JP2010169565A - Current measuring device, and current measurement system using same - Google Patents

Current measuring device, and current measurement system using same Download PDF

Info

Publication number
JP2010169565A
JP2010169565A JP2009013016A JP2009013016A JP2010169565A JP 2010169565 A JP2010169565 A JP 2010169565A JP 2009013016 A JP2009013016 A JP 2009013016A JP 2009013016 A JP2009013016 A JP 2009013016A JP 2010169565 A JP2010169565 A JP 2010169565A
Authority
JP
Japan
Prior art keywords
current
frequency
measurement
measuring device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009013016A
Other languages
Japanese (ja)
Inventor
Kenji Okada
健治 岡田
Hideki Takenaga
秀樹 武長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009013016A priority Critical patent/JP2010169565A/en
Publication of JP2010169565A publication Critical patent/JP2010169565A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heighten measurement accuracy, in a current measuring device installed on a distribution board or the like, for measuring a system current, and transmitting it by radio to an output part provided outside. <P>SOLUTION: A high-frequency current is sent into system wiring 12 through a plug socket 16 by a high-frequency power source 3, and the current is taken out by using a measuring current transformer 11 in the current measuring device 1, and a measuring current is separated from the high-frequency current by a filter circuit 18. Then, amplitude amplification is performed in a resonance circuit 19, and a resonance current is rectified and smoothed by a rectifying/smoothing circuit 20, and then applied to a control circuit 22 including a CPU or the like. Consequently, a stable power source can be secured, and highly accurate measurement to a low currnt can be performed, without exerting an influence on a commercial-frequency current to be measured, and without exerting an influence on a supply voltage generated in a commercial-frequency current quantity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電流計測装置およびそれを用いる電流計測システムに関し、特に分電盤や配電盤内などに設置された計測装置によって、系統電線を流れる交流電流を計測するようにしたものに関する。   The present invention relates to a current measuring apparatus and a current measuring system using the same, and more particularly to an apparatus for measuring an alternating current flowing through a system electric wire by a measuring apparatus installed in a distribution board or a distribution board.

上記のような電流計測装置では、カレントトランスの磁性体コアが系統電線に磁気結合を持つように配置され、その磁性体コアに施された電磁巻線によって前記系統電線を流れる交流電流を前記系統電線に非接触で取出し、計測部がその交流電流を計測するように構成されている場合、該計測装置の電源も前記系統電線から取込むようにした構成が従来から用いられている。   In the current measuring device as described above, the magnetic core of the current transformer is arranged so as to have magnetic coupling with the system electric wire, and the AC current flowing through the system electric wire by the electromagnetic winding applied to the magnetic body core In the case where the electric wire is taken out in a non-contact manner and the measuring unit is configured to measure the alternating current, a configuration in which the power source of the measuring device is also taken from the system electric wire has been conventionally used.

そのような構成の代表として、特許文献1では、共通のカレントトランスの出力を2つに分岐し、それぞれに全波整流回路に平滑コンデンサを設けて安定化し、電源回路側ではそれを定電圧回路を通して出力し、測定回路側では、前記平滑コンデンサに並列に設けた負荷抵抗の端子電圧を、前記電源回路からの電源供給を受けた演算/出力回路で読込むように構成されている。そして、2つの回路への取込みを、スイッチで切換えるようになっている。   As a representative of such a configuration, in Patent Document 1, the output of a common current transformer is branched into two, and a smoothing capacitor is provided in each full-wave rectifier circuit for stabilization. On the measurement circuit side, the terminal voltage of the load resistor provided in parallel with the smoothing capacitor is read by an arithmetic / output circuit that receives power supply from the power supply circuit. The two circuits are switched by a switch.

特開2000−65867号公報JP 2000-65887 A

上述の従来技術では、別途に電池などの電源を設ける必要がなく、系統電線側から電源を取込むことができ、また計測に用いるカレントトランスで電源を取込むことができ、計測装置の小型化を図ることができる。しかしながら、電源電圧は、系統電線を流れる電流量によって変化するので、安定しないという問題がある。また、計測装置が計測結果を無線によって外部へ出力する場合、大きな電力を消費する(特に送信アンプ)その無線送信の度に、電源電圧の低下を招き、カレントトランスのインピーダンスが変化してしまうという問題がある。このため、従来技術では、高い精度での電流計測を行うことはできない。   In the above-mentioned conventional technology, it is not necessary to provide a separate power source such as a battery, the power source can be taken in from the system wire side, and the power source can be taken in by a current transformer used for measurement, thereby reducing the size of the measuring device. Can be achieved. However, since the power supply voltage varies depending on the amount of current flowing through the system electric wire, there is a problem that it is not stable. In addition, when the measurement device outputs the measurement result to the outside wirelessly, it consumes a large amount of power (especially a transmission amplifier). Each time the wireless transmission is performed, the power supply voltage is reduced and the impedance of the current transformer changes. There's a problem. For this reason, current measurement cannot be performed with high accuracy in the prior art.

本発明の目的は、電流計測用のカレントトランスを電源用に共用しても、低電流まで高い精度で電流計測を行うことができる電流計測装置およびそれを用いる電流計測システムを提供することである。   An object of the present invention is to provide a current measuring device capable of measuring current with high accuracy up to a low current even when a current transformer for current measurement is shared for a power supply, and a current measuring system using the current measuring device. .

本発明の電流計測装置は、カレントトランスと、計測部とを備え、前記カレントトランスが系統電線に非接触でそれに流れる交流電流を取出し、前記計測部がその交流電流を計測するようにした電流計測装置において、商用電源端子から、それに接続される前記系統電線に重畳された高周波電流を前記カレントトランスを介して抽出するフィルタ回路と、前記フィルタ回路によって抽出された高周波電流の振幅増幅を行う共振回路と、前記共振回路からの共振電流を整流および平滑化して、該計測装置内の各回路へ電源供給を行う整流・平滑化回路とをさらに備えることを特徴とする。   The current measuring device according to the present invention includes a current transformer and a measuring unit, the current transformer takes out an alternating current flowing in the grid wire in a non-contact manner, and the measuring unit measures the alternating current. In the apparatus, a filter circuit that extracts a high-frequency current superimposed on the system electric wire connected thereto from a commercial power supply terminal via the current transformer, and a resonance circuit that performs amplitude amplification of the high-frequency current extracted by the filter circuit And a rectifying / smoothing circuit that rectifies and smoothes the resonance current from the resonance circuit and supplies power to each circuit in the measuring device.

上記の構成によれば、分電盤や配電盤内などに設置され、系統電線を流れる交流電流を計測するようにした電流計測装置において、該計測装置が、磁性体コアが系統電線に磁気結合を持つように配置され、その磁性体コアに施された電磁巻線によって前記系統電線を流れる交流電流を前記系統電線に非接触で取出すカレントトランスに、その交流電流を計測する計測部を備えて構成されている場合、該計測装置の電源も前記系統電線から取込むようにする。   According to the above configuration, in the current measuring device that is installed in a distribution board, a distribution board, or the like and that measures an alternating current flowing through a system electric wire, the measuring device has a magnetic core that magnetically couples to the system electric wire. A current transformer that is arranged so as to have an AC current flowing through the system wire by an electromagnetic winding applied to the magnetic core in a non-contact manner with the system wire is provided with a measurement unit that measures the AC current If so, the power supply of the measuring device is also taken from the system power line.

具体的には、商用電源端子(コンセント)側から、それに接続される前記系統電線に高周波電流を流し込むとともに、前記計測装置側には、前記電磁巻線から前記高周波電流を抽出するフィルタ回路と、前記フィルタ回路によって抽出された高周波電流の振幅増幅を行う共振回路と、前記共振回路からの共振電流を整流および平滑化して、該計測装置内の各回路へ電源供給を行う整流・平滑化回路とをさらに設ける。   Specifically, from the commercial power supply terminal (outlet) side, a high-frequency current flows into the system wire connected thereto, and on the measurement device side, a filter circuit that extracts the high-frequency current from the electromagnetic winding, A resonance circuit that performs amplitude amplification of the high-frequency current extracted by the filter circuit; and a rectification / smoothing circuit that rectifies and smoothes the resonance current from the resonance circuit and supplies power to each circuit in the measurement device; Is further provided.

