JP2010172132A - Rotating electric machine and method for cooling the rotating electric machine - Google Patents

Rotating electric machine and method for cooling the rotating electric machine Download PDF

Info

Publication number
JP2010172132A
JP2010172132A JP2009013323A JP2009013323A JP2010172132A JP 2010172132 A JP2010172132 A JP 2010172132A JP 2009013323 A JP2009013323 A JP 2009013323A JP 2009013323 A JP2009013323 A JP 2009013323A JP 2010172132 A JP2010172132 A JP 2010172132A
Authority
JP
Japan
Prior art keywords
peripheral surface
rotor
holding member
inner peripheral
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009013323A
Other languages
Japanese (ja)
Inventor
Masao Yabumoto
政男 籔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009013323A priority Critical patent/JP2010172132A/en
Publication of JP2010172132A publication Critical patent/JP2010172132A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To more suppress a rise in temperature of a rotor of a rotating electric machine than in a conventional method. <P>SOLUTION: A cooling medium 31 is flown from holes 15a-15d formed on a rotating shaft 15 to an inner circumferential surface of a rotor holding member 16 having "an outer circumferential surface abutting to the whole inner surface of (a core) of a rotor 12" and "the inner circumferential surface having an abutting region abutting to the outer circumferential surface of a rotating shaft 15 and a non-abutting region with a gap from the outer circumferential surface of the rotating shaft 15". Accordingly, the rotor holding member 16 exchanges heat with (the core) of the rotor 12 while being cooled by the cooling medium 31. Since the outer circumferential surface of the rotor holding member 16 abuts to the whole inner circumferential surface of (the core) of the rotor 12, heat exchange with the rotor 12 is executed in a wider range than in a conventional method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転電機及び回転電機の冷却方法に関し、特に、回転電機の回転子を冷却するために用いて好適なものである。   The present invention relates to a rotating electrical machine and a method for cooling a rotating electrical machine, and is particularly suitable for use in cooling a rotor of a rotating electrical machine.

固定子(ステータ)と回転子(ロータ)とを備えたモータ等の回転電機では、回転子の鉄心の鉄損等によって回転子が発熱する。この回転子は、固定子よりも軸心側に設けられており、回転子の外周面は固定子の内周面に近接している。よって、回転子が固定子で発生した熱を受けることにもなる。しかるに、回転子から回転電機の外部に熱を伝達するに適した固体部材は、一般的に断面積の小さい回転シャフトに限られるため、回転子で発生した熱を外に逃がすことが難しい。
また、回転子の磁極として永久磁石を用いた場合には、永久磁石の温度が上昇すると永久磁石が減磁してしまい、永久磁石の磁石としての機能が低下してしまう虞がある(すなわち、回転子としての機能が低下してしまう虞がある)。
In a rotating electrical machine such as a motor having a stator (stator) and a rotor (rotor), the rotor generates heat due to iron loss of the rotor core. The rotor is provided on the axial center side with respect to the stator, and the outer peripheral surface of the rotor is close to the inner peripheral surface of the stator. Therefore, the rotor also receives heat generated by the stator. However, since the solid member suitable for transferring heat from the rotor to the outside of the rotating electrical machine is generally limited to the rotating shaft having a small cross-sectional area, it is difficult to release the heat generated in the rotor to the outside.
When a permanent magnet is used as the magnetic pole of the rotor, the permanent magnet is demagnetized when the temperature of the permanent magnet rises, and the function of the permanent magnet as a magnet may be reduced (that is, There is a possibility that the function as a rotor is lowered).

そこで、従来から、回転電機の回転子を冷却するための技術がある。
特許文献1〜3には、回転電機の軸心部分に設けられた回転シャフトの中空部分に形成された油路から連通する油路を、回転子の鉄心の内部において径方向に形成するようにする技術が開示されている。
Therefore, conventionally, there is a technique for cooling the rotor of the rotating electrical machine.
In Patent Documents 1 to 3, an oil passage communicating with an oil passage formed in a hollow portion of a rotating shaft provided in a shaft portion of a rotating electrical machine is formed radially in the iron core of the rotor. Techniques to do this are disclosed.

特開2001−16826号公報JP 2001-16826 A 特開2006−67777号公報JP 2006-67777 A 特開2008−86130号公報JP 2008-86130 A

しかしながら、前述した特許文献1〜3に記載の技術では、回転子の鉄心としての機能を確保する必要があるため、鉄心の内部に多数の油路を形成したり大きな油路を形成したりすることが困難である。したがって、冷却油と回転子の鉄心との接触面積が小さくなるので、回転子の温度上昇を抑制することが困難であるという問題点があった、   However, in the techniques described in Patent Documents 1 to 3 described above, since it is necessary to ensure the function as the iron core of the rotor, a large number of oil passages or large oil passages are formed inside the iron core. Is difficult. Therefore, since the contact area between the cooling oil and the iron core of the rotor is small, there is a problem that it is difficult to suppress the temperature rise of the rotor.

本発明はこのような問題点に鑑みてなされたものであり、回転電機の回転子の温度上昇を従来よりも抑制できるようにすることを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to make it possible to suppress an increase in the temperature of a rotor of a rotating electrical machine more than in the past.

本発明の回転電機は、周方向に延在するヨークと、当該ヨークから径方向に延在するティースと、前記ティースに対して巻き回されているコイルとを有する固定子と、外周面が前記固定子の内周面と間隔を有して対向するように、前記固定子の軸心と軸心が同一になる位置に配置された回転子と、外周面が前記回転子の内周面より軸心側となるように、前記固定子及び前記回転子の軸心と軸心が同一になる位置に配置された回転シャフトと、前記回転子の内周面と、前記回転シャフトの外周面との間に配置された回転子保持部材とを有し、前記回転子保持部材は、前記軸心の方向に延在する外周面と内周面とを有し、前記回転子保持部材の外周面は、前記回転子の内周面と当接しており、前記回転子保持部材の内周面は、前記回転シャフトの外周面と当接する当接領域と、前記回転シャフトの外周面と間隔を有している非当接領域とを有し、前記回転子保持部材の内周面の非当接領域に冷却媒体が供給されることを特徴とする。   The rotating electrical machine according to the present invention includes a yoke extending in the circumferential direction, a tooth extending in the radial direction from the yoke, a stator wound around the teeth, and an outer peripheral surface of the stator. A rotor disposed at a position where the axis and the center of the stator are the same so as to be opposed to the inner peripheral surface of the stator with a gap, and an outer peripheral surface is more than the inner peripheral surface of the rotor A rotation shaft disposed at a position where the axis and the axis of the stator and the rotor are the same so as to be on the axis side, an inner circumferential surface of the rotor, and an outer circumferential surface of the rotation shaft; A rotor holding member disposed between the rotor holding member, the rotor holding member having an outer peripheral surface and an inner peripheral surface extending in a direction of the axis, and the outer peripheral surface of the rotor holding member Is in contact with the inner peripheral surface of the rotor, and the inner peripheral surface of the rotor holding member is A contact region that contacts the peripheral surface, and a non-contact region that is spaced from the outer peripheral surface of the rotating shaft, and a cooling medium is provided in the non-contact region of the inner peripheral surface of the rotor holding member. It is characterized by being supplied.

本発明の回転電機の冷却方法は、周方向に延在するヨークと、当該ヨークから径方向に延在するティースと、前記ティースに対して巻き回されているコイルとを有する固定子と、外周面が前記固定子の内周面と間隔を有して対向するように、前記固定子の軸心と軸心が同一になる位置に配置された回転子と、外周面が前記回転子の内周面より軸心側となるように、前記固定子及び前記回転子の軸心と軸心が同一になる位置に配置された回転シャフトと、前記回転子の内周面と、前記回転シャフトの外周面との間に配置された回転子保持部材とを有し、前記回転子保持部材は、前記軸心の方向に延在する外周面と内周面とを有し、前記回転子保持部材の外周面は、前記回転子の内周面と当接しており、前記回転子保持部材の内周面は、前記回転シャフトの外周面と当接する当接領域と、前記回転シャフトの外周面と間隔を有している非当接領域とを有する回転電機の冷却方法であって、前記回転子保持部材の内周面の非当接領域に冷却媒体を供給する供給工程を有することを特徴とする。   A cooling method for a rotating electric machine according to the present invention includes a stator having a yoke extending in a circumferential direction, teeth extending in a radial direction from the yoke, and a coil wound around the teeth, A rotor disposed at a position where the axial center of the stator and the axial center are the same so that the surface faces the inner peripheral surface of the stator with an interval, and an outer peripheral surface of the inner surface of the rotor A rotation shaft disposed at a position where the axis and the axis of the stator and the rotor are the same so as to be closer to the axis side than the circumferential surface; an inner circumferential surface of the rotor; and A rotor holding member disposed between the rotor holding member and the outer peripheral surface, the rotor holding member having an outer peripheral surface and an inner peripheral surface extending in a direction of the axis, and the rotor holding member. An outer peripheral surface of the rotor is in contact with an inner peripheral surface of the rotor, and an inner peripheral surface of the rotor holding member is A cooling method for a rotating electrical machine, comprising: a contact region that contacts the outer peripheral surface of the shaft; and a non-contact region that is spaced from the outer peripheral surface of the rotary shaft, the inner peripheral surface of the rotor holding member A supply step of supplying a cooling medium to the non-contact area.

本発明によれば、回転子の内周面と当接している外周面と、回転シャフトの外周面と当接する当接領域と、回転シャフトの外周面と間隔を有する非当接領域とを有する内周面とを有する回転子保持部材の内周面に、冷却媒体を供給するようにした。したがって、従来よりも広い領域において回転子との熱交換を行うことが可能になる。よって、回転電機の回転子の温度上昇を従来よりも抑制することができる。   According to the present invention, the outer peripheral surface is in contact with the inner peripheral surface of the rotor, the contact region is in contact with the outer peripheral surface of the rotary shaft, and the non-contact region is spaced from the outer peripheral surface of the rotary shaft. The cooling medium is supplied to the inner peripheral surface of the rotor holding member having the inner peripheral surface. Therefore, heat exchange with the rotor can be performed in a wider area than before. Therefore, the temperature rise of the rotor of the rotating electrical machine can be suppressed more than before.

本発明の第1の実施形態を示し、IPMモータの構成の一例を示す図である。It is a figure which shows the 1st Embodiment of this invention and shows an example of a structure of an IPM motor. 本発明の第1の実施形態を示し、図1のA−A´方向から見たIPMモータの断面図である。It is sectional drawing of the IPM motor which showed the 1st Embodiment of this invention and was seen from the AA 'direction of FIG. 本発明の第1の実施形態を示し、回転子保持部材の内周面の非当接領域を流れるATFの様子の一例を概念的に示す図である。It is a figure which shows the 1st Embodiment of this invention and shows an example of the mode of ATF which flows through the non-contact area | region of the internal peripheral surface of a rotor holding member. 本発明の第1の実施形態を示し、冷却油供給部材が、回転シャフトの孔を開放している様子の一例と、冷却油供給部材が、回転シャフトの孔を閉鎖している様子の一例とを示す図である。The 1st Embodiment of this invention is shown, An example of a cooling oil supply member opening the hole of a rotating shaft, and an example of a cooling oil supply member closing the hole of a rotating shaft, FIG. 本発明の第2の実施形態を示し、IPMモータの構成の一例を示す図である。It is a figure which shows the 2nd Embodiment of this invention and shows an example of a structure of an IPM motor. 本発明の第3の実施形態を示し、IPMモータの構成の一例を示す図である。It is a figure which shows the 3rd Embodiment of this invention and shows an example of a structure of an IPM motor.

(第1の実施形態)
以下、図面を参照しながら、本発明の第1の実施形態を説明する。
図1は、回転電機の一例であるIPMモータの構成の一例を示す図である。具体的に図1では、IPMモータの回転軸(回転シャフト15の回転軸)を通り、且つ、当該回転軸に沿って切った場合のIPMモータの断面図の一例を示す。また、図2は、図1のA−A´方向から見たIPMモータの断面図である。尚、図1において、符号16h以外の符号が指している部分が断面である。また、本実施形態では、IPMモータが電気自動車等の車両駆動モータとして用いられる場合を例に挙げて説明する。また、各図では、説明の都合上、必要な部分の概略だけを示している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a configuration of an IPM motor that is an example of a rotating electrical machine. Specifically, FIG. 1 shows an example of a cross-sectional view of the IPM motor when passing along the rotation axis of the IPM motor (the rotation axis of the rotation shaft 15) and cutting along the rotation axis. FIG. 2 is a cross-sectional view of the IPM motor viewed from the AA ′ direction in FIG. In addition, in FIG. 1, the part which codes | symbols other than the code | symbol 16h point is a cross section. In the present embodiment, the case where the IPM motor is used as a vehicle drive motor for an electric vehicle or the like will be described as an example. In each figure, only the outline of the necessary part is shown for convenience of explanation.

図1、図2において、IPMモータ10は、固定子(ステータ)11と、永久磁石13a〜13hを備えた回転子(ロータ)12と、ケース14と、回転シャフト15と、回転子保持部材16と、冷却媒体供給部材17と、端面板18とを有している。   1 and 2, an IPM motor 10 includes a stator (stator) 11, a rotor (rotor) 12 including permanent magnets 13a to 13h, a case 14, a rotating shaft 15, and a rotor holding member 16. And a cooling medium supply member 17 and an end face plate 18.

固定子11は、周方向に延在するヨークと、ヨークの内周側から軸心方向に延在する複数のティースとを有している。複数のティースは、周方向において略等間隔で設けられている(図21に示す例では、12個のティースが設けられている)。尚、ティースには、コイルが巻き回されている。本実施形態では、コイルが分布巻である場合を例に挙げて説明する。したがって、図2に示すように、IPMモータ10には、コイルエンド19a〜19dが存在している。ただし、コイルは分布巻に限定されるものではなく、集中巻であってもよい。   The stator 11 has a yoke extending in the circumferential direction and a plurality of teeth extending in the axial direction from the inner peripheral side of the yoke. The plurality of teeth are provided at substantially equal intervals in the circumferential direction (in the example illustrated in FIG. 21, twelve teeth are provided). A coil is wound around the teeth. In the present embodiment, a case where the coil is distributed winding will be described as an example. Therefore, as shown in FIG. 2, the IPM motor 10 has coil ends 19a to 19d. However, the coil is not limited to distributed winding but may be concentrated winding.

回転子12は、肉厚の中空円筒形状を有し、その外周面が、回転子211のティースの先端面と所定の間隔を有して相互に対向し、且つ、その軸心(回転軸)が固定子11の軸心と同一となる位置に配置される。
このような回転子12は、外周側において円周方向に相互に間隔を有して複数の孔が形成された円形の複数の電磁鋼板をその厚み方向に積み重ねることにより構成された鉄心と、鉄心に形成された孔に埋め込まれた(挿入された)複数の永久磁石13a〜13hとを有している。そして、本実施形態では、永久磁石13a〜13hのうち、相対的に回転子12の回転軸側で相互に隣接している2つの永久磁石(例えば永久磁石13a、13b)により回転子12の1つのポール(極)を形成するようにしている。
The rotor 12 has a thick hollow cylindrical shape, and its outer peripheral surface opposes the tip end surface of the teeth of the rotor 211 with a predetermined interval, and its axis (rotating shaft). Is arranged at the same position as the axis of the stator 11.
Such a rotor 12 includes an iron core configured by stacking, in the thickness direction, a plurality of circular electromagnetic steel plates each having a plurality of holes formed at intervals in the circumferential direction on the outer peripheral side; And a plurality of permanent magnets 13a to 13h embedded (inserted) in the holes formed in. In the present embodiment, among the permanent magnets 13a to 13h, one of the rotors 12 is formed by two permanent magnets (for example, the permanent magnets 13a and 13b) that are relatively adjacent to each other on the rotating shaft side of the rotor 12. Two poles (poles) are formed.

ケース14は、焼き嵌め等が行われることにより、固定子11の周囲(外周)から固定子11に密接して、固定子11を固定する。ケース14は、例えば、鉄等の磁性体あるいはアルミニウム等の非磁性体により構成される。
回転シャフト15は、回転子12を回転させるためのものであり、その軸心(回転軸)がIPMモータ10の軸心(回転軸)と一致するように、回転子12の内周面よりも軸心側に配置されている。尚、以下の説明では、IPMモータ10の回転軸、軸心(回転シャフト15の回転軸、軸心)を必要に応じて回転軸又は軸と略称する。
When the case 14 is shrink-fitted or the like, the stator 14 is fixed in close contact with the stator 11 from the periphery (outer periphery) of the stator 11. The case 14 is made of, for example, a magnetic material such as iron or a nonmagnetic material such as aluminum.
The rotation shaft 15 is for rotating the rotor 12, and is more than the inner peripheral surface of the rotor 12 so that the axis (rotation axis) thereof coincides with the axis (rotation axis) of the IPM motor 10. It is arranged on the axial center side. In the following description, the rotation axis and axis of the IPM motor 10 (rotation axis and axis of the rotation shaft 15) are abbreviated as a rotation axis or axis as necessary.

回転シャフト15は、中空円筒形状を有し、その中空部が、図示しないポンプにより供給される冷却媒体31が通る冷却媒体路となっている。また、回転シャフト15の側面のうち、後述する回転子保持部材16の内周面が当接していない領域のうち、IPMモータ10の軸心方向の中央に近い領域には、回転シャフト15の外周面と内周面との間を貫通する孔15a〜15dが形成されている。尚、冷却媒体31は、IPMモータ10に付随するベアリングあるいは動力伝達部(ギヤ等)にATF(Automatic Transmission Fluid)等の潤滑油が使用されている場合には、当該潤滑油を用いることが好ましい。また、冷却媒体31はIPMモータの下部に溜まっており、前述のポンプにより前述の冷却媒体路に供給され、循環されるが、その循環経路において冷却媒体31を熱交換器で冷却するようにすることができる。   The rotating shaft 15 has a hollow cylindrical shape, and the hollow portion serves as a cooling medium path through which a cooling medium 31 supplied by a pump (not shown) passes. Further, in the region of the side surface of the rotary shaft 15 where the inner peripheral surface of the rotor holding member 16 described later is not in contact, the region close to the center in the axial direction of the IPM motor 10 is the outer periphery of the rotary shaft 15. Holes 15a to 15d penetrating between the surface and the inner peripheral surface are formed. The cooling medium 31 is preferably used when a lubricating oil such as ATF (Automatic Transmission Fluid) is used for a bearing or a power transmission unit (gear or the like) attached to the IPM motor 10. . The cooling medium 31 is accumulated in the lower part of the IPM motor, and is supplied to the cooling medium path by the above-described pump and circulated. The cooling medium 31 is cooled by the heat exchanger in the circulation path. be able to.

回転子保持部材16は、その軸心がIPMモータ10の軸心(回転軸)と一致するように、回転シャフト15の外周面と、回転子12(の鉄心)の内周面との間に設けられる。回転子保持部材16は、回転子12(の鉄心)を保持する機能と、回転子12(の鉄心)を冷却する機能とを有する。回転子保持部材16は、機械的強度および熱伝導率の点から金属製であることが好ましい。   The rotor holding member 16 is positioned between the outer peripheral surface of the rotary shaft 15 and the inner peripheral surface of the rotor 12 (iron core thereof) so that the axis of the rotor holding member 16 coincides with the axis (rotary axis) of the IPM motor 10. Provided. The rotor holding member 16 has a function of holding the rotor 12 (iron core) and a function of cooling the rotor 12 (iron core). The rotor holding member 16 is preferably made of metal from the viewpoint of mechanical strength and thermal conductivity.

回転子保持部材16は、IPMモータ10の軸心方向に延在する外周面と内周面とを有している。本実施形態では、回転子保持部材16の外周面は、回転子12(の鉄心)の内周面全体と当接している。また、回転子保持部材16の内周面には、回転シャフト15の外周面と当接する領域と、回転シャフト15の外周面と間隔を有している領域とがある。本実施形態では、IPMモータ10の軸心方向の中央付近で回転子保持部材16の内周面と回転シャフト15の外周面とが当接し、回転子保持部材16の内周面のそれ以外の領域では、回転子保持部材16の内周面と回転シャフト15の外周面とは間隔を有している。
尚、以下の説明では、回転子保持部材16の内周面のうち、回転シャフト15の外周面と当接する領域を、必要に応じて、回転子保持部材16の内周面の当接領域、或いは単に当接領域と称する。また、回転子保持部材16の内周面のうち、回転シャフト15の外周面と間隔を有している領域を、必要に応じて、回転子保持部材16の内周面の非当接領域、或いは単に非当接領域と称する。
Rotor holding member 16 has an outer peripheral surface and an inner peripheral surface extending in the axial direction of IPM motor 10. In this embodiment, the outer peripheral surface of the rotor holding member 16 is in contact with the entire inner peripheral surface of the rotor 12 (iron core thereof). Further, the inner peripheral surface of the rotor holding member 16 includes a region that is in contact with the outer peripheral surface of the rotary shaft 15 and a region that is spaced from the outer peripheral surface of the rotary shaft 15. In the present embodiment, the inner peripheral surface of the rotor holding member 16 and the outer peripheral surface of the rotary shaft 15 come into contact with each other in the vicinity of the center of the IPM motor 10 in the axial center direction, and other than the inner peripheral surface of the rotor holding member 16. In the region, the inner peripheral surface of the rotor holding member 16 and the outer peripheral surface of the rotary shaft 15 are spaced apart.
In the following description, the region of the inner peripheral surface of the rotor holding member 16 that contacts the outer peripheral surface of the rotary shaft 15 is, as necessary, the contact region of the inner peripheral surface of the rotor holding member 16; Alternatively, it is simply referred to as a contact area. Moreover, the area | region which has a space | interval with the outer peripheral surface of the rotating shaft 15 among the inner peripheral surfaces of the rotor holding member 16 is made into the non-contact area | region of the inner peripheral surface of the rotor holding member 16, as needed. Alternatively, it is simply referred to as a non-contact area.

図3は、回転子保持部材16の内周面の非当接領域を流れる冷却媒体31の様子の一例を概念的に示す図である。
図3に示すように、本実施形態では、回転子保持部材16の内周面の非当接領域と、回転子12の軸心との間隔が、IPMモータ10(回転子保持部材16)の軸心方向の端部に向かうほど大きくなるように、回転子保持部材16の内周面の非当接領域は傾斜している。このように、回転シャフト15の孔15a〜15dから流れ出た冷却媒体31を、回転子12の回転により冷却媒体31に作用する遠心力により、回転子保持部材16の内周面の非当接領域に形成されている傾斜に沿って(すなわち、当該傾斜の相対的に上側の領域から下側の領域に向けて)流すことで、冷却媒体31を当該傾斜に沿って軸方向に流れ易くすることができる。図面においては当該傾斜を説明の都合上やや誇張して描いているが、回転子の回転速度と冷却媒体の流量に適した傾斜角度を選択できる。
FIG. 3 is a diagram conceptually illustrating an example of the state of the cooling medium 31 flowing in the non-contact area on the inner peripheral surface of the rotor holding member 16.
As shown in FIG. 3, in the present embodiment, the distance between the non-contact area of the inner peripheral surface of the rotor holding member 16 and the axis of the rotor 12 is determined by the IPM motor 10 (rotor holding member 16). The non-contact area of the inner peripheral surface of the rotor holding member 16 is inclined so as to increase toward the end in the axial direction. In this way, the cooling medium 31 that has flowed out of the holes 15 a to 15 d of the rotary shaft 15 is not contacted with the inner peripheral surface of the rotor holding member 16 due to the centrifugal force acting on the cooling medium 31 by the rotation of the rotor 12. The cooling medium 31 is made to flow easily in the axial direction along the inclination by flowing along the inclination formed in (i.e., from the relatively upper region to the lower region). Can do. In the drawing, the inclination is drawn with a little exaggeration for convenience of explanation, but an inclination angle suitable for the rotational speed of the rotor and the flow rate of the cooling medium can be selected.

また、図3に示すように、本実施形態では、回転子保持部材16の内周面の非当接領域には、軸方向において所定の間隔を有するように、複数の凸部16a〜16jが回転子保持部材16の周方向に形成されている。複数の凸部16a〜16jは、回転子12の回転に伴う回転子保持部材16の回転が起こっても、非当接領域の周方向において冷却媒体31が滞留してしまうことを可及的に抑制することができる程度の高さと断面形状を有している。このようにすることで、回転シャフト15の孔15a〜15dから流れ出た冷却媒体31の少なくとも一部が、回転シャフト15の回転に伴う回転子保持部材16の回転により、複数の凸部16a〜16jで一時的にせき止められ、回転子保持部材16の内周面を周方向に移動する。したがって、回転シャフト15の孔15a〜15dから流れ出た冷却媒体31を、回転子保持部材16の内周面の周方向に広がり流れ易くすることができる。   As shown in FIG. 3, in the present embodiment, the non-contact region on the inner peripheral surface of the rotor holding member 16 includes a plurality of convex portions 16 a to 16 j so as to have a predetermined interval in the axial direction. It is formed in the circumferential direction of the rotor holding member 16. The plurality of convex portions 16a to 16j make it possible for the cooling medium 31 to stay in the circumferential direction of the non-contact region as much as possible even when the rotor holding member 16 rotates along with the rotation of the rotor 12. It has a height and a cross-sectional shape that can be suppressed. By doing so, at least a part of the cooling medium 31 that has flowed out of the holes 15 a to 15 d of the rotating shaft 15 is caused to rotate by the rotation of the rotor holding member 16 accompanying the rotation of the rotating shaft 15. Is temporarily stopped, and the inner peripheral surface of the rotor holding member 16 is moved in the circumferential direction. Therefore, the cooling medium 31 that has flowed out of the holes 15 a to 15 d of the rotating shaft 15 can spread and flow easily in the circumferential direction of the inner peripheral surface of the rotor holding member 16.

本実施形態では、以上のようにして回転子保持部材16を構成することで、回転シャフト15の孔15a〜15dから流れ出た冷却媒体31を、可及的に回転子保持部材16の内周面全体に行き渡らせるようにすることができる。
前述したように回転子保持部材16の外周面は、回転子12の内周面と当接しており、回転子12(の鉄心)と回転子保持部材16とが熱交換を行う。そして、回転子保持部材16は冷却媒体31により冷却される。すなわち、回転子保持部材16は、冷却媒体31により冷却されながら、回転子12(の鉄心)と熱交換を行う。これにより、回転子12の温度を低下させることが可能になる。本実施形態では、このようにして回転子12の温度を低下させるので、金属などの熱伝導度の大きな材料で回転子保持部材16を形成するのが好ましい。
In the present embodiment, by configuring the rotor holding member 16 as described above, the cooling medium 31 that has flowed out of the holes 15a to 15d of the rotary shaft 15 is transferred to the inner peripheral surface of the rotor holding member 16 as much as possible. It can be made to spread throughout.
As described above, the outer peripheral surface of the rotor holding member 16 is in contact with the inner peripheral surface of the rotor 12, and the rotor 12 (iron core thereof) and the rotor holding member 16 exchange heat. The rotor holding member 16 is cooled by the cooling medium 31. That is, the rotor holding member 16 exchanges heat with the rotor 12 (iron core) while being cooled by the cooling medium 31. Thereby, the temperature of the rotor 12 can be lowered. In this embodiment, since the temperature of the rotor 12 is lowered in this way, it is preferable to form the rotor holding member 16 with a material having a high thermal conductivity such as metal.

冷却媒体供給部材17は、回転シャフト15の中空部である油路内に配置され、駆動装置20の制御に従って軸方向に移動し、回転シャフト15の孔15a〜15dを開放したり、閉鎖したりする機能を有する。
図4は、冷却媒体供給部材17が、回転シャフト15の孔15a〜15dを開放している様子の一例(図4(a))と、冷却媒体供給部材17が、回転シャフト15の孔15a〜15dを閉鎖している様子の一例(図4(b))とを示す図である。
The cooling medium supply member 17 is disposed in an oil passage that is a hollow portion of the rotating shaft 15, moves in the axial direction according to the control of the driving device 20, and opens or closes the holes 15 a to 15 d of the rotating shaft 15. It has the function to do.
FIG. 4 shows an example (FIG. 4A) in which the cooling medium supply member 17 opens the holes 15a to 15d of the rotating shaft 15, and the cooling medium supply member 17 has the holes 15a to 15a of the rotating shaft 15. It is a figure which shows an example (FIG.4 (b)) of a mode that 15d is closed.

本実施形態では、冷却媒体供給部材17は、中空円筒形状を有している。また、冷却媒体供給部材17には、冷却媒体供給部材17の外周面と内周面との間を貫通する孔17a〜17lが形成されている。これらの孔17a〜17lによって、回転シャフト15内の冷却媒体路に供給された冷却媒体31が、冷却媒体供給部材17の内外を行き来することができる(すなわち、回転シャフト15内の冷却媒体路全体に冷却媒体31を行き渡らせることができる)。   In the present embodiment, the cooling medium supply member 17 has a hollow cylindrical shape. The cooling medium supply member 17 is formed with holes 17 a to 17 l that pass through between the outer peripheral surface and the inner peripheral surface of the cooling medium supply member 17. By these holes 17a to 17l, the cooling medium 31 supplied to the cooling medium path in the rotating shaft 15 can go back and forth inside and outside the cooling medium supply member 17 (that is, the entire cooling medium path in the rotating shaft 15). And the cooling medium 31 can be spread over.

また、冷却媒体供給部材17の外周面には、複数の凸部17m〜17pが形成されている。これら複数の凸部17m〜17pは、回転シャフト15の孔15a〜15dとの相対的な位置関係が同じになる位置に形成されている。更に、複数の凸部17m〜17pの周方向の面の面積が、回転シャフト15の孔15a〜15dの面積以上となるようにしている。   Further, a plurality of convex portions 17 m to 17 p are formed on the outer peripheral surface of the cooling medium supply member 17. The plurality of convex portions 17m to 17p are formed at positions where the relative positional relationship with the holes 15a to 15d of the rotary shaft 15 is the same. Furthermore, the area of the surface in the circumferential direction of the plurality of convex portions 17m to 17p is set to be equal to or larger than the area of the holes 15a to 15d of the rotary shaft 15.

前述したように冷却媒体供給部材17は、駆動装置20によって軸方向に移動する。駆動装置20は、IPMモータ10の所定の位置における温度信号、例えば、IPMモータ10の駆動条件により予測される回転子12の所定の位置における温度の推定値、あるいは回転子保持部材16の内周面から固定子11のコイルエンド19aに流れ落ちる冷却媒体の温度を測定する温度計からの信号に基づいて、回転子保持部材16の内周面に流す冷却媒体の所要流量を判定する。この判定に基づき冷却媒体31の流量を増加させる場合には、駆動装置20は、冷却媒体供給部材17を図4(b)に示す白抜きの矢印の方向に所要距離だけ移動させる。これにより、回転シャフト15の孔15a〜15dの開口度が増加し、前述したようにして冷却媒体31が回転子支持部材16に流れる流量を増加させることができる。   As described above, the cooling medium supply member 17 is moved in the axial direction by the driving device 20. The driving device 20 is a temperature signal at a predetermined position of the IPM motor 10, for example, an estimated value of a temperature at a predetermined position of the rotor 12 predicted by a driving condition of the IPM motor 10, or an inner circumference of the rotor holding member 16. Based on a signal from a thermometer that measures the temperature of the cooling medium that flows from the surface to the coil end 19a of the stator 11, the required flow rate of the cooling medium that flows on the inner peripheral surface of the rotor holding member 16 is determined. When the flow rate of the cooling medium 31 is increased based on this determination, the driving device 20 moves the cooling medium supply member 17 by a required distance in the direction of the white arrow shown in FIG. Thereby, the opening degree of the holes 15a to 15d of the rotating shaft 15 is increased, and the flow rate of the cooling medium 31 flowing to the rotor support member 16 can be increased as described above.

また、前述の判定に基づき冷却媒体31の流量を減少させる場合には、駆動装置20は、冷却媒体供給部材17を図4(a)に示す白抜きの矢印の方向に所要距離だけ移動させる。これにより、回転シャフト15の孔15a〜15dの開口度が減少し、冷却媒体31が回転子保持部材16に流れ出る流量を減少させることができる。そして、回転子12の所定の位置における温度が所定値以下であり、冷却の必要がないと判定された場合には、その間、駆動装置20は、冷却油供給部材17の位置を図4(b)に示す位置に移動し保持し続ける(すなわち、駆動装置20は、冷却油供給部材17の動作を制御しない)。
本実施形態では、駆動装置20が以上のような制御を行うことにより、冷却媒体供給部材17が、回転シャフト15の孔15a〜15dの開口度を調整する。開口度の調整は、回転シャフト15の孔15a〜15dを全開及び全閉してもよいし、回転シャフト15の孔15a〜15dの一部を開閉してもよいし、これらを組み合わせてもよい。尚、駆動装置20は、温度計からの信号を受信するインターフェースと、マイクロコンピュータと、冷却媒体供給部材17を駆動するための機構部品とを用いることにより実現される。
Further, when the flow rate of the cooling medium 31 is decreased based on the above determination, the driving device 20 moves the cooling medium supply member 17 by a required distance in the direction of the white arrow shown in FIG. Thereby, the opening degree of the holes 15a to 15d of the rotary shaft 15 is reduced, and the flow rate of the cooling medium 31 flowing out to the rotor holding member 16 can be reduced. When it is determined that the temperature at the predetermined position of the rotor 12 is equal to or lower than the predetermined value and that cooling is not necessary, the drive device 20 determines the position of the cooling oil supply member 17 in FIG. ) And continues to hold (that is, the drive device 20 does not control the operation of the cooling oil supply member 17).
In the present embodiment, the cooling medium supply member 17 adjusts the opening degree of the holes 15 a to 15 d of the rotary shaft 15 by the drive device 20 performing the control as described above. The adjustment of the degree of opening may be performed by fully opening and closing the holes 15a to 15d of the rotating shaft 15, opening or closing part of the holes 15a to 15d of the rotating shaft 15, or a combination thereof. . The driving device 20 is realized by using an interface that receives a signal from the thermometer, a microcomputer, and a mechanical component for driving the cooling medium supply member 17.

端面板18は、回転子12の鉄心が軸方向に広がるのを押さえるとともに、永久磁石18が回転子12の鉄心から抜けないようにするためのものであり、回転子12の軸方向における端面に形成されている。本実施形態では、回転子保持部材16の内周面の非当接領域から流れ出た冷却媒体31が、固定子11と回転子12の近接するすき間に浸入するのを防ぐとともに、コイルエンド19a〜19dの発熱量が大きい所定の位置にかかるように端面板18が傾斜している。このようにすることにより、固定子11と回転子12との間に冷却媒体が浸入することによるモータの効率の低下を回避するとともに、回転子12を冷却する際に、固定子11(コイルエンド19a)も併せて冷却することができる。
尚、回転子保持部材16の内周面の非当接領域から流れ出た冷却媒体31が、コイルエンド19a〜19dにかかるように端面板18が配置されていれば、必ずしも端面板18を傾斜する必要はない。また、端面板18に、回転子保持部材16の内周面の非当接領域から流れ出た冷却媒体31をコイルエンド19a〜19dに誘導するための溝及び、冷却媒体31を飛沫にするための突起の少なくとも何れか一方を、前記傾斜に加えて、又は前記傾斜に代えて形成するようにしてもよい。
The end face plate 18 is for preventing the iron core of the rotor 12 from spreading in the axial direction and preventing the permanent magnet 18 from coming off from the iron core of the rotor 12. Is formed. In the present embodiment, the cooling medium 31 flowing out from the non-contact region of the inner peripheral surface of the rotor holding member 16 is prevented from entering the gap between the stator 11 and the rotor 12, and the coil ends 19a to 19a. The end face plate 18 is inclined so as to reach a predetermined position where the amount of heat generated by 19d is large. By doing so, a reduction in the efficiency of the motor due to the infiltration of the cooling medium between the stator 11 and the rotor 12 is avoided, and the stator 11 (coil end) is cooled when the rotor 12 is cooled. 19a) can also be cooled.
In addition, if the end surface plate 18 is arrange | positioned so that the cooling medium 31 which flowed out from the non-contact | abutting area | region of the internal peripheral surface of the rotor holding member 16 may cover the coil ends 19a-19d, the end surface plate 18 will not necessarily be inclined. There is no need. Further, a groove for guiding the cooling medium 31 flowing out from the non-contact area of the inner peripheral surface of the rotor holding member 16 to the coil ends 19a to 19d on the end face plate 18 and for splashing the cooling medium 31. At least one of the protrusions may be formed in addition to the inclination or instead of the inclination.

回転子保持部材16から流れ出た冷却媒体31は、以上のようにして端面板18を流れた後、又は、回転子保持部材16から直接、IPMモータ10の下部に排出される。すなわち、本実施形態では、IPMモータ10の下部の領域に溜まっている冷却媒体31を、IPMモータ10の下部の領域→回転シャフト15→回転子保持部材16(→端面板18)→IPMモータ10の下部の領域の経路で循環させるようにしている。   The cooling medium 31 flowing out from the rotor holding member 16 is discharged to the lower part of the IPM motor 10 after flowing through the end face plate 18 as described above or directly from the rotor holding member 16. That is, in the present embodiment, the cooling medium 31 accumulated in the lower area of the IPM motor 10 is changed from the lower area of the IPM motor 10 to the rotary shaft 15 → the rotor holding member 16 (→ the end face plate 18) → the IPM motor 10. It is made to circulate in the route of the lower area of.

以上のように本実施形態では、"回転子12(の鉄心)の内周面全体と当接している外周面"と、"回転シャフト15の外周面と当接する当接領域と、回転シャフト15の外周面と間隔を有する非当接領域とを有する内周面"とを有する回転子保持部材16の内周面に、回転シャフト15に形成された孔15a〜15dから冷却媒体31を流すようにした。したがって、回転子保持部材16は、冷却媒体31により冷却されながら回転子12(の鉄心)と熱交換を行うことができる。回転子保持部材16の外周面は、回転子12(の鉄心)の内周面全体と当接しているので、冷却媒体31は従来よりも広い領域で回転子12との熱交換を行うことができる。したがって、回転子12の冷却を効率的に行うことができ、回転子12の温度上昇を従来よりも抑制することができる。これにより、永久磁石13a〜13dの温度が上昇し、永久磁石13a〜13dの磁石としての機能が低下してしまうことを従来よりも抑制することができる。よって、例えば、永久磁石13a〜13dとして、例えば希少元素の添加量を増やして耐熱性を向上させたネオジウム−鉄−ボロン(Ne−Fe−B)のような、高価な材料を用いなくてもよくなる。   As described above, in this embodiment, “the outer peripheral surface in contact with the entire inner peripheral surface of the rotor 12 (iron core)”, “the contact region in contact with the outer peripheral surface of the rotary shaft 15,” and the rotary shaft 15. The cooling medium 31 is caused to flow from the holes 15a to 15d formed in the rotary shaft 15 to the inner peripheral surface of the rotor holding member 16 having the outer peripheral surface of the rotor holding member 16 and the inner peripheral surface having a non-contact region having a gap. I made it. Therefore, the rotor holding member 16 can exchange heat with the rotor 12 (iron core thereof) while being cooled by the cooling medium 31. Since the outer peripheral surface of the rotor holding member 16 is in contact with the entire inner peripheral surface of the rotor 12 (iron core thereof), the cooling medium 31 can exchange heat with the rotor 12 in a wider area than before. it can. Therefore, the rotor 12 can be cooled efficiently, and the temperature rise of the rotor 12 can be suppressed more than before. Thereby, it can suppress rather than the past that the temperature of permanent magnet 13a-13d rises and the function as a magnet of permanent magnet 13a-13d falls. Therefore, for example, as the permanent magnets 13a to 13d, for example, an expensive material such as neodymium-iron-boron (Ne-Fe-B) whose heat resistance is improved by increasing the amount of rare elements added can be used. Get better.

また、本実施形態では、軸方向の端部の方向に向かい広がる勾配の傾斜を回転子保持部材16の内周面の非当接領域に形成するようにしたので、回転子12の回転に伴い冷却媒体に作用する遠心力により、冷却媒体31を、当該傾斜に沿って、軸方向に流れ易くすることができる。
また、本実施形態では、軸方向において所定の間隔を有するように、複数の凸部16a〜16jを回転子保持部材16の内周面の非当接領域において円周方向に形成するようにしたので、回転子保持部材16の内周面における周方向に冷却媒体31を広げて流れ易くすることができる。
したがって、回転子保持部材16の内周面全体にわたって冷却媒体31を流すことができる。
Further, in the present embodiment, since the slope of the gradient spreading toward the end of the axial direction is formed in the non-contact area of the inner peripheral surface of the rotor holding member 16, as the rotor 12 rotates. Due to the centrifugal force acting on the cooling medium, the cooling medium 31 can easily flow in the axial direction along the inclination.
In the present embodiment, the plurality of convex portions 16a to 16j are formed in the circumferential direction in the non-contact region of the inner peripheral surface of the rotor holding member 16 so as to have a predetermined interval in the axial direction. Therefore, the cooling medium 31 can be spread in the circumferential direction on the inner peripheral surface of the rotor holding member 16 to facilitate the flow.
Therefore, the cooling medium 31 can flow over the entire inner peripheral surface of the rotor holding member 16.

また、本実施形態では、例えばIPMモータ10の所定の位置における温度に基づき、冷却媒体供給部材17が、回転シャフト15の孔15a〜15dの開口度を調整するようにしたので、回転シャフト15の孔15a〜15dの開口度が小さい場合にはポンプの吐出量を低く抑えることができ、ポンプの駆動エネルギーの無駄を抑制することができる。
また、本実施形態では、回転子保持部材16の内周面の非当接領域から流れ出た冷却媒体31が、コイルエンド19a〜19dにかかるように端面板18の形状を加工するようにしたので、回転子12を冷却する際に、固定子11(コイルエンド19a)も併せて冷却することができる。
In the present embodiment, for example, the cooling medium supply member 17 adjusts the opening degree of the holes 15a to 15d of the rotating shaft 15 based on the temperature at a predetermined position of the IPM motor 10, so that the rotating shaft 15 When the opening degree of the holes 15a to 15d is small, the discharge amount of the pump can be kept low, and waste of driving energy of the pump can be suppressed.
Further, in the present embodiment, the shape of the end face plate 18 is processed so that the cooling medium 31 flowing out from the non-contact area of the inner peripheral surface of the rotor holding member 16 is applied to the coil ends 19a to 19d. When the rotor 12 is cooled, the stator 11 (coil end 19a) can also be cooled.

尚、回転子保持部材16の内周面の非当接領域に、前述したような傾斜や凸部16a〜16jを設けるようにすれば、前述した効果が得られるので好ましいが、必ずしもこのようにする必要はない。回転子12の回転に伴い回転子保持部材が回転することによって、回転子保持部材16の内周面の非当接領域に供給した冷却媒体は、遠心力により圧縮され当該内周面の軸端の開放部から押し出されるからである。
また、冷却媒体供給部材17を設けなくても、回転シャフト15の孔15a〜15dから回転子保持部材16の内周面の非当接領域に冷却媒体31を流すことができるので、必ずしも冷却媒体供給部材17及び駆動装置20を設ける必要はない。
It should be noted that it is preferable to provide the above-described slopes and convex portions 16a to 16j in the non-contact region of the inner peripheral surface of the rotor holding member 16, because the above-described effects can be obtained, but this is not necessarily the case. do not have to. As the rotor holding member rotates as the rotor 12 rotates, the cooling medium supplied to the non-contact region of the inner peripheral surface of the rotor holding member 16 is compressed by centrifugal force and is axially end of the inner peripheral surface. It is because it is extruded from the opening part.
Further, since the cooling medium 31 can flow from the holes 15a to 15d of the rotating shaft 15 to the non-contact area on the inner peripheral surface of the rotor holding member 16 without providing the cooling medium supply member 17, the cooling medium is not necessarily provided. There is no need to provide the supply member 17 and the driving device 20.

