JP2010169343A - Reciprocating heat exchanger - Google Patents

Reciprocating heat exchanger Download PDF

Info

Publication number
JP2010169343A
JP2010169343A JP2009013722A JP2009013722A JP2010169343A JP 2010169343 A JP2010169343 A JP 2010169343A JP 2009013722 A JP2009013722 A JP 2009013722A JP 2009013722 A JP2009013722 A JP 2009013722A JP 2010169343 A JP2010169343 A JP 2010169343A
Authority
JP
Japan
Prior art keywords
space
heat transfer
heat exchanger
housing
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009013722A
Other languages
Japanese (ja)
Inventor
Yuji Ikedo
勇二 池戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009013722A priority Critical patent/JP2010169343A/en
Publication of JP2010169343A publication Critical patent/JP2010169343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein in a reciprocating heat exchanger using a conventional technology, complicated component shapes make it difficult to enhance productivity, increased dead volume which is not involved in operation makes it difficult to reduce the size and it is difficult to prevent thermal coupling of working fluid between the inflow side and the outflow side. <P>SOLUTION: This reciprocating heat exchanger includes: a housing 10 having a distribution space 11 connected to the inflow port 10a and the outflow port 10b of working fluid; a plurality of heat transfer pipes 30 having one ends closed and the other ends connected to the housing 10; and partition plates 20 for dividing the inside of the heat transfer pipes 30 into going routes and return routes. Base bottom parts of the adjacent partition plates 20 are interconnected by a partition wall 21 formed of a continuous face approximately in parallel with the central axis of the heat transfer pipe 30, and the partition wall 21 divides the distribution space 11 into an inflow space 11 and an outflow space 11b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は一端が閉鎖された複数の伝熱管を用いた往復形熱交換器に関し、特に熱交換面積の増大と生産性と保守性の向上を容易に実現するための構造に関する。   The present invention relates to a reciprocating heat exchanger using a plurality of heat transfer tubes whose ends are closed, and more particularly to a structure for easily realizing an increase in heat exchange area and improvement in productivity and maintainability.

伝熱管内部の作動流体と外部との間で熱の授受をおこなう熱交換器では、熱の授受に関わる熱交換面積の増大を図りつつ如何に小型に且つ、少ない流動抵抗で行うかが課題であり、このため多数の細管を直列または並列に配置接続する事が一般的である。
また配置の都合上などにより作動流体の往路と復路を同一面に持ってくることが必要な場合があり、多数の伝熱管を折り返し空間に接続するか、あるいはU字型に曲げた伝熱管を用いる構造が知られている。しかしこの構造の熱交換器は加工の難しさに加え、異物が付着しやすく、また付着時に対する清掃など保守性が著しく低いものであった。
In heat exchangers that transfer heat between the working fluid inside the heat transfer tube and the outside, the challenge is how to reduce the flow rate with a small flow resistance while increasing the heat exchange area related to heat transfer. Therefore, it is common to arrange and connect a large number of thin tubes in series or in parallel.
Also, it may be necessary to bring the working fluid forward and return paths on the same surface for reasons of layout, etc., so that many heat transfer tubes can be connected to the folded space or a U-shaped bent heat transfer tube can be used. The structure used is known. However, the heat exchanger of this structure is difficult to process, and is liable to adhere to foreign matter, and the maintainability such as cleaning when adhering is extremely low.

この保守性を向上させるため、伝熱管の一端を閉鎖した自由端として、伝熱管内部に往復路を形成するよう二重管構造とすること、あるいは図7に例示されるよう仕切り板20を設けて往復路を形成する往復形熱交換器が提案されている。 In order to improve the maintainability, a double pipe structure is formed so as to form a reciprocating path inside the heat transfer tube as a free end with one end of the heat transfer tube closed, or a partition plate 20 is provided as illustrated in FIG. A reciprocating heat exchanger that forms a reciprocating path has been proposed.