したがって、計測装置に、別途電池などの電源を設ける必要がなく、系統電線側から電源を取込むことができる。また、計測に用いる磁性体コアや電磁巻線を用いて、1つのカレントトランス(磁気結合ブロック)で電源を取込むことができ、電源の小型化を図ることができる。さらにまた、そのように計測に用いるカレントトランスを用いて電源を取込むようにしても、電源は系統の商用周波とは全く別の高周波で供給されており、計測すべき商用周波の電流に影響を与えることなく、また前記商用周波の電流量に発生する電源電圧が影響を受けることなく、安定した電源を確保することができ、低電流まで高精度な計測を行うことができる。   Therefore, it is not necessary to separately provide a power source such as a battery in the measuring device, and the power source can be taken in from the system electric wire side. In addition, a power source can be taken in with one current transformer (magnetic coupling block) using a magnetic core or electromagnetic winding used for measurement, and the power source can be reduced in size. Furthermore, even if the power is taken in using the current transformer used for the measurement as described above, the power is supplied at a completely different high frequency from the commercial frequency of the system, which affects the current of the commercial frequency to be measured. In addition, a stable power source can be secured without being affected by the power source voltage generated in the current amount of the commercial frequency, and high-precision measurement can be performed up to a low current.

また、本発明の電流計測装置では、出力部をさらに備え、前記計測部は前記出力部へ計測結果を無線送信し、その無線送信と電流計測とを時分割で行うことを特徴とする。   The current measuring device according to the present invention further includes an output unit, wherein the measuring unit wirelessly transmits a measurement result to the output unit, and performs wireless transmission and current measurement in a time division manner.

上記の構成によれば、前記分電盤や配電盤の外部に計測結果を出力する出力部を設け、その出力部へ計測部が計測結果を無線送信する場合、大きな電力を消費するその無線送信と、電流計測とのジョブを作業分担する機能を該計測部が有することで、前記のように計測に用いるカレントトランスを用いて取込む電源が微弱であっても、電圧変動を抑えることができ、電源の取込み量の変動による該計測部のインピーダンスの変動を抑え、一定のインピーダンスで電流計測を行えるようにし、さらに計測精度を高めることができる。   According to said structure, when the output part which outputs a measurement result to the exterior of the said distribution board or a distribution board is provided, and a measurement part transmits a measurement result to the output part wirelessly, the wireless transmission which consumes big electric power and In addition, since the measurement unit has a function of sharing work with current measurement jobs, voltage fluctuations can be suppressed even if the power supply taken in using the current transformer used for measurement as described above is weak, It is possible to suppress fluctuations in the impedance of the measurement unit due to fluctuations in the amount of power taken in, make it possible to measure current with a constant impedance, and further improve measurement accuracy.

さらにまた、本発明の電流計測システムは、前記の電流計測装置に、前記商用電源端子から前記系統電線に前記高周波電流を重畳させる高周波電源をさらに備え、該高周波電源は前記高周波電流の重畳によって前記電流計測装置をON/OFFすることを特徴とする。   Furthermore, the current measurement system of the present invention further includes a high-frequency power source that superimposes the high-frequency current from the commercial power supply terminal to the system electric wire in the current measurement device, and the high-frequency power source is configured to overlap the high-frequency current by the superposition of the high-frequency current. The current measuring device is turned on / off.

上記の構成によれば、高周波電源からの高周波電流の注入をトリガにして、必要なときに、必要な系統だけ、計測を行うことができ、前記出力部が無線によって計測部と通信する場合、複数の系統の計測結果を、単体の出力部を使用して、選択的に出力することもできる。   According to the above configuration, when necessary, when necessary, it is possible to perform measurement by using high frequency current injection from a high frequency power supply as a trigger, and when the output unit communicates with the measurement unit wirelessly, The measurement results of a plurality of systems can be selectively output using a single output unit.

本発明の電流計測装置は、以上のように、分電盤や配電盤内などに設置され、系統電線を流れる交流電流を計測するようにした電流計測装置において、該計測装置が、カレントトランスに、計測部を備えて構成されている場合、商用電源端子(コンセント)側から、それに接続される前記系統電線に高周波電流を流し込むとともに、前記計測装置側には、前記カレントトランスの電磁巻線から前記高周波電流を抽出するフィルタ回路と、前記フィルタ回路によって抽出された高周波電流の振幅増幅を行う共振回路と、前記共振回路からの共振電流を整流および平滑化して、該計測装置本体内の各回路へ電源供給を行う整流・平滑化回路とをさらに設ける。   As described above, the current measuring device according to the present invention is installed in a distribution board, a distribution board, and the like, and in the current measuring apparatus configured to measure an alternating current flowing through a system electric wire, the measuring device is used as a current transformer. When configured to include a measurement unit, a high-frequency current is supplied from the commercial power supply terminal (outlet) side to the system electric wire connected thereto, and the measurement device side includes the electromagnetic winding of the current transformer. A filter circuit that extracts a high-frequency current, a resonance circuit that performs amplitude amplification of the high-frequency current extracted by the filter circuit, and rectifies and smoothes the resonance current from the resonance circuit to each circuit in the measurement apparatus main body. A rectifying / smoothing circuit for supplying power is further provided.

