |
RU2426707C1 (en) | Heat insulation mass | |
JP2009096658A (en) | Alumina cement composition, and monolithic refractory using the same | |
CN110790579A (en) | Chromium-free refractory brick and preparation method thereof | |
JP4538779B2 (en) | Magnesia-alumina clinker and refractory obtained using the same | |
JPH0794343B2 (en) | Magnesia clinker and method for producing the same | |
JP4785824B2 (en) | Shaped refractory brick with spalling resistance and erosion resistance, its manufacturing method and fire wall | |
JP2014024689A (en) | Magnesia monolithic refractory | |
KR101129265B1 (en) | Synthetic MgO Rich-SiO2 Clinker and Firebrick Containing the Same | |
CN101747061A (en) | Formula of magnesium dolomite tar firebrick and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140312 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5501629 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |