JP2010173904A - Glass composition and conductive paste using the same - Google Patents

Glass composition and conductive paste using the same Download PDF

Info

Publication number
JP2010173904A
JP2010173904A JP2009019498A JP2009019498A JP2010173904A JP 2010173904 A JP2010173904 A JP 2010173904A JP 2009019498 A JP2009019498 A JP 2009019498A JP 2009019498 A JP2009019498 A JP 2009019498A JP 2010173904 A JP2010173904 A JP 2010173904A
Authority
JP
Japan
Prior art keywords
glass
glass composition
electrode
semiconductor substrate
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009019498A
Other languages
Japanese (ja)
Other versions
JP5703539B2 (en
Inventor
Yuki Yokoyama
雄貴 横山
Kazuhiko Yamanaka
一彦 山中
Toru Shimoyama
徹 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2009019498A priority Critical patent/JP5703539B2/en
Publication of JP2010173904A publication Critical patent/JP2010173904A/en
Application granted granted Critical
Publication of JP5703539B2 publication Critical patent/JP5703539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass composition containing substantially no PbO nor SiO<SB>2</SB>and fluidizing quickly at firing temperature. <P>SOLUTION: The glass composition does not substantially include PbO and SiO<SB>2</SB>, and contains, by mass% in terms of oxides: 79%≤Bi<SB>2</SB>O<SB>3</SB><99.9%; 0.1%≤B<SB>2</SB>O<SB>3</SB>≤5.2%; 0%<ZnO≤11%; 0-10% at least one of BaO, MgO, CaO and SrO; 0-10% Al<SB>2</SB>O<SB>3</SB>; 0-5% at least one of CeO<SB>2</SB>, CuO and Fe<SB>2</SB>O<SB>3</SB>; and 0-2% at least one of Li<SB>2</SB>O, Na<SB>2</SB>O and K<SB>2</SB>O, and further satisfies 0.007<B<SB>2</SB>O<SB>3</SB>/Bi<SB>2</SB>O<SB>3</SB><0.375 in the scaling ratio of mol%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、実質的にPbOおよびSiOを含まず、半導体デバイス用電極を形成する導電性ペーストに含有する無鉛ガラス組成物に関する。特に結晶系Si太陽電池のn型もしくはp型Si半導体基板に電極を形成する導電性ペーストに含有するガラス組成物、このガラス組成物を用いて作製された導電性ペーストおよびこのペーストを用いて形成した電極を備えた太陽電池に関する。 The present invention relates to a lead-free glass composition that is substantially free of PbO and SiO 2 and is contained in a conductive paste that forms an electrode for a semiconductor device. In particular, a glass composition contained in a conductive paste for forming an electrode on an n-type or p-type Si semiconductor substrate of a crystalline Si solar cell, a conductive paste produced using this glass composition, and a paste formed using this paste The present invention relates to a solar cell including the prepared electrode.

近年、地球温暖化やクリーンエネルギーの利用の観点から、家庭用もしくは産業用の太陽電池の需要が著しく増加している。特に、現在は結晶系Si半導体基板を用いた太陽電池が多く用いられている。   In recent years, from the viewpoint of global warming and the use of clean energy, the demand for solar cells for home use or industrial use has increased remarkably. In particular, many solar cells using a crystalline Si semiconductor substrate are currently used.

その結晶系Si太陽電池の構成は、p型のSi半導体基板の表面にn型層を設けてpn接合を形成し、受光面となるn型層側には受光面電極を備え、反対側のp型層側には裏面電極を備える形態が広く採用されている。また、受光面には入射光をより多く取り込むために反射防止膜を被覆している。   The structure of the crystalline Si solar cell is as follows. An n-type layer is provided on the surface of a p-type Si semiconductor substrate to form a pn junction, and a light-receiving surface electrode is provided on the n-type layer side serving as a light-receiving surface. A form having a back electrode is widely adopted on the p-type layer side. The light receiving surface is covered with an antireflection film in order to capture more incident light.

この結晶系Si太陽電池において、上記した受光面電極および裏面電極は、導電作用を担う金属粉末(具体的にはAg粉末)と有機ビヒクルとを混練した導電性ペーストを結晶系Si半導体基板上にスクリーン印刷法等の印刷法により塗布した後、焼成炉で焼成を行うことで、金属粉末の焼結体として形成される。この印刷法は、自動化が容易で生産性向上が望まれることから、電子デバイスの電極形成の手法として公知のものである。   In this crystalline Si solar cell, the above-mentioned light receiving surface electrode and back electrode are made of a conductive paste obtained by kneading a metal powder (specifically, Ag powder) having an electrical conductivity and an organic vehicle on a crystalline Si semiconductor substrate. After being applied by a printing method such as a screen printing method, it is fired in a firing furnace to be formed as a sintered body of metal powder. This printing method is known as a method for forming an electrode of an electronic device because automation is easy and productivity improvement is desired.

また、電極と結晶系Si半導体基板との接着強度を高めるためには、導電性ペースト中にガラス粉末を添加したものを焼結することにより、焼結体となった電極中にガラス粉末が分散していることが望ましい。非特許文献1によると、導電性ペースト中にPbOを含むガラス組成物を使用することが開示されている。   In addition, in order to increase the adhesive strength between the electrode and the crystalline Si semiconductor substrate, the glass powder is dispersed in the sintered electrode by sintering a conductive paste to which glass powder is added. It is desirable that According to Non-Patent Document 1, it is disclosed to use a glass composition containing PbO in a conductive paste.