それゆえ、計測装置に、別途電池などの電源を設ける必要がなく、系統電線側から電源を取込むことができる。また、計測に用いるカレントトランスを用いて電源を取込むことができ、電源の小型化を図ることができる。さらにまた、そのように計測に用いるカレントトランスを用いて電源を取込むようにしても、電源は系統の商用周波とは全く別の高周波で供給されており、計測すべき商用周波の電流に影響を与えることなく、また前記商用周波の電流量に発生する電源電圧が影響を受けることなく、安定した電源を確保することができ、低電流まで高精度な計測を行うことができる。   Therefore, it is not necessary to separately provide a power source such as a battery in the measuring device, and the power source can be taken in from the system electric wire side. Moreover, a power supply can be taken in using the current transformer used for measurement, and the power supply can be reduced in size. Furthermore, even if the power is taken in using the current transformer used for the measurement as described above, the power is supplied at a completely different high frequency from the commercial frequency of the system, which affects the current of the commercial frequency to be measured. In addition, a stable power source can be secured without being affected by the power source voltage generated in the current amount of the commercial frequency, and high-precision measurement can be performed up to a low current.

本発明の実施の一形態に係る電流計測システムの全体構成を示す図である。It is a figure showing the whole current measuring system composition concerning one embodiment of the present invention. 電流計測装置の動作を説明するためのタイミングチャートである。It is a timing chart for demonstrating operation | movement of an electric current measurement apparatus.

図1は、本発明の実施の一形態に係る電流計測システムの全体構成を示す図である。この電流計測システムは、電流計測装置1と、その計測結果が無線送信され、使用者に表示出力する出力部2と、後述する高周波電源3とを備えて構成される。出力部2は、電流計測装置1での計測結果が、メモリカードなどで取出されたものを表示する等、電流計測装置1との間の計測結果の伝送方法については任意であり、専用のデータ受信端末や、無線LANなどを備えるパーソナルコンピュータなどで実現することができる。   FIG. 1 is a diagram showing an overall configuration of a current measurement system according to an embodiment of the present invention. This current measurement system includes a current measurement device 1, an output unit 2 that wirelessly transmits a measurement result, and displays and outputs it to a user, and a high-frequency power source 3 that will be described later. The output unit 2 is optional for the method of transmitting the measurement result to and from the current measuring device 1 such as displaying the result of the measurement by the current measuring device 1 taken out with a memory card or the like. It can be realized by a receiving terminal or a personal computer equipped with a wireless LAN.

この電流計測装置1は、住宅やオフィスにおいて、集中配電盤4内や、系統配線12の任意の箇所に設けられ、該配電盤4から末端のコンセント16に至るまでの前記系統配線12に流れる交流電流を計測するものである。そして、その計測によって、追加接続しようとする負荷をどの系統に接続すべきかなどを確認でき、過負荷による配電盤4の遮断器5の過電流遮断を未然に防ぐためのものである。したがって、該電流計測装置1は、前記負荷の増設などにあたって、事前に負荷状況を確認するために設けられるものであり、既設の配線に対して、複雑な結線工事を伴わないように、配電盤4側やコンセント16などからの電源の引込みは行われない。前記出力部2は、前記配電盤4の外部に設けられる。図1では、商用電源6からの引き込みは、単相三線式で示している。   This current measuring device 1 is provided in a central distribution board 4 or an arbitrary place of the system wiring 12 in a house or office, and an alternating current flowing through the system wiring 12 from the distribution board 4 to the outlet 16 at the terminal is obtained. It is to be measured. The measurement can confirm to which system the load to be additionally connected should be connected, and prevent overcurrent interruption of the circuit breaker 5 of the switchboard 4 due to overload. Therefore, the current measuring device 1 is provided for confirming the load state in advance when the load is added or the like, and the distribution board 4 does not involve complicated wiring work for the existing wiring. The power is not drawn in from the side or the outlet 16 or the like. The output unit 2 is provided outside the switchboard 4. In FIG. 1, the pull-in from the commercial power source 6 is shown by a single-phase three-wire system.