しかしながら図7に例示する従来技術では伝熱管30に部分的切欠き加工や、管板81には同図矢視図に示される半月形の特殊な穴加工が必要であるなど部品形状が複雑で、組み立て時にもそれぞれの相対位置と方向を厳密に一致させねばならず、生産性を挙げることも困難であった。   However, in the prior art illustrated in FIG. 7, the heat transfer tube 30 is partially cut out, and the tube plate 81 requires a special half-moon-shaped hole shown in the arrow view of FIG. Even during assembly, the relative positions and directions of the respective parts must be strictly matched, and it is difficult to increase productivity.

さらに、流入空間11a、流出空間11bが積層される位置となるため小型化の妨げになり、加えて管板81は大面積とならざるを得ず、このため流入側と流出側の作動流体間の熱交換効率上好ましくない熱的結合を小さくする事が困難であった。   In addition, since the inflow space 11a and the outflow space 11b are stacked, this hinders miniaturization. In addition, the tube plate 81 has to have a large area, and therefore, between the working fluid on the inflow side and the outflow side. It was difficult to reduce the thermal coupling that is undesirable in terms of heat exchange efficiency.

実開平6−84170号公報Japanese Utility Model Publication No. 6-84170

上述のように従来技術による往復形熱交換器においては、部品形状が複雑となり、生産性を上げることが困難であること、作動に関わらない死容積が増加し小型化が困難なこと、及び上記好ましくない熱的結合を防ぎにくい事が本発明で解決しようとしている課題である。   As described above, in the reciprocating heat exchanger according to the prior art, the shape of the parts is complicated, it is difficult to increase productivity, the dead volume regardless of the operation is increased, and the miniaturization is difficult. It is a problem to be solved by the present invention that it is difficult to prevent undesirable thermal coupling.

上記課題を解決するため、作動流体の流入口と流出口に接続された分配空間を備えたハウジングと、一端が閉鎖され他端がハウジングに接続された複数の伝熱管と、伝熱管内を往路と復路に分割する仕切板を備えた往復形熱交換器において、隣接する仕切板の基底部を伝熱管の中心軸と略平行な連続面より成る隔壁部によって連結し、隔壁部は上記分配空間を流入空間と流出空間に区画するよう構成したことを特徴としている。   In order to solve the above problems, a housing having a distribution space connected to an inlet and an outlet of a working fluid, a plurality of heat transfer tubes having one end closed and the other end connected to the housing, and a forward path through the heat transfer tube In the reciprocating heat exchanger having a partition plate that is divided into a return path, the base portion of the adjacent partition plate is connected by a partition wall formed of a continuous surface substantially parallel to the central axis of the heat transfer tube, and the partition wall portion is the distribution space. Is characterized in that it is divided into an inflow space and an outflow space.

また、隣接する仕切板の基底部を連結する手段は、仕切り板相互の相対位置の少量の変化を許容する可動部を含むよう構成し、各部品の要求精度を低減させるとともに温度変化に伴う膨張による過大な応力の発生を防ぐ事も可能としている。   Further, the means for connecting the base portions of the adjacent partition plates is configured to include a movable portion that allows a small change in the relative position between the partition plates, thereby reducing the required accuracy of each component and expanding due to temperature changes. It is also possible to prevent the generation of excessive stress due to.

本発明の熱交換器では、上記のように構成したため、非常に単純な形状の部品のみで往復形熱交換器を構成する事ができ、上記保守性はもとより、部品の製造、組み立てが容易で生産性を高める事できる。   Since the heat exchanger of the present invention is configured as described above, it is possible to configure a reciprocating heat exchanger with only parts having a very simple shape, and it is easy to manufacture and assemble parts in addition to the above maintainability. Productivity can be increased.