さらに、実質的に鉛を含有せず、Bi、BおよびZnOを主要成分として含有するガラス組成物は平面ディスプレイにも使用されている。この平面ディスプレイに使用されるガラス組成物は低融点ガラスであり、550℃以上の温度で結晶化するガラスであり、450〜550℃では結晶化しないガラスであった(特許文献1)。 Furthermore, glass compositions containing substantially no lead and containing Bi 2 O 3 , B 2 O 3 and ZnO as main components are also used in flat displays. The glass composition used for this flat display was a low melting glass, a glass that crystallized at a temperature of 550 ° C. or higher, and a glass that did not crystallize at 450 to 550 ° C. (Patent Document 1).

特開2006−137637号公報JP 2006-137737 A

P, Fath et al., 19th European Photovoltaic Solar Energy Conference, 7-11, 2004.P, Fath et al., 19th European Photovoltaic Solar Energy Conference, 7-11, 2004.

非特許文献1には、焼成工程において、導電性ペーストが結晶系Si半導体基板上の反射防止膜(おもに窒化ケイ素からなる)と反応することによって、受光面に形成したn型層と電気的に接触することができると記載されている。この反応時には、導電性ペースト中に添加されているガラス組成物が、その役割を担うことも示されている。   Non-Patent Document 1 discloses that in the baking process, the conductive paste reacts with the antireflection film (mainly made of silicon nitride) on the crystalline Si semiconductor substrate, thereby electrically connecting the n-type layer formed on the light receiving surface. It is described that it can contact. It is also shown that the glass composition added to the conductive paste plays the role during this reaction.

しかし、この結晶系Si太陽電池の用途に使用される電極を形成する焼成工程における焼成プロファイルは、焼成温度範囲(電極材料の種類によらず一般的に700〜800℃である)中の加熱開始から加熱終了までの時間が数分といった短時間である。このため、この短時間で良好な流動性を持つことが必要とされている。この良好な流動性を持つものとして、非特許文献1に開示されていたようなPbOを含むガラス組成物が用いられていたが、近年環境保護の観点から電子部品に含まれる鉛化合物には懸念を持たれており、この用途においても無鉛化の必要性が叫ばれている。   However, the firing profile in the firing step for forming the electrodes used for the applications of this crystalline Si solar cell is the start of heating in the firing temperature range (generally 700 to 800 ° C. regardless of the type of electrode material). The time from heating to the end of heating is as short as several minutes. For this reason, it is required to have good fluidity in this short time. A glass composition containing PbO as disclosed in Non-Patent Document 1 has been used as a material having this good fluidity, but in recent years, there is concern about lead compounds contained in electronic components from the viewpoint of environmental protection. In this application, the necessity of lead-free has been screamed.

また、特許文献1に記載の低融点ガラスは、550℃を超える温度で結晶化するガラスであるため、700〜800℃で良好な流動性が得られないものであった。   Moreover, since the low melting glass described in Patent Document 1 is a glass that crystallizes at a temperature exceeding 550 ° C., good fluidity cannot be obtained at 700 to 800 ° C.

したがって、本発明は上記課題を解決するために、実質的にPbOおよびSiOを含有しないガラス組成物であって、焼成温度範囲での加熱時間が短い場合であっても良好に流動するガラス組成物を提供することを目的とする。 Accordingly, in order to solve the above-mentioned problems, the present invention is a glass composition that substantially does not contain PbO and SiO 2 , and is a glass composition that flows well even when the heating time in the firing temperature range is short. The purpose is to provide goods.

したがって、本発明は上記課題を解決するために、請求項1に対応する発明は、実質的にPbOとSiOを含まないガラス組成物において、質量%表示の酸化物換算で79%≦Bi<99.9%、0.1%≦B≦5.2%、0%<ZnO≦11%を含有し、かつモル%換算比で0.007<B/Bi<0.375を満たすものとした。このような組成範囲とすることにより、電極を焼結するための焼成温度までの昇温過程でBi系結晶が析出し、ペースト中の有機成分を除去する(脱バインダー)温度(500℃)付近でガラスの流動を防ぐことができる。また、このBi系結晶は融点が上記焼成温度よりも低温であると考えられるため、昇温過程で融解するので、700〜800℃での流動性に優れている。 Therefore, in order to solve the above-mentioned problems, the invention corresponding to claim 1 is a glass composition that substantially does not contain PbO and SiO 2. 79% ≦ Bi 2 in terms of oxide in mass%. O 3 <99.9%, 0.1% ≦ B 2 O 3 ≦ 5.2%, 0% <ZnO ≦ 11%, and 0.007 <B 2 O 3 / Bi in terms of mol% 2 O 3 <0.375 was satisfied. By setting it as such a composition range, Bi system crystal | crystallization precipitates in the temperature rising process to the baking temperature for sintering an electrode, and removes the organic component in a paste (debinder) temperature (500 degreeC) vicinity The glass can be prevented from flowing. Further, since this Bi-based crystal is considered to have a melting point lower than the above firing temperature, it melts in the temperature rising process, and therefore has excellent fluidity at 700 to 800 ° C.

請求項2に対応する発明は、請求項1に対応する発明のガラス組成物において、BaO、MgO、CaOおよびSrOの少なくとも一種を0〜10質量%、Alを0〜10質量%含有するものとした。 The invention corresponding to claim 2 contains 0 to 10% by mass of at least one of BaO, MgO, CaO and SrO and 0 to 10% by mass of Al 2 O 3 in the glass composition of the invention corresponding to claim 1. To do.

請求項3に対応する発明は、請求項1または2に対応する発明のガラス組成物において、CeO、CuOおよびFeの少なくとも一種を0〜5質量%含有するものとした。 The invention corresponding to claim 3 contains 0 to 5% by mass of at least one of CeO 2 , CuO and Fe 2 O 3 in the glass composition of the invention corresponding to claim 1 or 2.

請求項4に対応する発明は、請求項1〜3のいずれかに対応する発明に記載のガラス組成物において、LiO、NaOおよびKOの少なくとも一種を0〜2.0質量%含有するものとした。 The invention corresponding to claim 4 is the glass composition according to any one of claims 1 to 3, wherein at least one of Li 2 O, Na 2 O and K 2 O is 0 to 2.0 mass. % Content.

請求項5に対応する発明は、導電性ペーストにおいて、金属粉末と、有機ビヒクルと、請求項1〜4のいずれかに対応する発明に記載のガラス組成物から形成されたガラス粉末とを混合するものとした。本発明において、金属粉末とは、その状態が粉末状のものだけでなく、フレーク状のものを含むものとする。また、金属粉末としては、Ag粉末、Cu粉末、Pd粉末、Au粉末およびPt粉末が考えられ、好ましくはAg粉末である。ただし、Cu粉末においては材料の特性上還元雰囲気下(おもにN)での取扱いが好ましい。 The invention corresponding to claim 5 mixes the metal powder, the organic vehicle, and the glass powder formed from the glass composition according to any one of claims 1 to 4 in the conductive paste. It was supposed to be. In the present invention, the metal powder includes not only powdered materials but also flaky materials. Further, as the metal powder, Ag powder, Cu powder, Pd powder, Au powder and Pt powder can be considered, and Ag powder is preferable. However, the Cu powder is preferably handled in a reducing atmosphere (mainly N 2 ) due to the characteristics of the material.

請求項6に対応する発明は、半導体基板上に形成する電極の製造方法において、請求項1〜4のいずれかに対応する発明に記載のガラス組成物から形成されたガラス粉末と、金属粉末と、有機ビヒクルとを混合してペーストとする工程と、このペーストを半導体基板上に塗布し塗布基板を作製する工程と、この塗布基板を焼成し前記半導体基板上に電極を形成する工程を行うこととした。上記半導体基板とは、結晶系半導体基板(結晶系Siや結晶系Ge)、好ましくは結晶系Siが用いられる。   The invention corresponding to claim 6 is a method for producing an electrode formed on a semiconductor substrate, wherein the glass powder formed from the glass composition according to any one of claims 1 to 4 and a metal powder A step of mixing an organic vehicle to form a paste, a step of applying the paste onto a semiconductor substrate to produce a coated substrate, and a step of firing the coated substrate to form an electrode on the semiconductor substrate. It was. As the semiconductor substrate, a crystalline semiconductor substrate (crystalline Si or crystalline Ge), preferably crystalline Si is used.

請求項7に対応する発明は、半導体基板上の受光面に反射防止膜が形成された太陽電池において、請求項5に対応する発明に記載の導電性ペーストを用いて形成した電極を備えるものとした。   An invention corresponding to claim 7 is a solar cell in which an antireflection film is formed on a light receiving surface on a semiconductor substrate, and includes an electrode formed using the conductive paste according to the invention corresponding to claim 5. did.

本発明によれば、実質的にPbOおよびSiOを含有しないガラス組成物は、一旦焼成温度よりも低温で結晶化し、その後その結晶が融解し焼成温度で素早く流動することができる。したがって、反射防止膜が形成された半導体基板に塗布する導電性ペーストに添加して用いると、反射防止膜と良好に反応し電極と半導体基板との間に良好な電気的接合を可能とすることが期待できる。 According to the present invention, a glass composition substantially free of PbO and SiO 2 can be crystallized once at a temperature lower than the firing temperature, and then the crystals can melt and rapidly flow at the firing temperature. Therefore, when added to a conductive paste applied to a semiconductor substrate on which an antireflection film is formed, it reacts well with the antireflection film and enables good electrical bonding between the electrode and the semiconductor substrate. Can be expected.

本発明のガラス組成物は通常、D50で1〜2μm程度の粉末状にしてガラス粉末として使用される。このガラス粉末と金属粉末(具体的にはAg粉末)と有機ビヒクルとを混練して導電性ペーストとして使用するときには、焼結体の電極形成のために700〜800℃で焼成されることとなる。次に、ガラス組成物の各成分について質量%を単に%と表示して説明する。 The glass composition of the present invention is typically used as the glass powder in the 1~2μm about triturated with D 50. When this glass powder, metal powder (specifically, Ag powder) and organic vehicle are kneaded and used as a conductive paste, it is fired at 700 to 800 ° C. to form an electrode of a sintered body. . Next, the mass% of each component of the glass composition will be described by simply indicating%.

Biはガラスの軟化流動性を上げ、半導体基板と電極とを接合するための必須成分である。Biが79%未満ではガラス組成物の軟化点が高くなり脱バインダー時にガラスが流動するおそれがある。好ましくは83%以上であり、さらに好ましくは85%以上である。一方、99.9%以上だとガラス化が極めて困難となる。好ましくは97%以下であり、さらに好ましくは95%以下である。また、焼成温度範囲よりも低温で結晶化し融解する結晶を析出させるための必須成分でもある。 Bi 2 O 3 is an essential component for increasing the softening fluidity of the glass and joining the semiconductor substrate and the electrode. If Bi 2 O 3 is less than 79%, the softening point of the glass composition becomes high and the glass may flow during debinding. Preferably it is 83% or more, More preferably, it is 85% or more. On the other hand, if it is 99.9% or more, vitrification becomes extremely difficult. Preferably it is 97% or less, More preferably, it is 95% or less. It is also an essential component for precipitating crystals that crystallize and melt at a temperature lower than the firing temperature range.