前記電流計測装置1では、カレントトランス11が系統配線12に非接触でそれに流れる交流電流を取出し、計測部13がその交流電流を計測し、計測結果を前記出力部3へ無線送信する。前記カレントトランス11は、磁性体コア14が系統配線12に磁気結合を持つように配置され、その磁性体コア14に施された電磁巻線15によって前記系統配線12を流れる交流電流を前記系統配線12に非接触で取出す。前記磁性体コア14の材料には、フェライト、ケイ素鋼板、パーマロイなどが挙げられる。   In the current measuring device 1, the current transformer 11 takes out an alternating current flowing in the system wiring 12 without contact, the measuring unit 13 measures the alternating current, and wirelessly transmits the measurement result to the output unit 3. The current transformer 11 is arranged so that the magnetic core 14 has magnetic coupling to the system wiring 12, and an alternating current flowing through the system wiring 12 is supplied to the system wiring by an electromagnetic winding 15 applied to the magnetic core 14. 12 is removed without contact. Examples of the material of the magnetic core 14 include ferrite, a silicon steel plate, and permalloy.

注目すべきは、本実施の形態の電流計測装置1では、商用電源端子、すなわちコンセント16から、それに接続される前記系統配線12に高周波電流を重畳させる前記高周波電源3をさらに備え、これに対応して、前記計測部13は、前記カレントトランス11から前記高周波電流を抽出するフィルタ回路18と、前記フィルタ回路18によって抽出された高周波電流の振幅増幅を行う共振回路19と、前記共振回路19からの共振電流を整流および平滑化して、該電流計測装置1内の各回路へ電源供給を行う整流・平滑化回路20とをさらに備えて構成されることである。前記高周波電流は、いわゆる配線チェッカーなどの既存で広く用いられているツールを使用して前記系統配線12に注入され、たとえば5kHzで、20mAの信号として、1秒間に2度、注入される。   It should be noted that the current measuring device 1 according to the present embodiment further includes the high-frequency power source 3 that superimposes a high-frequency current from a commercial power supply terminal, that is, the outlet 16, to the system wiring 12 connected thereto, and corresponds to this. The measurement unit 13 includes a filter circuit 18 that extracts the high-frequency current from the current transformer 11, a resonance circuit 19 that performs amplitude amplification of the high-frequency current extracted by the filter circuit 18, and the resonance circuit 19. And a rectifying / smoothing circuit 20 for supplying power to each circuit in the current measuring device 1 by rectifying and smoothing the resonance current. The high-frequency current is injected into the system wiring 12 using an existing and widely used tool such as a so-called wiring checker, and is injected twice, for example, as a 20 mA signal at 5 kHz.

前記計測部13において、前記共振回路19および整流・平滑化回路20は、高周波用の構成で、該計測部13内には、低周波用の構成として、従来の電流計測装置で設けられる構成である整流・平滑化回路21、制御回路22、メモリ23および送信回路24が設けられている。なお、商用周波数では周波数が低すぎて共振を利用するのは現実的に困難であり、この低周波用の構成には、前記共振回路19に対応するものは設けられていない。前記制御回路22は、前記整流・平滑化回路20からの電源供給を受けて動作し、電流計測を行い、その計測結果を逐次メモリ23に格納するとともに、そのメモリ23のストア内容から、平均値やピーク値などの演算処理を行い、送信回路24に電源供給して、前記の演算処理結果を前記出力部3へ送信させる。   In the measurement unit 13, the resonance circuit 19 and the rectifying / smoothing circuit 20 have a high-frequency configuration, and the measurement unit 13 has a configuration provided in a conventional current measurement device as a low-frequency configuration. A rectifying / smoothing circuit 21, a control circuit 22, a memory 23, and a transmission circuit 24 are provided. Note that it is practically difficult to use resonance at a commercial frequency because the frequency is too low, and this low frequency configuration is not provided with a component corresponding to the resonance circuit 19. The control circuit 22 operates in response to power supply from the rectifying / smoothing circuit 20, performs current measurement, stores the measurement result in the memory 23 sequentially, and stores the average value from the stored contents of the memory 23. Arithmetic processing such as peak value and peak value is performed, power is supplied to the transmission circuit 24, and the arithmetic processing result is transmitted to the output unit 3.