図1は本発明をスターリングエンジンに適用した実施例1の説明図である。FIG. 1 is an explanatory diagram of Embodiment 1 in which the present invention is applied to a Stirling engine. 図2は実施例1の組み立て構造を説明する分解図である。FIG. 2 is an exploded view for explaining the assembly structure of the first embodiment. 図3は図1に示すA−A断面を示す断面図である。FIG. 3 is a cross-sectional view showing the AA cross section shown in FIG. 図4は本発明を排熱回収装置に適用した実施例2の説明図である。FIG. 4 is an explanatory view of a second embodiment in which the present invention is applied to an exhaust heat recovery apparatus. 図5は実施例2の裏蓋を外して裏面より見た説明図である。FIG. 5 is an explanatory diagram viewed from the back side with the back cover of Example 2 removed. 図6は実施例2におけるさらに別の構造例を示す説明図であるFIG. 6 is an explanatory view showing still another structural example in the second embodiment. 図7は従来例を示す説明図であるFIG. 7 is an explanatory view showing a conventional example.

単純な形状の部品のみで往復形熱交換器を構成する事ができ、上記保守性はもとより、部品の製造、組み立てが容易で生産性を高める事ができる熱交換器を実現した。 A reciprocating heat exchanger can be configured with only simple shaped parts, and in addition to the above maintainability, a heat exchanger has been realized that can be easily manufactured and assembled to improve productivity.

図1は本発明をスターリングエンジンに適用した実施例1の説明図である。   FIG. 1 is an explanatory diagram of Embodiment 1 in which the present invention is applied to a Stirling engine.

放熱器を兼ねたシリンダーブロック50には略中央に作動流体の通路となる開口51aを備えたシリンダー51が固定され、シリンダー51には、膨張空間52と収縮空間53の容積比率を変化させるディスプレーサ60と、両空間の圧力変化により出力を取り出すパワーピストン61が設けられ、クランク装置70により相互に所定位相差で駆動されるよう構成されている。   A cylinder 51 having an opening 51a serving as a working fluid passage is fixed substantially at the center of the cylinder block 50 that also serves as a radiator. The displacer 60 that changes the volume ratio of the expansion space 52 and the contraction space 53 is fixed to the cylinder 51. In addition, a power piston 61 for taking out an output by a pressure change in both spaces is provided and is configured to be driven by a crank device 70 with a predetermined phase difference from each other.

シリンダーブロック50の一端にはハウジング10が固定され、ハウジング10には伝熱管30が本実施例では12本植設されていると共に、膨張空間52と収縮空間53とを連通する空間には例えばスプリングメッシュなどを充填した蓄熱式熱交換器である再生器40が備えられている。   The housing 10 is fixed to one end of the cylinder block 50. In the present embodiment, twelve heat transfer tubes 30 are installed in the housing 10, and a space connecting the expansion space 52 and the contraction space 53 is, for example, a spring. A regenerator 40 which is a heat storage heat exchanger filled with a mesh or the like is provided.

伝熱管30は一端が閉鎖された円管状に形成され、多端がハウジング10に接続されているとともに、一端に折り返し空間を確保して、伝熱管30内を往路30aと復路30bに分割する仕切り板20が挿通されている。 The heat transfer tube 30 is formed in a circular tube with one end closed, the multi-end is connected to the housing 10, and a folding space is secured at one end to divide the heat transfer tube 30 into an outward path 30a and a return path 30b. 20 is inserted.

仕切り板20は図2の分解図に示されるようその基底部が隔壁部21により櫛状に連結されている。 As shown in the exploded view of FIG. 2, the base portion of the partition plate 20 is connected in a comb shape by a partition wall portion 21.

なお、この仕切り板20は円筒状の素材に切り込みを入れるか、または平板状の素材をあらかじめ櫛状に成型して後カール加工を施すなど任意の加工法が選択できる。 For the partition plate 20, an arbitrary processing method can be selected, such as cutting a cylindrical material, or forming a flat material in a comb shape in advance and performing a post-curling process.