また、IPMモータ10の下部に溜まっている冷却媒体31を外気又は水冷により冷却してから回転子保持部材16に供給するようにしてもよい。
また、冷却媒体31の循環を、ポンプではなく、回転子12の回転により回転シャフト15の孔15a〜15dを通る冷却媒体31に作用する遠心力を利用して行うようにしてもよい。この場合には、回転子保持部材16の内周面の非当接領域に供給される冷却媒体の流量は、回転体の回転数が高いほど増加する。また、同じ回転数における前記冷却媒体の流量は、回転シャフト15の孔15a〜15dの断面積及び、孔15a〜15dの外周側出口の軸心からの距離により調整することができる。
Further, the cooling medium 31 accumulated in the lower part of the IPM motor 10 may be cooled by outside air or water cooling and then supplied to the rotor holding member 16.
Further, the circulation of the cooling medium 31 may be performed using a centrifugal force acting on the cooling medium 31 passing through the holes 15 a to 15 d of the rotating shaft 15 by the rotation of the rotor 12 instead of the pump. In this case, the flow rate of the cooling medium supplied to the non-contact area of the inner peripheral surface of the rotor holding member 16 increases as the rotational speed of the rotating body increases. Further, the flow rate of the cooling medium at the same rotational speed can be adjusted by the cross-sectional area of the holes 15a to 15d of the rotary shaft 15 and the distance from the axis of the outer peripheral side outlet of the holes 15a to 15d.

(第2の実施形態)
次に、本発明の第2の実施形態について説明する。前述した第1の実施形態では、駆動装置20により、回転シャフト15の孔15a〜15dを必要に応じて開放したり閉鎖したりした。これに対し、本実施形態では、回転シャフト15の孔15a〜15dを開放し続けるようにする。このように本実施形態と前述した第1の実施形態とは、回転シャフト15の孔15a〜15dに冷却媒体31を誘導する構成が主として異なる。したがって、本実施形態の説明において、前述した図1〜図4と同じ部分については、図1〜図4に付した符号と同一の符号を付す等して詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the first embodiment described above, the holes 15a to 15d of the rotary shaft 15 are opened or closed as necessary by the drive device 20. In contrast, in this embodiment, the holes 15a to 15d of the rotary shaft 15 are kept open. Thus, the present embodiment is different from the first embodiment described above mainly in the configuration in which the cooling medium 31 is guided to the holes 15a to 15d of the rotary shaft 15. Therefore, in the description of the present embodiment, the same portions as those in FIGS. 1 to 4 described above are denoted by the same reference numerals as those in FIGS.

図5は、回転電機の一例であるIPMモータの構成の一例を示す図である。図5は、図1に対応する図である。
本実施形態のIPMモータ50は、図1に示したIPMモータ10の冷却媒体供給部材17の代わりに、冷却媒体供給部材51を有している。また、本実施形態では、図1に示した駆動装置20は使用しない。
FIG. 5 is a diagram illustrating an example of a configuration of an IPM motor that is an example of a rotating electrical machine. FIG. 5 is a diagram corresponding to FIG.
The IPM motor 50 of this embodiment has a cooling medium supply member 51 instead of the cooling medium supply member 17 of the IPM motor 10 shown in FIG. In the present embodiment, the driving device 20 shown in FIG. 1 is not used.

図5において、冷却媒体供給部材51は、回転シャフト15の中空部である油路内に固定されている。本実施形態では、冷却媒体供給部材51は、中空円筒形状を有している。また、冷却媒体供給部材51の側面のうち、軸方向の先端の領域は回転シャフト15の内周面と当接しており、その他の領域は、回転シャフト15の内周面及び孔15a〜15dの部分と間隔を有している。
このように本実施形態では、回転シャフト15の油路として、動力伝達部に伝わる油路52aと、回転シャフト15の孔15a〜15dに伝わる冷却媒体路52bとを個別に形成するようにし(すなわち、これらの油路52a、冷却媒体52b間で冷却媒体31が行き来することがないようにし)、回転シャフト15の孔15a〜15dが一時的に閉鎖されることがないようにした。したがって、第1の実施形態で説明した効果のうち、回転シャフト15の孔15a〜15dを必要に応じて開口度を調整することによる効果は得られないが、特別な駆動装置を設けなくても、図示しない冷却媒体を循環させるポンプの吐出量を、IPMモータ10の所定の位置にける温度に基づいて調節することにより、回転子保持部材16の内周面の非当接領域に供給される冷却媒体の流量を調整することができるので、第1の実施形態のものに対して、省スペース化、低コスト化を実現することができる。
In FIG. 5, the cooling medium supply member 51 is fixed in an oil passage that is a hollow portion of the rotary shaft 15. In the present embodiment, the cooling medium supply member 51 has a hollow cylindrical shape. Of the side surface of the cooling medium supply member 51, the region at the tip in the axial direction is in contact with the inner peripheral surface of the rotary shaft 15, and the other regions are the inner peripheral surface of the rotary shaft 15 and the holes 15a to 15d. Has a gap with the part.
Thus, in this embodiment, the oil passage 52a transmitted to the power transmission unit and the cooling medium passage 52b transmitted to the holes 15a to 15d of the rotary shaft 15 are individually formed as the oil passage of the rotary shaft 15 (that is, The cooling medium 31 does not go back and forth between the oil passage 52a and the cooling medium 52b), and the holes 15a to 15d of the rotary shaft 15 are not temporarily closed. Therefore, among the effects described in the first embodiment, the effect of adjusting the opening degree of the holes 15a to 15d of the rotary shaft 15 as required can not be obtained, but even if a special driving device is not provided. The discharge amount of a pump that circulates a cooling medium (not shown) is adjusted based on the temperature at a predetermined position of the IPM motor 10 to be supplied to the non-contact area of the inner peripheral surface of the rotor holding member 16. Since the flow rate of the cooling medium can be adjusted, space saving and cost reduction can be realized with respect to those of the first embodiment.

(第3の実施形態)
次に、本発明の第3の実施形態について説明する。前述した第1、第2の実施形態では、冷却媒体31を回転シャフト15の油路を経て、回転子保持部材16の内周面の非当接領域に供給した場合について説明した。これに対し、本実施形態では、回転子保持部材16に対して、回転シャフト15の油路を経ずに冷却媒体31を供給する場合について説明する。このように本実施形態と前述した第1、第2の実施形態とは、回転子保持部材16に対して冷却媒体を供給する構成が主として異なる。したがって、本実施形態の説明において、前述した第1、第2の実施形態と同じ部分については、図1〜図5に付した符号と同一の符号を付す等して詳細な説明を省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described. In the first and second embodiments described above, the case where the cooling medium 31 is supplied to the non-contact area of the inner peripheral surface of the rotor holding member 16 through the oil passage of the rotary shaft 15 has been described. On the other hand, in this embodiment, the case where the cooling medium 31 is supplied to the rotor holding member 16 without passing through the oil passage of the rotating shaft 15 will be described. Thus, the present embodiment is different from the first and second embodiments described above mainly in the configuration for supplying the cooling medium to the rotor holding member 16. Therefore, in the description of the present embodiment, the same parts as those in the first and second embodiments described above are denoted by the same reference numerals as those in FIGS.

図6は、回転電機の一例であるIPMモータの構成の一例を示す図である。図5は、図1に対応する図である。
本実施形態のIPMモータ60は、図1に示したIPMモータ10、図5に示したIPMモータ50の冷却媒体供給部材17、51は有していない。また、本実施形態では、図1に示した駆動装置20は使用しない。また、本実施形態では、ノズル61a、61bが設けられている。ノズル61a、61bはそれぞれ、1個のノズルであっても、角度等が異なる複数個のノズルからなる構成であってもよい。
FIG. 6 is a diagram illustrating an example of a configuration of an IPM motor that is an example of a rotating electrical machine. FIG. 5 is a diagram corresponding to FIG.
The IPM motor 60 of the present embodiment does not have the cooling medium supply members 17 and 51 of the IPM motor 10 shown in FIG. 1 and the IPM motor 50 shown in FIG. In the present embodiment, the driving device 20 shown in FIG. 1 is not used. In the present embodiment, nozzles 61a and 61b are provided. Each of the nozzles 61a and 61b may be a single nozzle or may be composed of a plurality of nozzles having different angles.

ノズル61a、61bは、ケース14等に取り付けられ、図示しないポンプにより供給された冷却媒体31が、回転子保持部材16の内周面の非当接領域のうち、可及的に奥の方に到達するように、冷却媒体31を回転子保持部材16の内周面の非当接領域に吹き付ける。本実施形態では、このようにすることによって、前述した第1の実施形態で説明したのと同様に、回転子保持部材16の内周面全体にわたって冷却媒体31を流すことができる。このとき、冷却媒体31を回転子保持部材16の内周面の非当接領域に、流束として吹き付けても、液滴あるいは霧状に吹き付けてもよい。
また、本実施形態では、IPMモータ60の下部の領域→ノズル61a、61→IPMモータ60の下部の領域の経路で冷却媒体31を循環させるようにしている。また、前記循環経路に熱交換器を設けて冷却媒体31を冷却させるようにしてもよい。
以上のようにノズル61a、61bを用いても、前述した第1、第2の実施形態で説明した効果を得ることができる。尚、ノズル61a、61bを動かして、ノズル61a、61bの冷却媒体31の吹き付け方向を異ならせるようにしてもよい。
The nozzles 61a and 61b are attached to the case 14 or the like, and the cooling medium 31 supplied by a pump (not shown) is located as far as possible in the non-contact area of the inner peripheral surface of the rotor holding member 16. The cooling medium 31 is sprayed onto the non-contact area of the inner peripheral surface of the rotor holding member 16 so as to reach the position. In this embodiment, by doing in this way, the cooling medium 31 can be made to flow over the entire inner peripheral surface of the rotor holding member 16 as described in the first embodiment. At this time, the cooling medium 31 may be sprayed as a flux on the non-contact area of the inner peripheral surface of the rotor holding member 16 or may be sprayed in the form of droplets or mist.
Further, in the present embodiment, the cooling medium 31 is circulated along the path of the lower area of the IPM motor 60 → the nozzle 61 a, 61 → the lower area of the IPM motor 60. Further, a heat exchanger may be provided in the circulation path to cool the cooling medium 31.
As described above, even when the nozzles 61a and 61b are used, the effects described in the first and second embodiments can be obtained. The nozzles 61a and 61b may be moved to change the direction of spraying the cooling medium 31 of the nozzles 61a and 61b.