はガラスネットワークフォーマーであり、必須成分である。Bが0.1%未満であるとガラス化が困難となる。好ましくは1%以上、さらに好ましくは2.5%以上である。一方、5.2%を超えると耐水性の低いガラスとなってしまい、電極の耐久性を低減させるだけでなく、軟化点が高くなり脱バインダー時にガラスが流動し、焼成温度範囲内で結晶が析出し流動性を低下させる可能性がある。好ましくは5.1%以下であり、さらに好ましくは4.8%以下である。 B 2 O 3 is a glass network former and is an essential component. Vitrification becomes difficult when B 2 O 3 is less than 0.1%. Preferably it is 1% or more, More preferably, it is 2.5% or more. On the other hand, if it exceeds 5.2%, it becomes a glass with low water resistance, not only reducing the durability of the electrode, but also the softening point becomes high, the glass flows at the time of debinding, and the crystals are within the firing temperature range. It may precipitate and reduce the fluidity. Preferably it is 5.1% or less, More preferably, it is 4.8% or less.

ZnOはガラス安定化の調整、半導体基板との接着力向上およびガラス軟化点調整等のための必須成分である。ZnOが含まれていないと脱バインダー時に結晶を析出させることが難しくなり、ガラスを安定にするためには2%以上が好ましい。一方、11%超ではガラスの流動性を低下させるおそれがある。好ましくは9%以下である。   ZnO is an essential component for adjusting glass stabilization, improving adhesion to a semiconductor substrate, adjusting the glass softening point, and the like. If ZnO is not contained, it becomes difficult to precipitate crystals at the time of debinding, and 2% or more is preferable for stabilizing the glass. On the other hand, if it exceeds 11%, the fluidity of the glass may be reduced. Preferably it is 9% or less.

MgO、CaO、SrOおよびBaOは任意成分であり、半導体基板との接着力向上やガラス安定性等のためにその合計量として10%まで含有してもよい。しかし、10%超ではガラスの流動性が低下したり、ガラスが不安定になったりするおそれがある。好ましくは1.3%以上8%以下である。さらに好ましくは1.5%以上6%以下である。   MgO, CaO, SrO and BaO are optional components, and may be contained in a total amount of up to 10% in order to improve the adhesive strength with the semiconductor substrate and to stabilize the glass. However, if it exceeds 10%, the fluidity of the glass may decrease, or the glass may become unstable. Preferably they are 1.3% or more and 8% or less. More preferably, it is 1.5% or more and 6% or less.

Alは任意成分であるが、ガラス安定性を向上させる効果がある。ただし、10%超ではガラス流動性を低下させることになる。好ましくは8%以下、さらに好ましくは6%以下である。 Al 2 O 3 is an optional component, but has an effect of improving glass stability. However, if it exceeds 10%, the glass fluidity is lowered. Preferably it is 8% or less, More preferably, it is 6% or less.

CeO、CuOおよびFeは任意成分であるが、ガラス製造時における生産安定性、特にガラス溶解時、雰囲気を酸性に保ち、溶解槽の腐食を低減する効果がある。そのため、工業的に白金等の耐火物を使用して生産する場合には、少なくとも一種を含むとよい。その含有量の合計は、好ましくは0〜3%(0%を含まない)である。 CeO 2 , CuO and Fe 2 O 3 are optional components, but have the effect of reducing the corrosion of the melting tank by maintaining the production stability during glass production, particularly when the glass is melted, and the atmosphere is acidic. Therefore, when producing using refractories, such as platinum, industrially, it is good to contain at least one sort. The total content is preferably 0 to 3% (excluding 0%).

LiO、NaOおよびKOは含有しなくてもよいが、2%の上限であれば含んでもよい。好ましくは1%以下、さらに好ましくは0.5%以下である。上記のアルカリ金属酸化物を含有すると、例えば本発明のガラスを太陽電池の電極部材に用いた場合、熱拡散しやすいアルカリ金属イオンが半導体基板中に拡散し、太陽電池としての電極性能を著しく劣化させるおそれがある。 Li 2 O, Na 2 O and K 2 O may not be contained, but may be contained as long as the upper limit is 2%. Preferably it is 1% or less, More preferably, it is 0.5% or less. When the above-mentioned alkali metal oxide is contained, for example, when the glass of the present invention is used for an electrode member of a solar cell, alkali metal ions that are easily thermally diffused diffuse into the semiconductor substrate, and the electrode performance as a solar cell is significantly deteriorated. There is a risk of causing.

また、Bの含有量とBiの含有量との比率は、脱バインダー時に所望とする結晶を析出させるための重要な条件であり、その含有量をモル換算したときに、0.007<B/Bi<0.375の関係を満たす必要がある。下限値は好ましくは0.150であり、さらに好ましくは0.250である。上限値は好ましくは0.350であり、さらに好ましくは0.340である。この所望とする結晶は、500℃付近では結晶が含まれガラスの流動性が抑えられた状態で、550〜650℃付近から析出結晶の再融解が始まり、700〜800℃で良好に流動する程度に融解するものである。 Further, the ratio of the content of B 2 O 3 and the content of Bi 2 O 3 is an important condition for precipitating the desired crystal at the time of debinding, and when the content is converted into a mole, It is necessary to satisfy the relationship 0.007 <B 2 O 3 / Bi 2 O 3 <0.375. The lower limit is preferably 0.150, more preferably 0.250. The upper limit is preferably 0.350, more preferably 0.340. The desired crystal is a state in which the crystal is contained at around 500 ° C. and the fluidity of the glass is suppressed, and the recrystallization of the precipitated crystal starts from around 550 to 650 ° C. and flows well at 700 to 800 ° C. It will melt.

本発明のガラス組成物は上記成分を含むものであるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。その場合、そのような成分の含有量は合計で10%以下であることが好ましく、より好ましくは8%以下、さらに好ましくは5%以下である。   The glass composition of the present invention contains the above components, but may contain other components as long as the object of the present invention is not impaired. In that case, the total content of such components is preferably 10% or less, more preferably 8% or less, and even more preferably 5% or less.