このように構成することで、系統配線12上の任意のコンセント16に高周波電源3を設けることで、電流計測装置1に、別途に電池などの電源を設ける必要がなく、系統配線12側から電源を取込むことができるようになる。また、計測に用いるカレントトランス(磁気結合ブロック)11で電源を取込むことができ、電源の小型化を図ることができる。さらにまた、そのように計測に用いるカレントトランス11を用いて電源を取込むようにしても、電源は系統の商用周波とは全く別の高周波で供給されており、計測すべき商用周波の電流に影響を与えることなく、また前記商用周波の電流量に発生する電源電圧が影響を受けることなく、安定した電源を確保することができ、低電流まで高精度な計測を行うことができる。さらに、高周波電流の注入をトリガにして、必要なときに、必要な系統だけ、計測を行うことができ、複数の系統の計測結果を、単体の出力部2を使用して、選択的に出力することもできる。   With this configuration, by providing the high frequency power source 3 at an arbitrary outlet 16 on the system wiring 12, it is not necessary to separately provide a power source such as a battery for the current measuring device 1, and the power source is supplied from the system wiring 12 side. Will be able to capture. Further, the power can be taken in by the current transformer (magnetic coupling block) 11 used for measurement, and the power supply can be reduced in size. Furthermore, even if the current transformer 11 used for the measurement is used to take in the power, the power is supplied at a completely different high frequency from the commercial frequency of the system, which affects the current of the commercial frequency to be measured. A stable power supply can be ensured without giving any influence and the power supply voltage generated in the current amount of the commercial frequency is not affected, and highly accurate measurement can be performed up to a low current. Furthermore, using the injection of high-frequency current as a trigger, it is possible to measure only the necessary system when necessary, and selectively output the measurement results of a plurality of systems using the single output unit 2. You can also

また、注目すべきは、本実施の形態の電流計測装置1では、前記制御回路22は、電流計測と、その他の動作、特に前記出力部2への無線送信とを時分割で行うことである。図2は、その動作を説明するためのタイミングチャートである。CPUから成る前記制御回路22は、特に送信回路24への通電を制御することで、ジョブの分担機能を有する。ジョブとは、CPU駆動、計測データの演算、メモリ23への書込み・読み出し、無線送受信などを意味する。   Also, it should be noted that in the current measuring device 1 of the present embodiment, the control circuit 22 performs current measurement and other operations, particularly wireless transmission to the output unit 2 in a time-sharing manner. . FIG. 2 is a timing chart for explaining the operation. The control circuit 22 composed of a CPU has a job sharing function by controlling energization to the transmission circuit 24 in particular. The job means CPU driving, calculation of measurement data, writing / reading to / from the memory 23, wireless transmission / reception, and the like.

前記高周波電源3から高周波電流が供給されると、磁性体コア14、電磁巻線15およびフィルタ回路18を通して共振回路19に共振電流が発生し、振幅が拡大された前記共振電流から、整流・平滑化回路20を経て、制御回路(CPU)22にDC電圧が印加される。これによって、制御回路22は動作を開始し、電流計測と、特に無線送信である他の動作とを、この図2で示すように交互に行う。   When a high-frequency current is supplied from the high-frequency power source 3, a resonance current is generated in the resonance circuit 19 through the magnetic core 14, the electromagnetic winding 15, and the filter circuit 18, and rectification / smoothing is performed from the resonance current whose amplitude is expanded. A DC voltage is applied to the control circuit (CPU) 22 through the control circuit 20. As a result, the control circuit 22 starts its operation, and alternately performs current measurement and other operations, particularly wireless transmission, as shown in FIG.

電流計測モードでは、制御回路22は、図2(c)で示すように、前記整流・平滑化回路21で取出された系統電流に対応した電圧を順次アナログ/デジタル変換して取込み、取込んだ電圧をメモリ23に格納されたテーブル値と比較して系統電流値を算定し、さらには必要に応じて、一定時間内の前記平均値やピーク値などを演算し、その演算結果は、次の電源供給モードでメモリ23に書き込む。このとき、制御回路22は、該制御回路22の内部回路、あるいは図示しない外付けされた固定抵抗によって、高周波側の(電磁巻線15から後段回路を見た)構成のインピーダンスを一定状態に保持するとともに、該制御回路22以外のジョブを停止させる(送信回路24への電源供給は停止、あるいは待機(スリープ)状態とする)。これによって、電流計測時の商用周波側の回路インピーダンスをハイインピーダンスで安定化させ、図2(a)で示すように、高周波電源3の負荷(引抜く電流)を安定させ、図2(b)で示すように制御回路22への入力電圧も安定して、計測精度を高めることができる。   In the current measurement mode, as shown in FIG. 2 (c), the control circuit 22 sequentially takes in the voltage corresponding to the system current taken out by the rectifying / smoothing circuit 21 by analog / digital conversion and takes it in. The system current value is calculated by comparing the voltage with the table value stored in the memory 23, and further, if necessary, the average value or peak value within a certain time is calculated. Write to the memory 23 in the power supply mode. At this time, the control circuit 22 keeps the impedance of the configuration on the high frequency side (seeing the subsequent circuit from the electromagnetic winding 15) in a constant state by an internal circuit of the control circuit 22 or an external fixed resistor (not shown). At the same time, jobs other than the control circuit 22 are stopped (the power supply to the transmission circuit 24 is stopped or is set in a standby (sleep) state). As a result, the circuit impedance on the commercial frequency side during current measurement is stabilized at a high impedance, and the load (current drawn) of the high-frequency power source 3 is stabilized as shown in FIG. 2 (a). As shown, the input voltage to the control circuit 22 can be stabilized and the measurement accuracy can be improved.