尚、前述した各実施形態では、ATF等の潤滑油を冷却媒体31として用いた場合を例に挙げて説明したが、冷却媒体31に潤滑油以外の冷却媒体(ATF等の潤滑油以外の油、又は油以外の液体、又は気体と液体の混合物)を、回転子保持部材16の内周面の非当接領域に供給するようにしてもよい。このようにした場合には、回転子保持部材16の内周面の非当接領域から流れ出た冷却媒体がIPMモータ10に付随するベアリングあるいはギヤ等の動力伝達部に使用されているATF等の潤滑油と混ざらないように、当該冷却媒体の循環路あるいは滞留部と、潤滑油の循環路あるいは滞留部を区分する部材を設けるようにする。   In each of the embodiments described above, the case where the lubricating oil such as ATF is used as the cooling medium 31 has been described as an example. However, a cooling medium other than the lubricating oil (an oil other than the lubricating oil such as ATF is used as the cooling medium 31). Or a liquid other than oil, or a mixture of gas and liquid) may be supplied to the non-contact area of the inner peripheral surface of the rotor holding member 16. In such a case, the cooling medium flowing out from the non-contact area of the inner peripheral surface of the rotor holding member 16 is an ATF or the like used in a power transmission unit such as a bearing or gear attached to the IPM motor 10. In order not to be mixed with the lubricating oil, a member that separates the circulation path or staying part of the cooling medium from the circulation path or staying part of the lubricating oil is provided.

尚、前述した各実施形態では、回転電機としてIPMモータを例に挙げて説明したが、IPMモータ以外の回転電機であっても前述した各実施形態を適用することが可能である。   In each of the above-described embodiments, an IPM motor has been described as an example of a rotating electrical machine. However, the above-described embodiments can be applied to a rotating electrical machine other than an IPM motor.

また、前述した各実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, each of the above-described embodiments is merely a specific example for carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. . That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

10、50、60 IPMモータ
11 固定子
12 回転子
13 永久磁石
14 ケース
15 シャフト
16 回転子保持部材
17、51 冷却油供給部材
18 端面板
19 コイルエンド
20 駆動装置
61 ノズル
10, 50, 60 IPM motor 11 Stator 12 Rotor 13 Permanent magnet 14 Case 15 Shaft 16 Rotor holding member 17, 51 Cooling oil supply member 18 End face plate 19 Coil end 20 Drive device 61 Nozzle

Claims (12)

周方向に延在するヨークと、当該ヨークから径方向に延在するティースと、前記ティースに対して巻き回されているコイルとを有する固定子と、
外周面が前記固定子の内周面と間隔を有して対向するように、前記固定子の軸心と軸心が同一になる位置に配置された回転子と、
外周面が前記回転子の内周面より軸心側となるように、前記固定子及び前記回転子の軸心と軸心が同一になる位置に配置された回転シャフトと、
前記回転子の内周面と、前記回転シャフトの外周面との間に配置された回転子保持部材とを有し、
前記回転子保持部材は、前記軸心の方向に延在する外周面と内周面とを有し、
前記回転子保持部材の外周面は、前記回転子の内周面と当接しており、
前記回転子保持部材の内周面は、前記回転シャフトの外周面と当接する当接領域と、前記回転シャフトの外周面と間隔を有している非当接領域とを有し、
前記回転子保持部材の内周面の非当接領域に冷却媒体が供給されることを特徴とする回転電機。
A stator having a yoke extending in the circumferential direction, teeth extending in a radial direction from the yoke, and a coil wound around the teeth;
A rotor disposed at a position where the axis and the axis of the stator are the same so that the outer circumferential surface faces the inner circumferential surface of the stator with a gap;
A rotating shaft disposed at a position where the axial center of the stator and the rotor is the same so that the outer peripheral surface is on the axial side of the inner peripheral surface of the rotor;
A rotor holding member disposed between the inner peripheral surface of the rotor and the outer peripheral surface of the rotary shaft;
The rotor holding member has an outer peripheral surface and an inner peripheral surface extending in the direction of the axis,
The outer peripheral surface of the rotor holding member is in contact with the inner peripheral surface of the rotor,
The inner peripheral surface of the rotor holding member has a contact region that contacts the outer peripheral surface of the rotary shaft, and a non-contact region that is spaced from the outer peripheral surface of the rotary shaft,
A rotating electrical machine, wherein a cooling medium is supplied to a non-contact area of an inner peripheral surface of the rotor holding member.
前記回転子保持部材の内周面の非当接領域には、前記回転子保持部材の内周面の非当接領域と、前記回転子の軸心との間隔が、前記軸心の方向における端部に向かうほど大きくなるような傾斜が形成されており、
前記傾斜の相対的に上側の領域から冷却媒体が供給されることを特徴とする請求項1に記載の回転電機。
In the non-contact area of the inner peripheral surface of the rotor holding member, the interval between the non-contact area of the inner peripheral surface of the rotor holding member and the axis of the rotor is in the direction of the axis. A slope that increases toward the end is formed,
The rotating electrical machine according to claim 1, wherein a cooling medium is supplied from a region relatively above the slope.
前記回転子保持部材の内周面の非当接領域には、周方向に延在する複数の凸部が、前記軸心の方向において間隔を有して形成されていることを特徴とする請求項2に記載の回転電機。   A plurality of convex portions extending in the circumferential direction are formed in the non-contact region of the inner peripheral surface of the rotor holding member at intervals in the direction of the axis. Item 3. The rotating electrical machine according to Item 2. 前記回転シャフトの中には冷却媒体が流れ、
前記回転シャフトの側面には、当該回転シャフトの中と前記回転子保持部材の内周面の非当接領域とが連通する孔が形成されていることを特徴とする請求項1〜3の何れか1項に記載の回転電機。
A cooling medium flows in the rotating shaft,
4. The hole according to claim 1, wherein a hole is formed in a side surface of the rotary shaft so that the inside of the rotary shaft communicates with a non-contact area of the inner peripheral surface of the rotor holding member. The rotating electrical machine according to claim 1.
前記回転シャフトの中に配置され、前記回転シャフトの孔を開放及び閉鎖するために動作する冷却媒体供給部材を有することを特徴とする請求項4に記載の回転電機。   5. The rotating electrical machine according to claim 4, further comprising a cooling medium supply member that is disposed in the rotating shaft and operates to open and close a hole of the rotating shaft. 前記回転子保持部材の内周面の非当接領域に冷却媒体を供給するノズルを有することを特徴とする請求項1〜3の何れか1項に記載の回転電機。   The rotating electrical machine according to any one of claims 1 to 3, further comprising a nozzle that supplies a cooling medium to a non-contact region of an inner peripheral surface of the rotor holding member. 周方向に延在するヨークと、当該ヨークから径方向に延在するティースと、前記ティースに対して巻き回されているコイルとを有する固定子と、
外周面が前記固定子の内周面と間隔を有して対向するように、前記固定子の軸心と軸心が同一になる位置に配置された回転子と、
外周面が前記回転子の内周面より軸心側となるように、前記固定子及び前記回転子の軸心と軸心が同一になる位置に配置された回転シャフトと、
前記回転子の内周面と、前記回転シャフトの外周面との間に配置された回転子保持部材とを有し、
前記回転子保持部材は、前記軸心の方向に延在する外周面と内周面とを有し、
前記回転子保持部材の外周面は、前記回転子の内周面と当接しており、
前記回転子保持部材の内周面は、前記回転シャフトの外周面と当接する当接領域と、前記回転シャフトの外周面と間隔を有している非当接領域とを有する回転電機の冷却方法であって、
前記回転子保持部材の内周面の非当接領域に冷却媒体を供給する供給工程を有することを特徴とする回転電機の冷却方法。
A stator having a yoke extending in the circumferential direction, teeth extending in a radial direction from the yoke, and a coil wound around the teeth;
A rotor disposed at a position where the axis and the axis of the stator are the same so that the outer circumferential surface faces the inner circumferential surface of the stator with a gap;
A rotating shaft disposed at a position where the axial center of the stator and the rotor is the same so that the outer peripheral surface is on the axial side of the inner peripheral surface of the rotor;
A rotor holding member disposed between the inner peripheral surface of the rotor and the outer peripheral surface of the rotary shaft;
The rotor holding member has an outer peripheral surface and an inner peripheral surface extending in the direction of the axis,
The outer peripheral surface of the rotor holding member is in contact with the inner peripheral surface of the rotor,
A cooling method for a rotating electrical machine, wherein the inner peripheral surface of the rotor holding member has a contact region that contacts the outer peripheral surface of the rotating shaft and a non-contact region that is spaced from the outer peripheral surface of the rotating shaft. Because
A cooling method for a rotating electrical machine, comprising a supplying step of supplying a cooling medium to a non-contact area of an inner peripheral surface of the rotor holding member.
前記回転子保持部材の内周面の非当接領域には、前記回転子保持部材の内周面の非当接領域と、前記回転子の軸心との間隔が、前記軸心の方向における端部に向かうほど大きくなるような傾斜が形成されており、
前記供給工程は、前記傾斜の相対的に上側の領域から冷却媒体を供給することを特徴とする請求項7に記載の回転電機の冷却方法。
In the non-contact area of the inner peripheral surface of the rotor holding member, the interval between the non-contact area of the inner peripheral surface of the rotor holding member and the axis of the rotor is in the direction of the axis. A slope that increases toward the end is formed,
The cooling method for a rotating electrical machine according to claim 7, wherein the supplying step supplies a cooling medium from a region relatively above the slope.
前記回転子保持部材の内周面の非当接領域には、周方向に延在する複数の凸部が、前記軸心の方向において間隔を有して形成されていることを特徴とする請求項8に記載の回転電機の冷却方法。   A plurality of convex portions extending in the circumferential direction are formed in the non-contact region of the inner peripheral surface of the rotor holding member at intervals in the direction of the axis. Item 9. A method for cooling an electric rotating machine according to Item 8. 前記回転シャフトの側面には、当該回転シャフトの中と前記回転子保持部材の内周面の非当接領域とが連通する孔が形成されており、
前記供給工程は、前記回転シャフトの中に冷却媒体を流し、前記回転シャフトの側面に形成されている孔から、前記回転子保持部材の内周面の非当接領域に当該冷却媒体を供給することを特徴とする請求項7〜9の何れか1項に記載の回転電機の冷却方法。
On the side surface of the rotating shaft, a hole is formed through which the inside of the rotating shaft communicates with the non-contact area of the inner peripheral surface of the rotor holding member,
In the supplying step, the cooling medium is caused to flow into the rotating shaft, and the cooling medium is supplied from a hole formed in a side surface of the rotating shaft to a non-contact area of the inner peripheral surface of the rotor holding member. The method for cooling a rotating electric machine according to any one of claims 7 to 9, wherein the cooling method is performed.
前記回転電機は、前記回転シャフトの中に配置され、前記回転シャフトの孔を開放及び閉鎖するために動作する冷却媒体供給部材を有し、
前記回転電機の冷却方法は、前記冷却媒体供給部材を駆動する駆動工程を有し、
前記駆動工程は、前記回転電機の所定の位置における温度に基づき、前記冷却媒体供給部材を駆動して、前記回転シャフトの孔の開口度を調整することを特徴とする請求項10に記載の回転電機の冷却方法。
The rotating electrical machine includes a cooling medium supply member that is disposed in the rotating shaft and operates to open and close the hole of the rotating shaft;
The cooling method of the rotating electrical machine has a driving step of driving the cooling medium supply member,
The rotation according to claim 10, wherein the driving step adjusts an opening degree of the hole of the rotating shaft by driving the cooling medium supply member based on a temperature at a predetermined position of the rotating electric machine. Electric cooling method.
前記供給工程は、ノズルを用いて、前記回転子保持部材の内周面の非当接領域に冷却媒体を供給することを特徴とする請求項7〜9の何れか1項に記載の回転電機の冷却方法。   10. The rotating electrical machine according to claim 7, wherein in the supplying step, a cooling medium is supplied to a non-contact area of an inner peripheral surface of the rotor holding member using a nozzle. Cooling method.
JP2009013323A 2009-01-23 2009-01-23 Rotating electric machine and method for cooling the rotating electric machine Pending JP2010172132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013323A JP2010172132A (en) 2009-01-23 2009-01-23 Rotating electric machine and method for cooling the rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013323A JP2010172132A (en) 2009-01-23 2009-01-23 Rotating electric machine and method for cooling the rotating electric machine