また、本発明において、PbOおよびSiOは実質的に含有しない。高ビスマス含有ガラスにおいて、SiOを必須成分として積極的に含有させると、上記した焼成温度でSiを含む結晶の析出が促進されるため、焼成時の流動性が著しく悪くなることが懸念される。PbOは先述の通り環境的側面から含有することは好ましくない。どちらの酸化物も、含有したとしても不純物程度である。 Further, in the present invention, PbO and SiO 2 is not substantially contained. In a high bismuth-containing glass, if SiO 2 is positively contained as an essential component, precipitation of crystals containing Si is promoted at the firing temperature described above, and thus there is a concern that the fluidity during firing will be significantly deteriorated. . It is not preferable that PbO is contained from the environmental aspect as described above. Even if both oxides are contained, they are at an impurity level.

本発明のガラスを用いた太陽電池用導電性ペーストは、ガラス粉末と印刷性を付与する等のための有機ビヒクルおよび電極材である金属粉末(具体的にはAg粉末)とを混合して作製される。なお、有機ビヒクルとはメチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース、ニトロセルロース等を例えば、α−テルピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものや、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリテート、2−ヒドロオキシエチルメタアクリレート等のアクリル系樹脂を例えば、メチルエチルケトン、α−テルピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものが挙げられる。   The conductive paste for solar cell using the glass of the present invention is prepared by mixing glass powder and organic vehicle for imparting printability and metal powder (specifically, Ag powder) as an electrode material. Is done. The organic vehicle is, for example, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, propyl cellulose, nitrocellulose or the like dissolved in a solvent such as α-terpineol, butyl carbitol acetate, ethyl carbitol acetate, Acrylic resins such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl methacrylate and the like such as methyl ethyl ketone, α-terpineol, butyl carbitol acetate, ethyl carbitol acetate, etc. The thing melt | dissolved in the solvent is mentioned.

作成された導電性ペーストは反射防止膜の形成された結晶系Si半導体基板へ200〜325メッシュを用いたスクリーン印刷で塗布され、赤外線ランプ加熱装置(焼成炉)で焼成を行う。焼成の際には、導電性ペースト中のガラス粉末と反射防止膜とが反応することで、Ag電極と結晶系Si半導体基板上のn型層またはp型層との導通がとれることとなる。   The prepared conductive paste is applied to a crystalline Si semiconductor substrate on which an antireflection film is formed by screen printing using 200 to 325 mesh, and is baked by an infrared lamp heating device (baking furnace). In firing, the glass powder in the conductive paste and the antireflection film react with each other, so that the Ag electrode and the n-type layer or the p-type layer on the crystalline Si semiconductor substrate can be electrically connected.

上記焼成は700〜800℃で行われる。結晶系Si半導体基板とAg電極との金属間反応においては、導電性ペースト中に含有されているガラス組成物がバインダーとしての役割を果たす。焼成される過程において、500℃程度で流動しすぎてしまうと、ペースト中の有機成分の分解が阻害され、電極中にカーボンが残存するリスクが高まる。このように、電極中にカーボンが残存すると、ペーストが発泡して表面の外観を損なう上、基板への設置部分が低下し電極形成における反応性を低下させるおそれがある。また、700℃付近で結晶化するようなガラスであると流動せず、反射防止膜とガラスとの反応が起こりにくくなり電気的接合が不十分となって、電極の接触抵抗を著しく増大し、発光効率の低下の恐れがある。したがって、焼成温度である700℃付近において、ガラス組成物を良好に流動させることで結晶系Si半導体基板とAg電極との間とを阻害させることなく良好な接着が得られると考えられる。   The firing is performed at 700 to 800 ° C. In the intermetallic reaction between the crystalline Si semiconductor substrate and the Ag electrode, the glass composition contained in the conductive paste serves as a binder. In the process of firing, if it flows too much at about 500 ° C., the decomposition of the organic components in the paste is hindered, and the risk of carbon remaining in the electrode increases. As described above, when carbon remains in the electrode, the paste foams and the appearance of the surface is impaired, and the installation portion on the substrate is lowered, which may reduce the reactivity in electrode formation. In addition, the glass that crystallizes around 700 ° C. does not flow, the reaction between the antireflection film and the glass is less likely to occur, the electrical connection becomes insufficient, and the contact resistance of the electrode is remarkably increased. There is a risk of reduction in luminous efficiency. Therefore, it is considered that good adhesion can be obtained without disturbing between the crystalline Si semiconductor substrate and the Ag electrode by causing the glass composition to flow well around 700 ° C., which is the firing temperature.

(太陽電池の製造方法)
本発明の太陽電池の製造方法について詳しく説明する。また、以下の説明においては、250μm以下の厚みにスライスされたp型の結晶系Si半導体基板を用いて説明を行うが、n型の結晶系Si半導体基板を用いても構わない。
(Method for manufacturing solar cell)
The manufacturing method of the solar cell of this invention is demonstrated in detail. In the following description, a p-type crystalline Si semiconductor substrate sliced to a thickness of 250 μm or less will be described, but an n-type crystalline Si semiconductor substrate may be used.

初めに、基板のスライス面を洗浄するために、表面をNaOHやフッ酸等でごく微量程度エッチング処理する。   First, in order to clean the sliced surface of the substrate, the surface is etched by a trace amount with NaOH or hydrofluoric acid.