仕切板20は伝熱管30を往路30aと復路30bに仕切るとともに、図3に示されるよう、隔壁部21によってハウジング10内の分配空間11を流入空間11aと、流出空間11bとに区画している。 The partition plate 20 partitions the heat transfer tube 30 into an outward path 30a and a return path 30b, and partitions the distribution space 11 in the housing 10 into an inflow space 11a and an outflow space 11b by a partition wall 21 as shown in FIG. .

次に以上のように構成された熱交換器の動作について簡単に説明する。 Next, the operation of the heat exchanger configured as described above will be briefly described.

ディスプレーサ60により押し出された膨張空間52の作動流体は、流入口10a、流入空間11aを通り、伝熱管30の往路30a、復路30bを経由して流出空間11bへと流動し、このとき伝熱管30の外部と作動流体間の熱交換が行われる。   The working fluid in the expansion space 52 pushed out by the displacer 60 flows through the inflow port 10a and the inflow space 11a to the outflow space 11b via the forward path 30a and the return path 30b of the heat transfer pipe 30, and at this time, the heat transfer pipe 30 Heat exchange is performed between the outside and the working fluid.

さらに作動流体は再生器40を経由してその熱を再生器40に預けるとともにシリンダーブロック50により冷却され収縮空間53へと至る。 Further, the working fluid passes through the regenerator 40 and deposits its heat into the regenerator 40 and is cooled by the cylinder block 50 to reach the contracted space 53.

一方、逆の行程においては、収縮空間53からの作動流体は再生器40から熱を受け取ってのち復路30b、往路30aを経由する間にさらに外部より加熱され、膨張空間52に高温で流入する。 On the other hand, in the reverse stroke, the working fluid from the contraction space 53 receives heat from the regenerator 40 and is further heated from outside while passing through the return path 30b and the forward path 30a, and flows into the expansion space 52 at a high temperature.

これにより収縮空間53と膨張空間52との間には温度差が与えられ、相互に連通した膨張空間と収縮空間と、それぞれの容積を所定の位相差をもって変化させる手段を備えた熱機関はスターリングサイクル機器として広く知られるものである。このため、各行程の動作は詳述しないが、これにより伝熱管30の外部に与えられた燃焼ガスなどの熱エネルギーをクランク装置70の動力として取り出すことができる。 As a result, a temperature difference is given between the contraction space 53 and the expansion space 52, and the heat engine provided with the expansion space and the contraction space communicating with each other and the means for changing the respective volumes with a predetermined phase difference is Stirling. It is widely known as a cycle device. For this reason, although the operation of each stroke is not described in detail, heat energy such as combustion gas given to the outside of the heat transfer tube 30 can be taken out as power of the crank device 70.

図4及び図5または図6は本発明を特に排気管の廃熱利用装置に適用した例であり、図4はその中心断面図、図5は図4において裏蓋82を外し裏面より見た図である。 4 and 5 or 6 show an example in which the present invention is applied particularly to an exhaust pipe waste heat utilization device. FIG. 4 is a sectional view of the center thereof, and FIG. FIG.

排気管80の内部には本実施例では15本の伝熱管30の自由端が臨み、他端はハウジング10に接続されている。 In the present embodiment, the free ends of 15 heat transfer tubes 30 face the inside of the exhaust pipe 80, and the other ends are connected to the housing 10.

ハウジング10には複数の隔壁部21が、分配空間11を流入空間11aと、流出空間11bに区画し、中間部分は一方の流出空間が他方の流入空間に相当するよう区画され、伝熱管30は、5本並列接続された3組の伝熱管群が直列接続される構成となっている。 In the housing 10, a plurality of partition walls 21 divide the distribution space 11 into an inflow space 11a and an outflow space 11b, an intermediate portion is partitioned so that one outflow space corresponds to the other inflow space, and the heat transfer tube 30 Three heat transfer tube groups connected in parallel are connected in series.