Publications (1)

Publication Number Publication Date
JP2010172132A true JP2010172132A (en) 2010-08-05

Family

ID=42703696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013323A Pending JP2010172132A (en) 2009-01-23 2009-01-23 Rotating electric machine and method for cooling the rotating electric machine

Country Status (1)

Country Link
JP (1) JP2010172132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214232A1 (en) * 2016-06-07 2017-12-14 Tesla, Inc. Electric motor cooling system
US10967702B2 (en) 2017-09-07 2021-04-06 Tesla, Inc. Optimal source electric vehicle heat pump with extreme temperature heating capability and efficient thermal preconditioning
US11932078B2 (en) 2021-03-31 2024-03-19 Tesla, Inc. Electric vehicle heat pump using enhanced valve unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491806A (en) * 1977-12-28 1979-07-20 Toshiba Corp Device to supply and discharge liquid in liquid-cooled rotor
JPH09154257A (en) * 1995-11-28 1997-06-10 Nippei Toyama Corp Built-in motor
JP2003324901A (en) * 2002-04-26 2003-11-14 Nippon Soken Inc Motor
JP2006074930A (en) * 2004-09-03 2006-03-16 Honda Motor Co Ltd Device for cooling rotor of motor for electric vehicle
JP2006248417A (en) * 2005-03-11 2006-09-21 Honda Motor Co Ltd Wheel drive device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491806A (en) * 1977-12-28 1979-07-20 Toshiba Corp Device to supply and discharge liquid in liquid-cooled rotor
JPH09154257A (en) * 1995-11-28 1997-06-10 Nippei Toyama Corp Built-in motor
JP2003324901A (en) * 2002-04-26 2003-11-14 Nippon Soken Inc Motor
JP2006074930A (en) * 2004-09-03 2006-03-16 Honda Motor Co Ltd Device for cooling rotor of motor for electric vehicle
JP2006248417A (en) * 2005-03-11 2006-09-21 Honda Motor Co Ltd Wheel drive device for vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214232A1 (en) * 2016-06-07 2017-12-14 Tesla, Inc. Electric motor cooling system
US10128705B2 (en) 2016-06-07 2018-11-13 Tesla, Inc. Electric motor heating/cooling system
CN109314444A (en) * 2016-06-07 2019-02-05 特斯拉公司 Motor cooling system
CN109314443A (en) * 2016-06-07 2019-02-05 特斯拉公司 For heating the electric notor waste heat mode of battery
US10587162B2 (en) 2016-06-07 2020-03-10 Tesla, Inc. Electric motor waste heat mode to heat battery
CN109314443B (en) * 2016-06-07 2020-08-11 特斯拉公司 Electric motor waste heat mode for heating battery
US11088582B2 (en) 2016-06-07 2021-08-10 Tesla, Inc. Electric motor rotor discharge protection
US11218045B2 (en) 2016-06-07 2022-01-04 Tesla, Inc. Electric motor waste heat mode to heat battery
US11757320B2 (en) 2016-06-07 2023-09-12 Tesla, Inc. Electric motor rotor discharge protection
US10967702B2 (en) 2017-09-07 2021-04-06 Tesla, Inc. Optimal source electric vehicle heat pump with extreme temperature heating capability and efficient thermal preconditioning
US11932078B2 (en) 2021-03-31 2024-03-19 Tesla, Inc. Electric vehicle heat pump using enhanced valve unit

Similar Documents

Publication Publication Date Title
US9729027B2 (en) Cooling structure of rotary electric machine
US10707726B2 (en) Cooling structure for dynamo-electric machine
JP5911033B1 (en) Operation method of rotating electric machine
JP4704137B2 (en) Electric motor cooling structure and construction machine vehicle equipped with the electric motor
JP5502421B2 (en) Rotating electric machine
JP5887870B2 (en) Rotating electric machine
JP5168472B2 (en) Rotating electric machine
JP2007116807A (en) Vertical motor generator
JP2010283929A (en) Motor
JP2019047644A (en) Rotor of rotary electric machine and cooling method of rotary electric machine
JP2013055775A (en) Rotor structure of rotary electric machine
JP2012235546A (en) Rotor and rotating electric machine
JP2003009467A (en) Motor cooling mechanism
JP2014230393A (en) Rotary electric machine
JP2011004488A (en) Motor
JP2014064433A (en) Rotor shaft of rotary electric machine
US20140054987A1 (en) Rotating electrical machine
JP5772415B2 (en) Rotor structure of rotating electrical machine
JP2010172132A (en) Rotating electric machine and method for cooling the rotating electric machine
JP2013021811A (en) Rotor of rotary electric machine
JP2007202243A (en) Cooling device of automobile motor
EP2477313B1 (en) An electric machine
JP2011223737A (en) Cooling device for rotating electric machine
JP5630418B2 (en) Cooling device for rotating electrical machine for vehicle
JP2013183483A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226