その後、光の受光面側の結晶系Si半導体基板表面にドライエッチング法や、ウエットエッチング法を用いて、光反射率を低減させるような凹凸構造を形成する。ただし、この凹凸構造の形成は、省略することもできる。高効率のものを得るためには、凹凸構造を形成することが望ましい。   Thereafter, a concavo-convex structure for reducing light reflectance is formed on the surface of the crystalline Si semiconductor substrate on the light receiving surface side by using a dry etching method or a wet etching method. However, the formation of the concavo-convex structure can be omitted. In order to obtain a highly efficient one, it is desirable to form a concavo-convex structure.

次に、n型層を拡散にて形成する。n型化のドーピング元素としてはP(リン)を用いることが好ましく、これは半導体基板の受光面に形成されるものである。例えば、ガス状態にしたPOCl(オキシ塩化リン)を拡散源とした気相熱拡散法などが挙げられる。このn型層は0.2〜0.5μm程度の厚みに形成される。なお、この過程において、望まない部分に拡散領域が形成された場合には、後工程でエッチング処理によって不要部分を除去すればよい。 Next, an n-type layer is formed by diffusion. P (phosphorus) is preferably used as the n-type doping element, which is formed on the light receiving surface of the semiconductor substrate. For example, a gas phase thermal diffusion method using POCl 3 (phosphorus oxychloride) in a gas state as a diffusion source can be used. This n-type layer is formed to a thickness of about 0.2 to 0.5 μm. In this process, when a diffusion region is formed in an undesired portion, an unnecessary portion may be removed by an etching process in a later step.

次に、反射防止膜を形成する。反射防止膜の材料としては、おもに、SiNx(窒化珪素、Siを中心とし、組成比(x)には幅がある)が用いられる。その厚みは、適当な入射光に対して無反射条件を実現できるよう、半導体材料に応じて選択する。Si半導体基板である場合、屈折率2.2程度、厚み70nm程度にすればよい。その製法としては、プラズマCVD法、またはスパッタ法などが用いられる。 Next, an antireflection film is formed. As a material of the antireflection film, SiNx (silicon nitride, Si 3 N 4 is the center, and the composition ratio (x) has a width) is mainly used. The thickness is selected according to the semiconductor material so that non-reflection conditions can be realized with respect to appropriate incident light. In the case of a Si semiconductor substrate, the refractive index may be about 2.2 and the thickness may be about 70 nm. As its manufacturing method, a plasma CVD method, a sputtering method, or the like is used.

次に、表面電極および裏面電極を半導体基板の表面側および裏面側に形成する。これらの電極は、半導体基板の表面にスクリーン印刷法等の公知の塗布法を用いて、本発明のガラス粉末を含有した太陽電池電極用導電性ペーストを塗布する。また、裏面には太陽電池電極用Alペーストおよびはんだ付けのためのAgペーストを塗布する。その後、ピーク温度が700〜800℃程度で数十秒〜数分間焼成を行い、電極を形成する。   Next, the front surface electrode and the back surface electrode are formed on the front surface side and the back surface side of the semiconductor substrate. These electrodes apply | coat the electrically conductive paste for solar cell electrodes containing the glass powder of this invention to the surface of a semiconductor substrate using well-known coating methods, such as a screen printing method. Further, an Al paste for solar cell electrodes and an Ag paste for soldering are applied to the back surface. Thereafter, firing is performed at a peak temperature of about 700 to 800 ° C. for several tens of seconds to several minutes to form an electrode.

以上のようにして、太陽電池の製造が行われる。特に、本発明においては無鉛ガラス粉末を用いるため、環境保護の観点からも好ましい太陽電池を製造することができる。   The solar cell is manufactured as described above. In particular, since a lead-free glass powder is used in the present invention, a preferable solar cell can be manufactured from the viewpoint of environmental protection.

表1〜4の各成分の欄に質量%表示で示す組成となるように原料を調合して混合し、1000〜1250℃の電気炉中で白金ルツボを用いて1時間溶融し、薄板状ガラスに成形した後、ボールミルで粉砕し、その後325メッシュの篩にて粗粒を除去してガラス粉末を得た。例1〜20は実施例,例21〜27は比較例である。   The raw materials are prepared and mixed so as to have the composition shown in mass% in the columns of each component in Tables 1 to 4, and melted for 1 hour in a 1000 to 1250 ° C. electric furnace using a platinum crucible. After forming into a glass powder, it was pulverized with a ball mill, and then coarse particles were removed with a 325 mesh sieve to obtain a glass powder. Examples 1 to 20 are examples, and examples 21 to 27 are comparative examples.

各ガラス粉末の転移点:Tg(単位:℃)、結晶化点:Tc(単位:℃)について、示差熱分析装置(DTA)を用いて測定した。   The transition point: Tg (unit: ° C) and the crystallization point: Tc (unit: ° C) of each glass powder were measured using a differential thermal analyzer (DTA).

各ガラス粉末の流動性は次のようにして評価した。各サンプルにおいて体積を一定に計量したガラス粉末を直径が12.7mm(1/2インチ)の型でプレス成型したサンプル(フローボタン)を作製し、これを500〜700℃までの3条件で、バッチ焼成炉で昇温して流動させ流動性を評価した。昇温後のサンプルの直径が30mm以上であるものは流動性が良好であるとして表中にHで、15mm以下のものはLで、15mm超30mm未満のものはその値を、それぞれ示した。導電性ペーストに使用されるガラス粉末としては、500℃における流動性がL(本実施例ではサンプルが結晶化して流動せず)で、700℃における流動性がHであることが求められる。   The fluidity of each glass powder was evaluated as follows. A sample (flow button) in which a glass powder with a constant volume measured in each sample is press-molded with a mold having a diameter of 12.7 mm (1/2 inch) is prepared, and this is performed under three conditions from 500 to 700 ° C. The fluidity was evaluated by heating and flowing in a batch firing furnace. Samples having a diameter of 30 mm or more after the temperature rise are indicated as H in the table as having good fluidity, those having a diameter of 15 mm or less are L, and those exceeding 15 mm and less than 30 mm show the values. The glass powder used for the conductive paste is required to have a fluidity at 500 ° C. of L (in this example, the sample does not crystallize and flow) and a fluidity at 700 ° C. of H.