ここで隔壁部21は、可撓部21aを備えている。これにより隣接する仕切り板20の相対位置は微小量の変化を許容する事ができる。 Here, the partition wall portion 21 includes a flexible portion 21a. Thereby, the relative position of the adjacent partition plates 20 can allow a minute amount of change.

排熱を持った排気は排気管80を図5の左から右に流れ、伝熱管30はこれより熱を受け取る。一方、同図右の流入口10aから流入した作動流体は隔壁部21によりそれぞれの伝熱管30の往路30a、復路30bを3回経て流出口10bに至り、この間に逐次上記排気と作動流体との間で熱交換が行われる。 Exhaust gas having exhaust heat flows through the exhaust pipe 80 from the left to the right in FIG. 5, and the heat transfer pipe 30 receives heat therefrom. On the other hand, the working fluid flowing in from the inlet 10a on the right side of the figure passes through the forward path 30a and the return path 30b of each heat transfer tube 30 by the partition wall 21 and reaches the outlet 10b three times. Heat exchange takes place between them.

ここで、隣接する仕切板20相互の基底部を隔壁部によって連結する手段は一体成型した構造に限らない。図6に示されるよう各伝熱管30にそれぞれ対応する舌片状の仕切り板20を、伝熱管の中心軸と略平行に設けた連結部10cによって連結してもよい。 Here, the means for connecting the base portions of the adjacent partition plates 20 with the partition walls is not limited to an integrally molded structure. As shown in FIG. 6, the tongue-shaped partition plates 20 corresponding to the respective heat transfer tubes 30 may be connected by a connecting portion 10 c provided substantially parallel to the central axis of the heat transfer tubes.

また、本実施例では連結部10cと隔壁部21の側端との間には隙間21bを設けて隣接する仕切り板20の相対位置を微小量可動とし、各部品の要求精度を低減している。 Further, in this embodiment, a gap 21b is provided between the connecting portion 10c and the side edge of the partition wall portion 21 so that the relative position of the adjacent partition plate 20 can be moved by a minute amount, thereby reducing the required accuracy of each component. .

製作の容易な単純な形状の部品のみで組み立て性や保守性の良好な熱交換器を提供する事ができ、特に多数の伝熱管を用途や作動流体の特性に合わせて直列、並列自在に配置できるためスターリングエンジンの熱交換器に限らずさまざまな用途に適用できる。   It is possible to provide a heat exchanger with easy assembly and maintainability with simple parts that are easy to manufacture. Especially, a large number of heat transfer tubes can be arranged in series or in parallel according to the characteristics of the application and working fluid. Therefore, it can be applied not only to the heat exchanger of Stirling engine but also to various uses.

実施例では簡略のため図示していないが、伝熱管外部に伝熱面積増大のためのフィンを組み合わせることも自在である。この場合伝熱管が自由端を持っているため加工、製作が非常に容易で、大気中に熱を放散する種々のラジエターにも応用可能である。   Although not shown in the embodiment for simplicity, it is also possible to combine fins for increasing the heat transfer area outside the heat transfer tube. In this case, since the heat transfer tube has a free end, it is very easy to process and manufacture, and can be applied to various radiators that dissipate heat into the atmosphere.

10 ハウジング、10a 流入口、10b 流出口、10c連結部
11 分配空間、11a 流入空間、11b 流出空間
20 仕切り板、
21 隔壁部、21a 可撓部、21b 隙間
30 伝熱管
40 再生器
50 シリンダーブロック
51 シリンダー
52 膨張空間、53 収縮空間、54 フランジ
60 ディスプレーサ、61 パワーピストン
70 クランク装置
80 排気管
81 管板、82 裏蓋
10 housing, 10a inflow port, 10b outflow port, 10c connecting part 11 distribution space, 11a inflow space, 11b outflow space 20 partition plate,
21 partition part, 21a flexible part, 21b clearance 30 heat transfer tube 40 regenerator 50 cylinder block 51 cylinder 52 expansion space, 53 contraction space, 54 flange 60 displacer, 61 power piston 70 crank device 80 exhaust pipe 81 tube plate, 82 back lid