一方、その他のジョブモードでは、大きな電力を消費する無線送信等によって、図2(a)で示すように、高周波電源3の負荷(引抜かれる電流)が増大かつ逐次変動し、これに対してカレントトランス11を用いて系統電流から取込むことができるエネルギーは決まっているので、図2(b)で示すように制御回路22等への入力電圧も不安定になる。しかしながら、その他のジョブモードでは、電流計測は行われず、誤差を生じることはない。   On the other hand, in other job modes, as shown in FIG. 2A, the load (current drawn) of the high-frequency power source 3 increases and sequentially fluctuates due to wireless transmission that consumes a large amount of power. Since the energy that can be taken from the system current using the transformer 11 is determined, the input voltage to the control circuit 22 and the like becomes unstable as shown in FIG. However, in other job modes, current measurement is not performed and no error occurs.

このように電流計測と、特に無線送信である他の動作とのジョブを分担することで、前記のように計測に用いるカレントトランス11を用いて取込む電源が微弱であっても、電圧変動を抑えることができ、電源の取込み量の変動による該計測部13のインピーダンスの変動を抑え、一定のインピーダンスで電流計測を行えるようにし、さらに計測精度を高めることができる。   In this way, by sharing jobs between current measurement and other operations, particularly wireless transmission, voltage fluctuations can be obtained even if the power source taken in using the current transformer 11 used for measurement is weak as described above. It is possible to suppress the fluctuation of the impedance of the measurement unit 13 due to the fluctuation of the amount of power taken in, and to make it possible to measure current with a constant impedance, and to further improve the measurement accuracy.

1 電流計測装置
2 出力部
3 高周波電源
4 配電盤
5 遮断器
6 商用電源
11 カレントトランス
12 系統配線
13 計測部
14 磁性体コア
15 電磁巻線
16 コンセント
18 フィルタ回路
19 共振回路
20,21 整流・平滑化回路
22 制御回路
23 メモリ
24 送信回路
DESCRIPTION OF SYMBOLS 1 Current measuring device 2 Output part 3 High frequency power supply 4 Distribution board 5 Circuit breaker 6 Commercial power supply 11 Current transformer 12 System wiring 13 Measuring part 14 Magnetic body core 15 Electromagnetic winding 16 Outlet 18 Filter circuit 19 Resonance circuit 20, 21 Rectification / smoothing Circuit 22 Control circuit 23 Memory 24 Transmission circuit

Claims (3)

カレントトランスと、計測部とを備え、前記カレントトランスが系統電線に非接触でそれに流れる交流電流を取出し、前記計測部がその交流電流を計測するようにした電流計測装置において、
商用電源端子から、それに接続される前記系統電線に重畳された高周波電流を前記カレントトランスを介して抽出するフィルタ回路と、
前記フィルタ回路によって抽出された高周波電流の振幅増幅を行う共振回路と、
前記共振回路からの共振電流を整流および平滑化して、該計測装置内の各回路へ電源供給を行う整流・平滑化回路とをさらに備えることを特徴とする電流計測装置。
In a current measuring device comprising a current transformer and a measurement unit, wherein the current transformer takes out an alternating current flowing in the grid wire in a non-contact manner, and the measurement unit measures the alternating current,
A filter circuit for extracting a high-frequency current superimposed on the system electric wire connected thereto from a commercial power supply terminal via the current transformer;
A resonance circuit for performing amplitude amplification of the high-frequency current extracted by the filter circuit;
A current measuring device further comprising: a rectifying / smoothing circuit that rectifies and smoothes a resonance current from the resonance circuit and supplies power to each circuit in the measuring device.
出力部をさらに備え、前記計測部は前記出力部へ計測結果を無線送信し、その無線送信と電流計測とを時分割で行うことを特徴とする請求項1記載の電流計測装置。   The current measurement apparatus according to claim 1, further comprising an output unit, wherein the measurement unit wirelessly transmits a measurement result to the output unit, and performs wireless transmission and current measurement in a time-sharing manner. 前記請求項1または2記載の電流計測装置に、前記商用電源端子から前記系統電線に前記高周波電流を重畳させる高周波電源をさらに備え、該高周波電源は前記高周波電流の重畳によって前記電流計測装置をON/OFFすることを特徴とする電流計測システム。   The current measuring device according to claim 1 or 2, further comprising a high-frequency power source that superimposes the high-frequency current from the commercial power terminal to the system electric wire, and the high-frequency power source turns on the current measuring device by superimposing the high-frequency current. A current measurement system characterized by being turned off.
JP2009013016A 2009-01-23 2009-01-23 Current measuring device, and current measurement system using same Pending JP2010169565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013016A JP2010169565A (en) 2009-01-23 2009-01-23 Current measuring device, and current measurement system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013016A JP2010169565A (en) 2009-01-23 2009-01-23 Current measuring device, and current measurement system using same