Figure 2010173904
Figure 2010173904

Figure 2010173904
Figure 2010173904

Figure 2010173904
Figure 2010173904

Figure 2010173904
Figure 2010173904

本発明のガラス組成物は、太陽電池の電極だけではなく、マイクロマシン(MEMS)、低温同時焼成基板(LTCC),プラズマディスプレイパネルの部材にも利用できる。   The glass composition of the present invention can be used not only for electrodes of solar cells but also for members of micromachines (MEMS), low-temperature co-fired substrates (LTCC), and plasma display panels.

Claims (7)

実質的にPbOとSiOを含まず、質量%表示の酸化物換算で79%≦Bi<99.9%、0.1%≦B≦5.2%、0%<ZnO≦11%を含有し、かつモル%換算比で0.007<B/Bi<0.375を満たすことを特徴とするガラス組成物。 Substantially free of PbO and SiO 2 , 79% ≦ Bi 2 O 3 <99.9%, 0.1% ≦ B 2 O 3 ≦ 5.2%, 0% < A glass composition characterized by containing ZnO ≦ 11% and satisfying 0.007 <B 2 O 3 / Bi 2 O 3 <0.375 in terms of mol%. BaO、MgO、CaO、SrOの少なくとも一種を0〜10質量%、Alを0〜10質量%含有する請求項1に記載のガラス組成物。 The glass composition according to claim 1, comprising 0 to 10% by mass of BaO, MgO, CaO and SrO and 0 to 10% by mass of Al 2 O 3 . CeO、CuO、Feの少なくとも一種を0〜5質量%含有する請求項1または2に記載のガラス組成物。 CeO 2, CuO, at least one of the containing 0-5 wt% claim 1 or 2 glass composition according to the Fe 2 O 3. LiO、NaO、KOの少なくとも一種を0〜2.0質量%含有する請求項1〜3のいずれかに記載のガラス組成物。 Li 2 O, Na 2 O, the glass composition according to claim 1, at least one of K 2 O containing 0 to 2.0 wt%. 金属粉末と、有機ビヒクルと、請求項1〜4のいずれかに記載のガラス組成物から形成されたガラス粉末とを混合して作成した導電性ペースト。   The electrically conductive paste produced by mixing metal powder, an organic vehicle, and the glass powder formed from the glass composition in any one of Claims 1-4. 請求項1〜4記載のガラス組成物から形成されたガラス粉末と、金属粉末と、有機ビヒクルとを混合してペーストとする工程と、このペーストを半導体基板上に塗布し塗布基板を作製する工程と、この塗布基板を焼成し前記半導体基板上に電極を形成する工程を行うことを特徴とする電極の製造方法。   A step of mixing a glass powder formed from the glass composition according to claim 1, a metal powder, and an organic vehicle into a paste, and a step of applying the paste on a semiconductor substrate to produce a coated substrate And a method of manufacturing the electrode, comprising firing the coated substrate and forming an electrode on the semiconductor substrate. 半導体基板上の受光面に反射防止膜が形成された太陽電池において、請求項5に記載の導電性ペーストを用いて形成した電極を具備することを特徴とする太陽電池。   A solar cell in which an antireflection film is formed on a light receiving surface on a semiconductor substrate, the solar cell comprising an electrode formed using the conductive paste according to claim 5.
JP2009019498A 2009-01-30 2009-01-30 Glass composition Active JP5703539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019498A JP5703539B2 (en) 2009-01-30 2009-01-30 Glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019498A JP5703539B2 (en) 2009-01-30 2009-01-30 Glass composition

Publications (2)

Publication Number Publication Date
JP2010173904A true JP2010173904A (en) 2010-08-12
JP5703539B2 JP5703539B2 (en) 2015-04-22

Family

ID=42705233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019498A Active JP5703539B2 (en) 2009-01-30 2009-01-30 Glass composition

Country Status (1)

Country Link
JP (1) JP5703539B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023413A1 (en) * 2010-08-17 2012-02-23 日本電気硝子株式会社 Glass for use in forming electrodes, and electrode-forming material using same
JP2012041218A (en) * 2010-08-17 2012-03-01 Nippon Electric Glass Co Ltd Glass for forming electrode, and electrode-forming material using the same
JP2012066993A (en) * 2010-08-26 2012-04-05 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same
WO2012108290A1 (en) * 2011-02-10 2012-08-16 セントラル硝子株式会社 Electroconductive paste and solar cell element obtained using the electroconductive paste
JP2013055310A (en) * 2011-09-01 2013-03-21 ▲ゆ▼晶能源科技股▲分▼有限公司 Solar cell
JP2014060261A (en) * 2012-09-18 2014-04-03 Murata Mfg Co Ltd Conductive paste, solar battery, and method for manufacturing solar battery
CN108623168A (en) * 2018-06-29 2018-10-09 佛山腾鲤新能源科技有限公司 A kind of preparation method of solar cell size glass powder