Claims (2)

作動流体の流入口と流出口に接続された分配空間を備えたハウジングと、一端が閉鎖され他端がハウジングに接続された複数の伝熱管と、伝熱管内を往路と復路に分割する仕切板を備えた往復形熱交換器であって、隣接する仕切板の基底部は伝熱管の中心軸と略平行な連続面より成る隔壁部によって連結され、隔壁部は上記分配空間を流入空間と流出空間に区画するよう構成したことを特徴とする熱交換器。   A housing having a distribution space connected to the inlet and outlet of the working fluid, a plurality of heat transfer tubes having one end closed and the other end connected to the housing, and a partition plate that divides the inside of the heat transfer tube into an outward path and a return path The base part of the adjacent partition plate is connected by a partition part made of a continuous surface substantially parallel to the central axis of the heat transfer tube, and the partition part passes through the distribution space through the inflow space and the outflow space. A heat exchanger configured to be partitioned into a space. 隣接する仕切板の基底部を連結する手段には、仕切り板相互の相対位置の少量の変化を許容する可動部を設けたことを特徴とする請求項1の熱交換器。   2. The heat exchanger according to claim 1, wherein the means for connecting the base portions of the adjacent partition plates is provided with a movable portion that allows a small change in the relative position between the partition plates.
JP2009013722A 2009-01-24 2009-01-24 Reciprocating heat exchanger Pending JP2010169343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013722A JP2010169343A (en) 2009-01-24 2009-01-24 Reciprocating heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013722A JP2010169343A (en) 2009-01-24 2009-01-24 Reciprocating heat exchanger

Publications (1)

Publication Number Publication Date
JP2010169343A true JP2010169343A (en) 2010-08-05

Family

ID=42701667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013722A Pending JP2010169343A (en) 2009-01-24 2009-01-24 Reciprocating heat exchanger

Country Status (1)

Country Link
JP (1) JP2010169343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130366A (en) * 2011-12-22 2013-07-04 Lixil Corp Firing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130366A (en) * 2011-12-22 2013-07-04 Lixil Corp Firing furnace

Similar Documents

Publication Publication Date Title
US20090050302A1 (en) Cooling device for an internal combustion engine
EP2944911B1 (en) Heat exchanger
RU2535187C1 (en) Plate heat exchanger with staggered arrangement of channels
CN101874192A (en) Plate laminate type heat exchanger
US20110120131A1 (en) Phase change material energy system
JP4607626B2 (en) Efficient heat exchanger and engine using the same
JP2011214786A (en) Heat exchanger
JP5831996B2 (en) Heat exchanger with annular axial flow rib
JP5968431B2 (en) Heat transfer device
JP2013122368A (en) Vehicle heat exchanger
JP2010169343A (en) Reciprocating heat exchanger
US20150168076A1 (en) Heat Exchanger Comprising A Bundle Provided With Means Permitting The Limitation Of The Movements Of The Said Exchange Bundle In Relation To The Walls Of The Housing
KR20130065174A (en) Heat exchanger for vehicle
KR101682488B1 (en) Heat exchanger for vehicles
JP2003155928A (en) Heat exchanger
RU2494329C1 (en) Shell-and-tube heat exchanger
WO2015020047A1 (en) Heat exchanger
WO2013036426A1 (en) System and method for exchanging heat
US9310135B1 (en) Configureable heat exchanger
JP4342566B2 (en) Heat engine
CN108592660B (en) Double-coil cooler for Stirling thermoelectric conversion device
US20150314667A1 (en) Heat exchanger for an internal combustion engine
JP2022126185A (en) Heat exchanger
CN216049333U (en) Plate heat exchanger
JP4929470B2 (en) Stirling engine heat exchanger