Publications (1)

Publication Number Publication Date
JP2010169565A true JP2010169565A (en) 2010-08-05

Family

ID=42701849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013016A Pending JP2010169565A (en) 2009-01-23 2009-01-23 Current measuring device, and current measurement system using same

Country Status (1)

Country Link
JP (1) JP2010169565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235168A (en) * 2013-03-26 2013-08-07 上海大帆电气设备有限公司 Measuring system for shunt vectors of metal frames of large ground grids on basis of wireless transmission
CN103604976A (en) * 2013-11-19 2014-02-26 国家电网公司 Power transmission line insulator internal resistive current measuring method
CN104018187A (en) * 2014-06-18 2014-09-03 四川华索自动化信息工程有限公司 Maintenance-free scrollable two-layer flexible structure system for real-time measurement of anode current distribution
CN106771500A (en) * 2017-01-22 2017-05-31 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of HVDC transmission system difference channel current amount otherness detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235168A (en) * 2013-03-26 2013-08-07 上海大帆电气设备有限公司 Measuring system for shunt vectors of metal frames of large ground grids on basis of wireless transmission
CN103604976A (en) * 2013-11-19 2014-02-26 国家电网公司 Power transmission line insulator internal resistive current measuring method
CN104018187A (en) * 2014-06-18 2014-09-03 四川华索自动化信息工程有限公司 Maintenance-free scrollable two-layer flexible structure system for real-time measurement of anode current distribution
CN106771500A (en) * 2017-01-22 2017-05-31 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of HVDC transmission system difference channel current amount otherness detection method
CN106771500B (en) * 2017-01-22 2019-06-21 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of HVDC transmission system difference channel current amount otherness detection method

Similar Documents

Publication Publication Date Title
Fukuda et al. A novel metal detector using the quality factor of the secondary coil for wireless power transfer systems
EP3176592B1 (en) Thermal management of self-powered power sensors
EP3109645B1 (en) Current measurement device, control method and control program for same, recording medium, and power measurement device
JP2014204603A (en) Power feeding apparatus and power feeding system
EP2089726B1 (en) Electricity meter with switch mode voltage supply
JP4937401B1 (en) Electronic device and method for calculating input power value of power supply module in the same device
JP2010169565A (en) Current measuring device, and current measurement system using same
EP2523270A1 (en) Power monitoring apparatus
US9853560B2 (en) Congruent power and timing signals for device
US9692248B2 (en) Positioning aid for wireless energy transfer
JP6555848B2 (en) Charged device, its control method, control program, and non-contact charging system
JP2010261852A (en) Built-in power measuring device, and apparatus including the same
JP2010066145A (en) Current measuring apparatus and current measuring system
JP6210193B2 (en) Current detector
JP2010017041A (en) Power supply apparatus
JP2013213725A (en) Current detection device
TW201333762A (en) A wireless charging point system and device therefore
TW201720015A (en) Electronic device and power control method thereof
JP2004085413A (en) Measuring instrument for multi-circuit electric power
JP6119384B2 (en) Current detector
JP2018028477A (en) Electric power measurement device
KR101835603B1 (en) Amplifier embedded current transformer sensor applied to smart grid and method for detecting current
KR101325336B1 (en) Stand-by power checking system
JP2009063598A (en) Electronic type watt-hour meter
CN204177952U (en) Naval vessel electric power system mutual inductor field detecting device