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315634A (en) * 1995-05-23 1996-11-29 Murata Mfg Co Ltd Conductive paste and ceramic electronic component using it
JP2003095697A (en) * 2001-09-18 2003-04-03 Nihon Yamamura Glass Co Ltd Sealing composition
JP2005052208A (en) * 2003-08-05 2005-03-03 Nippon Electric Glass Co Ltd Glass lined for sealing metal vacuum double container
JP2006137637A (en) * 2004-11-12 2006-06-01 Asahi Techno Glass Corp Low melting glass, sealing composition and sealing paste
WO2006090551A1 (en) * 2005-02-22 2006-08-31 Murata Manufacturing Co., Ltd. Electroconductive paste, laminated ceramic electronic parts and method for manufacture thereof
JP2006253143A (en) * 2005-03-09 2006-09-21 E I Du Pont De Nemours & Co Black conductive thick film composition, black electrode and their forming method
JP2006302618A (en) * 2005-04-19 2006-11-02 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2006321665A (en) * 2005-05-17 2006-11-30 Nippon Electric Glass Co Ltd Bismuth-based lead-free glass composition
JP2007019106A (en) * 2005-07-05 2007-01-25 Kyocera Chemical Corp Conductive paste for forming electrode, and photovoltaic cell
JP2007059380A (en) * 2005-06-07 2007-03-08 E I Du Pont De Nemours & Co Thick aluminum film composition, electrode, semiconductor device and method of manufacturing them
JP2010018502A (en) * 2008-07-14 2010-01-28 Nippon Electric Glass Co Ltd Bismuth-based glass composition and sealing material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315634A (en) * 1995-05-23 1996-11-29 Murata Mfg Co Ltd Conductive paste and ceramic electronic component using it
JP2003095697A (en) * 2001-09-18 2003-04-03 Nihon Yamamura Glass Co Ltd Sealing composition
JP2005052208A (en) * 2003-08-05 2005-03-03 Nippon Electric Glass Co Ltd Glass lined for sealing metal vacuum double container
JP2006137637A (en) * 2004-11-12 2006-06-01 Asahi Techno Glass Corp Low melting glass, sealing composition and sealing paste
WO2006090551A1 (en) * 2005-02-22 2006-08-31 Murata Manufacturing Co., Ltd. Electroconductive paste, laminated ceramic electronic parts and method for manufacture thereof
JP2006253143A (en) * 2005-03-09 2006-09-21 E I Du Pont De Nemours & Co Black conductive thick film composition, black electrode and their forming method
JP2006302618A (en) * 2005-04-19 2006-11-02 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2006321665A (en) * 2005-05-17 2006-11-30 Nippon Electric Glass Co Ltd Bismuth-based lead-free glass composition
JP2007059380A (en) * 2005-06-07 2007-03-08 E I Du Pont De Nemours & Co Thick aluminum film composition, electrode, semiconductor device and method of manufacturing them
JP2007019106A (en) * 2005-07-05 2007-01-25 Kyocera Chemical Corp Conductive paste for forming electrode, and photovoltaic cell
JP2010018502A (en) * 2008-07-14 2010-01-28 Nippon Electric Glass Co Ltd Bismuth-based glass composition and sealing material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023413A1 (en) * 2010-08-17 2012-02-23 日本電気硝子株式会社 Glass for use in forming electrodes, and electrode-forming material using same
JP2012041218A (en) * 2010-08-17 2012-03-01 Nippon Electric Glass Co Ltd Glass for forming electrode, and electrode-forming material using the same
JP2012066993A (en) * 2010-08-26 2012-04-05 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same
WO2012108290A1 (en) * 2011-02-10 2012-08-16 セントラル硝子株式会社 Electroconductive paste and solar cell element obtained using the electroconductive paste
KR101455019B1 (en) 2011-02-10 2014-10-28 샌트랄 글래스 컴퍼니 리미티드 Electroconductive paste and solar cell element obtained using the electroconductive paste
TWI497739B (en) * 2011-02-10 2015-08-21 Central Glass Co Ltd A conductive paste and a solar cell element using the conductive paste
JP2013055310A (en) * 2011-09-01 2013-03-21 ▲ゆ▼晶能源科技股▲分▼有限公司 Solar cell
JP2014060261A (en) * 2012-09-18 2014-04-03 Murata Mfg Co Ltd Conductive paste, solar battery, and method for manufacturing solar battery
CN108623168A (en) * 2018-06-29 2018-10-09 佛山腾鲤新能源科技有限公司 A kind of preparation method of solar cell size glass powder

Also Published As

Publication number Publication date
JP5703539B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
EP2317523B1 (en) Conductive paste for forming a solar cell electrode
JP5703539B2 (en) Glass composition
JP5817827B2 (en) Conductive paste
CA2584073C (en) Method of making solar cell contacts
JP5166252B2 (en) Lead-free solar cell contact
JP5649290B2 (en) Lead-free conductive composition for solar cell electrode
JP5716664B2 (en) Glass frit for electrode formation, conductive paste for electrode formation using the same, solar cell
JP2009099781A (en) Conductive paste material
WO2017125710A1 (en) Conductive paste, method, electrode and solar cell
WO2012023413A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
TWI469944B (en) A low melting point glass composition and a conductive paste material using the same
JP6090706B2 (en) Electrode forming glass and electrode forming material using the same
JP5850388B2 (en) Electrode forming glass and electrode forming material using the same
WO2012111478A1 (en) Conductive paste and solar cell
TWI422547B (en) A conductive paste and a solar cell element using the conductive paste
JP2019127404A (en) Glass, method for producing glass, conductive paste, and solar cell
JP2014007212A (en) Glass for electrode formation and electrode-formation material using the same
TWI778141B (en) Conductive paste for forming solar cell electrodes
JP5943295B2 (en) Electrode forming glass and electrode forming material using the same
JP2014105153A (en) Bismuth-based glass composition and electrode formation material using the same
JP2014060260A (en) Conductive paste and solar battery
JP2014028713A (en) Glass for electrode formation and electrode formation material using the same
JP2011035035A (en) Conductive composition for solar cell electrode
JP2013212949A (en) Glass for electrode formation and electrode forming material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5703539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250